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Binary black holes may form and merge dynamically. These binaries are likely to become bound with
high eccentricities, resulting in a burst of gravitational radiation at their point of closest approach. When
such a binary is perturbed by a third body, the evolution of the orbit is affected, and gravitational-wave burst
times are altered. The bursts times therefore encode information about the tertiary. In order to extract this
information, we require a prescription for the relationship between the tertiary properties and the
gravitational-wave burst times. In this paper, we demonstrate a toy model for the burst times of a secular
three-body system. We show how Bayesian inference can be employed to deduce the tertiary properties
when the bursts are detected by next-generation ground-based gravitational-wave detectors. We study the
bursts from an eccentric binary with a total mass of 60M⊙ orbiting an 6 × 108M⊙ supermassive black hole.
When we assume no knowledge of the eccentric binary, we are unable to tightly constrain the existence or
properties of the tertiary, and we recover biased posterior probability distributions for the parameters of the
eccentric binary. However, when the properties of the binary are already well known—as is likely if the late
inspiral and merger are also detected—we are able to more accurately infer the mass of the perturber, m3,
and its distance from the binary, R. When we assume measurement precision on the binary parameters
consistent with expectations for next-generation gravitational-wave detectors, we can be greater than 90%
confident that the binary is perturbed. When the orbit of the binary around the tertiary is face-on with
respect to the observer, there are large statistical uncertainties on the recovered tertiary properties (m3, R3,
and orbital phase descriptors ω0 and V3;0) due to correlations between these parameters in the simple toy
model. However, if the orbit is tilted away from face-on, these uncertainties can be substantially reduced.
Future models allowing for nonsecular evolution may further decrease measurement uncertainties by
breaking more correlations between binary and tertiary parameters.
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I. INTRODUCTION

The third gravitational-wave transient catalog [GWTC-3;
[1] ] of the LIGO-Virgo-KAGRA collaboration (LVK)
contains 90 signals of likely astrophysical origin (≥ 50%
probability). The vast majority of these signals are likely
to originate from binary black hole (BBH) mergers.

GW190521 [2] is one of the more intriguing BBH systems
observed. Due to its high total mass, the signal is short in
duration in the LVK frequency band, allowing multiple
population models to explain the system’s origin [3]. While
it is impossible to fully determine this given the available
data, one plausible explanation is that the event corresponds
to a highly eccentric merger within the disk of an active
galactic nucleus [4–9].
A variety of dynamical processes, such as GW captures

from a hyperbolic flyby of two BHs or resonating encounters
between more than two BHs, could produce GW190521-like
events. Dynamical environments are thought capable of
producing mergers with higher masses, more misaligned
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component spins, and higher eccentricities than can be
formed through isolated evolution [10–25]. However, sys-
tems from different dynamical environments—for example,
globular clusters, active galactic nuclei (AGN), or nuclear
clusters—are challenging to distinguish in the LVK band.
One of the key differences in source properties predicted
for different dynamical environments is the overall dis-
tribution of eccentricities in the population [13,26–32],
although most of these eccentricities are below the
sensitivity of current detectors [33–35].
Due to their improved sensitivity, particularly at low

frequencies, future ground-based detectors like the Einstein
Telescope [ET; [36] ] and Cosmic Explorer [37] will be
sensitive to a wider range of eccentricities [33] and more
distant mergers. As a result, they will give us greater power
to identify the preferred formation environment of an
ensemble of events [32,38]. However, distinguishing differ-
ent dynamical BBH formation environments using pop-
ulation eccentricity distributions requires robust predictions
of these distribution, which do not exist for all environ-
ments. For example, there are significant variations in the
eccentricity distributions expected to arise in AGN under
different assumptions about the properties and dynamics
of the AGN itself [28,29]. Regardless of the uncertainty
over the whole population, all dynamical formation proc-
esses are capable of producing extremely high-eccentricity
(e≳ 0.9 at detection) sources.
Instead of attempting to demonstrate inference of the

formation channels of an entire population, we instead
focus on the challenge of pinpointing the environment in
which a single binary merged. If formed with sufficiently
high orbital eccentricity, BBHs formed through dynamical
encounters will experience a burst phase, wherein GW
bursts are emitted during each pericenter passage [39–42].
The arrival times of the bursts become analogous to the GW
phase of quasicircular binaries. As a result, perturbations of
the binary dynamics will be imprinted in the burst arrival
times, and even small deviations from the standard two-
body vacuum prediction of arrival times can reduce the
signal-to-noise ratio (SNR) and/or bias parameter estima-
tion [41]. One case of perturbation, which is relevant in
dynamical environments and has been widely studied, is
that caused by a nearby third body [43–54].
While the obvious culprit for an interfering tertiary when

considering binaries in AGN disks is the central super-
massive black hole (SMBH), triple systems with compli-
cated dynamics can be formed either in situ or through
chaotic few-body interactions [13,27,55–57]. In a dynami-
cal setting, a wide binary is disrupted by a tertiary, causing
the total system to undergo chaotic interactions. The system
will eventually settle into a quasistable configuration,
wherein an inspiraling eccentric binary will either merge
before the tertiary can disrupt it again (see Fig. 1 of [27]) or
enter another phase of chaotic evolution. The influence of
the tertiary on this inspiraling binary can be multifaceted,

not only inducing oscillations in the orbital eccentricity and
inclination angle through tidal interactions, but also gen-
erating a time and frequency shift in the detected burst due
to motion of the binary’s center of mass (c.m.) [58,59].
These perturbations to the binary’s motion will be encoded
in the emitted GWs, and can in principle be measured from
the burst arrival times in the high-eccentricity limit, and the
GW Fourier phase in the low-eccentricity limit [60–62].
Future space-based detectors, which will be able to

observe the evolution of a binary as it orbits a more massive
tertiary for several years, may achieve precise measure-
ments of tertiary properties by measuring the phase shift
and/or Doppler shift due to the binary’s c.m. motion
[63,64], and/or by tracking the tertiary-induced precession
of the binary’s orbital plane [58]. Previously, it was shown
that existing gravitational-wave detectors are theoretically
sensitive enough to discern the influence of a tertiary on a
merging quasicircular binary, particularly low-mass sys-
tems like binary neutron stars [65]. Here, we investigate
the ability of future ground-based detectors to identify an
interfering tertiary purely from its effect on the orbit of a
nearby eccentric BBH. In light of the importance of
tertiaries to the relatively short-term evolution of eccentric
BBHs, we perform a proof-of-concept study aimed at
answering the following questions:
(1) Can we infer the properties of an interfering tertiary

from eccentric GW burst arrival times?
(2) Can we constrain the parameter space of perturbing

tertiaries in the absence of such effects?
In Sec. II, we demonstrate inference of an SMBH per-
turbing a nearby highly eccentric BBH using next-
generation ground-based detectors. In Sec. II A, we derive
the toy model that represents a three-body system produc-
ing a sequence of GW bursts from the periastron passages
of the eccentric BBH. The final timing model, including
re-summed 2.5PN radiation reaction effects and restricted -
3PN tertiary perturbations, is given in Eqs. (19)–(22). The
additional offset induced due to the c.m. motion of the
binary is derived in Sec. II A 2 and given in Eq. (31). In
Sec. II B, we establish and demonstrate a Bayesian frame-
work for recovering the parameters of the system from its
burst signal. When we assume that all properties of the
inspiralling eccentric binary are well known prior to the
burst timing analysis, we can exclude the possibility that
the binary is unperturbed at greater than 90% confidence. In
Sec. III, we discuss our results and outline our intended
future extensions to the work presented here. In this work,
we use geometric units with G ¼ c ¼ 1.

II. METHODOLOGY AND ANALYSIS

In a real data analysis scenario, there would be two
complications to contend with. The first is the detection of
eccentric burst signals. While no searches specifically
targeting highly eccentric sources are currently performed,
burst search pipelines such as cWB [66] or Omicron [67]
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and proposed methods, such as power stacking [68] or
BayesWave-inspired signal-based prior searches [69–71],
could theoretically detect such unmodeled signals.
However, these methods do possess limitations. Burst
searches are inefficient for detecting repeated burst signals,
power stacking is suboptimal compared to matched filter-
ing, and the signal-based prior searches proposed in [71]
require a timing model consistent with signals that would
exist in nature. In this work, we do not concern ourselves
with the specific method by which the bursts are detected.
We assume that a sufficient algorithm exists that could
detect these signals, and focus on the problem of inference
from eccentric bursts signals.
The second issue is that, in order to perform parameter

estimation and infer a tertiary’s parameters, we require a
model of the tertiary’s effect on the burst arrival times.
Timing models have been developed for the vacuum two-
body problem in GR [41,72–74] using the post-Newtonian
(PN) approximation [75]. While a model has been devel-
oped to 3PN order, it is only accurate to leading order in
high eccentricity [73]. Further, models based on naive PN
expansions may not be sufficiently accurate for more
compact binaries, requiring a re-summation of a suitable
PN timing model that must be calibrated against a signal
that one might realistically expect to exist in nature [74].
Unfortunately, there is currently a dearth of numerical
relativity simulations of highly eccentric BBHs. Resummed
models must be calibrated by other means, which will
introduce instrinsic modeling error that may produce biases
in parameter estimation.
In keeping with this work being a proof-of-concept

study, we develop an extension of the resummed timing
model of [74] that incorporates the simplest three-body
effects. This toy model focuses on hierarchical triple
systems, wherein the third body moves along a circular
outer orbit with radius R ≫ r12, with r12 being the
separation of the inner binary. Using this assumption, we
expand the force induced on the inner binary by the tertiary
in r12=R ≪ 1, and consider only the leading order effects.
In doing so, the problem maps to a perturbed Kepler
problem, which can be solved using the method of
osculating orbits [75–81]. We further assume that the
orbital angular momenta of the inner and outer orbits are
aligned, and thus we do not consider any evolution of the
mutual inclination angle between the two orbits. This leads
us to focus on systems in which such a configuration may
be preferred, namely BBH embedded in an accretion disk
within an AGN, wherein gas torques are expected to align
the orbital angular momentum with the disk [82–84]. By
integrating between subsequent pericenter passages, we
obtain a new timing model that includes the resummed
2.5PN radiation reaction effects computed in [74], with
restricted tidal quadrupole effects of a tertiary. The latter
enter the timing model at -3PN order, since the relative
correction scales as v−6, with v the orbital velocity.

A. Burst timing with a tertiary

Consider a highly eccentric binary being perturbed by a
third body of mass m3 on an outer orbit such that r12 ≪ R,
with R being the separation of the third body from the inner
binary’s center of mass and r12 being the radial separation
of the inner binary. For simplicity, we assume that the
mutual inclination of the inner and outer orbits is ι ¼ 0,
and that the third body moves on a circular orbit, i.e.
R ¼ constant. We proceed to calculate the corrections to
the eccentric burst timing using the methods detailed in
[41,73,74]. The response of the binary and its GWemission
to the tertiary can be split into two distinct effects: (i) the
tidal force induced on the inner orbit, which modifies the
generation of the waves and (ii) the motion of the binary’s
c.m. around the common barycenter of the total system,
which modifies the propagation of the GWs. We detail how
to compute each of these below.

1. Tidal effects and generation of GWs

In an effective one body frame, the inner binary is
characterized by a small compact object with mass
μ ¼ m1m2=M orbiting around a larger compact object of
mass M ¼ m1 þm2, with ðm1; m2Þ the masses of the
individual objects, and ðμ;MÞ the reduced and total mass,
respectively. The radial separation of the inner binary obeys

r12 ¼
p

1þ e cos V
; ð1Þ

where p is the semi-latus rectum of the orbit, e is the orbital
eccentricity, and V ¼ ϕ − ω is the true anomaly with ϕ the
orbital phase and ω the longitude of pericenter. The frame
of the inner binary is defined by the unit vectors

n⃗ ¼ ½cosðV þ ωÞ; sinðV þ ωÞ; 0�; ð2Þ

λ⃗ ¼ ½− sinðV þ ωÞ; cosðV þ ωÞ; 0�; ð3Þ

e⃗Z ¼ ½0; 0; 1�: ð4Þ

The motion of the tertiary is described by the unit vector

N⃗ ¼ ½cosV3; sinV3; 0�; ð5Þ

where V3 ¼ Ω3t is the phase of the outer orbit, with Ω3

the angular frequency of the orbit, and t being the time
coordinate. Figure 1 gives a schematic of this setup. The
equations of motion of the inner binary are [43,44,46,75]

a⃗12 ¼ −
M
r212

n⃗ −
m3r12
R3

½n⃗ − 3ðn⃗ · N⃗ÞN⃗ þOðr12=RÞ�; ð6Þ

where we are working in an expansion in r12=R ≪ 1.
The equations of motion of the inner binary in Eq. (6)

are a classic example of a perturbed Kepler problem.
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The typical method of solving such a system of equations
is the method of osculating orbits [75–81], whereby the
orbit takes the standard Keplerian parametrization in
Eq. (1), but the otherwise constant orbital elements
ðp; e;ωÞ are promoted to be functions of time. To obtain
the evolution equations for the orbital elements, known as
the osculating equations,1 one decomposes the perturbing
force f⃗ into components within the orbital basis defined by
Eqs. (2)–(3). Defining R¼ f⃗ · n⃗, S ¼ f⃗ · λ⃗, and W¼ f⃗ · e⃗Z,
the osculating equations for ðp; e;ω; tÞ are given, for
example, in Eqs. (3.69a)–(3.70) in [75]. In our scenario,
the perturbing force is given by the force of the tertiary on
the inner binary, specifically, the term proportional tom3 in
Eq. (6). Following the decomposition of the perturbing
force, the osculating equations are

dp
dV

¼ −3pA3γðVÞ−4 sin ½2ðV − V3 þ ωÞ�; ð7Þ

de
dV

¼ A3

4
γðVÞ−4

X2
k¼0

h
CðkÞ
e cosðkVÞ þ SðkÞe sinðkVÞ

i
; ð8Þ

dω
dV

¼ −
A3

4e
γðVÞ−4

X3
k¼0

h
CðkÞ
ω cosðkVÞ þ SðkÞω sinðkVÞ

i
; ð9Þ

dt
dV

¼
�
p3

M

�
1=2

γðVÞ−2
�
1 −

A3

4e
γðVÞ−4

X3
k¼0

h
CðkÞ
t cosðkVÞ

þ SðkÞt sinðkVÞ
i�

; ð10Þ

where

A3 ¼
m3p3

MR3
; γðVÞ ¼ 1þ e cosV; ð11Þ

and the harmonic coefficients ½CðkÞ
a ; SðkÞa � are given in

Appendix B.
The osculating equations posses two timescales, char-

acterized by V which is short, and V3 which is long. The
general solution of these equations can then be solved via
the methods of multiple scale analysis [75,77,80,85], but
the timing model can be computed by a simpler procedure.
To obtain the timing model, one has to apply an approxi-
mation that accurately takes into account the dynamics of
the binary under radiation reaction. For highly eccentric
binaries, the gravitational waves are emitted in short bursts
during pericenter passage, causing the orbital elements
to be effectively constant throughout the orbit, and chang-
ing rapidly around pericenter in a nearly steplike manner.
This implies that the changes to the orbital elements
δa ¼ ½p; e;ω�, can be calculated by

δai − δai−1 ¼
Z

2π

0

dV

�
dδa

dV

�
δa¼δai−1

: ð12Þ

The mappings for the orbital elements are then

pi ¼ pi−1

�
1þ 15π

m3

M

�
pi−1

R

�
3 e2i−1 sin½2ðV3 − ωi−1Þ�

ð1 − e2i−1Þ7=2
�
;

ð13Þ

ei ¼ ei−1 −
15π

2

m3

M

�
pi−1

R

�
3 ei−1 sin½2ðV3 − ωi−1Þ�

ð1 − e2i−1Þ5=2
; ð14Þ

ωi¼ωi−1þ
3π

2

m3

M

�
pi−1

R

�
3 1þ5cos½2ðV3−ωi−1Þ�

ð1−e2i−1Þ5=2
: ð15Þ

A similar procedure produces the changes to the time
between consecutive pericenter passages:

ti− ti−1¼
2π

M1=2

�
pi−1

1−e2i−1

�
3=2

�
1þm3

M

�
pi−1

R

�
3

×
5ð4þ3e2i−1Þþð96þ51e2i−1Þcos½2ðV3−ωi−1Þ�

ð1−e2i−1Þ3
�
:

ð16Þ

FIG. 1. Schematic of the three body system under consider-
ation. The inner binary is parametrized by orbital separation r12,
true anomaly V, reduced mass μ, and total mass M. The inner
orbit is misaligned relative to the fixed (XY)-frame by the angle
ω, corresponding to the longitude of pericenter. The tertiary has
mass m3, and moves in a circular orbit with radius R ≫ r12 and
phase V3.

1These are also sometimes referred to as the Lagrange
planetary equations.
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The burst frequency, namely the peak frequency of the
waveform, will still be given by the usual approximate
formula, for example Eq. (20) in [72].
The model described above does not include the 2.5PN

radiation reaction effects, but can be very easily extended to
include them. The most up-to-date 2.5PN model is given
in [74]. To add the three body terms to this, we assume the
validity conditions

m3

M

�
p
R

�
3

ð1 − e2Þ−3 ≪ η

�
M
p

�
5=2

ð1 − e2Þ−1 ð17Þ

for any ½p; e� in the inspiral, and with η ¼ μ=M the
symmetric mass ratio of the inner binary. The above
condition ensures that the three body effects are
small compared to the 2.5PN effects, which is a fair
assumption as long as the inner binary inspirals before
the third body can disrupt it again. Rearranging terms,
we have

R ≫ Rmin;

Rmin ¼
�ð1þ eÞ13=2

ð1 − eÞ2
η3
ηv11p

�
1=3

M

≈ 1.3 × 10−3 AU

�
fðeÞ
95.6

��
η

1=4

�
−1=3

�
η3
1=2

�
1=3

×

�
vp
1=3

�
−11=3

�
M

20M⊙

�
; ð18Þ

where fðeÞ ¼ ð1þ eÞ13=6=ð1 − eÞ2=3, η3 ¼ m3=M, vp ¼
ð1þ eÞðM=pÞ1=2 is the pericenter velocity, M⊙ is the solar
mass, and we have chosen e ¼ 0.99 to get the approximate
equality for Rmin. Figure 2 provides a plot of Eq. (18) as a
function of m3=M for various values of the semi-latus
rectum (left) and eccentricity (right). Generally, values above
the relevant lines correspond to systems where Eq. (18) is
valid. Assuming this condition is satisfied, the resulting
timing model including 2.5PN and three body effects is

pi ¼ pi−1

�
1 −

128π

5
η

�
M
pi−1

�
5=2

�
1þ 7

8
e2i−1

�
þ 15πη3C3

R

�
M
pi−1

�
−3 e2i−1 sin½2ðV3 − ωi−1Þ�

ð1 − e2i−1Þ7=2
�
; ð19Þ

ei ¼ ei−1

�
1 −

608π

15
η

�
M
pi−1

�
5=2

�
1þ 121

304
e2i−1

�
−
15π

2
η3C3

R

�
M
pi−1

�
−3 sin½2ðV3 − ωi−1Þ�

ð1 − e2i−1Þ5=2
�
; ð20Þ

ωi ¼ ωi−1 þ
3π

2
η3C3

R

�
M
pi−1

�
−3 1þ 5 cos½2ðV3 − ωi−1Þ�

ð1 − e2i−1Þ5=2
; ð21Þ

ti − ti−1 ¼
2π

M1=2

"pi−1 þ ηM5=2

p3=2
i−1

Aðei−1; pi−1; ηÞ
1− e2i−1 þ ηð M

pi−1
Þ5=2Bðei−1Þ

#3=2�
1þ η3C3

R

�
M
pi−1

�
−3 5ð4þ 3e2i−1Þ þ ð96þ 51e2i−1Þ cos½2ðV3 −ωi−1Þ�

ð1− e2i−1Þ3
�
;

ð22Þ

FIG. 2. The validity condition in Eq. (18) as a function of η3 ¼ m3=M for p ¼ ½10; 20; 40; 60�M with e ¼ 0.9 (left), and e ¼
½0.99; 0.9; 0.8; 0.7� with p ¼ 20M (right). The horizontal line corresponds to Rmin ¼ m3, corresponding to the radius of the innermost
stable circular orbit for a maximally spinning black hole. For any given values of ðp; eÞ, values of Rmin above these lines satisfy the
condition in Eq. (18). The system studied in Sec. II B is marked by the red star in each plot. We study a system close to the validity
condition as this results in the largest burst detection time perturbations.
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where CR ¼ M=R is the dimensionless compactness of the
outer orbit. The functions Aðe; p; ηÞ and BðeÞ in Eq. (22)
are given in Eqs. (63)–(66d) in [74]. Note that there is no
2.5PN correction to the longitude of pericenter, and as a
result, was not included in the model of [74].
The timing model in Eqs. (19)–(22) provides a simplified

model of the dynamics of a hierarchical triple system. The
assumptions that have gone into the model are as follows:

(i) The eccentricity of the inner binary is close to unity
(e ∼ 1), which provides the assumption that the
evolution of the binary is nearly steplike, and allows
us to apply Eq. (12). For a standard two-body
inspiral, the emission of GWs acts to circularize
the binary, and as a result this assumption breaks
down if the binary does not merge with appreciably
large eccentricity. The action of the third body can
either increase or decrease the eccentricity of the
inner binary depending on the phase of the outer
orbit. Since we are treating the action of the tertiary
as a perturbation of the standard two body dynamics,
any changes in the eccentricity (as well as the other
orbital elements) due to the tertiary are small.

(ii) The orbit of the third body is circular and is co-planar
with the orbit of the inner binary. We have made these
assumptions to simplify the analysis carried out
herein. These assumption can be readily relaxed by
incorporating the inclination angle ι and orbital
eccentricity of the third body e3 in Eqs. (7)–(10).

(iii) We have neglected higher PN order effects in
the dynamics of the inner binary, and as a result,
the timing model of Eqs. (19)–(22) only include the
Newtonian and 2.5PN order effects for the dynamics
of the inner binary. Higher PN order effects in both
the conservative (orbital) and dissipative (radiation
reaction) dynamics of the binary are not, in general,
negligible. However, the purpose of this study is to
quantify whether three body effects can be measured
from eccentric burst timing, and thus we have made
use of a simplified model that includes only leading
PN order conservative and dissipative effects. This
assumption can be relaxed by repeating the calcu-
lations herein with the higher PN order effects of the
inner binary in Eq. (6), for example, [73].

(iv) We have made an assumption that the outer orbit is
much larger than the inner orbit R ≫ r12, and have
thus neglected the higher PN order effects generated
by the third body. Such an assumption must be made
in order to preserve the perturbative scheme needed
to construct the timing model. Further, if this
assumption is broken, the dynamics of the full triple
system become highly complex, and possibly cha-
otic, rendering the methods herein difficult to
perform. Under the assumption of R ≫ r12, the
higher PN order effects of the third body are sup-
pressed by powers of ðM þm3Þ=R, which must be

small in order for the assumptions about the PN
expansion to hold. Thus, we do not consider them
here. However, this assumption can also be relaxed
by incorporating the higher PN order effects of the
third body in Eq. (6), as long as the separation of the
scales holds.

As long as the above assumptions are maintained, as well as
Eq. (18), the timing model presented here is an accurate
description of the dynamics of the triple system.
As a last comment, we have so far neglected to make any

determination of V3 in the model. As a matter of simplicity,
one could take V3 ¼ constant, since the condition r12 ≪ R
implies Torb ¼ ðti − ti−1ÞCR¼0 ≪ T3, with T3 being the
period of the outer orbit. However, to incorporate the
motion of the third body, this is included into the model in
the following fashion. Since we assume that the third body
moves on a circular orbit, the phase of the outer orbit
evolves according to

V3 ¼
Z

ti

ti−1

dtΩ3; ð23Þ

where

Ω3 ¼
�
M þm3

R3

�
1=2

: ð24Þ

Strictly speaking, Ω3 is a function of time through back-
reaction effects from the inner orbit, as well as the
gravitational wave emission of the outer orbit. However,
because V3 is already suppressed within the timing model,
these effects can be neglected, and the integral reduces to

V3 ¼ Ω3ðti − ti−1ÞCR¼0: ð25Þ

2. Center of mass motion and propogation of
gravitational waves

If the binary is stationary with respect to the
observer, then the burst arrival times are trivially given
by Eqs. (19)–(22). Such a scenario is possible if the mass
of the tertiary m3 is small compared to the total mass of
the binary M, and thus the binary’s c.m. would not
experience significant motion. However, this need not
necessarily be true for astrophysically relevant systems.
Further, even if the motion of the binary’s c.m. is slow,
observations over sufficiently long timescales could make
the effect observable. We here provide an explicit
calculation of the effects of the binary’s c.m. motion
on the burst arrival times.
In the binary’s c.m. frame, the bursts are emitted at times

tei , which are given by Eq. (22). However, the GWs arrive at
the detector frame at times toi , given by

toi ¼ tei − d⃗i · n⃗o; ð26Þ
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which should be recognized as the retarded time (in units
where c ¼ 1) for a source at distance d⃗i from the detector,
and with n⃗o the line of sight between the source and
detector. If di is constant, the correction to tei becomes
degenerate with an overall time offset, and thus cannot be
directly measured. In our case, d⃗i is not constant and is
given by

d⃗i ¼ d⃗bary þ r⃗comðtei Þ; ð27Þ

where d⃗bary is the distance between the detector and the
total barycenter of the triple system, and r⃗com is the distance
between the total barycenter and the binary’s c.m. We
assume that d⃗bary is constant, and as a result, can be
neglected due to the aforementioned degeneracy. Thus, the
observed arrival times of the burst are

toi ¼ tei − r⃗comðtei Þ · n⃗o: ð28Þ

Figure 3 provides a schematic of the triple system’s
dynamics in the detector frame. The relative separation
between the tertiary and the binary’s c.m. is trivially given
by R⃗ ¼ RN⃗, where N⃗ is given in Eq. (5). Thus, in the
barycenter frame, the separation between the barycenter
and the binary’s c.m. is

r⃗com ¼ R⃗ ¼ R½cosV3; sinV3; 0�: ð29Þ

Recall that we are assuming that the outer orbit is circular,
and thus, R is constant and the only time evolution in
this quantity comes from V3. To determine n⃗o, we assume
the mutual plane of the inner and outer orbits can be
arbitrarily oriented with respect to an observer. Since we
are assuming the outer orbit is circular, the normal vector

of the orbital plane will be determined by two angles,
the inclination angle ι3 and the line of nodes Λ3. Thus, in
the barycenter frame

n⃗o ¼ ½sin ι3 cosΛ3; sin ι3 sinΛ3; cos ι3�; ð30Þ

giving us our final expression for the burst arrival times

toi ¼ tei − R sin ι3 cos ½V3ðtei Þ þ Λ3�; ð31Þ

where V3ðtei Þ is given by Eq. (25).
There are a few things to note about Eq. (31) before

considering inference of the full timing model. First, note
that the Doppler shift is simply the light travel time across
the outer orbit, and thus, more important for systems with
larger R (recall that we have set c ¼ 1). An example of such
a system is a stellar mass BBH orbiting around a SMBH,
like the one we study in the next section. However, there is
a subtlety with this point, namely the fact that the Doppler
shift depends on the phase of the outer orbit V3. If R is
sufficiently large that V3 does not evolve significantly over
the inspiral of the binary, than the Doppler shift is
effectively constant and, as a result, degenerate with an
overall time shift of the full series of bursts. Thus, the
Doppler effect is most important for systems with larger R,
but not sufficiently large that V3 does not significantly
evolve on the inspiral timescale. We consider this point in
more detail in Sec. II B 2.
Second, a number of approximations have gone into our

computation that simplify the expression of the Doppler
corrections, specifically we have assumed that the outer
orbit is circular, and is not inclined relative to the inner
orbit. These can be relaxed, but would require a more
thorough investigation of the tidal effects, since these
become significantly more complicated. Note also that this
depends on the time at which the bursts are generated

FIG. 3. Schematic of the c.m. motion of a binary in a triple system. The normal to the orbital plane L̂ is oriented with respect to the line
of sight n⃗o by angles ðι3;Λ3Þ. The total barycenter of the system dbary is assumed to be stationary with respect to the detector, which is

specified by arms D1;2. The distance from the binary to the source d⃗ is time dependent through the binary’s c.m. position r⃗comðtÞ,
modifying the arrival times of the bursts at the detector.
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through V3, and thus relies on the burst timing model of the
previous section. Any considerations of the validity of the
model in Eqs. (19)–(22) also then apply to Eq. (31).
Third, while the main timing model in Eqs. (19)–(22)
are purely functions of parameter combinations m3

R3 and
2ðV3 − ωi−1Þ, Eq. (31) breaks these degeneracies; thus,
for systems with nonzero ðι3;Λ3Þ (hereafter referred to as
“tilted” systems), we should expect a more accurate
recovery of individual parameters via parameter estima-
tion. Finally, the Doppler effect introduces two new
parameters into the model, namely ðι3;Λ3Þ. The influence
of varying ι3 and Λ3 on the initial burst, expressed as
the difference between the emitted time tei and observed
time toi , is shown in Fig. 4.

B. Inference of a perturbing tertiary

We test our ability to recover the properties of the tertiary
by modelling the GW signal from a highly eccentric binary
with a total mass of M ¼ 60M⊙, orbiting a SMBH of
1 × 107M (6 × 108M⊙) at a distance of 1.1 × 107M
(6.55 a.u.). This system sits close to the validity limit
given in Eq. (18), and its position relative to this limit is
shown in Fig. 2. We choose to study a system at close to
the limit of validity as this results in the largest and most
detectable burst offset times; as R increases for a fixed
m3, the perturbation the third body induces in the
motion of the binary is reduced, as illustrated in
Fig. 6. We study the data using hierarchical Bayesian
inference, treating each burst as an individual “event” and
the full set of bursts as a “population” of individual
events. In Sec. II B 1, we describe our Bayesian analysis
framework. In Sec. II B 2, we estimate the maximum R

for which this framework is sensitive to the influence of a
tertiary. In Sec. II B 3, we provide our injection and
analysis settings. We provide inferred tertiary properties
for known inner binaries with zero and nonzero orbital tilt
angles in Secs. II B 4 and II B 6, respectively. We provide
inferred properties of triple systems with known and
unknown orbital tilt angles in Sec. II B 5 and II B 7,
respectively. In the latter two sections, we investigate
several priors on inner binary parameters that represent
different levels of confidence in downstream parameter
estimation of the inner binary properties. In Sec. II B 8,
we briefly discuss correlations between R and other
system properties.

1. Bayesian framework

Using the timing model derived in Sec. II A, we aim
to infer the existence and identity of a tertiary perturber
from the GW signal of a highly eccentric binary. We
use a two-step inference procedure inspired by pulsar
timing [86–88] and hierarchical Bayesian inference
methods [89,90].
Pulsars are rotating neutron stars that emit extremely

regular electromagnetic pulses, which are observed with
radio telescopes on Earth. The pulse time of arrival (TOA)
is measured by averaging over, or “folding,” thousands of
data segments of length equal to one pulse period, fitting
the shape of the pulse to a standard pulse profile, and
measuring the time offset (ΔT) of the pulse peak from
the start of the data segment [88]. This gives the pulse
TOA averaged over thousands of pulses, plus an
associated uncertainty due to measurement noise. In
the absence of interference, every measurement should
have a constant ΔT. However, multiple phenomena—
e.g., pulsar spin-down, pulsar proper motion, the
Earth’s orbit around the Sun, low-frequency gravitational
waves—can cause timing “residuals” differences between
the expected TOA and the observed TOA. Pulse TOA
datasets are therefore fit using timing models that account
for these phenomena. These timing models contain no
information about the shape of the pulse itself. We take
inspiration from pulsar timing methods in two ways:
(i) by finding the time of each burst independently of the
others, and (ii) by removing waveform phenomenology
from the timing model analysis.
When simulating the parameter estimation pipeline, we

make two key assumptions. First, we assume that the
approximate location of each burst in the time-domain
data is flagged by a pipeline like, e.g., Omicron [67] or
cWB [66,91]. This gives us a set of distinct data segments
within which to search for bursts. Burst searches are
expected to be more efficient for finding highly-
eccentric sources than templated searches because existing
template banks neglect orbital eccentricity, leading high-
eccentricity sources to be missed and for sources with non-
vanishing eccentricity to have reduced signal-to-noise

FIG. 4. The time offset between the emitted burst time tei and
the detected burst time toi due to variations in the orbital tilt angles
ι3 and Λ3. All other parameters match the triple system described
in Sec. II B.
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ratios [30,92–94].2 Proposed burst searches relying on the
expected burst time evolution of a nonperturbed binary [71]
may be sufficient if the binary is only slightly perturbed
by the tertiary. Templated searches also rely on accurate
reproductions of the signals of well-modeled systems. For
closely interacting triples, the early burst times will be
offset by a large amount from those expected from a
nonperturbed binary and may evolve chaotically, so a
completely uninformed burst search will likely be more
applicable. While approximate models for eccentric LIGO-
Virgo-KAGRA sources exist and/or are under development
[42,96–102], these become unreliable at higher eccen-
tricities and the lower frequencies required for next-
generation detector sources, and neglect other physical
effects such as spin-induced precession [4,103]. Further-
more, no models exist for full gravitational-wave signals
from eccentric binaries perturbed by a tertiary.
Our second key assumption is that each burst is

unambiguously detected, i.e., we do not miss any bursts.
For next-generation detectors, we can expect full eccentric
signals to have SNRs comparable to their quasicircular
counterparts [104]; however, the aforementioned lack of
full waveforms for perturbed eccentric binaries means that
each burst will need to be detected individually for the
source to be correctly interpreted. In Advanced LIGO, the
matched-filter SNR of a single burst from a 10þ 10M⊙
binary 100 Mpc away is expected to be ∼1–20 when
the binary is ∼1–1000 s from merger [40,105]. In next-
generation detectors, we anticipate that these SNRs will
increase by orders of magnitude [106]. In the injection
recovery studies below, each burst has a matched-filter
SNR of ≈80.

We represent the array of N true burst times as tb, and
each individual burst time within this set as tb;i. The first
step in the recovery of the tertiary parameters is to calculate
a probability distribution for each individual burst arrival
time, pðtb;ijdiÞ, where di is the data stretch containing the
burst at time tb;i. We split the data so that each burst
is contained within a unique data segment. For this
demonstration, we choose the segment start and end times
to be tstart;i ¼ tb;i − 1

2
ð0.125þ Rstart;iÞ s and tend;i ¼ tb;iþ

1
2
ð0.125þ Rend;iÞ s, respectively, where Rstart;i and Rend;i

are different random numbers between 0 and 1. This
is to emulate a situation in which several distinct data
segments of different length are flagged by a burst search
as likely to contain a single burst. Using, e.g., a Markov
chain Monte Carlo algorithm, one can obtain the
Bayesian posterior probability distribution on each burst
arrival time,

pðtb;ijdiÞ ¼
Lðdijtb;iÞπðtb;iÞR
dtb;iLðdijtb;iÞπðtb;iÞ

; ð32Þ

where πðtb;iÞ is the prior distribution (for example,
a uniformly distributed prior over tb;i). Lðdijtb;iÞ is the
Whittle likelihood,

Lðdijtb;iÞ ¼
1

2πSn
exp

�
−
1

2

jdi − μðtb;iÞj2
Sn

�
; ð33Þ

where μðtb;iÞ is a GW burst occurring at tb;i, so that

hðθÞ ¼
XN
i

μðtb;iðθÞÞ; ð34Þ

and Sn is the detector noise power spectral density (PSD),
which is typically estimated by averaging over the base noise
level measured at the detector close to the time of the event
[107,108]. To quickly approximate such a probability

FIG. 5. The full injected signal from the perturbed system in the time domain (left), a single burst in the time domain (middle) and the
full signal in the frequency domain (right). The plus and cross polarizations of the signal are plotted in gray and the total signal is plotted
in black.

2One possible example of this effect in action is the potentially
eccentric event GW190521 [4,5,95], which was flagged by burst
searches with a much lower false-alarm rate than by templated
searches [2].
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distribution, we compute the overlap between the data and a
single burst (such as that shown in the middle panel of Fig. 5)
over the data segment duration, and draw 100 samples to
approximate pðtb;ijdiÞ from the resulting function.3

In the second step, we combine all of these single-burst
posteriors into a single dataset, tsamp. This can be fit with a
hierarchical inference model with some hyperparameters,
Θ, that determine the sequence of burst times.4 In this
case, the model for the burst times is the one described in
Sec. II A, which depends on Θ ¼ ½e0; p0;M; η; V3;0;ω0;
m3; R; ι3;Λ3�. In order to compute the posterior probability
distribution on the hyper-parameters (the hyper-posterior),
we first need to calculate the hyperlikelihood. This takes
the form

LðdjΘÞ ¼
Z

dtbLðdjtbÞπðtbjΘÞ; ð35Þ

where d is the entire stretch of data comprising N data
segments di, and πðtbjΘÞ is a new prior distribution on the
burst time that is dependent on Θ.
To compute this in practice, we take our individual burst

posterior probability distributions pðtb;ijdiÞ, and divide out
the uniform prior we used to obtain that distribution in
favor of a hyperparameter-dependent prior. For each
realization of source parameters Θj, we generate a corre-
sponding sequence of GW burst times, tb;jðΘjÞ. We then
find the burst timing residuals between tsamp and tb;jðΘjÞ.
A realization of Θj with small residuals has a higher
probability of matching the true or injected Θ than one that

produces large residuals. The likelihood for the entire series
of bursts can be written as [see Eqs. (32)–(35) in [89] ]

LðdjΘÞ ¼
YN
i

R
dtb;iLðdijtb;iÞπðtb;iÞ

ni

Xni
k

πðtkb;ijΘÞ
πðtkb;iÞ

; ð36Þ

where k denotes a single sample from the posterior
probability distribution of burst i, and ni is the number
of posterior samples for each burst. Finally, the hyper-
posterior is

pðΘjdÞ ¼ LðdjΘÞπðΘÞR
dΘLðdjΘÞπðΘÞ ; ð37Þ

where πðΘÞ is the hyperprior, which encodes our prior
knowledge about the natural distributions of parameters
Θ ¼ ½e0; p0;M; η; V3;0;ω0; m3; R; ι3;Λ3�. We draw pro-
posed values for Θ from these priors. In the analyses in
the following section, we use four different prior models to
represent different levels of uncertainty on the properties of
the inner binary; these priors are detailed in Table I.

2. Estimation of maximum R at which influence
of tertiary is detectable

We estimate the maximum R for which the effect of a
perturbing tertiary can be detectable, for a given value of
m3 ¼ 107M. To produce this estimate, we compare the
burst time offsets between a perturbed and nonperturbed
system for a selection of R, ι3 and Λ3, and compare them
against our approximate uncertainty on the burst time, σtb .
The uncertainty σtb ∼ 0.1 is the mean average of the
standard deviations calculated for all mock posteriors on
burst time in Secs. II B 4–II B 7. This value is approximate
because the samples in the posteriors are drawn at random
from the overlap curves, so the exact value varies a little
(between ≈0.06 and ≈0.1). Since the burst timing model
depends on the quantity m3

R3 when the co-planar system

TABLE I. The prior shapes and limits that we use in this work. For η, we truncate the Gaussian priors to be within the same limits as the
uniform priors. Extensions to priors used in the tilted case are described in Secs. II B 6 and II B 7.

Parameter
δþ Uniform

(δþ U)
Gaussian 1þ Uniform

(G1þ U)
Gaussian 2þ Uniform

(G2þ U) Uniform (U)

M [M⊙] δðx − 60Þ Gðμ ¼ 60; σ ¼ 0.06Þ Gðμ ¼ 60; σ ¼ 0.6Þ Uðmin ¼ 10;max ¼ 400Þ
e δðx − 0.99Þ Gðμ ¼ 0.99; σ ¼ 0.99 × 10−3Þ Gðμ ¼ 0.99; σ ¼ 0.99 × 10−2Þ Uðmin ¼ 0.7;max ¼ 1.0Þ
p [M] δðx − 30Þ Gðμ ¼ 30; σ ¼ 0.03Þ Gðμ ¼ 30; σ ¼ 0.3Þ Uðmin ¼ 10;max ¼ 70Þ
η δðx − 0.20Þ Gðμ ¼ 0.20; σ ¼ 0.20 × 10−3Þ Gðμ ¼ 0.20; σ ¼ 0.20 × 10−2Þ Uðmin ¼ 0.15;max ¼ 0.25Þ
ω0 Uðmin ¼ 0;max ¼ 2πÞ
V3;0 Uðmin ¼ 0;max ¼ 2πÞ
m3 [M × 107] Uðmin ¼ 0;max ¼ 1.5Þ
R [M × 107] Uðmin ¼ 0.01;max ¼ 5Þ

3These samples are analogous to those obtained for individual
events in Bayesian population inference, for example, the posterior
probability distribution on chirp mass for a single binary black hole
merger. In this case the number of bursts, N, is the size of the
population.

4In typical population inference studies for GW astrophysics,
such a model might describe the population chirp mass distri-
bution, with Θ describing the shape and limits of the distribution.
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is face-on, the solid curves in Fig. 6 are identical for
different systems with the same values of m3

R3 (with
m3 ¼ 107M, m3

R3 ¼ ½7.5 × 10−15; 6.4 × 10−16; 8 × 10−17�
for R ¼ ½1.1; 2.5; 5� × 107M). When the system is face-
on, we estimate that a tertiary of mass m3 ¼ 107M would
become undetectable when R ≈ 5 × 107M. However, when
the system is tilted, the effect of the tertiary may remain
detectable until R≳ 1013M.

3. Injection and analysis settings

We create synthetic data by injecting mock signals into
simulated Einstein Telescope (ET) detector noise using
bilby [109,110], assuming the ET-B noise PSD [111]. To
create a mock signal, we take an array of burst times, tbðΘÞ,
produced by the burst timing model defined in Eqs. (19)–
(22). We model the plus polarization of the signal as a
Gaussian and the cross polarization as a sine Gaussian, both
centered at the burst time tb;i. This form is a toy model of
the analytic waveforms developed in [41]. To ensure the
system is in a regime in which its signal would be
sufficiently “burstlike” (i.e., minimal GW emission
between each pericenter passage) we restrict the model
to ei > 0.7. The width of the burst is σ ¼ 1.5 × 10−4M, a
value chosen because it produces a close match to the

analytic waveforms presented in [41]. The injected signal is
plotted in both the time and frequency domains in Fig. 5.
We use the hyper submodule of bilby [109,110] to
perform inference. We use sampler settings of 100 walks,
4000 live points, and 10 required autocorrelation times.
We inject a signal from a binary that is undergoing

perturbation from a third body. The toy model detailed in
Sec. II A is only applicable in the case that the inner binary
and the tertiary are coplanar, so we consider a system
in which this configuration is plausible: a M ¼ 60M⊙,
η ¼ 0.20 BBH orbiting a 107M (6 × 108M⊙) SMBH with
an accretion disk. A maximally spinning SMBH of this size
would have an innermost prograde stable circular orbit
close to its horizon radius of ≈5.95 a.u.5 We position the
binary 1.1 × 107M (6.55 a.u.) from the SMBH, outside its
horizon but within the radial extent of an accretion disk
that could align the outer and inner orbital planes (see
Ref. [115] and references therein). The initial values of the
orbital phase parameters, ω0 and V3;0, are arbitrarily chosen
to be 0 and π=3, respectively. The inner binary is initialized
with e0 ¼ 0.99 and p ¼ 30M (1.8 × 10−5 a.u.). We scale
the strain such that the matched-filter SNR for the entire
signal is ≈495, while the matched-filter SNR of a single
burst is ≈80. Such SNRs are expected to be common for
next-generation detectors [37]. We compare the burst times
and evolution of orbital parameters e and p for this system
to those of the same binary in isolation in Fig. 7.
In Secs. II B 4 and II B 5, we neglect the burst time

and frequency shift due to the binary motion around the
tertiary [59]. The inclination of both the outer orbit and the
inner orbit to the observer are assumed to be face-on in
these scenarios, since in this configuration the binary c.m.
motion does not influence the burst arrival times at the
detector. We allow the orbital tilt to vary in the analyses
presented in Secs. II B 6 and II B 7.
In all analyses, we assume that other extrinsic parameters

(e.g., the distance to the source and its location on the sky)
have already been inferred from the late inspiral and
merger. While we could in principle implement inference
over these extrinsic parameters—for example, differences
in the luminosity distance of the source could be explored
by redshifting the waveform frequency and inversely
scaling its amplitude—we do not go to these lengths for
this initial proof-of-principle study. Thus, all of our con-
straints should be considered lower limits, since they do not
include the additional uncertainty that would come from
exploring the extrinsic parameter space.

FIG. 6. The burst number i vs the offset between that burst time
and the same burst time from an unperturbed binary, for varying
values of R, ι3 and Λ3. Other parameters are as given in e.g.
Table IV. Different values of R are represented by different
colored curves. Solid curves show the burst time offsets for a
face-on co-planar triple; dashed curves show burst time offsets for
tilt angles ι3 ¼ π

4
;Λ3 ¼ π

6
; and dotted curves show burst time

offsets for a system with ι3 ¼ Λ3 ¼ π=2. The horizontal gray bar
shows the uncertainty on the detected burst time, which we
approximately equate to the mean average standard deviation of
the samples in our mock posteriors on burst arrival time. We
conservatively estimate that when the maximum burst time offset
is below this uncertainty, it would not be possible to confidently
infer the existence of the perturber.

5Most accreting SMBH are thought have close-to-maximal
spins [112], and the radius of the innermost stable circular orbit
approaches the horizon radius for maximally spinning black
holes [113]. While we ignore the influence of the spin of the
SMBH on the evolution of the binary properties here, see
Ref. [114] for an example of how SMBH spin may be measured
via its influence on nearby binaries observed with space-based
future GW detectors.
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We perform analyses using four different priors, detailed
in Table I. In the maximally optimistic case, we assume we
have perfect knowledge of all parameters of the inner
binary, and analyze the data to recover the tertiary param-
eters only. This is represented by the “Delta + Uniform”
(δþ U) prior, in which we fix the values of the inner
binary as delta functions and set uniform priors on the

tertiary parameters. We present results under this maxi-
mally optimistic assumption in Sec. II B 4 for the face-on
case and Sec. II B 6 for the tilted case. In more realistic
cases, we relax the assumption of perfect knowledge, and
aim to infer the intrinsic properties of both the inner binary
and the tertiary simultaneously. We use a range of priors for
these analyses. Two have informative Gaussian priors on
the inner binary parameters (G1þ U and G2þ U), repre-
sentative of the case where information about the binary
had been inferred from its later inspiral and merger. In the
maximally pessimistic case, we set uniform priors on all
parameters (U). This represents an unfortunate situation in
which, for example, the later inspiral and merger are not
detected. We present results under these less optimistic
assumptions in Sec. II B 5 for the face-on case and
Sec. II B 7 for the tilted case; we consider only an extension
of the informative G1þ U in the latter scenario. The
injected and recovered parameters are displayed in
Tables II and IV.
We also check that we recover sensible limits on tertiary

parameters in the case that the signal comes from an
unperturbed BBH. To do this, we inject a signal from the
same eccentric binary as before, but remove the influence of
the tertiary. We analyze this signal under both the maximally
optimistic (δþ U) and maximally pessimistic (U) priors, and
report injected and recovered parameters in Table III.

4. Measuring tertiary parameters when inner binary
parameters are known (face-on case)

First, we recover only the mass and location of the
tertiary, assuming that we have perfect measurements of
the parameters of the inner binary (M, e0, p0, η) through
analysis of the late inspiral and merger, and that the orbit of
the co-planar triple is face-on (ι3 ¼ Λ3 ¼ 0), so there is no
Doppler shift. Employing uniform priors on all parameters,

FIG. 7. The evolution of the orbital eccentricity e (bottom) and
semi-latus rectum p (top) with respect to time for a perturbed
binary interacting with a third body in a coplanar face-on orbit
(black), a coplanar orbit that is tilted with Λ3 ¼ π

6
; ι3 ¼ π

4
with

respect to the observer (gray), and an unperturbed binary
(orange). The system parameters are identical to those used in
our injection studies. The final bursts of each signal are time
matched so that the first-detected bursts have the greatest time
offset from each other.

TABLE II. Injected values compared to the median and 90% credible ranges of the posterior probability
distribution recovered for the perturbed system when analyzed using different priors on the inner binary parameters.
For these analyses, we keep ι3 ¼ Λ3 ¼ 0 fixed.

Recovered

Parameter Injected δþ U G1þ U G2þ U U

M [M⊙] 60 (60) 60.00þ0.10
−0.09 60.0þ0.7

−0.8 60þ9
−7

e 0.99 (0.99) 0.98998þ0.00006
−0.00007 0.9898þ0.0001

−0.0001 0.9899þ0.0002
0.0002

p [M] 30 (30) 30.00þ0.05
−0.05 30.2þ0.2

−0.1 30þ3
−3

η 0.20 (0.20) 0.2000þ0.0003
−0.0003 0.199þ0.003

−0.002 0.20þ0.05
−0.04

ω0 0 3.3þ2.7
−2.9 3.2þ2.8

−2.8 3.1þ2.8
−2.7 3.2þ2.7

−2.8

V3;0 π=3 (1.047) 3.1þ2.9
−2.7 3.4þ2.6

−3.1 3.2þ2.7
−2.8 3.2þ2.8

−2.8

m3 [M × 107] 1 0.9þ0.5
−0.7 0.9þ0.5

−0.7 0.7þ0.7
−0.6 0.7þ0.7

−0.7

R [M × 107] 1.1 1.1þ0.2
−0.4 1.0þ0.3

−0.4 2.9þ1.8
−1.7 2.8þ1.9

−1.6
cos ð2ðV3 − ω0ÞÞ −0.5 −0.3þ0.8

−0.5 0.0þ0.9
−0.9 0þ1

−1 0þ1
−1

m3

R3 [M−2 × 10−15] 7.5 6.9þ3.8
−0.7 7.6þ8.3

−2.2 0.3þ2.9
−0.2 0.3þ3.0

−0.3
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we sample over m3, R, V3 and ω0. The results of this
analysis are contained in Table II, and the posterior
probability distributions obtained are shown in the top
panel of Fig. 8. We obtain informative posteriors on m3

and R that peak close to the injected values, recovering
m3 ¼ 0.9þ0.5

−0.7 × 107M and R ¼ 1.1þ0.2
−0.4 × 107M, where the

errors are the limits of the 90% credible interval around the
median. In this optimistic case, we are able to exclude the
possibility that the binary is unperturbed at greater than
90% confidence. While the 1D posteriors we obtain for V3;0

and ω0 are relatively uninformative, the 2D posterior on
these parameters shows clearly the expected correlations
and periodicity, and reveals a peak at the injected values.
The 2D posterior on m3 and R shows a strong

correlation between these two parameters that follows
a line of constant m3

R3 , as anticipated due to the dependence
of the burst timing model on this quantity when the orbit
of the co-planar triple is face-on. Similarly, the correla-
tions between ω0 and V3;0 demonstrate the dependence of
the burst timing model on a combination of these two
parameters: the angle 2ðV3;0 − ω0Þ. To demonstrate that
these quantities are well-measured, we also plot the
posterior distributions on m3

R3 and cosð2ðV3;0 − ω0ÞÞ in
Fig. 8 and report the recovered median and 90% credible
intervals in Table II.
Second, we repeat the analysis with a signal from an

identical eccentric binary that is unperturbed. We obtain
posterior probability distributions onm3 and R that indicate
either a nonexistent, negligibly small or infinitely distant
tertiary. We show the posterior probability distributions
obtained for the unperturbed binary in the bottom panel of
Fig. 8. The 1D posterior probability distributions for ω0 and
V3;0 are uninformative, although there is some structure in
the 2D posterior, with preferred values found where V3;0

and ω0 are an integer value of π
2
offset. The constraints

obtained on the system parameters are provided in Table III.
We note in particular that the maximum 90% credible value
of m3

R3 is below the lower limit of the 90% credible region
recovered in the perturbed case, which would indicate
strongly that this system is effectively isolated.

5. Measuring tertiary and inner binary parameters
simultaneously (known face-on case)

We now loosen our priors on the inner binary parameters,
allowing greater uncertainty to enter our inference of the
tertiary parameters. The priors we use are detailed in Table I
for the case of the face-on (ι3 ¼ Λ3 ¼ 0) triple, which we
study first. To represent scenarios in which we have some
uncertain measurements on the intrinsic inner binary
parameters, we use Gaussian priors centered at the injected
value μ with some uncertainty represented by σ. We retain
wide uniform priors on tertiary parameters. We use two
such priors—one tighter (G1þ U), and one more relaxed
(G2þ U). Both sets of priors have widths within the range
of measurement precision expected for BBH detected
with ET [116,117]. The posterior probability distributions
recovered under each of these priors are shown in
Figs. 9 and 10, respectively. The median values and
90% credible interval recovered under each of these priors
are reported in Table II. With the more restricted prior,
G1þ U, we achieve comparable measurement precision
and accuracy to the δþ U prior, recovering m3 ¼ 0.9þ0.5

−0.7 ×
107M and R ¼ 1.0þ0.3

−0.4 × 107M. In the case of the less
restricted prior, the posterior probability distributions for
the inner binary properties are noticeably biased, preferring
a lower eccentricity, lower total mass, wider separation, and
more extreme mass ratio than injected.
In the final case, we relax our assumption that we have

any prior knowledge about the eccentric inner binary by
using the U prior, in which uniform priors are set on all
parameters. In this case, the parameters recovered for the
perturbed binary and unperturbed binary are near-identical,
implying that GW burst timing offsets—at least in the
SMBH scenario that we consider—can be well explained
by many binary and triple configurations. The posterior
probability distributions recovered for both the perturbed
and unperturbed binary are shown in Figs. 11 and 12,
respectively. The median and 90% credible interval values
recovered for all parameters, reported in Tables II and III,
are almost the same between the perturbed and unper-
turbed, with the median of the eccentricity posterior slightly
lower than the injected value for the perturbed binary.
These results highlight that, within the limits of our toy
model, accurately constraining the inner binary properties
is crucial if the tertiary properties are to be studied using
the burst timing method. The correlations in the tertiary
parameters are less well established when all parameters
are sampled over, as can be expected due to the increased
uncertainty. However, strong correlations between the

TABLE III. Injected and recovered parameters for the isolated
binary. Where limits are given, they are quoted at the 90%
credible level. Upper and lower error bounds correspond to the
limits of the 90% credible interval around the median.

Parameter Injected δþ U U

M [M⊙] 60 (60) 60þ9
−7

e 0.99 (0.99) 0.9900þ0.0002
−0.0002

p [M] 30 (30) 30þ3
−3

η 0.20 (0.20) 0.20þ0.04
−0.04

ω0 0 3.2þ2.8
−2.9 3.3þ2.6

−2.9

V3;0 N/A 3.1þ2.9
−3.0 3.1þ2.8

−2.8

m3 [M × 107] 0 < 1.2 0.7þ0.7
−0.7

R [M × 107] N=A > 2.4 2.8þ1.9
−1.6

cos ð2ðV3 − ω0ÞÞ N/A 0þ1
−1 0þ1

−1
m3

R3 [M−2 × 10−15] 0 < 0.3 0.3þ3.0
−0.3
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FIG. 8. Posterior probability density distributions on physical three-body parameters m3, R, V3;0 and ω0, as well as the parameter
combinations that directly influence the signal, cos ð2ðV3;0 − ω0ÞÞ and m3

R3 , for the perturbed system (top) and the unperturbed system
(bottom). The injected values of the sampled quantities are indicated on the plot with red lines, and the darkest-shaded, medium-shaded
and lightest-shaded regions correspond to the 1σ, 2σ and 3σ credible intervals. Numerical values of the median and 90% credible
intervals of the distributions are provided in Tables II and III.
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well-measured inner binary parameters can be seen in
Figs. 11 and 12.

6. Measuring tertiary parameters when inner binary
parameters are known (tilted case)

We now relax the requirement that ι3 ¼ Λ3 ¼ 0, incor-
porating the Doppler effect due to the c.m. motion of the
binary as formulated in Sec. II A 2. As in Sec. II B 4, we fix

the inner binary parameters, now including the orbital tilt
angles. We infer only the tertiary parameters. While it is of
course unrealistic to assume that we would know whether a
detected binary was co-planar with any outer orbit, this
analysis demonstrates clearly the benefit of including well-
constrained orbital tilt parameters. Recovered properties are
shown in the third column of Table IV.
Comparing the results plotted in the top panel of Fig. 7 to

those plotted in Fig. 13, it is clear that when the outer orbit

FIG. 9. Posterior probability distributions on the extrinsic parameters of a three-body system, obtained through analysis of the burst
signal from a perturbed binary using the G1þ U prior. The injected values of the sampled quantities are indicated on the plot with red
lines, and the darkest-shaded, medium-shaded and lightest-shaded regions correspond to the 1σ, 2σ and 3σ credible intervals.
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is tilted with respect to the observer, m3 can be more
precisely constrained. This is expected, since the difference
between the emitted and detected burst times [calculated in
Eq. (31)] does not depend onm3, while the burst time itself
[calculated in Eq. (22)] is a function of m3

R3 . Therefore, the
time lag induced by the binary’s c.m. motion breaks the
degeneracy between m3 and R3, allowing m3 to be more

well constrained. Similarly, Eq. (31) is a function of V3, but
does not include ω0, thereby introducing another way to
distinguish two correlated parameters.
Comparing the median and 90% credible intervals

recovered for the tilted system vs the face-on system (third
columns of Tables IVand II respectively), it can be seen that
V3;0 is recovered much more precisely when the system is

FIG. 10. Posterior probability distributions on the extrinsic parameters of a three-body system, obtained through analysis of the burst
signal from a perturbed binary using the G2þ U prior. As in previous corner plots, the injected values of the sampled quantities are
indicated on the plot with red lines, and the darkest-shaded, medium-shaded and lightest-shaded regions correspond to the 1σ, 2σ and 3σ
credible intervals.
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tilted away from face-on. This parameter is measured
accurately with 90% error bars of order 10−3 when the
system is tilted, while the same quantity is poorly-measured
when the system is face on, with 90% error bars spanning
the majority of the prior.

7. Measuring tertiary and binary parameters
simultaneously (uncertain tilt case)

We again allow tilt angles ι3 and Λ3 to be nonzero,
and now explore the influence of allowing some uncer-
tainty on their values. We use an extension of our Gaussian

FIG. 11. Posterior probability distributions on the extrinsic parameters of a three-body system, obtained through analysis of the burst
signal from a perturbed binary using the U prior. As in previous corner plots, the injected values of the sampled quantities are indicated
on the plot with red lines, and the darkest-shaded, medium-shaded and lightest-shaded regions correspond to the 1σ, 2σ and 3σ credible
intervals.
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1 + Uniform (G1τ þ U) prior in which the prior on both ι3
and Λ3 is a Gaussian at the injected value with
σ ¼ 1 × 10−2. We study two systems: one with ι3 ¼ π

4
,

Λ3 ¼ π
6
, and one with ι3 ¼ Λ3 ¼ 0. The posteriors obtained

via these analyses are shown in Figs. 14 and 15. Median
and 90% credibility ranges recovered are reported in
Table IV (fourth and sixth columns).

Comparing the constraints obtained on the tilted system
vs the nontilted system when ι3 and Λ3 are sampled over
demonstrates the advantages of nonzero orbital tilt. The
tertiary massm3 is more precisely constrained when the co-
planar orbit is tilted away from face-on, and posteriors on
the parameters w0 and V3;0 are both more strongly peaked.
The marginal posterior on tilt angle parameter ι3, however,

FIG. 12. Posterior probability distributions on the extrinsic parameters of a three-body system, obtained through analysis of the burst
signal from an unperturbed binary using the U prior. As in previous corner plots, the injected values of the sampled quantities are
indicated on the plot with red lines, and the darkest-shaded, medium-shaded and lightest-shaded regions correspond to the 1σ, 2σ and 3σ
credible intervals.
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TABLE IV. Injected and recovered parameters for a perturbed binary orbiting a tertiary on an orbit that is tilted
away from face-on (second to fourth columns) and face-on (fifth to seventh columns), where the tilt angles are now
sampled over. Where limits are given, they are quoted at the 90% credible level. Upper and lower error bounds
correspond to the limits of the 90% credible interval around the median. Details of the extended priors with τ
superscripts are given in the text.

Recovered Recovered

Parameter Injected δτ þ U G1τ þ U Injected G1τ þ U

M [M⊙] 60 (60) 60.0þ0.1
−0.1 60 60.0þ0.1

−0.1
e 0.99 (0.99) 0.9900þ0.0005

−0.0004 0.99 0.9900þ0.0004
−0.0003

p [M] 30 (30) 30.01þ0.05
−0.05 30 30.00þ0.05

−0.05
η 0.20 (0.20) 0.2000þ0.0004

−0.0003 0.20 0.2000þ0.0003
−0.0003

ι3
π
4
(0.79) ðπ

4
Þ 0.79þ0.02

−0.02 0 0.000þ0.008
−0.007

Λ3
π
6
(0.52) ðπ

6
Þ 0.52þ0.02

−0.02 0 0.00þ0.02
0.02

ω0 0 3.4þ2.8
−3.2 3.1þ3.0

−3.0 0 2.7þ3.0
−2.5

V3;0 π=3 (1.047) 1.047þ0.002
−0.001 1.047þ0.02

−0.02 π=3 (1.047) 2.5þ3.1
−1.8

m3 [M × 107] 1 0.9þ0.3
−0.4 0.9þ0.4

−0.4 1 0.8þ0.7
−0.7

R [M × 107] 1.1 1.0þ0.3
−0.5 1.0þ0.4

−0.5 1.1 0.9þ0.4
−0.5

cos ð2ðV3 − ω0ÞÞ −0.5 −0.1þ1.0
−0.8 0.00þ0.9

−0.9 −0.5 0.1þ1.0
−0.9

m3

R3 [M−2 × 10−15] 7.5 8.6þ22
−3.2 9.0þ23

−3.9 7.5 8.7þ27
−3.6

FIG. 13. Posterior probability distributions on three-body parameters for a perturbed signal identical to that studied in Sec. II B, but
tilted at an angle ι3 ¼ π

4
,Λ3 ¼ π

6
. The injected tertiary mass is much more confidently recovered when the orbital plane is tilted at an angle

to the observer because, while the burst times themselves are a function of m3

R3 , the detected time offset due to the outer orbital tilt depends
only on R. The parameters ω3 and V3;0 also become well measured because the same time offset depends on V3 but not ω3.
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is less well-measured when ι3 ≠ 0; this is likely because
ι3 ¼ 0 produces a more unique set of burst offset times for a
given system than ι3 ≠ 0. Comparing both of these results
to those of the analysis with the G1þ U prior and ι3 ¼
Λ3;0 ¼ 0 fixed, it is clear that sampling over varying orbital
tilt angles enables better measurement of orbital phase
parameters w0 and V3;0, even when the orbit is face-on.

8. Correlations between R and inner binary parameters

R is one of the best-measured parameters for both tilted
and untilted systems. Our narrowest set of priors, G1þ U,
have standard deviations of 0.1% of the injected values.
The wider set, G2þ U, have standard deviations exactly
an order of magnitude higher. Both sets are well within
the measurement precision expected for the Einstein

FIG. 14. Posterior probability distributions on the extrinsic parameters of a tilted triple system, obtained through analysis of the burst
signal from a perturbed binary using the narrow G1τ þ U prior. The additional uncertainty from the extra two tilt parameters is more than
counteracted by the degeneracy-breaking effect of the tilted system, which enables tighter constraints on m3 and R. The parameters V3

and ω3 are again easier to measure when the tilt angles ι3 and Λ3 are constrained.
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Telescope [116,117]. The wider set of priors enables
correlations between R and the inner binary parameters
to be seen: in Fig. 10, the posteriors suggest that the
perturbed signal injected may be confused for a binary with
a more distant, less influential tertiary and a more eccentric,
wider, lower-mass and less equal-mass inner binary. The
narrower set of priors enables the injected values of
the parameters to be correctly recovered, giving an idea

of the prior measurement accuracy required to reliably
identify a perturbing SMBH from the eccentric GW burst
times of a nearby stellar-mass BBH.

III. DISCUSSION

For systems where the effects due to a tertiary are small,
the results of our analysis give us confidence that when we

FIG. 15. Posterior probability distributions on the extrinsic parameters of a three-body system, obtained through analysis of the burst
signal from a face-on triple system, using the narrow G1τ þ U prior, showing the additional uncertainty coming from the extra two tilt
parameters ι3 and Λ. Again, it can be seen that the parameters V3 and ω3 become much easier to measure when the tilt angles ι3 and Λ3

are well measured. However, when the system is face-on rather than tilted, the benefit is reduced.
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have tight constraints on the parameters of the eccentric
binary (represented by the δþ U and G1þ U priors), we
can infer the existence of a perturbing tertiary using next-
generation ground-based GW detectors and already-
existing hierarchical inference techniques. The statistical
uncertainties on measurements of tertiary parameters are
large, even in the most optimistic case, due to how these
parameters enter the burst timing model: they predominantly
appear in the combinations m3

R3 and cosð2ðV3;0 − ω0ÞÞ, so
these are the quantities that strongly influence the signal.
When the coplanar system is tilted, the degeneracies between
these parameters are broken, enabling tighter constraints on
tertiary parameters.
When the binary parameters are not tightly restricted (as

emulated by the G2þ U prior) or completely unknown (in
the case of the U prior), the existence of a tertiary is
unlikely to confidently be inferred if the system exhibits
no orbital tilt, due to covariances among the tertiary’s
parameters and those of the inner binary in the case that
ι3 ¼ Λ3 ¼ 0. In order to measure the properties of a
perturbing SMBH from its effects on the orbit of a nearby
eccentric BBH, achieving the low measurement errors on
the binary parameters expected from next-generation GW
detectors [116,117] is crucial. Therefore, our ability to infer
the existence and properties of a perturbing tertiary from its
influence on the GW burst signal of an eccentric binary
depends both on measurement constraints on binary
parameters and the model itself. While we are limited here
to the toy model in Eqs. (19)–(31), which requires the
effects of the tertiary to be small compared to radiation
reaction effects, future developments to this model to allow
for nonsecular evolution may enable tighter constraints on
tertiary parameters.
Nonetheless, the timing model of eccentric GW bursts in

Eqs. (19)–(31) provides a first approximation of the effects
due to a third body, especially in the case when the angular
momentum of the outer orbit is aligned with that of the
inner orbit. Such a scenario may be most relevant to
binaries formed within AGN disks, and where the per-
turbing tertiary is the central supermassive BH. However,
the tidal perturbations due to a tertiary on a binary formed
during binary-single interactions will induce rich dynamics
on the binary [43,44]. Both the orbital plane and orbital
eccentricity can undergo significant oscillations, especially
if the tidal perturbations become of the same order or
stronger than PN corrections to the binary’s dynamics
[45,46]. We leave the extension of the model presented here
to other scenarios for future work.
The parameter estimation method used here also stands

as a simplified example of the more complicated and
computationally intensive requirements of a real analysis.
The crude GW burst signal model described in Sec. II B can
be replaced with something like the waveform described
in [41], and the initial posterior probability distribution on
each burst time obtained through a parameterized Bayesian

inference approach using this model. It may be possible to
create a hybrid waveform for injection by combining the
burstlike section of the signal with a numerical relativity
simulation of a GW from an eccentric binary’s late inspiral
and merger (the chirp), when the effect of any tertiary will
be minimal. This would facilitate simulation of the full
inference pipeline: from detection of both the chirp section
and the burst section of the signal, to the preliminary
inference of the binary parameters through analysis of the
chirp, to using the resultant posteriors on binary parameters
as priors during analysis of the burst section of the signal.
The extrinsic parameters of the eccentric binary can be
implemented into this signal model and subsequently
inferred. We plan to expand the method developed here
in these directions in future work.
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APPENDIX A: HARMONIC COEFFICIENTS OF
THE OSCULATING EQUATIONS

The osculating equations associated with the tidal per-
turbing force due to a third body are given in Eqs. (7)–(10).
The harmonic coefficients ½CðkÞ

a ; SðkÞa � are

Cð0Þ
e ¼ 3e sin½2ðV3 − ωÞ�; ðA1Þ

ROMERO-SHAW, LOUTREL, and ZEVIN PHYS. REV. D 107, 122001 (2023)

122001-22



Cð1Þ
1 ¼ 9 sin½2ðV3 − ωÞ�; ðA2Þ

Cð1Þ
2 ¼ 9e sin½2ðV3 − ωÞ�; ðA3Þ

Cð1Þ
3 ¼ 3 sin½2ðV3 − ωÞ�; ðA4Þ

Sð1Þ1 ¼ 2 − 9 cos½2ðV3 − ωÞ�; ðA5Þ

Sð1Þ2 ¼ e − 9e cos½2ðV3 − ωÞ�; ðA6Þ

Sð1Þ3 ¼ −3 cos½2ðV3 − ωÞ�; ðA7Þ

Cð0Þ
ω ¼ −ef1þ e cos½2ðV3 − ωÞ�g; ðA8Þ

Cð1Þ
ω ¼ −2 − 9 cos½2ðV3 − ωÞ�; ðA9Þ

Cð2Þ
ω ¼ −ef1þ e cos½2ðV3 − ωÞ�g; ðA10Þ

Cð3Þ
ω ¼ 3 cos½2ðV3 − ωÞ�; ðA11Þ

Sð1Þω ¼ −9 sin½2ðV3 − ωÞ�; ðA12Þ

Sð2Þω ¼ −3e sin½2ðV3 − ωÞ�; ðA13Þ

Sð3Þω ¼ 3 sin½2ðV3 − ωÞ�; ðA14Þ

Cð0Þ
t ¼ −ef1þ e cos½2ðV3 − ωÞ�g; ðA15Þ

Cð1Þ
t ¼ −2 − 9 cos½2ðV3 − ωÞ�; ðA16Þ

Cð2Þ
t ¼ −ef1þ e cos½2ðV3 − ωÞ�g; ðA17Þ

Cð3Þ
t ¼ 3 cos½2ðV3 − ωÞ�; ðA18Þ

Sð1Þt ¼ −9 sin½2ðV3 − ωÞ�; ðA19Þ

Sð2Þt ¼ −3e sin½2ðV3 − ωÞ�; ðA20Þ

Sð3Þt ¼ 3 sin½2ðV3 − ωÞ�: ðA21Þ

APPENDIX B: STABILITY CONSIDERATIONS
FOR BBHs ORBITING SMBHs

The binary black hole system under consideration in
Sec. II B consists of an equal mass binary withM ¼ 60M⊙,
orbiting around a SMBH with massm3 ¼ 60 × 107M⊙ and
orbital radius R3 ¼ 1.1m3. As noted previously, the value

of the orbital radius is close to the ISCO associated with
an extremal (or near-extremal) Kerr BH. There are two
considerations that arise as a result of this:
(1) How long can a single BH exist in this environment

before coalescing with the SMBH?
(2) Is a binary at this radius stable under the influence of

the tertiary (the SMBH in this case)?
The first question relates to whether a single BH can exist
in such a close orbit long enough to form a binary with
another BH. To provide an estimate of this timescale, we
use the computation of the time to plunge for a near horizon
inspiral into a near extremal Kerr BH, specifically [118]

T ins ¼ 0.150μ

�
M
μ

�
2

ðk − 1 − log kÞ; ðB1Þ

where μ is the mass of the particle, M is the mass of the
SMBH, and

k ¼ 2ð1 − χ2Þ
ðr0rþ − 1Þ3 ðB2Þ

with χ the BH’s dimensionless spin parameter, rþ the
horizon radius, and r0 the initial radial separation. For our
scenario μ ¼ 60M⊙, M ¼ 6 × 108M⊙, and r0 ≈ 1.1rþ.
When χ → 1, k ≪ 1 and Eq. (B1) is dominated by the
logarithm term. Applying our values gives

T ins ≈ 143½−9.29 − log δχ þOðδχÞ� yr; ðB3Þ

with δχ ¼ 1 − χ, and we have expanded in δχ ≪ 1. For a
value of δχ ¼ 10−5, T ins ≈ 317 yr.
The second question is related to whether or not the

tertiary (the SMBH in this case), can disrupt the binary.
There are multiple methods of quantifying the stability
criterion [119–124], but a useful conceptualization of this is
related to Lagrange points and Hill stability [125]. For the
triple system described in Sec. II B, the L1;2 Lagrange
points are equidistant from the binary’s c.m., and are equal
to the radius of the Hill sphere,

RHill ¼
R

ð3η3Þ1=3
; ðB4Þ

where R is the radial separation between the tertiary and the
c.m. of the inner binary. If the maximum radial separation
of the inner binary is smaller than RHill, then the SMBH
cannot disrupt the binary. The largest separation of the
inner binary is the apocenter distance ra ¼ p=ð1 − eÞ,
while R ¼ R3 in this case. From the values of Table II,
it is straightforward to show that the binary is stable.
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