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Fluctuations play a critical role in cosmology. They are relevant across a range of phenomena from the
dynamics of inflation to the formation of structure. In many cases, these fluctuations are coarse grained and
follow a Gaussian distribution as a consequence of the central limit theorem. Yet, some classes of
observables are dominated by rare fluctuations and are sensitive to the details of the underlying
microphysics. In this paper, we argue that the large deviation principle can be used to diagnose when
one must appeal to the fundamental description. Concretely, we investigate the regime of validity for the
Fokker-Planck equation that governs stochastic inflation. For typical fluctuations, this framework leads to
the central limit-type behavior expected of a random walk. However, fluctuations in the regime of the large
deviation principle are determined by instantonlike saddle points accompanied by a new energy scale.
When this energy scale is above the UV cutoff of the effective field theory, the tail is only calculable in the
microscopic description. We explicitly demonstrate this phenomenon in the context of determining
the phase transition to eternal inflation, the distribution of scalar field fluctuations in de Sitter, and the
production of primordial black holes.
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I. INTRODUCTION

The cosmological evolution of our Universe was shaped
by fluctuations. The formation of dark matter halos, and
hence galaxies and galaxy clusters, was the result of large
density fluctuations, which can be modeled using Gaussian
random fields. Rare fluctuations, which are determined
by the tail of the probability distribution, may also be
important for cosmology. For example, determining if some
(or all) of the abundance of dark matter is due to the
presence of primordial black holes requires a precise
knowledge of the tail of the distribution. Such rare
fluctuations could also have played a critical role in the
dynamics of (eternal) inflation at very early times.
Despite the broad interest in this subject (e.g., for

inflation see Refs. [1–13] and for eternal inflation see
Refs. [14–19]), characterizing the regime of validity of
perturbation theory for the tail of the distribution is an
under developed subject. The probability distribution of a
field in a de Sitter background can be calculated using a

Fokker-Planck equation, known as the framework of
stochastic inflation [20,21] (see also [22–37]). Recently,
the introduction of the soft de Sitter effective theory
(SdSET) [38,39] (see Ref. [40] for review) has facilitated
the systematic computation of corrections to the evolution
equations of stochastic inflation (for alternative approaches,
see Refs. [35,36,41–44]). In the presence of primordial
non-Gaussianity (nontrivial interactions during inflation),
perturbation theory for the probability distribution can be
naturally organized as an Edgeworth series, such that the
coefficients of the expansion are determined by the cumu-
lants of the distribution. However, such an expansion is
expected to break down when computing observables that
are sensitive to very rare configurations.
One natural hope is that this tail of the probability

distribution can be captured by some kind resummation of
the perturbative series. However, implementing such a
resummation simply yields the Fokker-Planck equation for
the distribution of cosmological fluctuations, with small
corrections that are equivalent to performing a localKramers-
Moyal expansion of the underlying master equation [39]
(for an alternative approach, see Ref. [45]). To assess the
range of validity for these methods, a first step is to compute
the corrections to these equations systematically, which
allows one to explore the properties of the resulting
probability distributions. To this end, we computed the
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corrections to stochastic inflation from the leading effects of
primordial non-Gaussianity in [46]. By studying the phase
transition to eternal inflation (an observable that is exponen-
tially sensitive to the tails of the probability distribution), we
observed that the resulting probability distribution was not
under perturbative control. While one might anticipate the
tail is sensitive to nonperturbative effects, the precise origin
and location of this breakdown should be calculable from the
effective field theory (EFT) point of view.
This paper will explain how the tails of these distribu-

tions are determined by a new instantonlike1 saddle point.
These new saddles have their own associated energy scale,
which can invalidate the naive EFTexpansion, where the IR
scale is set by the Hubble scale H. As we will quantify
below, there are circumstances where these saddles are
under control within the EFT description, and they simply
reproduce the behavior of stochastic inflation. However,
when computing the probability for observables that are
sensitive to sufficiently large deviations, the saddle lies
beyond the EFT description and must be calculated by
appealing to the full theory.
We will provide a framework for anticipating such a

breakdown by recasting these questions in terms of random
walks. In fact, the appearance of the Fokker-Planck
equation in inflationary cosmology suggests that the
phenomenology of fluctuations in dS spacetime can be
mapped onto the behavior of random walks. Specifically,
we will show that random walks with independent and
identically distributed (i.i.d.) steps give rise to the same
behavior as cosmological systems. Concretely, consider an
i.i.d. walk with zero mean that traverses a distance X in a

number of steps N. For typical fluctuations (X ∝
ffiffiffiffi
N

p
) the

central limit theorem (CLT) tells us that X is Gaussian
distributed, even if the individual steps are not. As we will
review below, one can view the CLT as the result of a
renormalization group flow to a Gaussian fixed point, with
all non-Gaussianity being irrelevant—typical fluctuations
are insensitive to the microscopic details of the walk. On
the other hand, large deviations (X ∝ N) defy this general
behavior and do depend on the microscopic details. The
fact that large deviations are not determined by universal
long-distance behavior will have a precise analogy in
cosmology, and will explain the breakdown of EFT for
large fluctuations.
A deeper understanding of such fluctuations can be

gleaned from the large deviation principle (LDP) [47,48].
Stated simply, the LDP is a scaling law of the form
PN ≃ e−NI , where PN is a probability distribution para-
metrized by some large number N, and I is a positive
number called the rate function. In the context of random
walks I ∼Oð1Þ for large fluctuations, which means PN ∼
e−N at the tail. As illustrated in Fig. 1, the dominant
contributions to this tail come from walks that resemble a
classical trajectory, which looks quite different from the
usual zero mean walks. This is the new saddle that the CLT
(or EFT) can fail to capture. The central goal of this work is
to develop a precise map between the LDP framework and
the physics of stochastic inflation.2

There is a vast literature on large deviations that extends
well beyond i.i.d. random walks, including applications
to a number of physical problems in equilibrium and
nonequilibrium statistical physics, e.g., see the review

FIG. 1. Large deviations in a random walk. The walker makes one large jump of size L in the left figure, on top of many small positive
and negative steps. In contrast, the figure on the right depicts the walker covering the same distance L in a series of smaller steps that are
mostly in the same direction. Although both of these are extremely unlikely, the one on the right is much more probable than the one on
the left. If we assume that the individual steps are sampled from a Gaussian distribution, the probability of making one large jump is
∼e−L2

, whereas the walker can get there using a series of smaller aligned steps with probability ∼e−L. Therefore, the latter dominates the
tail of the coarse grained probability distribution. This shows that the most probable paths are described by small fluctuations around a
single classical deterministic trajectory, which is associated with a novel saddle point solution.

1The saddles we will discuss are not instantons in the conven-
tional sense. However, they are occasionally referred to as
instantons in the broader literature.

2Although to our knowledge, our paper is the first to make the
connection between the LDP and the physics of inflation, the
LDP has been previously applied to questions in observational
cosmology [49–57].
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article [58]. For our purposes, the language of the LDP will
be useful for two reasons: First, it makes precise the sense
in which the physics leading to large deviations requires a
departure from the usual long distance description in terms
of the CLT and implies that one must appeal to the
microscopic nature of the walk. Second, the rate functions
I are often calculable in terms of a novel saddle point
approximation. Combining these two insights will allow us
to characterize the regime of validity of stochastic inflation,
highlighting the situations where it improves perturbation
theory and why it ultimately breaks down. We will demon-
strate this concretely in the context of eternal inflation and
λϕ4 in a fixed de Sitter background. The LDPwill explain the
behavior of the probability distribution of scalar fluctuations
calculated used the stochastic framework. We then extend
this understanding to models that generate primordial
black holes.
This paper is organized as follows. We begin with a

discussion of models that have a vanishing potential. We
first explore this scenario using random walks in Sec. II.
This allows us to show how the CLT emerges from a coarse
graining procedure, and to both explain the LDP and apply
it in a simple context. Using this formalism, we can then
understand the probability distribution for the fluctuations
of the inflaton, which is the topic of Sec. III. We then turn
on a nontrivial potential for a random walk in Sec. IV, and
explore the role of the LDP when computing the probability
distribution for this example. This is exactly the framework
we need to understand the behavior of massless scalar field
theory in a dS background in Sec. V. We then apply the
same techniques to explore models whose goal is to
generate primordial black holes in Sec. VI. Finally,
Sec. VII provides our conclusions and a discussion of
future directions.

II. RANDOM WALKS AND THE
RENORMALIZATION GROUP

Random walks offer a simple setting within which we
can understand the conceptual details of the present work.
We will review the CLT and demonstrate how the long-
wavelength behavior of a wide class of walks fall into the
universality class modeled by a Gaussian distribution [59].
The failure of the CLT for large fluctuations is exactly
analogous to the breakdown of EFT we discuss later in the
paper. We can understand this regime better with the LDP,
as illustrated with some simple examples worked out in
detail below. This framework will eventually allow us to
gain insight into the evolution of the scalar fluctuations of
the inflaton from a new perspective.

A. Central limit theorem

Consider a one dimensional i.i.d. random walk. Starting
from the origin, the walker takes one step per discrete time
interval, each with a displacement x chosen independently

from some microscopic distribution3 pðxÞ with finite
moments. To facilitate the discussion below, we will
consider two specific examples,

pfðxÞ ¼
1

2
δðjxj − 1Þ ðFixed step length distributionÞ;

ð2:1aÞ

pgðxÞ ¼
1ffiffiffiffiffiffi
2π

p e−x
2=2 ðGaussian distributionÞ: ð2:1bÞ

Both of these distributions have mean hxi ¼ 0 and variance
hx2i − hxi2 ¼ 1. A walker governed by pfðxÞ can take a
step with either x ¼ 1 or x ¼ −1 at each turn. The Gaussian
walker’s probability for each step is governed by pgðxÞ, so
it is able to take a step of any size, with the most probable
values being jxj≲ 1. Examples of a typical random walk
generated by pfðxÞ and pgðxÞ are given in Fig. 2. If we
zoom in on each walk we can make out the difference: it is
evident that the red trajectory is borne of fixed size steps
whereas the blue one is not. However, at the macroscopic
level the two walks look like they could have been
generated by the same pðxÞ, suggesting that the long-
wavelength behaviors of both walkers have something in
common.
We can make this intuition precise by studying the net

displacement of a random walker after N steps, which we
denote as

X ¼
XN
i¼1

xi: ð2:2Þ

FIG. 2. Random walks generated by a fixed step length
distribution and a Gaussian distribution. If we zoom in, the
difference in step size is evident from the shape of the trajectories,
but at the macroscopic level it is difficult to tell which pðxÞ
generated each walk.

3We use the word ‘distribution’ to mean the probability density
function for a continuous random variable, as well as the
probability distribution for a discrete random variable. In some
texts this word applies exclusively to the latter, but we make no
such distinction in this work.
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If each step is sampled from pðxÞ, the probability of finding
the walker at a distance X from the origin after N steps is

PðXÞ ¼
Z YN

i¼1

dxipðxiÞδ
�
X −

XN
i¼1

xi

�
: ð2:3Þ

PðXÞ can be evaluated by Fourier transforming the delta
function,

δ

�
X −

XN
i¼1

xi

�
¼

Z
dk
2π

e−ikðX−
P

N
i¼1

xiÞ; ð2:4Þ

to obtain

PðXÞ ¼
Z

dk
2π

e−ikX
Z YN

i¼1

dxipðxiÞeikxi

¼
Z

dk
2π

e−ikXheikxiN: ð2:5Þ

The second equality holds because we are assuming that the
xi are i.i.d. random variables, which means their expect-
ation values are independent. The quantity

heikxi ¼
Z

dxpðxÞeikx; ð2:6Þ

is called the characteristic function of pðxÞ. For example
heikxig ¼ e−k

2=2, if the steps are sampled from the Gaussian
pgðxÞ in Eq. (2.1b). Plugging this into Eq. (2.5) yields

PgðXÞ ¼ ð2πNÞ−1=2e−X2
2N; ð2:7Þ

which is an exact result valid for all X.
We can repeat this exercise with pfðxÞ; after N steps, the

walker will be at X with a probability

PfðXÞ ¼
N!

ðN−X
2
Þ!ðNþX

2
Þ!

1

2N
: ð2:8Þ

In the large N limit, we can use Stirling’s approximation

n! !n→∞
nne−n to write

PfðXÞ ≃ e−NIfðX=NÞ; ð2:9Þ

with

IfðX=NÞ ¼ 1

2

��
1 −

X
N

�
ln

�
1 −

X
N

�

þ
�
1þ X

N

�
ln

�
1þ X

N

��
: ð2:10Þ

If X ≪ N, we can Taylor expand IfðXÞ to find

PfðXÞ ≃ e−
X2
2N−

X4

12N3þ���: ð2:11Þ

So long as we restrict ourselves to X ≲ ffiffiffiffi
N

p
, the first term in

the exponent dominates, and we can approximate the
distribution in Eq. (2.8) as a Gaussian. In particular,
PfðXÞ and PgðXÞ have the same behavior up to
X ∼

ffiffiffiffi
N

p
. A plot of X over time can be obtained by

downsampling the trajectories in Fig. 2 by a factor of N.
From this perspective it is clear that PðXÞ captures the long-
wavelength dynamics of the walk, which is the same at
leading order for the fixed step length and the Gaussian
walkers.
We can generalize these conclusions to a wide class of

pðxÞ. Going back to Eq. (2.6), the Taylor expansion in k of
the logarithm of the characteristic function yields the
cumulant expansion4

logheikxi ¼
X∞
m¼1

ðikÞm
m!

hxmiC: ð2:12Þ

For instance, hxiC ≡ hxi and hx2iC ≡ hx2i − hxi2 ¼ σ20 is
the variance of pðxÞ. We can exponentiate the above
expression to write Eq. (2.5) as

PðXÞ ¼
Z

dk
2π

e−ikX exp

�
ikNhxi − 1

2
Nk2σ20

þ i3

3!
Nk3hx3iC þOðk4Þ

�
: ð2:13Þ

For observables where the Gaussian contribution domi-
nates, the integrand has support for k≲ 1ffiffiffi

N
p

σ0
. Therefore, the

mth term in the cumulant expansion contributes to the
exponent as

NkmhxmiC ∼ N1−m=2hxmiC ⟶
N→∞

0 for m > 2; ð2:14Þ

where hxmiC are independent ofN since the moments of the
distribution pðxÞ are finite constants. Therefore, the first
and second terms of the exponent in Eq. (2.13) scale as
Oð ffiffiffiffi

N
p Þ and Oð1Þ respectively and the remaining terms

shrink as Oð1= ffiffiffiffi
N

p Þ or faster. This behavior can be made
manifest by rescaling k → k=

ffiffiffiffi
N

p
and X →

ffiffiffiffi
N

p
X in

Eq. (2.13) so that

4The expression Eq. (2.12) may be more familiar to some
readers as the generating function for connected correlation
functions, which are hxmiC here. In that language, the discussion
above can be re-contextualized as (0þ 1)-dimensional field
theory.
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PðXÞ → 1ffiffiffiffi
N

p
Z

dk
2π

exp

�
ikð

ffiffiffiffi
N

p
hxi − XÞ − 1

2
k2σ20

þO

�
1ffiffiffiffi
N

p
��

≃ e
−ðX− ffiffi

N
p hxiÞ2
2σ2

0 ; ð2:15Þ

which is a Gaussian probability distribution centered atffiffiffiffi
N

p hxi up to corrections that vanish for large N. This result
is known as the central limit theorem.5

It is very useful to interpret this result in the language of
renormalization group (RG) evolution as applied to EFTs.
In this context, one identifies a power-counting parameter
which facilitates the use of dimensional analysis. In the
classic case of integrating out a heavy particle of mass M,
the power counting is determined by the small dimension-
less number E=M, where E ≪ M is the typical energy
associated with the process of interest. This allows one to
organize the local operator expansion of the EFT into terms
which are relevant (grow larger polynomially at lower
energies), marginal (only evolve at most logarithmically),
and irrelevant (grow smaller polynomially at lower energies).
We can see the same principles in action by viewing our

random walk examples through the lens of RG. If we
organize the terms that appear in the exponent of Eq. (2.15)
by how they scale with N, then we see that the mean is a
relevant parameter, the variance is marginal, and the
cumulants hxm>2iC are irrelevant. Therefore, as N → ∞,
the distribution is localized about the mean, and the
Gaussian distribution emerges as a universal fixed point
of the RG evolution. The interpretation is that coarse
graining the distribution by zooming out (equivalently
taking a large number of steps) erases any detailed memory
of the microscopic distribution pðxÞ, beyond the gross
features captured by its mean and standard deviation. This
is in exact analogy with EFTs, where only a small number
of parameters contribute significantly to low energy observ-
ables, regardless of the detailed UV completion.

B. Large deviation principle

However, this is not the whole story. Returning to the
examples introduced in Eq. (2.1), let us consider the
probability PðX > NÞ of finding a random walker at a
distance farther than N from the origin, after N steps. The
walker taking fixed (unit) size steps has no hope of going
beyond N even if they were to take all N steps in the
same direction, and therefore PfðX > NÞ ¼ 0. However,
the Gaussian walker, with the same mean and standard
deviation, can have PgðX > NÞ ≠ 0. Evidently, some
information about the microscopic distribution pðxÞ is
encoded in the region X ≳ N, which we refer to as the
tail of PðXÞ.

For both examples above, it is extremely unlikely that the
walker makes it to X ∼ N in N steps, which implies
PðX ∼ NÞ is very small. In order to probe the tail, we
need to devise an observable that would be sensitive to such
rare events. To this end, we can compute heθXi assuming
PgðXÞ with θ > 0. Naively, we might think that heθXi ∼
eθOð ffiffiffi

N
p Þ since PgðXÞ is dominated by X ≲ ffiffiffiffi

N
p

. However,
we can perform the following computation:

heθXi ¼ heθxiN ¼ eNθ2=2; ð2:16Þ
which in fact scales as eN . The explanation for the break-
down of the naive intuition is simply due to the fact that eθX

takes on very large values with small probabilities, so that
contributions from such values cannot be ignored [47]. In
other words, heθXi probes the tail of PðXÞ.
We now introduce a new random variable

X̃ ¼ 1

N

XN
i¼1

xi ≡ X
N
; ð2:17Þ

called the sample mean of the i.i.d. random variables xi.
Noting that the distributions transform under a change of
variables as PðX̃ÞdX̃ ¼ PðXÞdX, we may rewrite Pg and Pf

for large N as

PðX̃Þ ≃ exp ð−NIðX̃ÞÞ; ð2:18Þ
where I is a positive quantity called the rate function that
can be read off from Eqs. (2.7) and (2.9),

IgðX̃Þ ¼
X̃2

2
; ð2:19aÞ

IfðX̃Þ ¼
1

2
½ð1 − X̃Þ lnð1 − X̃Þ þ ð1þ X̃Þ lnð1þ X̃Þ�:

ð2:19bÞ

A probability distribution PN that satisfies a scaling law of
the form PN ≃ e−NI is said to obey the large deviation
principle. The distributions of the sample mean described
by Eq. (2.18) and Eqs. (2.19) are examples of the LDP.
According to Cramer’s theorem, the distribution of a

sample mean X̃ of i.i.d. random variables satisfies a LDP
with a rate function IðX̃Þ given by

IðX̃Þ ¼ sup
θ
½θX̃ − λðθÞ�; ð2:20Þ

where λðθÞ is the cumulant generating function for each
i.i.d. variable6

5The CLT is more general; it is not necessary for the steps
to be independent [60]. In that case Eq. (2.15) is still valid
so long as the mth cumulant in Eq. (2.13) satisfiesP

N
i1;…;im

hxi1 � � � ximiC ≪ OðNm=2Þ.

6If the variables are not i.i.d. we should use λðθÞ ¼
limN→∞

1
N ln ½heθXi�, the scaled cumulant generating function,

in Eq. (2.20). This generalization is called the Gärtner-Ellis
theorem.
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λðθÞ ≔ lnheθxi: ð2:21Þ

To see why this is plausible, let us assume that LDP holds
for some sample mean X̃. Then, PðX̃Þ ≃ e−NIðX̃Þ and

heθXi¼ heNθX̃i≃
Z

dX̃eNðθX̃−IðX̃ÞÞ≃eNsupX̃ ½θX̃−IðX̃Þ�: ð2:22Þ

In the last step we have used the saddle point approxima-
tion to compute the integral for large N. Noting that
heθXi ¼ heθxiN ≡ eNλðθÞ for i.i.d. random variables, we
have

λðθÞ ¼ sup
X̃
½θX̃ − IðX̃Þ�: ð2:23Þ

Then the rate function given in Eq. (2.20) follows from a
Legendre transform of this result.
As an example, we can work out the rate function IfðX̃Þ

for the sample mean of the fixed step length walk using
Crámer’s theorem. Starting with heθxi ¼ coshðθÞ, we have

IfðX̃Þ ¼ sup
θ
½θX̃ − ln coshðθÞ�: ð2:24Þ

The supremum can be obtained using ordinary calculus;
taking the first derivative of the expression in brackets
and setting it to zero gives θmax ¼ tanh−1ðX̃Þ ¼
1
2
ðlnð1þ X̃Þ − lnð1 − X̃ÞÞ, which is where the rhs is maxi-

mum. Substituting this θmax into Eq. (2.24) and

simplifying, we recover the rate function7 given in
Eq. (2.19b). Finally, notice that the rate function If from
Eq. (2.19b) is just the negative of the entropy for a binary
random variable. We touch upon this fact in Sec. IVA.
A more general discussion is given in [58].
The CLT arises from the LDP when the rate function

IðX̃Þ is convex and has a single global minimum (at say,
X̃0). If this is the case, we can Taylor expand IðX̃Þ around
X̃0 to obtain

PðX̃Þ ≃ e−
1
2
NI00ðX̃0ÞðX̃−X̃0Þ2 : ð2:25Þ

For small deviations of X̃ from X̃0, this quadratic expansion
is a good approximation of IðX̃Þ, and therefore the CLT
provides the same information as the LDP. On the other
hand large deviations of X̃ are those values at which the
rate function deviates significantly from the quadratic
approximation. The CLT does not correctly describe such
large fluctuations, and we need to rely on the LDP
instead.8See Fig. 3 for illustration.

III. ETERNAL INFLATION

Having set up the general ideas of the LDP, we now turn to
our first cosmological application. The connection derives
from the fact that scalar fluctuations during single-field
inflation act locally like a one-dimensional random walk
around a classical trajectory. For a typical path, the end of
inflation is determined by the classical evolution where the
field distance changes linearly in time, Δϕclassical ¼ _ϕt.
However, it is possible for quantum fluctuations of the scalar
field to work against the classical motion, giving rise to
inflationary periods that last significantly longer than the
classical expectation. In fact, when the amplitude of fluctua-
tions is large enough, it is known that inflation never ends
everywhere [61,62] in theUniverse and instead gives rise to a
infinite reheating volume [63], also known as eternal
inflation. Remarkably, the fluctuations responsible for eter-
nal inflation are necessarily examples of large deviations, as
we will see in this section.

A. Review of stochastic inflation

The idea that inflation is essentially a random walk has a
long history, starting from nearly the inception of the
subject [21,23,26]. The intuition follows from considering
the freeze-out of modes as they cross the horizon, at which
point the quantum fluctuations of these modes begin to

FIG. 3. Central limit theorem vs large deviation principle; The
probability distributions of the sample mean X̃ ≡ X=N for a fixed
step length and Gaussian random walk for N ¼ 10, computed
using the LDP. For values of X̃ close to the mean both curves
overlap, in accordance with the CLT. However, they differ for
large deviations from the mean. In particular the tail of the
distribution, shown magnified, reveals that PfðX̃Þ vanishes at
X̃ ¼ 1 whereas PgðX̃Þ does not. The dashed lines are the rate
functions for each distribution.

7IfðX̃Þ is only defined for X̃ ∈ ½−1; 1� on the real number line,
which means the probability of finding X̃ outside this interval is
zero, as discussed earlier.

8That a random variable satisfies the CLT does not always
imply that the existence of a rate function with a quadratic
minimum, see example 3.4 of [58].
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evolve classically. In any small patch of the Universe, the
gradients of the field redshift away and the process is
effectively a random walk. (Of course globally, there are
correlations across super horizon scales, which is the one of
the main reasons we invoke inflation in the first place.)
Specifically, as long as the parameters of the inflationary
model change slowly in time, the fluctuations of each mode
in any given patch of space follow the same distribution as a
random walk with i.i.d. variables, which is given the
interpretation of noise generated by the Hubble temperature
associated with the horizon. The distribution of fluctuations
is also sensitive to the presence of a potential. In the random
walk language, this is the analog of a classical external force.
So the picture is a competition between the noise and this so-
called drift. This idea was formalized in the framework of
stochastic inflation [20,21], which is the statement that the
probability distribution for the scalar fluctuations obeys

∂

∂t
Pðϕ;tÞ¼ H3

8π2
∂
2

∂ϕ2
Pðϕ;tÞþ 1

3H
∂

∂ϕ
½V 0ðϕÞPðϕ;tÞ�: ð3:1Þ

Despite its intuitive appeal, the derivation of stochastic
inflation from quantum field theory, a full understanding
of its domain of applicability, and a framework for computing
corrections to the formalism had long been elusive.
These puzzles have recently been solved by interpreting

stochastic inflation as arising from RG flow (or resumming
logs) in quantum field theory [35,36,38,39,41–44].
Concretely, by taking moments of Eq. (3.1), one can relate
mixing of operators under time evolution to the stochastic
equation. In single-field inflation, the fluctuations of ϕ can
be rewritten in terms of the adiabatic metric fluctuation ζ.
However, ζ must respect the single-field consistency
conditions [64–67], which are the nonlinearly-realized
SO(4,1) symmetries that act on the metric leaving the
gauge fixed. For example, under the dilatation transforma-

tion in this group, ζ transforms as δζ ¼ −1 − x⃗ · ∂
!⃗

xζ. The
evolution of operators under (dynamical) RG must respect
these symmetries and restricts the form of mixing to

∂

∂t
ζNðx⃗; tÞ ¼

XN
n≥2

γn

�
N

n

�
ζN−nðx⃗; tÞ; ð3:2Þ

where t ¼ Ht, and γn are the “anomalous dimensions ”
which govern the composite operatormixing; the γn are time-
independent for scale invariant correlators. This implies the
most general form of single-field stochastic inflation is9

∂

∂t
Pðζ; tÞ ¼

X
n≥2

ð−1Þn γn
n!

∂
n

∂ζn
Pðζ; tÞ: ð3:3Þ

As discussed in [39], we can view this as the expansion
of a general Markovian process with transition amplitudes
Wðζjζ0Þ, such that

∂

∂t
Pðζ; tÞ ¼

Z
dζ0½Pðζ0; tÞWðζjζ0Þ − Pðζ; tÞWðζ0jζÞ�

¼
Z

dΔζ½Pðζ − Δζ; tÞW̃ðΔζÞ − Pðζ; tÞW̃ðΔζÞ�:

ð3:4Þ

Here we used the shift symmetry, ζ → ζ þ c, to write the
transition amplitudes Wðζjζ0Þ ¼ W̃ðζ − ζ0 ≡ ΔζÞ. Taylor
expanding Pðζ − Δζ; tÞ (a.k.a performing a Kramers-
Moyal local expansion) reproduces Eq. (3.3), where

γn ≡
Z

dΔζ ð−ΔζÞnW̃ðΔζÞ: ð3:5Þ

In this sense, we see that γn>2 corresponds to non-Gaussian
corrections to the transition amplitude, which is the same as
the non-Gaussianity of the probability for a step in a i.i.d.
random walk.
The coefficients γn are determined by computing the nth

connected quantum field theory correlator through

hζnðx⃗; tÞi ⊃ γn log aH: ð3:6Þ

Explicit calculation shows that γ1 ¼ 0, which is a restate-
ment of the conservation of ζ outside the horizon. The
quadratic term γ2 is determined by the variance

hζ2ðx⃗ ¼ 0Þi ¼ Δζ

Z
d3k
ð2πÞ3

1

2k3
¼ Δζ

4π2
log

aH
KIR

; ð3:7Þ

where Δζ ¼ H4=ð2f4πÞ sets the amplitude of the power
spectrum for ζ, and we evaluated this integral by intro-
ducing a hard UV cutoff Λ ¼ aH and an IR cutoff KIR.

10

Comparing Eq. (3.2) to Eq. (3.3), we see that this term
generates the noise term that appeared in the original
formulation of stochastic inflation, Eq. (3.1).
From the point of view of the quantum field theory

correlators and the resultant RG evolution, computing
higher-order corrections is completely straightforward.
Applying this approach to the EFT of inflation [69,70],
the first nontrivial correction to the stochastic framework in
single-field inflation was found in [46]. Since ζ is deriva-
tively coupled, we can generically generate γn by intro-
ducing an interaction of the form _ζn=Λ4−n, where Λ ¼ fπcs

9In order to go from the dynamical RG for correlators to a
Fokker-Planck equation for a probability distribution Pðζ; tÞ, one
simply identifies hζni ¼ R

dζPðζ; tÞζn.

10While this is the correct result, one might be concerned that
this hard cutoff breaks spacetime symmetry. For a discussion of a
dimensional regularizationlike regulator that preserves the sym-
metries, see Refs. [38,68].
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is the approximate UV cutoff11 of the EFTof inflation when
cs ≪ 1. Then by dimensional analysis,

γn ¼ cnΔ
n=2
ζ

�
H2

Λ2

�
2−n

; ð3:8Þ

with cn ¼ Oð1Þ. This leads to the naive expectation that
perturbation theory should hold as long as one is working
in the parameter space where H ≪ Λ. As was emphasized
in [46], this is only true when the observable of interest is
insensitive to the tail of the probability distribution. In the
language of the LDP, these tails are dominated by a new
saddle point. The energy scale associated with the LDP
saddle can be significantly larger that Λ, signaling that one
is sensitive to the details of the UV completion, as in the
case of the random walk examples studied above.

B. Central limit theorem as a resummation

We would now like to solve for the time evolution of
Pðζ; tÞ, assuming ζ ¼ ζ0 at t ¼ 0. This will tell us the
probability of different possible values of ζ, which should
resemble a random walk. If the theory is Gaussian, so that
γn>2 ¼ 0, then we are solving the heat equation

∂

∂t
Pðζ; tÞ ¼ σ2

2

∂
2

∂ζ2
Pðζ; tÞ; ð3:9Þ

where σ2 ≡ γ2 ¼ Δζ=ð4π2Þ is the variance. The solution to
this equation is a Gaussian

PGðζ; t; ζ0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2t

p e−ðζ−ζ0Þ2=ð2σ2tÞ: ð3:10Þ

We can use the Gaussian solution to construct the solution
to Eq. (3.3) with general γn, in terms of derivatives of PG

Pðζ; t; ζ0Þ ¼ exp

�X
n>2

ð−1Þn γnt
n!

∂
n

∂ζn

�
PGðζ; t; ζ0Þ: ð3:11Þ

Using this general form, we will show that the physics of
the random walk is reproduced by the solutions to this
equation. First, let us consider the behavior around the peak
of the Gaussian solution where ðζ − ζ0Þ2 ≃ σ2t. If we
expand the full solution near the peak, we notice that
as t → ∞,

γnt
n!

∂
n

∂ζn
PGðζ; t;ζ0Þ≃

γnt
n!

ð−1Þnðζ− ζ0Þn
ðσ2tÞn PGðζ; t;ζ0Þ ð3:12Þ

¼ Oðγnt1−n=2σ−nÞPGðζ; t; ζ0Þ: ð3:13Þ

If we associated γn with the nth cumulant of a random walk,
and t → N is the number of steps, then the suppression of
these terms precisely matches our expectations from the
CLT as t → ∞, see Eq. (2.14).
Note that this implies that ζ ∼ 1 is under control for

suitably large t. In contrast, perturbative calculations of the
probability distribution using the Edgeworth series

PðζÞ≃ exp

�
−
Z

d3k
ð2πÞ3

ζðk⃗Þζð−k⃗Þ
2PðkÞ

þ
Z

d3k1d3k2
ð2πÞ6

Bðk1;k2;k3Þζðk⃗1Þζðk⃗2Þζðk⃗3Þ
6Pðk1ÞPðk2ÞPðk3Þ

þ…

�
;

where k⃗3 ¼ −k⃗1 − k⃗2, breaks down for much smaller
values of ζ. This shows how stochastic inflation improves
the behavior of perturbation theory by resumming the
individual modes into a single random walk.

C. Large deviations and the EFT of inflation

Now let us consider the tail of the Pðζ; tÞ distribution,
where ζ ¼ αt for some constant α in the limit t → ∞. The
region α ≥ 1 corresponds to the regime of eternal inflation,
as the random fluctuations conspire to prevent the end of
inflation, even in the t → ∞ limit. The transition at α ¼ 1 is
where the quantum fluctuations exactly cancel the classical
evolution of the background field. Note that because the
distance is linear in t, rather than

ffiffi
t

p
, we are considering a

large deviation for the probability distribution of ζ.
It is straightforward to see that for these large deviations

the CLT fails to calculate dominant contribution to the tail,
just as it did for the i.i.d. random walk (see Fig. 2).
Plugging ζ ¼ αt into Eq. (3.12), we have

γnt
n!

∂
n

∂ζn
PGðζ; t; ζ0Þ ¼ Oðγntαnσ−2nÞPGðζ; t; ζ0Þ: ð3:14Þ

For α ¼ Oð1Þ, there is no suppression of the higher-order
terms. Concretely, the entire series in γn will break down for
sufficiently large α. For α ¼ 1, this series will break down
when Λ < fπ , even though this parameter space is con-
sistent with condition that the EFT of inflation is weakly
coupled at horizon crossing, Λ > H [46].
The breakdown of stochastic inflation is a precise

reflection of what we found in our analysis of large
deviations for random walks. To see this more clearly,
we can write the solution to stochastic inflation in terms of
the Fourier transform of Eq. (3.11)

Pðζ; tÞ ¼
Z

∞

−∞
dk e−ikζρðk; tÞ

¼ C
Z

∞

−∞
dk exp

�
−ikζ − k2

σ2

2
t − ik3

γ3
3!
tþ…

�
:

ð3:15Þ
11When cs → 1, there are additional factors of ð1 − c2sÞ so that

Λ → ∞ as cs → 1 in slow-roll models.
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We recognize this as precisely the result for a random walk
we described above, see Eq. (2.13). At the same time, we
can identify

ρðk; tÞ ¼ C exp

�
−k2

σ2

2
tþ

X
n>2

ðikÞn γn
n!

t
�
≡ hexp ðikζÞi;

ð3:16Þ

so that when ζ ¼ tα, we have ρðk; tÞ → etλðθ¼ikÞ. Assuming
t ≫ 1, we can calculate the integral over k in Eq. (3.15)
using the method of steepest descents,

Pðζ ¼ αt; tÞ ≃ exp ð−tIðαÞÞ; ð3:17Þ

where

IðαÞ ¼
�
−iαk⋆ðαÞ− k2⋆ðαÞ

σ2

2
þ
X
n>2

ðik⋆ðαÞÞn
γn
n!

�
: ð3:18Þ

The integrand has been expanded around k ¼ k⋆ðαÞ þ δk
defined by a (complex) value of k that is an extremum of
the argument of the exponential,

�
i
X
n≥2

ðik⋆ðαÞÞn
γnþ1

n!

�
− k⋆σ2 ¼ iα: ð3:19Þ

We see that using the method of steepest descents to
calculate the inverse Fourier transform is equivalent to
using Cramer’s theorem, Eq. (2.20). Furthermore, for large
α the Gaussian solution, k⋆ ¼ ð−iÞα=σ2, is a far from the
true saddle as all the terms in the kn⋆γn expansion will
become equally important. This is, of course, the Fourier
transform of the result in Eq. (3.14).
When we applied the LDP to random walks in Sec. II B,

it was clear that we become sensitive to the microphysics.
We would like to understand this breakdown purely in
terms of the EFT of inflation. Concretely, the expansion in
γn is under control at horizon crossing, which is the
physical energy scale where the fluctuations are produced.
A natural guess is that ζ ∝ t behaves like a classical
solution with _ζ ¼ H or _ϕ ¼ f2π, where ϕ is the inflaton.
To make sense of this, we can rewrite the evolution of ζ in
terms of a Langevin equation,

d
dt
ζðtÞ ¼ ξðtÞ; ð3:20Þ

where ξðtÞ is a random variable that models a noise source.
Assuming that the noise is Gaussian, we have

hξðtÞξðt0Þi ¼ σ2δðt − t0Þ: ð3:21Þ
The probability of finding ζ ¼ ζf at t ¼ tf given the initial
condition ζðt ¼ 0Þ ¼ 0 is then

PðζfÞ ¼
Z

DζðtÞ exp
�
−
Z

tf

0

dt
1

2σ2

�
d
dt
ζðtÞ

�
2
�
: ð3:22Þ

For large deviations, ζ ¼ αt, and the probability is deter-
mined by the saddle point d2

dt2 ζ ¼ 0 or d
dt ζ ¼ α, so that

PðζfÞ ≃ exp
�
−t

α2

2σ2

�
: ð3:23Þ

When α ¼ Oð1Þ [i.e., not Oðt−1Þ] this satisfies the LDP.
The key observation is that the probability of this large

deviation is determined by a classical solution where
d
dt ζ ¼ α (see Fig. 1). Translating this into the canonically
normalized field, ζc ¼ ζf2π=H, this is the condition that

d
dt
ζc ¼ αf2π: ð3:24Þ

The EFT of inflation is defined in terms of an expansion in
_ζc=Λ2 and therefore when _ζc > Λ, we cannot define these
classical solutions within the EFT. Concretely, we can
modify the Langevin equation with nonlinear terms

�
1þ

X
n>1

cn

�
f2π
Λ2

dζ
dt

�
n
�

d
dt
ζðtÞ ¼ ξðtÞ; ð3:25Þ

where cn ¼ Oð1Þ by the definition of γn in terms of Λ in
Eq. (3.8). We can now calculate the probability distribution
as before,

PðζfÞ ¼
Z

DζðtÞ

× exp

�
−
Z

tf

0

dt
ð_ζðtÞð1þP

n>1cn _ζ
nf2nπ =Λ2nÞÞ2

2σ2

�
:

ð3:26Þ

The saddle point is still ζ̈ ¼ 0, but we can see that the
probability distribution

PðζfÞ ≃ exp

�
−t

α2

2σ2

�
1þ

X
n>1

cn
αnf2nπ
Λ2n

�
2
�

ð3:27Þ

becomes ill-defined when αf2π > Λ2. It is also noteworthy
that the breakdown of EFT in this specific example is not
associated with the breakdown of Markovian dynamics, as
higher time derivatives vanish around the classical solution
(see the discussion in Sec. IV B). For single-field inflation,
it is a breakdown of the EFT of Inflation itself, rather than
SdSET, that is responsible for the ill-defined probability
distribution for sufficiently large deviations.
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IV. RANDOM WALKS WITH EXTERNAL FORCES

In the previous sections, we focused on the application of
the LDP to random walks with no external deterministic
forces. We argued that the late time behavior for the typical
fluctuations of these systems could be determined by RG
evolution. This analysis yielded the CLT, such that the
resultant probability distribution was a Gaussian with zero
mean.
In this section, we will study the physics of a random

walk that is driven by an external deterministic force. This
is easiest to understand in the case of a constant force,
which is equivalent to an i.i.d. random walk where the
average over steps is nonzero, hxi ≠ 0. Then from
Eq. (2.15), we see that the term proportional to the nonzero
mean scales as

ffiffiffiffi
N

p
, and so this term grows as we take

N → ∞. In the RG language, this implies that an external
deterministic force has the effect of introducing a relevant
deformation into the theory.

A. Equilibrium distributions

In the presence of confining forces, such as a potential
with a local minimum, we might expect to see ergodic
behavior, such that the probability for being at a given
location at a fixed time approaches a time-independent
(equilibrium) distribution. Such behavior is also consistent
with our expectations from thermodynamics for large
numbers of confined particles. In fact, it turns out that
the equilibrium distribution for this thermodynamic system
is itself a quantity that is calculable using the LDP. If we
imagine that a walk of length N reaches equilibrium, then
the probability of finding the particle at location y during
the walk at a sufficiently large number of steps, 1 ≪ n ≤ N,
should simply follow the equilibrium distribution

Pðxn ¼ yÞ ¼ PeqðyÞ: ð4:1Þ
Now suppose that we calculate quantities averaged over the
entire walk, such as eθX where X ¼ P

i xi. Since we are
averaging over the locations of each step, assuming we
have reached equilibrium, we have

�
exp

�
θ
XN
i¼1

xi

��
≃
�Z

dyeθyPeqðyÞ
�

N
¼ eNλðθÞ; ð4:2Þ

where λðθÞ is determined from the equilibrium distribution
for a single step in the walk. This is a qualitative argument
that can be formalized in terms of the eigenvalues of the
transition amplitudes. The rate function for the walk X ¼P

N
i¼1 xi again follows from Eqs. (2.23) and (2.17),

λðθÞ ¼ sup
X̃
½θX̃ − IðX̃Þ�: ð4:3Þ

Importantly, in the limit N → ∞, the probability for any
average quantity, S ¼ P

n
i¼1 fðxiÞ, is just the Nth power of

finding one particle with fðxÞ ¼ S=N.

The appearance of an equilibrium quantity in the LDP
calculation is not a special feature of random walks, but is
common to most statistical mechanics problems [58]. In a
precise sense, rate functions of the LDP are proportional to
the thermodynamic free energies for large numbers of
particles. The overall power of N in the probability is just
the familiar relationship between extensive and intensive
thermodynamic quantities. In fact, this connection was
already present when we calculate the rate function for the
discrete walk in Eq. (2.19b), which is (minus) the entropy
associated with a binary random variable.
This perspective helps explain why the LDP can be used

calculate the equilibrium probability distribution. This can
be made concrete12 in terms of a Langevin equation:

_xðtÞ ¼ fðxðtÞ; tÞ þ ξðtÞ; ð4:4Þ
where again ξðtÞ is a random variable that accounts for
noise, and now fðxðtÞ; tÞ is an external deterministic force.
If we assume the noise is Gaussian, then ξðtÞ obeys

hξðtÞξðt0Þi ¼ σ2δðt − t0Þ: ð4:5Þ
In this case, the probability of a walk xðtÞ is

P½xðtÞ� ¼C exp

�
−

1

2σ2

Z
T

0

dtðξðtÞÞ2
�

¼C exp

�
−

1

2σ2

Z
T

0

dtð_xðtÞ−fðxðtÞ; tÞÞ2
�
; ð4:6Þ

where we used the equations of motion given in Eq. (4.4).
One can confirm the first line by taking functional
derivatives with respect to ξðtÞ to reproduce the two-point
correlator in Eq. (4.5). For making future contact with
cosmology, we will assume the external force is due to a
potential such that

fðxðtÞ; tÞ → −V 0ðxðtÞÞ; ð4:7Þ
where V 0 ≡ ∂xVðxÞ.
Now suppose we are given xð0Þ ¼ 0, and we want to

integrate over all possible paths to find the probability that
xðTÞ ¼ L. We can solve this problem using the method of
steepest descents. First, we must find the maximum like-
lihood path, which is the same as finding the classical
saddle for the effective action

IðLÞ¼ 1

2

Z
T

0

dtð_xþV 0Þ2 ¼ 1

2

Z
T

0

dtð_x2þV 02Þþ ½VðxÞ�jT0 :

ð4:8Þ

12This equation is formally meaningless, as the random
variable is not differentiable. One can formalize these results
using the Itô or Stratonovich prescriptions. This subtlety will not
play an important role in our discussion, see e.g., [37] for more
details.
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From the equations of motion, we have

ẍ ¼ V 00V 0 →
d
dt

_x2 ¼ _x
d
dx

ðV 02Þ → _x2 ¼ V 02: ð4:9Þ

Using this result, we can write

1

2

Z
T

0

dtð_x2 þ V02Þ ¼ 1

2

Z
T

0

dt 2_xV 0 ¼
Z

T

0

dt
d
dt
V

¼ ½VðxÞ�jT0 : ð4:10Þ

Including the total-derivative term from Eq. (4.8), the
probability of find xðTÞ ¼ L is given in terms of

IðLÞ ¼ 2ðVðLÞ − Vð0ÞÞ with PðLÞ ≃ expð−IðLÞ=σ2Þ:
ð4:11Þ

Here our determination of the probability, PðLÞ, is a LDP
result in the sense that IðLÞ is a rate function

lim
σ→0

σ2 logPðLÞ ¼ −IðLÞ: ð4:12Þ

In the same sense as for the path integral, it is the paths near
the classical solution that yield the dominant probability,
while the contribution from the fluctuations about the
classical path determine the subleading terms in the
expansion with respect to σ.
This result matches the equilibrium probability distri-

bution we derive from the Fokker-Planck equation by
setting dP=dt ¼ 0,

d
dx

ðV 0PðxÞÞ þ σ2

2

d2

dx2
PðxÞ ¼ 0: ð4:13Þ

Integrating twice with respect to x gives

log
PðLÞ
Pð0Þ ¼ −

2

σ2
ðVðLÞ − Vð0ÞÞ: ð4:14Þ

We see that the LDP reproduces the equilibrium distribu-
tion that is predicted by the Fokker-Planck equation.

B. Markovian evolution

Within this framework, we can also easily understand the
role of Markovian evolution when assessing the validity of
the calculation of the equilibrium solution. Markovian
refers to a class of theories where the next time step is
fully determined by the state of the system at the previous
time step. In terms of differential equations, Markovian
evolution therefore is equivalent to the statement that we
have a first-order (in time) equation of motion. If there were
higher derivatives, then one would need to know about the
state of the velocity field along with the state of the system
itself to determine the next step in the evolution [71].

We can therefore model non-Markovian evolution by
adding a small acceleration term to our equations of motion
given in Eq. (4.4),

ϑẍðtÞ þ _xðtÞ ¼ −V 0ðxðtÞÞ þ ξðtÞ; ð4:15Þ

so that the dynamics are Markovian in the ϑ → 0 limit.
Repeating our previous calculation, we find an effective
action

IðLÞ ¼ 1

2

Z
T

0

dtðϑẍðtÞ þ _xþ V 0Þ2

¼
Z

T

0

dtðϑ2ẍ2 þ _x2ð1 − ϑV 00Þ þ V 02Þ

þ ½VðxÞ þ 2ϑ_xV 0ðxÞ þ ϑ_x�jT0 ; ð4:16Þ

so that PðLÞ ¼ expð−IðLÞ=σ2Þ. There are two new non-
Markovian terms that contribute to the action, which are
small corrections when

ϑ2ẍ2 ¼ ϑ2ðV 00V 0Þ2 ≪ _x2 ¼ V 02 ð4:17aÞ

ϑV 00 ≪ 1; ð4:17bÞ

where the first and second lines correspond the first and
second ϑ-dependent terms in Eq. (4.16), and the equalities
in Eq. (4.17a) are due to the Eq. (4.9). Notice that
both terms remain small when we impose the condition
ϑV 00 ≪ 1 everywhere along the path. If we enforce
Eqs. (4.17), then the effective action is first order in time,
and hence the evolution is Markovian.

V. LIGHT SCALAR FIELDS IN DE SITTER

Light scalar fields in de Sitter with nontrivial potentials
present an additional complication beyond single-field
inflation. The stochastic framework applied to these models
is known to give rise to a non-Gaussian equilibrium
probability distribution, acting as a kind of nontrivial fixed
point of the dynamical RG. This presents a vastly different
situation, compared to single-field inflation, where inter-
actions are negligible for typical fluctuations due to the
CLT. This section will show how the dynamics of these
models can be mapped onto the language of random walks
with external forces that we developed in the previous
section.

A. Effective potentials and Markovian dynamics

Stochastic inflation provides a compelling framework
with which to understand the dynamics of light scalar fields
in dS. In its original form, it describes the probability
distribution for an interacting scalar in dS, via the Fokker-
Planck equation
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∂

∂t
Pðϕ; tÞ ¼ H3

8π2
∂
2

∂ϕ2
Pðϕ; tÞþ 1

3H
∂

∂ϕ
½V 0ðϕÞPðϕ; tÞ�: ð5:1Þ

The equilibrium probability distribution is given by

PeqðϕÞ ≃ exp

�
−
8π2VðϕÞ
3H4

�
: ð5:2Þ

If we take VðϕÞ ¼ λϕ4=4!, the most likely field values are
jϕj ≲Hλ−1=4. In light of the discussion of non-Gaussian
noise in Sec. III, one would naturally wonder about the
regime of validity and corrections to this formula.
It is useful to discuss stochastic inflation and its

corrections in the context of SdSET. The relationship
between the variables of SdSET and scalar field theory
in dS can be understood from the SdSET ansatz for a free
massless scalar,

ϕðk⃗; tÞ ¼ Hðφþðk⃗; tÞ þ φ−ðk⃗; tÞ½aðtÞH�−3Þ: ð5:3Þ

Here we have rewritten the scalar in terms of the two
power-law solutions as k → 0, where φþ is the constant (or
growing) mode and φ− is the decaying mode.
In SdSET, stochastic inflation is a consequence of

Callan-Symanzik-like equations for the dynamical RG of
the φnþ operators. This information can be rewritten as a
master equation for the probability distribution Pðφþ; tÞ,
which at lowest order reproduces Eq. (5.1), while also
containing an infinite series of corrections,

∂

∂t
Pðφþ; tÞ ¼

1

3

∂

∂φþ
½V 0

effðφþÞPðφþ; tÞ�

þ ∂
2

∂φ2þ

�X∞
m¼0

bm
2!

φ2mþ Pðφþ; tÞ
�

þ ∂
3

∂φ3þ

�
φþ

X∞
m¼0

dm
3!

φ2mþ Pðφþ; tÞ
�

þ ∂
4

∂φ4þ

�X∞
m¼0

em
4!

φ2mþ Pðφþ; tÞ
�
þ…: ð5:4Þ

For the UV example of a massless scalar with VðϕÞ ¼
λϕ4=4!, the leading corrections (as defined below) were
calculated in [39], resulting in

∂

∂t
Pðφ̄þ; tÞ ¼

1

3

∂

∂φ̄þ
½V 0

effðφ̄þÞPðφ̄þ; tÞ� þ
1

8π2
∂
2

∂φ̄2þ
Pðφ̄þ; tÞ

þ λeff
1152π2

∂
3

∂φ̄3þ
ðφ̄þPðbφ̄þ; tÞÞ; ð5:5Þ

with

V0
eff ¼

λeff
3!

�
φ̄3þ þ λeff

18
φ̄5þ þ λ2eff

162
φ̄7þ þ � � �

�
; ð5:6Þ

where we redefined

λeff ¼ λþ 18b2 and φþ ¼ φ̄þ þ b1
6b0

φ̄3þ ð5:7Þ

to remove the scheme-dependent corrections b1 ¼ OðλÞ
and b2 ¼ Oðλ2Þ.
First, let us establish in what sense these are small

corrections to the original Fokker-Planck equation. If we
ignore the corrections to the evolution Eq. (5.5) and the
potential Eq. (5.6), so that VeffðφþÞ ¼ λφ4þ=4!, then the
equilibrium solution is the same as in Eq. (4.14),

PLO
eq ðφþÞ ¼ exp

�
−
2VeffðφþÞ

3σ2

�
¼ exp

�
−
π2λφ4þ

9

�
; ð5:8Þ

where we substituted σ2 ¼ γ2 ¼ ð4πÞ−1 and V 0 → V 0
eff=3 to

match Eq. (5.5). Notice that the typical fluctuations reside
in the region jφþj≲ λ−1=4. We can determine the scaling
behavior of the solutions using φþ ∼ λ−1=4 such that the
corrections to VeffðφþÞ are Oðλ1=2eff Þ and OðλeffÞ, which we
will call next-to leading order (NLO) and next-to-next-to
leading order (NNLO) respectively. The cubic-derivative
term, on the second line of Eq. (5.5), is similarly NNLO. By
the same λ-scaling argument, the equilibrium solution can
be written as Peq ¼ CPLOðφþÞPNLOðφþÞPNNLOðφþÞ with

PLO ¼ exp

�
−
π2

9
λeffφ

4þ

�
; ð5:9aÞ

PNLO ¼ exp

�
−

π2

243
λ2effφ

6þ

�
; ð5:9bÞ

PNNLO ¼ exp

�
5

10368
λ2effφ

4þ −
17π2

46656
λ3effφ

8þ

�
: ð5:9cÞ

The terms in PNNLO come with different powers of φþ but
have the same λeff counting for typical fluctuations.
Importantly, the second term, which is Oðφ8þÞ, receives
contributions from both the change to VeffðφþÞ and the
higher-derivative term.
Given that our UV theory only has a marginal coupling,

λϕ4, it is not obvious that there should be a breakdown of
the stochastic framework akin to what happened for the
EFTof Inflation in Sec. III. Furthermore, we saw in Sec. IV
that the equilibrium distribution is itself a result of the LDP,
and therefore it is not a given that the framework could
break down.
However, as we saw in Sec. IV B, a critical assumption

for the validity of the stochastic framework is that the
evolution is Markovian. Therefore, the stochastic
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description can fail when the acceleration terms become
important. The condition for non-Markovian terms to be
negligible was given in Eqs. (4.17) above. In the language
of SdSET, non-Markovian evolution would arise from
nontrivial mixing between φþ and φ−, defined in Eq. (5.3).
Evaluating these conditions requires that we identify the

parameter ϑ. For a light scalar field ϕ in dS, the equations of
motion in the limit that k⃗ → 0 are

ϕ̈ðtÞ þ 3H _ϕðtÞ ¼ −V 0ðϕÞ: ð5:10Þ

In terms of dimensionless time t ¼ Ht, we would there-
fore13 expect ϑ ≃ 1=3. Assuming that ϑ−1 ¼ Oð1Þ,
Eq. (4.17b) implies that we should worry that the evolution
becomes non-Markovian when

V 00
eff ¼ Oð1Þ → λφ2þ ¼ Oð1Þ: ð5:11Þ

Using the explicit form of the corrections provided in
Eq. (5.9) we see that this is precisely where our expansion
in powers of λ breaks down,

PLOðφþ ∼ λ−1=2Þ ≃ PNLOðφþ ∼ λ−1=2Þ
≃ PNNLOðφþ ∼ λ−1=2Þ
∼ expð−λ−1Þ: ð5:12Þ

Similarly, this is the scale where the infinite series of
corrections to the effective potential in Eq. (5.6) become
equally important. It is therefore natural to conclude that the
breakdown in our perturbative expansion in λ when φþ >
λ−1=2 is due to the failure of the Markovian assumption.

B. Light scalars in de Sitter with derivative interactions

We argued in Sec. III C that the breakdown of stochastic
inflation for large fluctuations in single-field inflation was
associated with the breakdown of the EFT of inflation. In
this section, we will expore if a similar breakdown occurs
for the equilibrium distribution of a scalar field ϕ described
by an EFTwith higher-derivative interactions in addition to
a potential.
We will take our action for our scalar to be an EFT that

includes arbitrarily high powers of derivatives14 to take the
form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕ − VðϕÞ

þ
X
n>1

yn
Λ4ðn−1Þ ð∂μϕ∂μϕÞn þ…

�
; ð5:13Þ

where Λ is the UV cutoff of the EFT and the … include
operators with more than one derivative per field. This
description is under control in de Sitter when Λ ≫ H. We
will again take VðϕÞ ¼ λϕ4=4! such that ϕ is massless and
its growing mode φþ will evolve at zeroth order in yn
according to λ-corrected equations of stochastic inflation
given in Eq. (5.5) and (5.6).
The impact of the higher-derivative couplings yn on

stochastic inflation is nearly identical to the corrections in
single-field inflation. The leading corrections in yn survive
the λ → 0 limit and therefore can be determined indepen-
dent of the potential. In this limit, ϕ has a shift symmetry
ϕ → ϕþ c. Repeating the argument used for single-field
inflation in Sec. III, one finds corrections

∂

∂t
Pðφþ; tÞ ⊃

X
n>1

γn
ð2nÞ!

∂
2n

∂φ2nþ
Pðφþ; tÞ; ð5:14Þ

where

γn ∝ yn

�
H
Λ

�
4ðn−1Þ

; ð5:15Þ

at leading order in yn.
The presence of higher-derivative terms in the scalar EFT

introduces an infinite series of derivatives in the effective
Fokker-Planck equation. For this to be under control, we
expect that the equilibrium solution with γn>2 ¼ 0 should
be corrected by an expansion in powers of a small
parameter. If we write Pðφþ; tÞ ¼ Peq

LOðφþÞQðφþ; tÞ, then
in the limit φþ ≫ λ−1=4, Eq. (5.14) becomes

∂

∂t
logQ ≃

X
n>2

γn
ð2nÞ!

�
−
2V 0

effðφþÞ
3σ2

�
2n
; ð5:16Þ

where we used Eq. (5.2) for Peq
LOðφþÞ. For yn ¼ Oð1Þ, this

series is under control when

8π2H2

3Λ2
V 0
effðφþÞ ≪ 1: ð5:17Þ

Taking Veff ≃ λφ4þ, this tells us that the equilibrium solution
is under control for Hφþ ≲ Λ2=ðλHÞ, which is parametri-
cally larger than Λ. We can make sense of the regime of
validity of this result using Eq. (4.9) to relate

V 0
effðφþÞ ¼ j _φþj; ð5:18Þ

along the classical trajectory. Now using ϕ ≃Hφþ and
t ¼ Ht, we can rewrite this condition for the expansion to
be under control,

13The non-Markovian form of stochastic inflation has been
used in the literature, where ϑ ¼ 1=3 as stated, e.g., [72–74].
It would be interesting to understand these non-Markovian terms
in SdSET where the higher-derivative corrections have been
computed.

14This is not to be confused with SdSET, which only describes
the long wavelength modes in dS.
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j _ϕj
Λ2

≪ 1: ð5:19Þ

We see that the breakdown is precisely where we would
expect from the derivative expansion of the microscopic
theory. Critically, the derivation of this breakdown required
knowledge of the LDP to see that the equilibrium distri-
bution could be derived from a classical saddle, in the
regime where _φþ was larger than allowed by the UV cutoff
of the EFT of inflation.

VI. MODELS OF PRIMORDIAL BLACK HOLE
GENERATION

The impact of rare fluctuations is particularly important
for models of primordial black hole (PBH) generation. The
PBHs are formed from order-one fluctuations directly in
the primordial distribution and, as such, the fluctuations are
exponentially unlikely for scale-invariant Gaussian random
fields. Models for the generation of PBHs therefore exploit
breakdowns of both scale invariance and Gaussianity, see
e.g., [75,76] for recent reviews.
The typical approach to estimating the abundance of

PBHs follows from the critical collapse model [75]. In the
conventional description, one takes a smoothed density
field,

δRðx⃗Þ ¼
Z

d3ke−ik⃗·x⃗WðkRÞδðk⃗Þ; ð6:1Þ

whereWðk̃Þ is a filter that removes power on scales k̃ ≫ 1,
and R is some distance scale. The critical collapse model
assumes that any region where δR > δcr, for some constant
threshold δcr ¼ Oð1Þ, will form a collapsed object with a
total mass determined by the size of the region R.
Within this framework, the abundance of primordial

black holes is determined by the probability of finding
δR > δcr ¼ Oð1Þ, where the precise value of δcr is model
dependent. This threshold can be also be written as a critical
value of ζRðx⃗Þ [77,78], ζcr, defined as in Eq. (6.1) such that
the probability of finding ζRðx⃗Þ > ζcr determines that
production of PBHs. For concreteness, a value of ζcr ¼
0.1–0.2 arises in some analytic collapse models in radiation
domination [78]. In comparison with the LDP, note that the
relevant timescale for the random walk is the number of e-
folds of inflation after horizon crossing for a model with
kR ∼ 1, or NeðRÞ ¼ log RaðtendÞH, where tend is the time
when inflation ends. For scales NeðRÞ ¼ Oð10Þ, fluctua-
tions above the ζcr threshold would correspond to α ≳ 10−2

using the parameterization of large deviations described in
Sec. III C. In models of inflation consistent with observa-
tions, these values of α may still lie outside the domain of
the EFT of inflation.
Non-Gaussian tails arise in a variety of contexts,

included single-field and multifield inflation. In light of
the connection between tails of distributions and the LDP

explored in this paper, we would like to understand when
such large non-Gaussian contributions can be calculated
reliably given only an effective description at horizon
crossing. We will argue that framing these questions in
the language of RG for a random walk provides useful
intuition.

A. Non-Gaussian tails

We have explained how the stochastic approach to
inflation translates the problem of finding the distribution
of scalar fluctuations onto characterizing the behavior of a
random walk. The CLT tells us that the Gaussian proba-
bility distribution is a fixed point of the conventional
random walk. Just as with RG flows in quantum field
theories, we can classify the deformations that could
produce a non-Gaussian tail, in analogy with Sec. II A,
into three types: relevant, marginal, or irrelevant.

1. Relevant

A nonzero mean, e.g., due to a deterministic force, takes
us away from the Gaussian fixed point of the CLT. For
inflation, this corresponds to a potential VðϕÞ such that the
equilibrium probability distribution takes the form of
Eq. (4.14), namely

PðϕÞ ¼ e−2VðϕÞ=2σ2 : ð6:2Þ

If the potential includes any operators other than a mass
term, this distribution is non-Gaussian. Yet, since it is due
to the presence of the unique relevant deformation, a large
deviation from Gaussianity does not indicate a breakdown
of the effective description.
In practice, nontrivial production rates for PBHs require

some more complicated and possibly nonanalytic potential
VðϕÞ. Some UV models may motivate particular non-
perturbative shapes for VðϕÞ, but in practice the formation
of PBHs has mostly been explored using phenomenologi-
cal models for the inflationary potential, see e.g., [79–81].

2. Marginal

A marginal deformation of a random walk corresponds
to changing the covariance matrix that governs the steps in
the walk. In the context of inflation, this means changing
the amplitude of scalar fluctuations, PζðkÞ, or mixing the
inflaton with additional fields. The former is a common
strategy but only leads to enhanced Gaussian tails. Mixing
with additional fields can give rise to non-Gaussian tails in
a variety of ways.
A canonical example of models that use mixing are the

curvaton or modulated reheating scenarios, where the late
time adiabatic mode is determined by a spectator field χ, so
that

ζ ≃ FðχÞ → heJζi ¼ heJFðχÞi; ð6:3Þ
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for some model-dependent function F. As a concrete
example, suppose our spectator field has a potential VðχÞ ¼
λϕ4 so that at leading order we have

PðχÞ ¼ exp

�
−
π2λχ4

9

�
: ð6:4Þ

Now suppose that by some process after inflation, the
adiabatic mode is determined by ζ ¼ κχ3 for some constant
κ. By the change of variables (integrating over χ subject to
the mixing with ζ), we have

PðζÞ ¼ exp

�
−
π2λjζj4=3
9κ4=3

�
: ð6:5Þ

In this way, we can produce nonanalytic behavior in the tail
from otherwise local interactions. Of course, this assumes
that the functions VðχÞ and FðχÞ are known exactly, when
in fact they are themselves expansions in χ. For a given
model, one must check the self-consistency of truncating
these expansions, including the corrections to VeffðχÞ
discussed in Sec. V.
The derivation of Eq. (6.3), while a trivial restatement of

the mixing, has an important interpretation in the context of
the LDP. In the LDP literature, this change of variables is
known as the correspondence principle, which says that
when ζ ¼ FðχÞ and the rate function for χ is known, then
the rate function for ζ is given by

IðζÞ ¼ inf
χ∶FðχÞ¼ζ

ĨχðχÞ; ð6:6Þ

where ĨðχÞ is the rate function that determines the large
deviations of the χ field.
These types of probability distributions can arise from

interactions that mix the adiabatic and isocurvature modes
during or after inflation [73,79,82–90]. The probability
distributions found in these examples match the discussion
given here as they are well-described by the LDP. In
SdSET, one can remove these types of mixing interactions
via a field redefinition, which effectively introduces a
transformation of the form Eq. (6.3) on the observable
fluctuations.

3. Irrelevant

Non-Gaussian noise is an irrelevant perturbation of a
random walk. The CLT ensures that even a highly non-
Gaussian probability distribution will produce a Gaussian
distribution for the total distance of the walk. We saw that
this is not true for large deviations, which lie outside the
regime of the CLT, but also require exact knowledge of the
non-Gaussian probability distribution.
It is tempting to use non-Gaussian statistics for quantum

fluctuations as a mechanism to produce PBHs. However, as
discussed in Sec. III (and [46]), when the non-Gaussian

terms in stochastic inflation become important, both the
stochastic framework and the EFT of inflation are breaking
down. In principle one can use the LDP techniques to
calculate the rate of functions within the microscopic model
of inflation; however, given that the stochastic framework
does not apply to the microscopic theory, one must go
beyond the classical probabilistic description we have
used here.

B. Relation to factorial enhancement

The increased probability distribution for large fluctua-
tions has been tied to the factorial enhancement of higher-
order correlators in a number of examples [85,91–93].
Concretely, if one is calculating the correlators of some
field χ as a perturbative expansion in a parameter κ ≪ 1,
then the M-point correlators are factorial enhanced
when [93]

hχM…i ∝ κmM! ∝ M!hχmiM=m: ð6:7Þ

This scaling with M is significant as it implies that there is
more information encoded in the largestM-point functions.
The factorial enhancement can be understood more

directly from the generating function W½J�, which is
defined by the partition function with a source J as15

Z½J� ¼ e−W½J� ¼
�
exp

�
−
Z

ddx Jðx⃗Þχðx⃗Þ
��

: ð6:8Þ

The Mth connected correlator is then determined from the
generating functional as

hχðx⃗1Þ::χðx⃗MÞiC ¼ δM

δJðx⃗1Þ::δJðx⃗MÞ
W½J�jJ¼0: ð6:9Þ

If we can locally expand W½J� as

W½J� ¼
X
m

amJm; ð6:10Þ

then the correlators will be factorially enhanced unless
aM ∝ 1=M!. This condition implies that the expansion in
Eq. (6.10) converges everywhere in the complex plane and
therefore W½J� is an entire function. It was confirmed by
explicit calculation in [93] that W½J� has a logarithmic
branch cut16 for VðχÞ ∝ jχjp when p > 2. In this precise
sense, the non-Gaussian tails that are calculable via
stochastic inflation also imply a factorial enhancement of
the large M-point correlators.

15The notation in this section follows [93]. It can be related to
the symbols introduced in Sec. II B via the following map:
J → θ; Z½J� → heθXi; W½J� → −Nλ½θ�; VðχÞ → NIðX̃Þ.

16As discussed in [93], the existence of a point in the complex
plane where Z½J� ¼ 0 is sufficient to demonstrate the W½J� is not
entire. See also [82] for related discussion.
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For the models described by Eq. (6.3), the generating
functional was calculated in [93] using the method of
steepest descents. It is noteworthy that W½J� is the same
quantity as λ½θ� → W½J� that appears in Cramer’s theorem,
see Eq. (2.23). Concretely,W½J ¼ ik� is simply the Fourier
transform of PðχÞ so that

PðχÞ ¼
Z

∞

−∞
dk e−ikχ expð−W½ik�Þ: ð6:11Þ

As we saw in Eq. (3.18), when the LDP holds, the inverse
Fourier transform can be calculated from the method of
steepest descents and reproduces Cramer’s theorem. Given
that W½J� is itself calculable by the nontrivial saddle,
Eq. (6.11) can be interpreted as a Legendre transform
from the generating functional to the rate function
W½J� → IðχÞ. The appearance of the Legendre transform
in calculating this rate function using the LDP is equivalent
to the role of the Legendre transform in relating free
energies in statistical mechanics.
The role of the Fourier transform in relating the language

of stochastic inflation and rare fluctuations also appears
in the tail expansion of the probability distribution reviewed
in e.g., [80]. In that case, one is Fourier transforming the
time variable, rather than the field χ, but the δN-formalism
ultimately relates the two at the end of inflation. In
principle, the techniques of the LDP should also apply
directly to the tail expansion and might offer insights into
the regime of control of those calculations.
Finally, the above discussion is also related to the

factorial enhancement of scattering amplitudes at high
multiplicity [94–99]. In that context, semiclassical solu-
tions have also proven to be important and are closely
related to the semiclassical calculation of W½J� described
above. It is likely there is a deeper connection to the LDP,
as we have seen in the case of cosmological correlators.

VII. CONCLUSIONS

In this paper, we demonstrated that the large deviation
principle can be used to diagnose the validity of the
underlying effective field theory expansion being used to
derive the evolution equations of stochastic inflation. We
showed how to interpret the dynamical renormalization
group equations that derive stochastic inflation as coarse
graining a random walk. When the potential is essentially
zero, for example in the case of the inflaton, we argued that

this procedure leads to a Gaussian distribution as a
consequence of the central limit theorem. In this case,
EFT expectations hold and everything is under perturbative
control. However, if one asks questions that are sensitive to
the tails of the probability distribution, then the LDP tells us
that a new saddle point of the action dominates, and making
a reliable prediction requires knowledge of the EFT to
all orders (or equivalently one must appeal to the UV
completion). We then showed how the LDP applies for
models with a nontrivial potential, and again explored the
regime of EFT validity. Finally, we showed how the LDP
could be used to diagnose the validity of models that were
introduced with the goal of yielding a nontrivial production
of primordial black holes.
There are many important future directions to explore. It

would be of great interest to apply the LDP to compute the
stochastic evolution equations in UV complete examples in
such a way that the impact on the tails of the distributions
was completely under control. This would provide a test
case analog of the random walk examples that were
presented in Sec. II above. It would also be interesting
to explore other applications of the LDP in cosmology and
quantum field theory. For example, the appearance of
additional saddles describing the tail of the distribution
is reminiscent of scattering amplitudes with high multi-
plicity [94–99] and the large-charge expansion of con-
formal field theories [100–104]. These are natural settings
where one might expect the LDP to play a role, and it
would be exciting to make this precise. We anticipate that
having connected the validity of stochastic inflation to the
LDP will yield many new insights into the nature of
quantum field theory, both in dS spacetime and beyond.
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