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We describe the interplay between electric-magnetic duality and higher symmetry in Maxwell theory.
When the fine structure constant is rational, the theory admits noninvertible symmetries which can be
realized as composites of electric-magnetic duality and gauging a discrete subgroup of the one-form global
symmetry. These noninvertible symmetries are approximate quantum invariances of the natural world
which emerge in the infrared below the mass scale of charged particles. We construct these symmetries
explicitly as topological defects and illustrate their action on local and extended operators. We also describe
their action on boundary conditions and illustrate some consequences of the symmetry for Hilbert spaces of
the theory defined in finite volume.
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I. INTRODUCTION

Duality is a classical feature of electromagnetism. In a
vacuum Maxwell’s equations read:

∇! · E⃗ ¼ 0; ∇! · B⃗ ¼ 0;

∇!× E⃗ ¼ −
∂B⃗
∂t

; ∇!× B⃗ ¼ ∂E⃗
∂t

; ð1Þ

and are famously invariant under the transformation:

E⃗ ↦ B⃗; B⃗ ↦ −E⃗: ð2Þ

This duality survives the inclusion of sources provided that
both electric and magnetic charges are allowed and
exchange under duality. This classical duality transforma-
tion holds independent of the value of the electric coupling
e which controls the strength of the Coulomb force.
At the quantum level, duality is a more subtle notion.

Adopting standard relativistic notation, Maxwell theory is
defined by a path integral over Uð1Þ gauge fields A. The
Euclidean action defining the weight in the path integral is1

S ¼ 1

2e2

Z
F ∧ �F −

iθ
8π2

Z
F ∧ F: ð3Þ

The θ-angle is a new parameter that controls the weight of
topologically nontrivial bundles in the partition function,
and below, we simply take θ ¼ 0. The coupling e appears
only as an overall constant in the action and hence drops out
of the equations of motion,

d � F ¼ 0; ð4Þ

which encapsulates (1).
The fact that the equations of motion are independent of

the coupling can also be understood as follows. At the
classical level, the coupling e can be absorbed by rescaling
the gauge field A and hence is not meaningful. In other
words, classically there is no preferred unit of electric
charge. By contrast, in the quantum theory, Dirac quanti-
zation implies that particles carry integer multiples of a
basic quantum of electric charge and hence makes the
choice of e physical. Moreover, since magnetic and electric
charges are quantized in inverse units, the force between
elementary charges is in general not invariant under duality
unless the coupling also transforms. An important conse-
quence of these comments is that quantum mechanically,
duality is not in general a property of a fixed theory, but
rather is an equivalence between versions of Maxwell
theory with different couplings.
Our purpose in this paper is to explore this fact and to

discuss the special circumstances under which duality can
be viewed as a symmetry of a fixed quantum theory. One
well-known circumstance under which this occurs is when
the coupling is tuned to a self-dual value so that the forces
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1In our conventions, the flux F=2π ¼ dA=2π is integrally
quantized, the gauge field 1

e A is canonically normalized, and the
θ-angle has periodicity 2π on spin manifolds.
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between the basic quanta agree. More generally, below we
will show that when e satisfies the rationality condition:

e2

2π
¼ Nm

Ne
; Ni ∈N; gcdðNe; NmÞ ¼ 1; ð5Þ

Maxwell theory enjoys an exact duality symmetry at the
quantum level. Our result generalizes previous analysis of
electric-magnetic duality in [1,2] and duality defects in
[3–5] which discussed the symmetry associated to the
special case Nm ¼ 1. In particular, like the latter analysis,
the symmetries we construct are in general noninvertible,
and thus while they commute with the Hamiltonian, they
are not represented by unitary operators acting on Hilbert
space. The fact that noninvertible symmetries exist in
Maxwell theory at more general rational couplings like
(5) was first pointed out in [6]. Our analysis below extends
these observations to reveal the particularly simple nature
of the associated symmetry defects and to describe their
properties, like fusion rules, and their physical conse-
quences for boundary conditions and Hilbert spaces. Our
work follows on a variety of recent analysis describing
noninvertible symmetry in field theory, particularly in
3þ 1 dimensions, e.g. [3–5,7–46].
Notice that the critical values identified in (5) correspond

to rational fine structure constant. These are a dense, but
measure zero set, in the space of all allowed couplings. In
nature, the fine structure constant runs logarithmically due
to the presence of massive charged leptons and quarks. In
the infrared, far below the mass scale of these charged
particles the value stabilizes at

e2IR
2π

≈
2

137.03599908
: ð6Þ

We can view this decimal approximation as a sequence of
rationals with increasing precision:

N0
m

N0
e
¼ 2

137
;

N1
m

N1
e
¼ 25

1713
;

N2
m

N2
e
¼ 500

34259
; � � � : ð7Þ

Truncating to a fixed precision, we conclude that the
symmetries we identify can be viewed as approximate
symmetries of the natural world which emerge at low
energy in the quantum realm of photons.2

In addition to simply identifying these special values of the
coupling, we will also describe the action of the correspond-
ing symmetries on operators. To carry this out, we construct
topological defects that represent the symmetry actionwhich
generalize those constructed in [3,4]. Explicitly, these defects

areZNm
topological gauge theories which couple to the bulk

gauge fields as in a topological order. The defects actions we
construct may be viewed as simplifications of those derived
in [6,47]. For instance, in the leading approximation men-
tioned in (7), the approximate quantum symmetry of
Maxwell theory is mediated by coupling to a Z2 topological
field theory, i.e. a toric code state.
We use these defect actions to describe how the

symmetries act on boundary conditions, generalizing the
analysis of electric-magnetic duality in [1,2] and analogous
previous studies [38,48]. To illustrate this action in detail
we consider a quasi-realistic setup described by Maxwell
theory in a toroidal cavity; a spatial solid torus with
specified boundary conditions. At the special rational
coupling (5), the energy levels and degeneracies in this
Hilbert space are invariant under exchanging electric
conducting boundary conditions (Dirichlet), with magnetic
conducting boundary conditions (Neumann) provided that
we also couple to a ZNm

topological sector.
In our Universe, free magnetic charges have not been

observed and certainly do not propagate at low energies,
making direct experimental verification of this equivalence
difficult. Nevertheless it may perhaps be possible to design
materials that simulate magnetic conductors in a range of
frequencies or energies. In such a hypothetical material, the
matching of energy levels arising from these approximate
symmetries of our Universe might be tested in future
experiments.

II. ELECTRIC-MAGNETIC DUALITY

Let us first review the standard derivation of electric-
magnetic duality in the quantum setup. We refer to this
duality operation as S, to distinguish it from other notions
of duality defined below.
In the path integral, we treat F as the fundamental

variable instead of A. The Bianchi identity, dF ¼ 0, is then
achieved by introducing a Lagrange multiplier gauge field
Ã together with a coupling,

S ⊃
i
2π

Z
dÃ ∧ F: ð8Þ

To see that this is the correct normalization, note that in the
presence of a charge m magnetic monopole inserted on a
world line γ the term above reduces as

i
2π

Z
dÃ ∧ F ⟶ im

Z
γ
Ã; ð9Þ

so that Ã couples to the magnetic charge in the exact same
manner as A couples to electric charge. Now integrate out F
to obtain the duality relation between the field strength F
and its dual F̃ ¼ dÃ:

SðFÞ ¼ F̃ ¼ 2πi
e2

� F: ð10Þ

2It is interesting to ask how the θ-angle in Maxwell theory
might modify this observation. In the Standard Model, we do not
know the value of θ and the details of the noninvertible symmetry
in general depend on θ. Here for simplicity, we will assume that θ
vanishes. It would be interesting to explore this issue in more
detail in future work.
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Using this relationship we can write the action solely in
terms of dual variables with a dual coupling ẽ:

S ¼ 1

2ẽ2

Z
F̃ ∧ �F̃; e2

2π
¼ 2π

ẽ2
: ð11Þ

Thus, as is familiar, electric-magnetic duality inverts the
coupling constant and hence relates a theory with coupling
e to a dual theory with coupling SðeÞ ¼ ẽ.
Since the local operators in Maxwell theory are gen-

erated by field strengths, (10) yields the general rule for
their transformation under S. Meanwhile to see the action
on extended operators it is useful to organize the action of
duality via the one-form symmetry. Maxwell theory has a

Uð1Þð1Þe × Uð1Þð1Þm symmetry [49] with charges generated
by surface operators:

(i) Electric symmetryUð1Þð1Þe : The charge is the surface
operator QE ¼ 1

ie2
R �F. The charged objects are

Wilson lines expðil R AÞ for l∈Z.
(ii) Magnetic symmetry Uð1Þð1Þm : The charge is the

surface operator QM ¼ 1
2π

R
F. The charged objects

are ’t Hooft lines.
We can also describe the electric one-form symmetry

generator in more physical terms as follows. We work
locally in R4 with cylindrical coordinates ðr; θ; z; tÞ.
Consider a solenoid of radius R centered at r ¼ 0 and
extending spatially along z. Inside the solenoid there is a
constant magnetic field of magnitude B in the z direction,
while outside the flux vanishes. This is described by a
gauge field,

A ¼
� ðπr2BÞ dθ

2π ; r < R;

ðπR2BÞ dθ
2π ; r > R:

ð12Þ

Consider the limit R → 0, and B → ∞ with the total
magnetic flux πR2B≡ α held fixed. Then the field strength
everywhere vanishes (except formally at r ¼ 0), and the
above defines a surface defect localized at r ¼ 0 and
extended in z and t. This defect is detectable through its
fixed Aharanov-Bohm phase. This is precisely the (electric)
one-form symmetry defect which is characterized by the
fact that Wilson lines encircling it have a fixed value α
(defined modulo 2π).
A similar electric flux confined in an infinitesimal region

defines the magnetic one-form symmetry generators. Such
a configuration can be approximated by an array of tiny
capacitors. Then, under electric-magnetic duality S, these
two classes of generators, or defects, are exchanged
consistent with (13).
From the relation (10) we can see that the one-form

symmetries (12) map under duality as

SðQEÞ ¼ Q̃E ¼ QM; SðQMÞ ¼ Q̃M ¼ −QE; ð13Þ

which in particular also determines the action on the
charged Wilson and ’t Hooft lines. We also note that
duality squares to charge conjugation.

A. Interfaces and boundary conditions

The previous discussion explains how electric-magnetic
duality acts on point, line, and surface operators. Here we
discuss how it acts on operators of codimension one, i.e.
interfaces and boundaries. Our analysis closely follows [2].
Let us begin by enumerating several natural boundary
conditions.

1. Perfect electric conductor

The field strength restricts to be trivial on the boundary:

Fj
∂M ¼ 0: ð14Þ

Thus, the electric field is perpendicular to the spatial
boundary, while the magnetic field is parallel to it.
Working in a gauge where An̂ is zero for n̂ a normal
direction to ∂M, and assuming that the boundary topology
is trivial, one can equivalently view (14) as defining
Dirichlet boundary conditions Aj

∂M ¼ 0.3

It is convenient to model the boundary condition by
introducing a new 3d dynamical Uð1Þ gauge field c whose
equation of motion enforces (14). The required boundary
action is a mixed Chern-Simons term:

Sb ¼
i
2π

Z
∂M

c ∧ dA: ð15Þ

Taking into account the boundary variation of the bulk
action we find that in addition to (14)

i
e2

� Fj
∂M ¼ dc

2π
: ð16Þ

Thus, the electric one-form symmetry current is identified
on the boundary with the flux of c.

2. Perfect magnetic conductor

In this case the dual field strength restricts to be trivial on
the boundary:

�Fj
∂M ¼ 0: ð17Þ

Thus, the magnetic field is perpendicular to the spatial
boundary, while the electric field is parallel to it. Again
assuming the gauge An̂ ¼ 0 and trivial boundary topology,
(17) yields Neumann boundary conditions ∂n̂Aj∂M ¼ 0.

3More generally, when the topology of ∂M is not trivial
boundary condition defined by (14) has moduli corresponding
to flat connection on ∂M. Ignoring torsion, these are parametrized
by a torus H1ð∂M;RÞ=2πH1ð∂M;ZÞ.
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Note that since the boundary variation of the bulk action is
trivialized when (17) holds, we can enforce this boundary
condition using only the bulk action without any additional
boundary fields.

3. General boundary conditions

More generally, we may consider a boundary condition
described by coupling n boundary fields cα to the bulk.
Such a boundary is described by a symmetric integral level
matrix kαβ, an integral vector vα, and an integer p with
boundary action:

Sb ¼
ikαβ
4π

Z
∂M

cα ∧ dcβ þ
ivα
2π

Z
∂M

cα ∧ dA

þ ip
4π

Z
∂M

A ∧ dA: ð18Þ

For such a boundary condition, neither one-form symmetry
is trivialized on the boundary, but instead they are related to
the fluxes of cα as

kαβ
dcβ
2π

þ vα
F
2π

����
∂M

¼ 0; ð19Þ

1

ie2
� F

����
∂M

þ vα
dcα
2π

þ p
F
2π

����
∂M

¼ 0: ð20Þ

Assuming kαβ is nondegenerate one may formally integrate
out the boundary gauge fields cα resulting in a Chern-
Simons term for A with the fractional level,

ðp − vαðk−1ÞαβvβÞ
i
4π

Z
∂M

A ∧ dA: ð21Þ

The true quantum consistent theory is described by (18).
To deduce the action of electric-magnetic duality on the

boundary conditions described above, we describe the S
duality itself as a topological interface connecting a theory
with gauge field AL and coupling e with a theory with
gauge field AR and coupling ẽ defined in (11). The interface
action is simply [1,2],

S ¼ i
2π

Z
W
AL ∧ dAR; ð22Þ

where W indicates the location of the wall. The full bulk
and boundary action then consists of Maxwell actions (3)
for AL and AR together with the interface coupling (22).
The boundary term in the equations of motion then gives

rise to a continuity equation for the bulk gauge fields along
the wall,4

�
2πi
e2

�FL−FR

�����
W
¼0;

�
FLþ

2πi
ẽ2

�FR

�����
W
¼0; ð23Þ

thus reproducing (10).
The interface (22) allows us to determine the action of S

duality on boundary conditions. We place the defect (22)
near the boundary and parallel to it. In the limit when the
defect collides with the boundary, one of the bulk fields, say
AL becomes a new boundary gauge field a, while AR → A,
becomes the new bulk gauge field. See Fig. 1.
As described in [2], this provides an elegant derivation

that Dirichlet and Neumann boundary conditions are
exchanged under S-duality. Indeed, acting for instance
on a perfect magnetic conductor with trivial boundary
action, the duality defect (22) yields,

Sb ¼
i
2π

Z
∂M

a ∧ dA; ð24Þ

exactly producing the perfect electric conductor. Similarly,
the dual of the perfect electric conductor is a perfect
magnetic conductor.

B. S-duality and Hilbert spaces

To illustrate the concepts above, it is instructive to
consider duality in the context of a Hilbert space. An
especially simple physical set up is a toroidal cavity, i.e.
space is a solid torus with boundary conditions, which we
take here to either be a perfect electric conductor, i.e.
Dirichlet, or a perfect magnetic conductor, i.e. Neumann.
Throughout, we work in temporal gauge At ¼ 0, and take
coordinates ðr; θ;ϕÞ on the solid torus. The angles are
periodic and r is bounded:

θ ∼ θ þ 2π; ϕ ∼ ϕþ 2π; 0 ≤ r ≤ R: ð25Þ

The circle parametrized by θ has radius r and is contractible
in the interior of the solid torus. The circle parametrized by

FIG. 1. The S action on a boundary condition B. The symmetry
defect (red) collides with B to make a new boundary condition
B · S, with AL a new boundary field.

4In (23) � denotes the four-dimensional Hodge star operator
and thus the stated equations are independent.
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ϕ is noncontractible and has length L. The metric on
space is

ds2 ¼ L2dϕ2 þ dr2 þ r2dθ2: ð26Þ

1. Dirichlet

We consider a subset of modes defining a sub-Hilbert
space H where the only nonvanishing components of the
gauge field are Aθ. In general this gives rise to a field
strength Frθ ¼ ∂rAθ. Let us determine its profile. The
equation of motion and boundary conditions are

∂r

�
∂rAθ

r

�
¼ 0; Aθjr¼R ¼ 0; ð27Þ

which is solved by

Aθ ¼ βðr2 − R2Þ; ð28Þ
with β constant. We must also impose that the solution is
regular as r → 0. To do so, we note that as r approaches the
origin, the circle parametrized by θ shrinks and hence the
holonomy around this circle must approach unity:

lim
r→0

exp

�
i
I

A

�
¼ 1: ð29Þ

This condition quantizes the parameter β appearing in (28)
leading to solutions:

Aθ ¼ n

�
r2

R2
− 1

�
: ð30Þ

As a consistency check, we notice that the flux through the
disc ðr; θÞ at constant ϕ is properly quantized.5

It is straightforward to use the action (3) to evaluate the
energy of these states:

En ¼
�
4π2L
e2R2

�
n2: ð31Þ

2. Neumann

The dual problem involves a toroidal cavity with
Neumann boundary conditions. The dual field configura-
tions to (30) are those with a purely electric field Ftϕ.
Restricted to these modes, the action takes the form,

S ¼ π2R2

Lẽ2

Z
Ȧ2
ϕdt: ð32Þ

The Neumann boundary conditions are automatic since Aϕ

is independent of r. Since Aϕ is a gauge field it is naturally a

periodic variable with unit periodicity. Thus (32) is the
action for a quantum particle on a circle. The energy
spectrum is obtained by quantizing the momentum:

P ¼ 2π2R2

Lẽ2
Ȧϕ ¼ 2πn; n∈Z: ð33Þ

The resulting energies are then:

En ¼
�
Lẽ2

R2

�
n2; ð34Þ

which agree with (31) precisely when the couplings e and ẽ
are related by duality (10).

III. DUALITIES, GAUGING, AND SYMMETRIES

One aspect of Maxwell theory and duality which is made
explicit by the Hilbert space calculations of the previous
section is the dependence on the coupling. Indeed, the
coupling is an overall factor in the action and hence at the
classical level does not enter the equations of motion. By
contrast in the quantum theory, the energy levels in general
depend explicitly on e. As emphasized above, this means
that electric-magnetic duality is not a symmetry of the
quantum theory, but is instead a map between one theory
with coupling e and another theory with coupling ẽ.
However, at a special value of the coupling, S can be

viewed as a map acting on a fixed theory. This occurs when

e ¼ ẽ ¼
ffiffiffiffiffiffi
2π

p
: ð35Þ

Here, for example the energy levels of the theory quantized
with perfect electric conducting boundary conditions are
identical to those with perfect magnetic conducting boun-
dary conditions.
More abstractly, at the coupling (35), S defines an

internal discrete 0-form global symmetry. Inspecting the
transformation (2), we see that S squares to charge
conjugation and so defines the generator of a Z4 symmetry.
This symmetry is characterized by its associated codimen-
sion one topological defect given by (22), where now AL
and AR are interpreted as gauge fields in the same Maxwell
theory at coupling (35).

A. Self-duality at rational coupling

More generally, there are versions of self-duality that
exist for any rational coupling:

e2

2π
¼ Nm

Ne
; Ni ∈N; gcdðNe; NmÞ ¼ 1: ð36Þ

These can be constructed by gauging a discrete subgroup

Zð1Þ
Ne

× Zð1Þ
Nm

of the Uð1Þð1Þe ×Uð1Þð1Þm one-form symmetry
and then combining with electric-magnetic duality. The case

5On a closed spacetime manifold M the flux is quantized as
F=2π ∈H2ðM;ZÞ. On a manifold with boundary with Dirichlet
boundary conditions, the appropriate fluxes are modified to
relative cohomology classes F=2π ∈H2ðM; ∂M;ZÞ.
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of S discussed above in (35) corresponds to Ne ¼ Nm ¼ 1,
and the case ofNm ¼ 1was described in [3]. Meanwhile the
existence to noninvertible symmetry at general rational
coupling was first observed in [6].
In order to demonstrate the existence of these self duality

symmetries let us first recall how to couple Maxwell theory
to background gauge fields for the one-form symmetry. The
action takes the form:

S ¼ 1

2e2

Z
ðF − BeÞ ∧ �ðF − BeÞ þ

i
2π

Z
ðF − BeÞ ∧ Bm;

ð37Þ

where Bi is a two-form background field subject to the
gauge redundancy6:

Bi ∼ Bi þ dΛi: ð38Þ

In the action (37), the background gauge fields couple
linearly to the one-form symmetry currents discussed above
(13). The choice of counterterms, i.e. terms depending only
on the background fields is selected for later convenience.
Observe that the action (37) is not exactly gauge

invariant under (38). Rather it transforms as

δS ¼ 1

2πi

Z
Be ∧ dΛm: ð39Þ

This is the appropriate transformation law for an ’t Hooft
anomaly. It may be cancelled by inflow from a 5d classical
action:

A ¼ i
2π

Z
dBe ∧ Bm: ð40Þ

Here, the integral above defining A is taken over a five
manifold with boundary the physical spacetime, and the
anomaly should be interpreted as an exponentiated action,
i.e. expðAÞ must be well-defined, but A need only be
defined up to shifts by 2πiZ. The presence of this anomaly
means that in general it is not consistent to simultaneously
gauge the electric and magnetic one-form symmetries.
In our case however, we are interested in gauging a

discreteZð1Þ
Ne

× Zð1Þ
Nm

subgroup of the totalUð1Þð1Þe ×Uð1Þð1Þm

one-form symmetry with gcdðNe;NmÞ ¼ 1. Thus we aim
to show that the anomaly (40) trivializes in this case.
Intuitively, one can see this triviality from the mathematics
of background fields, i.e. from the fact that there is no
meaningful product between Zn and Zm cochains when
gcdðn;mÞ ¼ 1. Below, we explicitly demonstrate this

triviality and along the way construct the action where

Zð1Þ
Ne

× Zð1Þ
Nm

can be gauged.
To carry out this restriction we fix the backgrounds to be

flat dBi ¼ 0 and restrict the holonomies appropriately as

Ĉi ¼
Ni

2π
Bi ∈C2ðM;ZÞ; ð41Þ

which are Z-uplifts of ZNi
cycles Ci ∈H2ðM;ZNi

Þ. The
anomaly (40) simplifies to

A ¼ 2πi
Nm

Z
βðĈeÞ ∪ Ĉm; ð42Þ

where above, ∪ is the cup-product among Z-cochains, and
βðCeÞ denotes the Bockstein:

βðCiÞ ¼
δĈi

Ni
∈H3ðM;ZÞ: ð43Þ

The Bockstein is a discrete analog of the curvature of Ci.
From (43), we see that it is necessarily a torsion class:
NiβðCiÞ ¼ δĈi.
Superficially, the anomaly (42) appears to be non-

vanishing. To investigate it, we now use the fact that
gcdðNe; NmÞ ¼ 1 to find integers x, y solving

xNe þ yNm ¼ 1: ð44Þ

The anomaly formula (42) is invariant, up to 2πi times
integers, under shifts in Ĉm by multiples of Nm times any
cochain. Thus we have

A ¼ 2πi
Nm

Z
ð1 − yNmÞβðCeÞ ∪ Ĉm;

¼ 2πi
Nm

Z
ðxNeÞβðCeÞ ∪ Ĉm: ð45Þ

Now we use the fact mentioned below (43), namely that the
Bockstein is torsion to simplify, along with integration by
parts to simplify

A ¼ 2πix
Nm

Z
δĈe ∪ Ĉm

¼ −
2πix
Nm

Z
Ĉe ∪ δĈm ∈ 2πiZ; ð46Þ

where in the final step of (46) we have used the assumption
that theNm reduction of Ĉm is closed. Thus we conclude for

gcdðNe; NmÞ ¼ 1 we may gauge the Zð1Þ
Ne

× Zð1Þ
Nm

one-form
global symmetry.
Having deduced that the gauging is consistent, we now

elucidate its effect on Maxwell theory. We will see that the
result is again Maxwell theory but with modified coupling.

6Under the gauge transformation of the electric one-form
background Be, the dynamical gauge field A also shifts since
the photon is the Goldstone mode of the one-form symmetry.
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One way to interpret (46) is that since Ne and Nm are
coprime, we can freely rescale Ĉm by xNe, and doing so
makes the anomaly vanish. If we carry this out in the action
(37) we find:

S ¼ 2π2

e2

Z �
F
2π

−
Ĉe

Ne

�
2

þ 2πixNe

Nm

Z �
F
2π

−
Ĉe

Ne

�
∪ Ĉm:

ð47Þ

Above, the fields Ĉi are now dynamical and our aim is to
sum over them.
It is straightforward to interpret the above as the action of

a new Maxwell theory with modified coupling constants.
Indeed, ignoring the coupling to Ĉm the Ĉe gauge field
effectively allows fractional fluxes:

Z
Σ

�
F
2π

−
Ĉe

Ne

�
¼ n

Ne
; n∈Z; ð48Þ

where Σ is any two-cycle. The sum over Ĉm then restricts
the numerator n above to be a multiple of Nm. In summary
we may view (47) as a theory of a Uð1Þ gauge field whose
fluxes are quantized to be integer multiples of the fraction
Nm=Ne, or rescaling to a canonically normalized gauge
field, we find the action of gauging on the coupling
constant:

gaugingZð1Þ
Ne

× Zð1Þ
Nm

∶ e ↦

�
Ne

Nm

�
e: ð49Þ

Finally, we can combine our analysis above with the
discussion of S to derive the claimed self-duality symmetry.
Specifically, if we compose (49) with the action of S in
(11), we see that the theory is at a fixed point exactly when
the coupling satisfies the rationality constraint (5). We
denote the resulting symmetry by DNe;Nm

∶

DNe;Nm
≡ S∘gaugingZð1Þ

Ne
× Zð1Þ

Nm
: ð50Þ

Below we derive the properties of this symmetry.

B. Interfaces

To implement the symmetryDNe;Nm
explicitly at the level

of operators we must construct a topological interface. This
is a codimension one defect generalizing the S defect
described in (22) and the case ofNm ¼ 1 constructed in [3].
For the case of general rational coupling the defects we
construct may be viewed as simplifications of those derived
in [6,47].
Its topological nature reflects the fact that it is a

symmetry of this theory. In general, we expect the interface
to be described by dynamical Chern-Simons gauge fields
which couple the to bulk physics through the restrictions

AL and AR of the bulk electromagnetic gauge fields on the
left and right of the defect.
Let us first describe the answer intuitively before giving a

more rigorous construction. We consider the interface
action to be simply

SDNe;Nm
∼

i
2π

�
Ne

Nm

�Z
W
AL ∧ dAR; ð51Þ

where W indicates the location of the wall. The full bulk
and boundary action then consists of Maxwell actions (3)
for AL and AR together with the interface coupling (51).
The boundary term in the equations of motion then gives
rise to a continuity equation for the bulk gauge fields along
the wall7:

ð�FL þ iFRÞjW ¼ 0; ðFL þ i � FRÞjW ¼ 0: ð52Þ

To see that these continuity equations define a topological
defect, we must check that the energy-momentum tensor is
continuous when passing through the interface. In general,
we have

Tμν ¼
1

e2

�
FμαFαν þ

1

4
gμνFαβFαβ

�
: ð53Þ

It is instructive to reduce this into components. Let i; j ¼
1; 2; 3 be coordinates along W and n a normal direction to
W. We assume the coordinates are orthonormal with
orientation chosen so that ϵn123 ¼ 1. The field strength
decomposes into three-vectors X and Y along W with
components:

Fni ¼ Xi; Yi ¼ −
1

2
ϵijkFjk: ð54Þ

Then the energy momentum tensor is

Tnn ¼
1

2e2
ðX2 − Y2Þ; Tni ¼

1

e2
ϵijkXjYk;

Tij ¼
1

e2
ðYlYm − XlXmÞ

�
δliδmj −

1

2
δlmδij

�
: ð55Þ

The boundary condition (52) reads:

XLjW ¼ iYRjW; YLjW ¼ iXRjW: ð56Þ

Using these equations it is straightforward to check con-
tinuity of (55) across the wall W and hence verify that (51)
defines a topological defect.
The reason that (51) does not properly define a topo-

logical defect is that the Chern-Simons level appearing on

7In (52) � denotes the four-dimensional Hodge star operator
and thus the stated equations are independent.
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the wall is not quantized when Nm > 1. To remedy this we
must unfold the world volume theory (51) to a Chern-
Simons theory with properly quantized levels and addi-
tional dynamical fields so that the fractional level arises as
an effective response.
It is straightforward to carry this out by composing a

sequence of interfaces which successively implement the
gauging operations and then electric-magnetic duality. The
interface that connects two-versions of Maxwell theory
which differ by Zð1Þ

Ne
gauging has a world volume action,

S ¼ i
2π

Z
W
a ∧ ðNedAL − dARÞ; ð57Þ

where a indicates a dynamical gauge field that resides only
on the wall. The equation of motion for a imposes a
constraint NeALjW ¼ ARjW . Similarly, the topological wall

implementing a Zð1Þ
Nm

gauging has a world volume action:

S ¼ i
2π

Z
W
a ∧ ðdAL − NmdARÞ: ð58Þ

Finally, the electric-magnetic duality wall is described by
(51) with Ne ¼ Nm ¼ 1. Analogous to the action of S on
boundaries, we can compose these defects by concatentat-
ing them in space and interpreting the intermediate external
fields as new defect fields. Carrying this out yields our
desired world volume theory with action:

S ¼ i
2π

Z
W
a1 ∧ ðNedAL − dcÞ þ a2 ∧ ðdc − NmdbÞ

þ b ∧ dAR: ð59Þ

Integrating out c enforces a1 ¼ a2 ≡ −a yielding:

SDNe;Nm
¼ i
2π

Z
W
Nma∧db−Nea∧ dALþb∧ dAR: ð60Þ

The action (60) gives a consistent quantum definition of the
duality defect DNe;Nm

which exists at the special value of
the coupling (36). Note that formally integrating out the
dynamical fields a and b and substituting back in indeed
gives the anticipated response (51). However even when the
bulk fields Ai restrict to be trivial on the wall, the defect
defined by (60) is nontrivial and yields a ZNm

topological
gauge theory in 2þ 1 dimensions.

C. Fusion rules

When Ne and Nm are not both one, the symmetry we
have constructed is noninvertible. To illustrate this, we
examine the fusion DNe;Nm

× D̄Ne;Nm
where D̄Ne;Nm

indi-
cates the CPT conjugate of the defectDNe;Nm

and is defined
by placing DNe;Nm

on a manifold with opposite orientation.

The action for the composite defect DNe;Nm
× D̄Ne;Nm

is
defined as usual by concatenating the actions and incor-
porating the middle region as a new defect gauge field x.
This gives

SjDj2 ¼
i
2π

Z
W
Nma1 ∧ db1 − Nea1 ∧ dAL þ b1 ∧ dx

−
i
2π

Z
W
Nma2 ∧ db2 þ Nea2 ∧ dx

− b2 ∧ dAR: ð61Þ

Note the change in signs of the second line, which arises
from the flip in orientation of the second defect. Integrating
out x enforces the constraint b1 þ Nea2 ¼ 0. Hence,

SjDj2 ¼ −
i
2π

Z
W
Nma2 ∧ ðdb2 þ Neda1Þ þ Nea1 ∧ dAL

þ b2 ∧ dAR: ð62Þ

Introducing fields b≡ −b2 − Nea1, a≡ a2, c≡ a1 we
rewrite the above as

SjDj2 ¼
i
2π

Z
W
Nma ∧ dbþ b ∧ dAR

þ Nec ∧ ðdAL − dARÞ: ð63Þ

To understand (63), let us first consider the special case
of Nm ¼ 1. Then, the equation of motion of the field a
trivializes b and SjDj2 simplifies to

SjDj2 ¼
iNe

2π

Z
W
c ∧ dðAL − ARÞ: ð64Þ

Note that if we further set Ne ¼ 1, the c field acts as a
Lagrange multiplier and sets FL ¼ FR, thus resulting in the
trivial operator. This is as expected: for Ne ¼ Nm ¼ 1,
DNe;Nm

is the S operator which is invertible.
For a general Ne, the action (64) instead means that AL

and AR can differ by a dynamical ZNe
gauge field y

supported on the defect. We can express this using field x, y
and λ as

SjDj2 ¼
iNe

2π

Z
W
x ∧ dyþ i

2π

Z
W
λ ∧ ðAL − AR − yÞ: ð65Þ

To understand the meaning of this defect, let us consider
how bulk Wilson loops transform. Pick a segment γ in
the defect world volume W, and let γL and γR be slight
pushoffs of γ to the left and right of W, respectively. The
union of γL with −γR is then a bulk one-cycle and we aim to
compute the holonomy of the bulk gauge field. We have the
discontinuity,
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lim
γi→γ

I
γL

AL −
I
γR

AR ¼
I
γ
y∈

2π

Ne
· Z: ð66Þ

For fixed y, the discussion below (12) implies that we can
interpret (66) via the presence of a bulk electric one-form
symmetry defect on the two-cycle S inW which is Poincaré
dual to y. See Fig. 2. In the definition of jDj2 we sum over
all possible y which is thus equivalent to a sum over all
inequivalent insertions of electric one-form symmetry

operators on W in the Zð1Þ
Ne

group.
To summarize our result, define ηeðSÞ to be the generator

of the Zð1Þ
Ne

electric one-form symmetry defined on the
surface S,

ηeðSÞ ¼ exp

�
2πi
Ne

QEðSÞ
�

¼ exp

�
2π

e2Ne

I
S
�F

�
: ð67Þ

The fusion derived above is then a sum over all possible
such one-form operators:

DNe;1 × D̄Ne;1 ¼
X

S∈H2ðW;ZNe Þ
ηeðSÞ: ð68Þ

In the language of [11,50], this is a condensation defect,
and we have reproduced the result of [3].
Returning now to the case of general Nm, (63) also

includes a ZNm
field b that couples with the magnetic one-

form current symmetry current dAR. Therefore summing
over b defines a condensation of the magnetic one form
symmetry defects. Introducing ηmðSÞ as the generator of the
Zð1Þ

Nm
subgroup:

ηmðSÞ ¼ exp

�
2πi
Nm

QMðSÞ
�

¼ exp

�
i

Nm

I
S
F

�
; ð69Þ

we then have the general result:

DNe;Nm
× D̄Ne;Nm

¼
X

Se ∈H2ðW;ZNe Þ
Sm ∈H2ðW;ZNm Þ

ηeðSeÞ · ηmðSmÞ: ð70Þ

The right-hand side of (70) is not the unit operator, thus
demonstrating the general noninvertibility of DNe;Nm

.

D. Approximating the defect

The defect (60) constructed in the previous section is not
topological unless the coupling e2

2π is exactly Nm
Ne

and in
particular rational. Instead, we can consider the sequence of

rational numbers N0
m

N0
e
; N

1
m

N1
e
; � � � which approximates e2

2π with

increasing precision, resulting in the sequence Dj ≡
DNj

e;N
j
m
of nontopological defects. Here the nontopolgical

nature of the defect is quantified by examining the jump in
the energy-momentum tensor across the defect as discussed
below (53).
Below, we study the relationship between Dj and Djþ1.

For concreteness, we assume the sequence is defined by

Nj
m ¼ 2jþ1; Nj

e ¼
�
2jþ2π

e2

�
; ð71Þ

where above bxc denotes the floor of x.8 Note that if e2
2π is

rational, the sequence Dj will terminate for sufficiently
large finite j in the defect DNj

e;N
j
m
. Meanwhile, if the

coupling e2
2π, is irrational, the sequence of defects does

not terminate and the defects Dj become closer and closer
to being topological as j increases.
For each j, the defectDj, supports a 2þ 1d ZNj

m
¼ Z2jþ1

gauge theory. To increase the index j, we must relate
Z2jþ1-gauge theory to Z2j-gauge theory. This can be done
using the exact sequence

1 → Z2 → Z2jþ1 → Z2j → 1: ð72Þ

Explicitly, instead of the standard action for Z2jþ1 gauge
theory,

2jþ1i
2π

Z
aðjÞdbðjÞ; ð73Þ

we can use the following action:

i
2π

Z
W
2jaðj−1Þ ∧ dbðj−1Þ þ 2ãðjÞ ∧ db̃ðjÞ

− aðj−1Þ ∧ db̃ðjÞ: ð74Þ

FIG. 2. Illustration of (66). The closed cycle γL − γR links with
the Poincaré dual of y in W, and the total holonomy (66) takes a
fractional value. This implies the presence of an electric one-form
symmetry defect (a surface operator) on the Poincaré dual of
y (red).

8Although with this choice Nj
m and Nj

e are not coprime in
general, the defect action (60) makes sense for such cases.
Alternatively, one can also skip those j above with even Nj

e.
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To go from (74) to (73), consider the following change of
variables in GLð4;ZÞ:

ãðjÞ ¼ aðjÞ; bðj−1Þ ¼ bðjÞ;

2ãðjÞ − aðj−1Þ ¼ c; 2jbðj−1Þ − b̃ðjÞ ¼ e: ð75Þ

This results in the action (73) together with a coupling
i
2π

R
c ∧ de trivializing c and e. We can also incorporate the

coupling of aðjÞ and bðjÞ to the bulk electromagnetic field in
(60) by adding

i
2π

Z
bðj−1Þ ∧ dAR −

i
2π

Z
ðNj;j−1

e ãðjÞ þNj−1
e aðj−1ÞÞ ∧ dAL

ð76Þ

to (74), where Nj;j−1
e ¼ Nj

e − 2Nj−1
e is the last bit of Nj

e.
Thus, we have found that for this particular choice of

ðNj
e; N

j
mÞ the defects Dj and Djþ1 are related as

Djþ1 ≅ Dj ⊗ ðZ2 gauge theoryÞ; ð77Þ

where the two factors in the right-hand side have the
coupling of the last term of (74), and the Z2 gauge theory
also couples to the bulk via the first term of (76).
One can iterate the decomposition (77) to rewrite (60) as

jþ 1 coupled copies of Z2 gauge theory. The total action
becomes:

SDj
¼ i

2π

Z
W

�Xj

k¼0

2ãðkÞ ∧ db̃ðkÞ −
Xj

k¼1

ãðk−1Þ ∧ db̃ðkÞ

−
Xj

k¼0

Nk;k−1
e ãðkÞ ∧ dAL þ b̃ð0Þ ∧ dAR

�
; ð78Þ

where N0;−1
e is defined as N0

e. As discussed above, for
rational coupling the above terminates in the defect DNe;Nj

.

Meanwhile, for e2
2π irrational, the j → ∞ limit formally

defines a topological defect which supports infinitely many
species of anyons.

IV. NONINVERTIBLE SYMMETRY ACTION

The interface definition (60) of the defect DNe;Nm
allows

us to explore the action of the duality defect on local and
extended operators.

A. Action on operators

To begin, the continuity equation (52) shows that across
the defect iFL exchanges with �FR. Since the field
strengths generate the gauge invariant local operators, this
fixes the action of DNe;Nm

on all local operators. For
instance, the gauge field kinetic term is odd under the
action of DNe;Nm

∶

DNe;Nm
∶ FL ∧ �FL → −FR ∧ �FR: ð79Þ

Thus, as expected, the symmetry DNe;Nm
implies that the

coefficient of the kinetic term, i.e. the coupling constant
cannot be changed infinitesimally.
We can also easily determine the action of DNe;Nm

on
extended operators. Indeed, the operators �F and F are also
the currents for the electric and magnetic one-form global
symmetries. Thus, we have

DNe;Nm
ðQR

EÞ¼
Ne

Nm
QL

M; DNe;Nm
ðQR

MÞ¼−
Nm

Ne
QL

E; ð80Þ

which generalizes the action of S duality in (13).
Relatedly, we can also consider operators that define

heavy probe particles carrying electric and magnetic
charges ðqe; qmÞ. If both the charges qi are integral then
these operators are described by line operators, i.e. Wilson/
’t Hooft lines or more general dyons. If the charges are
fractional then these particles have visible Dirac strings and
may be properly understood as worldines that are tied to the
boundary of open topological surfaces. Composing the
one-form symmetry gauging with the action (13) of electric
magnetic duality on charges gives

DNe;Nm
½ðqe; qmÞ� ¼

�
qmNe

Nm
;−

Nmqe
Ne

�
: ð81Þ

Note that this transformation in general maps integral
charges, corresponding to lines, to fractional charges
corresponding to open surfaces. Such exchanges between
“genuine” line operators and open boundaries is a universal
feature of noninvertible symmetries.

B. Action on boundary conditions

We can also consider the action of the defect on
boundary conditions. We can obtain the action on these
boundary conditions using (60). By sandwiching the
duality defect action with the boundary action we obtain
a new boundary with AL interpreted as a new boundary
gauge field and AR interpreted as the remaining bulk field.
We let B denote a given boundary condition, and indicate
the resulting boundary condition as B ·DNe;Nm

. (See Fig. 2,
with S replaced byDNe;Nm

.) The analysis below generalizes
that of [2] which studied the analogous problem for S.

1. Action on perfect electric conductor

Consider first the case where B is a perfect electric
conductor (15). Acting with the symmetry defect on a
perfect electric conductor yields the boundary action,

Sb ¼
i
2π

Z
∂M

Nma ∧ dbþ b ∧ dA−Nea ∧ da0 þ c ∧ da0:

ð82Þ
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Simplifying using the equation of motion of c yields the
result,

Sb ¼
iNm

2π

Z
∂M

a ∧ dbþ i
2π

Z
∂M

b ∧ dA: ð83Þ

The boundary fields a and b describe a ZNm
topological

gauge theory which couples to the bulk electromagnetic
field through its one-form symmetry. The equations of
motion yield:

Nm
db
2π

¼ 0:

1

ie2
� Fj

∂M þ db
2π

¼ 0:

F
2π

j
∂M þ Nm

da
2π

¼ 0: ð84Þ

For Nm ¼ 1, the first two equations set b to be trivial and
�Fj

∂M to vanish yielding a perfect magnetic conductor
consistent with the discussion around (24). More generally,
for Nm > 1, b is a ZNm

gauge field and the bulk electric
one-form symmetry is restricted to be the Bockstein
βðbÞ∈H2ð∂M;ZÞ, which is necessarily a torsion class.
[See (43).]

2. Action on perfect magnetic conductor

Analogously, if the boundary condition B is the perfect
magnetic conductor (17), the defect action yields a boun-
dary condition B ·DNe;Nm

with a boundary action,

Sb ¼
iNm

2π

Z
a∧ dbþ i

2π

Z
b∧ dA−

iNe

2π

Z
a∧ dc: ð85Þ

By integrating out b and c we deduce the boundary
equations of motion:

Ne
da
2π

¼ 0;

Nm
da
2π

þ F
2π

j
∂M ¼ 0;

1

ie2
� Fj

∂M þ db
2π

¼ 0: ð86Þ

In the special case Ne ¼ 1, the first equation trivializes a
and the second equation yields a perfect electric conductor
consistent with (24). Meanwhile for general Ne, a is
restricted to be a ZNe

gauge field propagating on the
boundary. The boundary flux Fj

∂M need not vanish but
instead is restricted to be the torsion class βðaÞ.

C. Toroidal cavity Hilbert spaces

To illustrate the concepts above let us examine the
duality symmetry acting on Hilbert spaces. We again take

as an example the toroidal cavity Hilbert space described in
Sec. II B. At the boundary we place a given boundary
condition B.
Along the noncontractible one-cycle in the solid torus we

place a condensate of one-form symmetry defects extend-
ing along time. Specifically, we insert the operator,

CðS1 ×RÞ≡XNe

i¼1

XNm

j¼1

ηeðS1 ×RÞi × ηmðS1 ×RÞj: ð87Þ

Since this is an insertion along time, we may view it as a
modification of the Hilbert space to the defect Hilbert space
HC;B, where the subscript B indicates that these states also
depend on the boundary condition. In this setup the
meaning of the sum above is that the Hilbert space HC;B

is a direct sum of sectors, each of which arises from an
insertion of a single one-form symmetry defect along time.
However, there is an alternative way to understand the

operator C that will prove fruitful below. Specifically, we
claim that we can replace the insertion of C with a duality
defect along a small torus at the center of the geometry,

DNe;Nm
ðT2 ×RÞ ¼ CðS1 × RÞ: ð88Þ

To argue for (88), we use the fusion rule (70) to contract
the small bubble of duality defect to a condensation
operator. To see this equivalence we can deform the
contractible cycle on the duality defect until it appears
to be locally two oppositely oriented segments. Colliding
these segments using the fusion rule we obtain a codi-
mension one condensation defect of one form-symmetry
defects on S1 ×R × I, where I is an interval arising from
fusing the two sides of the circle. At the ends of this interval
the two-form gauge fields defining the condensation vanish
and thus the sum is over one-form symmetry operators
labeled by two cocycles in the relative cohomology group,

H2ðS1 ×R × I; ∂ðS1 × R × IÞ;ZNi
Þ

≅ H2ðS1 ×R;ZNi
Þ; ð89Þ

where in the final step we used Lefshetz duality. Applying
this to each of the ZNi

factors separately, then shows that a
small torus shaped duality defect is equivalent to an
insertion of C. See Fig. 3.
We can use the equivalence (88) to study the Hilbert

space HC;B in two different ways:
(i) Directly evaluate the defect Hilbert space HC;B by

appropriately quantizing in the presence of the
insertion C and boundary condition B.

(ii) Expand the duality defect DNe;Nm
ðT2 × RÞ until it

collides with the boundary B. Using the methods
discussed in Sec. IV B this results in a modified
boundary condition B ·DNe;Nm

, but with no addi-
tional insertion of one-form symmetry defects.
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In summary, the argument above implies that at rational
coupling, we have the equivalence of Hilbert spaces and
energy levels:

HC;B ≅ H1;B·DNe;Nm
; ð90Þ

where in the right-hand side the subscript 1 indicates that
this is the untwisted Hilbert space.
Below we illustrate this correspondence in a sector of the

Hilbert space for the case when B is a perfect electric
conductor.

1. Twisted sector Hilbert spaces

Let us first consider the case with the insertion of C and
perfect electric conductor boundary conditions. Since the
one-form symmetry defects defining C are topological, we
can deform their location without altering the problem. In
particular, consider the magnetic insertions which are
exponentials of

R
S1ϕ×R

F. By deforming the location of

the ϕ circle from r ¼ 0, the center of the solid torus, to
r ¼ R, the boundary, we can use the boundary conditions to
trivialize these insertions. Therefore, we have the simpli-
fication,

HC;B ≅ ⊕Nm
i¼1 ⊕

Ne
p¼1 HηeðS1ϕ×RÞp;B: ð91Þ

We again consider the class of modes where the only
nonvanishing components of the gauge field are Aθ. (For
simplicity of notation we also denote this subspace by H.)
As in (28) the solution to the equation of motion obeying
the Dirichlet boundary condition is

Aθ ¼ βðr2 − R2Þ: ð92Þ

Now the circle parametrized by θ links the one-form
symmetry defect ηeðS1ϕ × RÞp. Therefore the solution must
have a prescribed nontrivial holonomy as r → 0,

lim
r→0

exp
�
i
I

A
�

¼ exp
�
2πip
Ne

�
: ð93Þ

This quantizes the parameter β yielding,

Aθ ¼
�
n −

p
Ne

��
r2

R2
− 1

�
; n∈Z: ð94Þ

Thus, the flux through the disc is now fractional, with the
fractional part specified by which twisted sector the state is
in. We again use the action (3), to evaluate the energy of
these states yielding,

En;p ¼ 4π2L
e2R2

�
n −

p
Ne

�
2

¼ 2πLNe

R2Nm

�
n −

p
Ne

�
2

: ð95Þ

Finally, we can determine the full HC;B Hilbert space by
summing over p. This simply means that the flux through
the disc defined via (94) can be any fraction with
denominator Ne. Hence, we have

HC;B ≅ ⊕∞
k¼0Hk; ð96Þ

where the subspace Hk for k∈Z is those states with flux
k=Ne through the disc. Each such sector has degeneracy

FIG. 3. The topological move that proves (90). Both the toroidal cavity and a cross section are illustrated. (a) The configuration
definingHC;B. The red ring is the condensate C, and the toroidal cavity has the boundary condition B. (b) The condensate C is replaced
by the toroidal duality defectD ¼ DNe;Nm

using the fusion rules for D × D̄. (c) The duality defect is topological and can be pushed onto
the boundary, changing the boundary condition to B ·D.
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Nm (arising from the first direct sum in (91) with energy Ek
given by

Ek ¼
�

2πL
R2NeNm

�
k2: ð97Þ

2. Modified boundary conditions

Alternatively, we can modify the boundary condition
by the action of the defect DNe;Nm

. This results in
Maxwell theory at the same coupling e2

2π ¼ Nm
Ne

but now
coupled to a boundary ZNm

topological gauge theory
through the action (82).
Let us first discuss the topological sector. This theory is

quantized on the boundary torus and as such has ground
states in one-to-one correspondence with its distinct line
operators. In this case there are N2

m such line operators, and
the associated states may be labeled by specifying definite
holonomy of the gauge fields a and b in (82) around a fixed
cycle. For convenience, we choose this to be the θ-cycle. We
indicate these states as jpa; pbi with pi ¼ 0; 1;…Nm − 1:

�I
ϕ¼ϕo

a

�
jpa; pbi ¼

2πpa

Ne
jpa; pbi;

�I
ϕ¼ϕo

b

�
jpa; pbi ¼

2πpb

Ne
jpa; pbi: ð98Þ

In each of these states we can examine the coupling to
the bulk gauge field. While the a field does not couple with
the bulk and thus the eigenvalue pa does not affect the
energy, the b field couples to the boundary magnetic
symmetry in (83). Considering as in Sec. II B the modes
with only Aϕ nontrivial but time dependent, we arrive at the
action

S ¼ π2R2

Le2

Z
Ȧ2
ϕdtþ

2πipb

Nm

Z
Ȧϕdt: ð99Þ

This generalizes (32) to the action for a quantum particle on
a circle now in the presence of a magnetic field (θ-term)
specified by pb.
The spectrum is again given by quantizing the canonical

momentum,

P ¼ 2π2R2

Le2
Ȧϕ þ

2πpb

Nm
¼ 2πn; n∈Z; ð100Þ

resulting in energy in states jpa; pb; ni with energies,

Epa;pb;n ¼
�
e2L
R2

��
n −

pb

Nm

�
2

: ð101Þ

Since the Hilbert space includes a direct sum over pb,
we see that all possible fractions with denominator Nm
are achieved above. Thus, the Hilbert space again decom-
poses into sectors as in (96) where each sector has
degeneracy Nm (arising from the sum over pa) and the
energies are given by

Ek ¼
�

e2L
R2N2

m

�
k2 ¼

�
2πL

R2NeNm

�
k2: ð102Þ

Happily, this agrees exactly with (97).
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