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Abstract

We analyze the impact of product labels indicative of ethical sourcing on consumer demand
for coffee beans. The paper complements an existing field experiment by re-analyzing the
empirical setting under weak assumptions with a more granular level of study which is sub-
ject to selection bias. In contrast to standard assumptions on consumer behavior in discrete
choice models, this paper takes a fully nonparametric difference-in-differences approach to
flexibly capture heterogeneous treatment effects and substitution patterns using spillovers.
We also propose plausible structural bounds for partial identification as treatments can
switch off in a multi-period setting. We derive semiparametric estimators based on the mo-
ment conditions to avoid the negative weighting problems associated with standard fixed
effects models under heterogeneity. However by including certain covariates, we show that
average effects may be estimated by a simple linear model on specific subsets of the data
that achieve balanced propensity scores. Overall we find similar results as existing work,
and in particular, the average consumer is sensitive to prices and unwilling to pay a price
premium for ethically sourced coffees.

JEL Classification: D12; C1

Keywords: ethical sourcing; heterogeneous treatment effects; difference-in-differences

1 Introduction

A rapidly growing trend in consumer markets are ethically sourced products, where con-
sumers derive value from not just the good but the manner in which the good was produced.
In particular, some consumers may derive utility from goods which are produced in an envi-
ronmentally or socially responsible way that is sustainable in the long-run. To differentiate
between how goods are produced, a number of certification organizations have emerged in
the last few decades that provide credible signals through product labels. One of the most
widely recognized initiatives is the Fair Trade certification, which aims to promote long-
term sustainability by ensuring profitability for farmers in developing countries in addition
to enacting various environmental and social standards such as the prohibition of exploita-
tive child labor. The most well-established product traded on Fair Trade networks is coffee,
which is the empirical focus of this paper.

In the coffee industry, the majority of production is done by small family-run farms in Latin
America, Southeast Asia, and Africa. One of the most prized coffee varieties are those from
Ethiopia where the coffee plant Coffea arabica originates, which is also one of the poorest
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nations in the world. Due to the significantly higher purchasing power of wealthier nations,
production and exports of coffee beans are a lucrative industry that plays a key role in
sustaining the economy of these developing countries. However as a result, the global supply
of coffee beans grows much faster than demand. Downward price pressures along with price
shocks, uncertain weather patterns, and poor soil conditions due to over-exploitation can
make coffee production unsustainable for basic living needs of the farmers and workers in
poor countries. Méndez et al. (2010) surveys 469 coffee-producing households in Nicaragua,
Guatemala, El Salvador, and Mexico, and found that 63% of those surveyed struggle to
meet basic food needs every year. Bacon et al. (2008) found similar results, with 69% of
the households surveyed in Nicaragua reporting food insecurity.

The primary mechanism of Fair Trade is the enactment of a guaranteed price floor that is
intended to cover the average costs of production and a livable minimum wage for farmers.
This also offers protection against volatile prices in the event of uncertain weather or supply
shocks, and discourages poor environmental practices such as the usage of certain agricul-
tural chemicals that may increase production in the short-run but have detrimental effects
in the long-run. In addition, Fair Trade-certified products also carry a fixed price premium,
where local communities then democratically allocate the funds to invest in projects and
infrastructure such as the development of schools, housing, hospitals, and roads that pro-
vide positive externalities to those outside the coffee industry. Fair Trade producers also
enter in long-term contracts with buyers and have access to financing for greater economic
stability.

Since the rapid growth of modern Fair Trade networks in the last two decades, there is
an extensive and debated theoretical literature on the long-run sustainability of Fair Trade
markets. However, empirical evidence on the socioeconomic impacts of Fair Trade is limited
and often face difficult identification challenges due to selection into Fair Trade certification
by the producers. Existing studies indicate a strong positive relationship between Fair Trade
certification and greater incomes, education, access to financing, and more environmentally
friendly practices by the producers (Arnould, Plastina, and Ball 2009; Jaffee 2008; Bacon
et al. 2008). The majority of empirical studies understandably focus on the socioeconomic
effect of Fair Trade certification on the producers.

In this paper, we focus on the effect of Fair Trade certification on the consumers. Since
the defining features of Fair Trade are its enacted price floor and social premiums, for the
mechanism to function effectively consumers must be willing and able to pay more for Fair
Trade-certified products. We investigate whether this is the case in practice.

Existing survey evidence suggest the majority of consumers prefer and are willing to pay
more for ethically sourced products. For example, the National Bureau of Economic Re-
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search found in 1999 that 80% of those surveyed stated they would be willing to pay more for
goods made under ethical working conditions (Elliott and Freeman 2003). Hertel, Scruggs,
and Heidkamp (2009) finds that over 75% of those surveyed would be willing to pay at least
an additional 50 cents per pound for Fair Trade coffee, and over 50% would be willing to pay
at least a dollar more per pound. There is an extensive literature in microeconomic theory
and behavioral economics that debate whether such behavior may be attributed to pure
altruism, social desirability bias, or that perhaps people simply derive a feeling of ”warm
glow” satisfaction (Andreoni 1990). However empirical studies on whether consumers would
actually prefer and be willing to pay more for ethically sourced products is limited, and one
major challenge is the endogeneity of prices.

To investigate the effect of Fair Trade labeling on actual consumer demand for coffee, Hain-
mueller, Hiscox, and Sequeira (2015) conducts a field experiment in partnership with a
major U.S. grocery store chain in the Northeastern United States. They perform a set of
two experiments across 26 stores over 8 weeks, where two bulk coffee types were labeled as
Fair Trade certified while the others were not. In the second experiment, they also experi-
mentally raised the price of the Fair Trade labeled coffees to investigate whether consumers
would be willing to pay more for ethically sourced coffees. Treatments were assigned by a
matched-pairs design, where stores were matched on key store characteristics and socioe-
conomic variables then randomly assigned to a treatment-control sequence that switches
halfway through. Using a reduced-form version of a discrete choice model on aggregate
market shares, they find that Fair Trade labels increased weekly sales by approximately
10% when prices were the same. When prices were experimentally raised, demand for the
more expensive coffee type was inelastic and did not reduce sales. In fact, sales increased
by 2%. However for the cheaper coffee type, sales decreased by approximately 30%.

We build directly on the work of Hainmueller, Hiscox, and Sequeira (2015) by focusing
primarily on the nature and dynamics of heterogeneity in treatment effects across units and
time. The central theme behind this paper is to complement their work by analyzing the
empirical setting under weak assumptions.

In contrast to their work which begins with structural assumptions and parametric restric-
tions as is standard in the discrete choice literature, we use general potential outcomes as
our primitives for nonparametric identification in a primarily difference-in-differences set-
ting. Another key difference in our approach is that we focus on each coffee as the unit of
study, where the interpretation of treatments are different and faces a problem of selection
bias. We also allow for unrestricted heterogeneity across units and dynamic effects across
time. However by imposing minimal economic structure, several complications arise includ-
ing the possibility of spillovers and carryover effects as treatments can switch off. To deal
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with this, we propose a plausible partial identification approach after treatments switch off
where the bounds collapse to a point if there are no carryover effects.

Section 2 provides an overview of the empirical setting, treatment assignment mechanism,
and data. Section 3 presents the main identification argument, where we condition on
the set of high-dimensional matching variables to justify parallel trends between coffees of
similar types. Section 4 discusses estimation and inference, where we follow the literature
on flexible semiparametric estimation of the effects of interest. However by including cer-
tain covariates along with knowledge of the treatment assignment mechanism, the moment
conditions simplify into a simple difference-in-differences between appropriate coffee types.

Overall, we find similar results as Hainmueller, Hiscox, and Sequeira (2015) where there is an
approximately 9.5% increase in sales when Fair Trade labels were put on coffees. Similarly,
there is a large drop in sales of the same magnitude as their findings when prices were raised
in addition to Fair Trade labeling. Our results also show some interesting time-varying
dynamics, where consumer preferences gradually adjust to the treatment. Conditional
treatment effects have a heavy left tail, suggesting that some neighborhoods are particularly
averse to price premiums associated with Fair Trade. This is complemented by a heavy
right tail in conditional spillover effects on the other coffees in the stores, which may be
interpreted as substitution effects when prices were raised. In contrast to survey responses,
the results suggest that the average consumer is indeed sensitive to prices and unwilling to
pay the price premium.

2 Empirical Setting

In 2009, Hainmueller, Hiscox, and Sequeira (2015) conducts a set of two field experiments
to investigate consumer demand for Fair Trade coffees. These experiments were carried out
in 26 stores of a major grocery store chain in the northeastern United States. A particular
strength of their experimental design is that key product characteristics such as Fair Trade
labeling and prices were experimentally set, thus avoiding the endogeneity issues typically
involved with demand estimation.

Each store carries the same set of seven bulk coffee bean types. Two coffee types are
cheaper options priced at $10.99/pound, while the remaining are all priced identically at
$11.99/pound. Table 2 shows some basic summary statistics of the various coffee types
across all stores.
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2.1 Treatment Assignment Mechanism

The experimental design is based on a matched pairs design with a treatment crossover.
First, the stores were matched into pairs based on a large set of store-level and neighborhood
characteristics including historical average sales, sales growth, income, and demographics.
For each pair of stores, one was randomly assigned to a treatment-control sequence while
the other was assigned to a control-treatment sequence where the treatment status switches
halfway through. Each of the two experiments were conducted for 8 weeks1, and we will
refer to the first half of each experiment (Weeks 1-4) as Phase 1, and the second half (Weeks
5-8) as Phase 2.

More precisely, and letting (S1, S2) denote the matched pairs, the treatment status of each
pair of stores is shown in Table 1.

Phase 1 Phase 2
S1 Treated Untreated
S2 Untreated Treated

Table 1: Treatment status of each pair of stores

However even though treatments were conditionally randomly assigned at the store-level,
if we were to focus on each coffee as the unit of study then there could be some selection
bias. In particular only two coffee types, French Roast and Coffee Blend, were ever subject
to treatment. French Roast is historically one of the best-selling coffees in the stores, while
Coffee Blend one of the cheapest. Following the terminology used in the experiments, we
will refer to these two coffee types as test coffees.

The first experiment, hereafter called the Label Experiment, involved attaching a Fair Trade
label to the bulk coffee bins of the test coffees in treated stores. To avoid the possibility
that simply having a label could affect consumer choices unrelated to Fair Trade, the control
group was also given a generic label. Figure 1 shows an example of the product labels used
in the experiments.

The second experiment, hereafter called the Price Experiment, involved labeling the test
coffees with Fair Trade as before but also raising the prices by $1/pound. It should be
noted that French Roast then becomes the most expensive coffee in the stores, while Coffee
Blend is no longer one of the cheaper options. To avoid any carryover effects, the Price
Experiment occurred several months following the end of the Label Experiment.

1In the Price Experiment, a few stores had delays in administering the treatment crossover so the two
weeks immediately following the crossover were dropped by Hainmueller, Hiscox, and Sequeira (2015). The
second phase was extended so that the total experimental period remains 8 weeks.
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Figure 1: Fair Trade labels (left) and generic labels (right) during the experiments. Source: Hain-
mueller, Hiscox, and Sequeira (2015).

2.2 Data

Data from the field experiments was obtained from Hainmueller (2017). The dataset consists
of repeated observations of the weekly sales of the seven bulk coffee bean types across the
26 stores from 2007-2009.

We also observe the characteristics used to match the stores2, including its past sales for
the year, growth rate, historical sales of the various coffee types, as well as aggregate
socioeconomic data from the 2000 U.S. Census for the zip code the stores are located in.
The socioeconomic data includes average household incomes, education levels, age, race,
and the proportion of those on social security or public assistance programs.

In Section 3 we describe the identification argument which is based primarily on a difference-
in-differences design. Since it is a balanced panel, for each experiment there was a total of
1572 observations3 in the experimental period and the week immediately prior. The Label
Experiment occurred in early 2009, and the Price Experiment in late 2009. However we
also observe a large set of historical sales data prior to the experiments, and we incorporate
it to improve estimation and inference. With the additional historical data, there are then
a total of 17674 observations for the Label Experiment and 5908 observations for the Price
Experiment.

Tables 2 and 3 along with Figure 2 reports some basic descriptive statistics of the data
in the full historical period since 2007. An interesting observation is the large socioeco-
nomic differences across the stores’ neighborhoods which may indicate potentially strong
heterogeneity in treatment effects and valuation of ethical sourcing. For example, the aver-
age household income across all neighborhoods is $64,101, but can range from a relatively

2However, the exact matching procedure and which stores were matched is not entirely clear from the
data.

3Across both experiments, there were a total of 145 entries with missing sales data and 21 missing entries
in the pre-experimental period. As Hainmueller, Hiscox, and Sequeira (2015) points out that these are due
to out-of-stocks or logistical issues, these observations were dropped.
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poor neighborhood with median income $26,689 to a relatively wealthy neighborhood with
median income $123,622. It is possible that wealthy people on average would be more sup-
portive of Fair Trade initiatives and less sensitive to price premiums, and similarly young
or highly educated neighborhoods could have different distributions of tastes. These socioe-
conomic differences may contribute to substantially different valuations in ethical sourcing,
and induce strong heterogeneity in treatment effects.

Price Average Weekly Revenue Average Weekly Sales Share of Bulk Coffee Sales
Breakfast Blend 11.99 125.057 10.710 0.134
Coffee Blend 10.99 114.822 10.793 0.109
Colombian Supremo 10.99 159.573 15.407 0.168
French Roast Extra Dark 11.99 125.898 10.730 0.132
French Roast Regular 11.99 206.164 17.619 0.222
Mexican 11.99 93.475 8.032 0.097
Regional Blend 11.99 130.752 10.979 0.140

Table 2: Average historical sales and share of bulk sales for each coffee type across stores. The
boldfaced test coffees are subject to treatment in the experiments, while the remaining are never
treated. Note that the price column indicates the regular prices which are held fixed or experimen-
tally raised during the experimental period, so average revenues and sales do not exactly correspond
in the historical period due to occasional promotions and price changes.
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mean std min 25% 50% 75% max
2008 Sales (1M$) 26.15 11.48 4.66 16.08 27.58 35.28 54.57
2008-2009 Sales Growth (%) 3.85 1.69 0.69 2.36 4.06 5.19 8.03
Average 4-week Sales for Bulk Coffees ($) 77.55 45.40 24.86 46.19 61.23 94.44 216.40
Average 4-week Sales for Instant Coffees ($) 38.87 12.34 19.72 29.74 39.42 45.06 78.06
Average 4-week Sales for Packaged Coffees ($) 40.08 12.00 22.11 31.29 37.08 47.03 69.64
Average 52-week Sales for Bulk Coffees ($) 76.79 46.25 21.52 42.80 62.24 92.53 212.44
Average 52-week Sales for Instant Coffees ($) 34.83 10.42 21.91 24.72 35.56 41.35 60.77
Average 52-week Sales for Packaged Coffees ($) 38.12 10.75 20.60 30.98 35.36 42.83 64.76
Population 24303.65 12611.86 4793.00 14199.00 22542.00 33790.25 56185.00
African-American Population (%) 4.13 4.57 0.37 0.91 2.43 6.16 16.68
Foreign-born Population (%) 13.70 7.79 3.21 8.91 10.13 18.78 30.65
Median Household Income 64104.81 24140.58 26689.00 44382.00 60111.00 78083.25 123622.00
Social Security (%) 9.78 2.79 5.51 7.79 9.68 11.78 15.23
Public Assistance (%) 36.93 24.94 11.75 16.79 30.40 45.93 101.39
Family Households (%) 59.22 18.61 21.70 41.14 64.97 74.36 80.33
Head of Household Aged 15-34 (%) 23.21 15.04 6.28 11.71 17.60 38.18 54.94
Head of Household Aged 65+ (%) 22.48 6.87 11.98 17.18 22.51 27.01 37.69
Attending Highschool (%) 12.88 5.83 0.68 8.01 14.07 16.70 21.12
Attending College (%) 12.54 13.12 3.51 4.66 6.29 18.17 60.05
Highschool Dropouts (%) 8.36 6.28 1.26 4.63 6.13 9.38 27.48
Highschool Degrees (%) 17.46 8.72 5.98 10.23 15.57 23.63 34.04
College Degrees (%) 28.22 7.09 12.20 24.38 30.60 32.83 36.26
Graduate Degrees (%) 27.10 13.40 6.22 17.56 27.43 37.49 51.23

Table 3: Summary statistics of historical sales and socioeconomic characteristics across the stores.

French Roast Extra Dark Colombian Supremo French Roast Regular Breakfast Blend Regional Blend Coffee Blend Mexican
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Figure 2: Historical distribution of the share of sales across stores for each coffee type.

10



Adam Wu

3 Identification

In this section we introduce the general framework using potential outcomes as our prim-
itives, define the effects of interest, and discuss the main assumptions for identification.
Given the identical design of the two experiments, the discussion here will mainly be in the
context of the Label Experiment to avoid confusion but these assumptions are taken to also
hold for the Price Experiment.

Notation

Let S = 26 denote the total number of stores, and T = 8 denote the total number of weeks
during each experiment. The time period t = 0 refers to the pre-treatment period. Recall
that Phase 1 refers to Weeks 1-4, and Phase 2 refers to Weeks 5-8 after the treatment
crossover. The set of all coffee types in each store is indexed by J = {1, . . . , 7}, and we set
the first two elements as the test coffees4 denoted by J (tc) = {1, 2}.

Store-level outcomes are denoted by the vector Yst =
(
Y1st, Y2st, . . . , Y|J |st

)
, where the jth

element is the revenue of coffee type j in store s at time t. The pre-treatment covariates
are denoted by Xs =

(
X1s, X2s, . . . , X|J |s

)
, and Zst is a binary treatment indicator at the

store-level. To ease notation, subscripts are dropped when they can be inferred from the
context.

Pre-Treatment Covariates

The set of pre-treatment covariates includes a rich collection of store-level and neighbor-
hood characteristics such as income, education, age, and demographics that may be relevant
for characterizing preferences for Fair Trade. Importantly, this is the same set of covari-
ates used to match stores as described in Section 2 which we use to strongly justify the
plausibility of the assumptions. We further include a binary indicator X

(tc)
j for whether

the coffee is a test coffee. At the coffee-level, we may then view Xjs = (X(tc)
j , Xs) as a

high-dimensional vector5 consisting of the single coffee-specific characteristic X
(tc)
j and the

store-level matching characteristics Xs.

3.1 Potential Outcomes

Assumption 1. (Random Cluster Sampling)

{Ys0, Ys1, . . . , YsT , Zs0, . . . , ZsT , Xs}S
s=1 is i.i.d.

4Recall that of the 7 coffee types, test coffees refer to French Roast and Coffee Blend which are the only
types subject to treatment. The remaining are never treated.

5There are a total of 28 covariates.
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This assumption states that we observe an i.i.d. panel, where each store is drawn from a
superpopulation. In particular, it also implies that the sales of each coffee type j, (Yjst)S

s=1
are i.i.d. across stores.

We then focus on each coffee as the unit of study, and aim to estimate treatment effects at
the coffee-level to capture heterogeneity and dynamic effects. However one complication of
analyses at the coffee-level is the possibility of spillover effects from other coffees within the
same store being treated. For example even if a coffee was untreated, if another coffee in
the same store was labeled with Fair Trade this might induce consumers to substitute away
from the untreated coffee. Not accounting for this would likely result in an upward bias6 in
estimated treatment effects.

To accommodate spillover effects, for each unit potential outcomes Yjst(d) are then given
by its own treatment status as well as whether other units in the store were treated. We
then observe

Yjst =
2∑

d=0
1{Djst = d}Yjst(d)

where Yjst(2) refers to the potential outcome had they been a treated coffee in a treated
store, Yjst(1) refers to being an untreated coffee in a treated store, and Yjst(0) refers to being
an untreated coffee in an untreated store. This notation implicitly relaxes the interference
condition of SUTVA to hold only at the store-level. In particular, we assume the potential
outcomes of coffees in store s are not affected by the treatment status of those in store s′ ̸= s.
Since the stores are spread out across several states, this assumption is likely reasonable.

Analogously, the coffee-level treatment is defined as

Djst =


2 if Zst = 1, j ∈ J (tc)

1 if Zst = 1, j ̸∈ J (tc)

0 else

We then view the data as given by the coffee-level panel {Yjs0, . . . , YjsT , Djs0, . . . , DjsT , Xjs}S
s=1;j∈J .

Note that the coffee-level panel is i.i.d. across stores by Assumption 1, but may be highly
dependent within stores due to the shared covariates across coffees within the same store.
We discuss this further in Section 4 for estimation and inference.

3.2 Parameters of Interest

With the potential outcomes framework previously introduced, we may now define the main
parameters of interest at the coffee-level.

6For the Price Experiment, this would likely be a downward bias.
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First, the individual treatment effect is defined as

θtreat
jst = Yjst(2) − Yjst(0)

which represents the effect of going from no treatment at all to a treatment on coffee j.

Closely related are individual spillover effects, which are defined as

θspill
jst = Yjst(1) − Yjst(0)

and represents the spillover effects on untreated coffees when other coffees in the same store
were treated.

While not directly useful as it is difficult to interpret7, we may also define individual total
effects by

θtot
jst = Yjst(2) − Yjst(1)

which can be thought of as the effect of going from being an untreated coffee in a treated
store, to a treated coffee. These parameters are all related by

Yjst(2) − Yjst(1)︸ ︷︷ ︸
total effect

=
(
Yjst(2) − Yjst(0)

)
︸ ︷︷ ︸

treatment effect

−
(
Yjst(1) − Yjst(0)

)
︸ ︷︷ ︸
spillover on untreated

Dropping the unit-level subscripts in the notation, the average effects of interest in the
population are then defined by

θtreat
t = E

[
Yt(2) − Yt(0)

∣∣∣D = 2
]

θspill
t = E

[
Yt(1) − Yt(0)

∣∣∣D = 1
]

where we allow for arbitrary heterogeneity across time and units. It should be noted that
within each phase, treatments are absorbing in the sense that Dt−1 = d =⇒ Dt = d a.s.,
but this does not hold across phases due to the treatment switching.

3.3 Point Identifying Assumptions for Phase 1

In this section, consider the first sub-experiment corresponding to Weeks 1-4. Denote
T (1) = {1, . . . , 4} as the set of event time indices for Phase 1.

7For this reason, we do not consider total effects but mention it here as it highlights the potential bias
from disregarding the possibility of spillovers.
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Assumption 2. (No Anticipation) For all d ∈ {0, 1, 2}, in the pre-treatment period

Y0 = Y0(d) a.s.

This assumption states that in the pre-treatment period, there are no anticipation effects.
This holds by the experimental design, where all references to Fair Trade were removed
from the stores several weeks prior to the experiments.

Assumption 3. (Overlap) For all d ∈ {0, 1, 2}, t ∈ T (1),

P(Dt = d) > 0,P(Dt = d|X) < 1 a.s.

This assumption states that for each possible level of treatment, there exists some proportion
of the population which was treated. Furthermore for any sub-population, there exists some
untreated units who may be used as controls. These support conditions are naturally implied
by the design of the experiments.

For identification of the average effects on the treated, the fundamental problem is that we
never observe the counterfactual outcome Y (0) in the treated group. As is standard in the
difference-in-differences literature, we impose variants on parallel trends as a way to impute
what the counterfactual outcome would have been had they not been treated.

To identify average treatment effects θtreat
t , we make the following parallel trends assump-

tion.

Assumption 4. (Conditional Parallel Trends) For all t ∈ T (1),

E[Yt(0) − Yt−1(0)|X, D = 2] = E[Yt(0) − Yt−1(0)|X, D = 0]

This assumption states that for the treated coffees in treated stores, the counterfactual
trend in sales had the coffee and the store not been treated is the same as the untreated
coffees in untreated stores after conditioning on covariates. Since the covariates X includes
both the type of coffee as well as the set of store-level and neighborhood characteristics
used in matching, this strongly justifies the validity of this assumption.

Remark. We may think of the set of all coffee types as partitioned into J = (J tc, Jrest),
where J tc are the test coffees and Jrest are the alternatives. By the matched design, the
natural counterfactual for J tc in treated stores is J tc in untreated stores since the stores
were matched. Similarly, the natural counterfactual for Jrest in treated stores (which are
subject to spillovers) is Jrest in untreated stores. This choice of covariates gives the strongest
identification argument. On the other hand, removing the test coffee indicator X(tc) from
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the covariates and incorporating further coffee-level covariates could potentially allow for
the usage of more data and improve estimation and inference, but weakens the identification
argument. This trade-off is discussed further in Section 4.

Proposition 1. Under Assumptions 2-4, θtreat
t is non-parametrically point-identified. Fur-

thermore, conditional treatment effects are given by

θtreat
t (X) = E[Yt − Y0|X, D = 2] − E[Yt − Y0|X, D = 0]

which is a difference-in-differences between the treated coffees in treated stores and un-
treated coffees in untreated stores. The proof is in Appendix A.1.

Next for identification of average spillover effects θspill
t , we impose a different parallel trends

assumption.

Assumption 5. (Conditional Parallel Trends of Indirect Effects) For all t ∈ T (1),

E[Yt(0) − Yt−1(0)|X, D = 1] = E[Yt(0) − Yt−1(0)|X, D = 0]

This assumption states that for the untreated coffees in treated stores, the counterfactual
trend had the store not been treated is the same as untreated coffees in untreated stores
after conditioning on covariates.

Proposition 2. Under Assumptions 2, 3, and 5, θspill
t is non-parametrically point-identified.

Furthermore, conditional spillover effects are given by

θspill
t (X) = E[Yt − Y0|X, D = 1] − E[Yt − Y0|X, D = 0]

which is a difference-in-differences between the untreated coffees in treated stores and un-
treated coffees in untreated stores. The proof is very similar to Proposition 1 and omitted.

3.4 Partially Identifying Assumptions for Phase 2

In this section, consider the second sub-experiment corresponding to Weeks 5-8. To keep
the notation clean, denote T (2) = {1, 2, 3, 4} as the set of event time indices for Phase 2,
where we reindex the times so that t = 0 represents the pre-treatment period corresponding
to Week 4 in calendar time.

Recall that at the start of Phase 2, there is a treatment crossover. This means that for the
previously treated test coffees in Phase 1, they are now untreated starting at t = 1, while
test coffees in a different set of stores are now treated.
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If we were to assume no carryover effects from the previous phase, then we may view the
two phases as two independent sub-experiments where the parameters of interest are point-
identified using the same set of assumptions. However this is likely unrealistic, since the
previous treatments might have induced a permanent change in the distribution of tastes.
For example, some consumers might have initially preferred Breakfast Blend but switched
to French Roast after the Fair Trade labels in Phase 1. Even if the labels were now removed,
they may continue purchasing French Roast due to habit, ambiguity about whether it is still
Fair Trade but mislabeled, or simply because they enjoy the taste. Assuming no carryover
effects would then be analogous to assuming that the distribution of tastes in the treated
group immediately revert back to the state had the entire experiment never happened. In
terms of potential outcomes, this means there would likely be a violation of the previous
parallel trends assumptions.

We do not impose any substantial restrictions on possible carryover effects, and instead take
a partial identification approach where the bounds collapse to a point if these two phases
can indeed be viewed as independent sub-experiments. The main challenge for identification
in Phase 2 is due to the fact that there are no clean controls: untreated coffees are either
affected by spillovers, or treatments switching off from the previous phase. To accommodate
this, we will first enrich the potential outcomes framework to also include past treatment
status.

3.4.1 Potential Outcomes and Parameters of Interest

Let D(1) denote the previous treatment status prior to Phase 2, so that D
(1)
jst = Djs0 for

all units. Denote the actual treatment status during Phase 2 by D(2), where D(1), D(2) ∈
{0, 1, 2} are coffee-level treatments as before representing untreated coffees in untreated
stores, untreated coffees in treated stores, and treated coffees in treated stores.

Potential outcomes are now defined by Yjst(d1, d2), where d1 is the treatment status prior
to Phase 2, and d2 is the treatment status during Phase 2. We then observe

Yjst =
2∑

d2=0

2∑
d1=0

1{D
(1)
jst = d1, D

(2)
jst = d2}Yjst(d1, d2)

Note that the potential outcomes now refer to a path of treatments. For example, Yjst(0, 2)
refers to the outcome had the coffee not been treated in Phase 1 but was treated in Phase
2. Analogous to Section 3.2, the individual effects in Phase 2 are defined by

θtreat
jst = Yjst(0, 2) − Yjst(0, 0)

θspill
jst = Yjst(0, 1) − Yjst(0, 0)
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This notation emphasizes that treatment effects should be the difference between being
treated in Phase 2, and never treated during the entire experiment8. Dropping the unit-
level subscripts, average effects in the population are then defined similarly by

θtreat
t = E[Yt(0, 2) − Yt(0, 0)|D(1) = 0, D(2) = 2]

θspill
t = E[Yt(0, 1) − Yt(0, 0)|D(1) = 0, D(2) = 1]

From these definitions, the main identification problem in Phase 2 becomes clear. We never
observe Yt(0, 0) since there are no never-treated coffees in never-treated stores. In other
words, every coffee is either directly subject to a treatment, spillover effects from other
coffees, or from past treatments switching off.

3.4.2 Structural Bounds on Counterfactuals

Assumption 6. (No Anticipation of Treatment Switching) For all (d1, d2) ∈ {0, 1, 2}2, in
the pre-treatment period

Yjs0(d1, 0) = Yjs0(d1, d2) a.s.

This assumption states that at time t = 0, there are no anticipation effects that the treat-
ment status will change in the post-treatment period. This holds by the experimental
design, where store employees were instructed to switch the labels during Phase 2. For
the previously untreated coffees, this is the analogue of Assumption 2. For the previously
treated coffees, there was no indication on the Fair Trade labels that it was a limited event
which might abruptly change.

Assumption 7. (Support for Treated Groups) For all (d1, d2) ̸= (0, 0), t ∈ T (2),

P(D(1)
t = d1, D

(2)
t = d2) > 0,P(D(1)

t = d1, D
(2)
t = d2|X) < 1 a.s.

A typical point-identifying argument for θtreat
t would then proceed by assuming that E[Yt(0, 0)−

Yt−1(0, 0)|X, D(1) = 0, D(2) = 2] is parallel to the observed outcomes of some valid control
group. However the problem here is that there are no valid control groups, or more precisely,
we have a violation of the typical support conditions since P(D(1) = 0, D(2) = 0) = 0. We
then make the following assumption that the counterfactual trends of all groups evolve in
parallel.

Assumption 8. (Common Counterfactual Trends) There exists some sequence (δt(X))t∈N

8In the special case of no carryover effects, one way is to assume that Yjst(2, 0) = Yjst(0, 0) = Yjst(1, 0)
almost surely for all t ∈ T (2) in Phase 2. In which case we may drop the previous treatments in the potential
outcomes notation and the setting becomes identical to Phase 1.
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s.t. for all t ∈ T (2), (d1, d2) ̸= (0, 0),

E[Yt(0, 0) − Yt−1(0, 0)|X, D(1) = d1, D(2) = d2] = δt(X) a.s.

The intuition behind this assumption is that we may partition the set of all coffees into
four groups: treated coffees which became untreated (D(1) = 2, D(2) = 0), untreated coffees
affected by spillovers but no longer (D(1) = 1, D(2) = 0), untreated coffees which became
treated (D(1) = 0, D(2) = 2), and untreated coffees which were later affected by spillovers
(D(1) = 0, D(2) = 1). This assumption then simply states that the counterfactual trends for
all groups if the entire experiment never happened are all the same.

Under Assumptions 6 and 8, the general difference-in-differences decomposition for condi-
tional effects can then be written as9

θtreat
t (X) = E[Yt − Y0|X, D(1) = 0, D(2) = 2]︸ ︷︷ ︸

trend in outcomes

−
t∑

k=1
δk(X)︸ ︷︷ ︸

counterfactual trend

θspill
t (X) = E[Yt − Y0|X, D(1) = 0, D(2) = 1] −

t∑
k=1

δk(X)

However these assumptions are of course insufficient for identification, since we do not
actually know what δt(X) is. If we had observed never treated units, then setting δt(X) as
the observed trend for these units would give point-identification for both θtreat

t and θspill
t .

Alternatively if we assumed no carryover effects from Phase 1, then we could also set δt(X)
as the observed trend for the (D(1) = 2, D(2) = 0) or (D(1) = 1, D(2) = 0) group and obtain
point identification. Instead we use a partial identification approach to obtain plausible
structural bounds on δt(X).

Consider first the group of coffees that were initially treated in Phase 1. Suppose for now
that Fair Trade labeling had a positive average effect on sales, either directly by incentiviz-
ing new purchases from consumers who otherwise would not have purchased any coffees,
or indirectly by consumers substituting towards Fair Trade coffees. After the treatment
switches off in Phase 2, there are no longer any direct effects since the coffees are no longer
labeled.

For the indirect effects, some consumers might continue purchasing this group of coffees
due to habit, ambiguity about whether it is actually Fair Trade but mislabeled, or simply
because they have an acquired taste for these coffees. On the other hand, it is also possible
that some consumers immediately revert back to their initial preferences had the experiment

9See Appendix A.2

18



Adam Wu

never occurred. In addition, any late entrants to the market would make choices as if Phase
1 never occurred. On average, this then motivates the following upper bound

δt(X) ≤ E[Yt − Yt−1|X, D(1) = 2, D(2) = 0]

For a lower bound, consider now the group of coffees that were untreated but subject to
spillovers in Phase 1. If the treatment had induced consumers to substitute away from this
group towards Fair Trade coffees, then we should generally expect the sign of treatment
effects and spillover effects to be opposite. Thus if Fair Trade labeling had a positive average
effect, then we should expect spillover effects to be negative (or at least non-positive10). The
scenario where both effects are of the same sign would imply that people on average prefer
Fair Trade, but at the same time are somehow incentivized to also purchase more non-Fair
Trade coffees which is possible11 but unlikely. Since treatment effects and spillover effects
are closely related, by the previous argument this then motivates the following lower bound

E[Yt − Yt−1|X, D(1) = 1, D(2) = 0] ≤ δt(X)

It may be helpful to instead consider the following. For the group of untreated coffees subject
to spillovers in Phase 1, we might imagine a world where consumers are substituting away
from these coffees towards Fair Trade, and a world where the experiment never occurred.
During Phase 2, the best-case outcome for the spillover group is that there are no longer
any more substitution effects, in which case the observed outcome is δt(X). The worst-
case outcome is that everyone continues switching to Fair Trade coffees as if they were still
treated.

Figure 3 shows a stylized visualization of the identification argument, and Figure 4 shows
a plot based on the observed trend in sales averaged across stores for the four subgroups.

In the argument above, we assumed that treatment effects were positive for simplicity. It
is certainly possible that treatment effects are negative, which is especially relevant for the
Price Experiment where the treatment consisted of both Fair Trade labeling and raising
prices. In the case of negative treatment effects, then by an analogous argument, the
observed outcomes for the treated group becomes a lower bound on δt(X), and the observed
outcomes for the spillover group becomes an upper bound.

10Even though average treatment effects and spillover effects are likely to be opposite signs, the effects
are not necessarily symmetric. For example Fair Trade labeling might incentivize new purchases from
consumers who would otherwise not have purchased any coffees in the stores, which results in no spillover
on the untreated coffees.

11For example some consumers could be incentivized by the treatment to purchase both a Fair Trade and
non-Fair Trade coffee to compare the quality, but for this to hold on average in the population is unlikely.
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We then formalize the partial identification argument in general without sign restrictions
by the following assumption.

Assumption 9. (Bounds on Counterfactual Trends)

min{θ
(2,0)
t (X), θ

(1,0)
t (X)} ≤

t∑
k=1

δk(X) ≤ max{θ
(2,0)
t (X), θ

(1,0)
t (X)}

where

θ
(2,0)
t (X) = E[Yt − Y0|X, D(1) = 2, D(2) = 0]

θ
(1,0)
t (X) = E[Yt − Y0|X, D(1) = 1, D(2) = 0]

Proposition 3. Under Assumptions 6-9, θtreat
t is partially identified by the region

θtreat
t ∈ Θtreat

t =
[
Ltreat

t , U treat
t

]
where

Ltreat
t = E[Yt − Y0|D(1) = 0, D(2) = 2] −

∫
max{θ

(2,0)
t (X), θ

(1,0)
t (X)} dPX|{D(1)=0,D(2)=2}

U treat
t = E[Yt − Y0|D(1) = 0, D(2) = 2] −

∫
min{θ

(2,0)
t (X), θ

(1,0)
t (X)} dPX|{D(1)=0,D(2)=2}

The proof is in Appendix A.2.

Since we have bounded the counterfactual trends δt(X) directly, we then also obtain partial
identification for average spillover effects.

Proposition 4. Under Assumptions 6-9, θspill
t is partially identified by the region

θspill
t ∈ Θspill

t =
[
Lspill

t , U spill
t

]
where

Lspill
t = E[Yt − Y0|D(1) = 0, D(2) = 1] −

∫
max{θ

(2,0)
t (X), θ

(1,0)
t (X)} dPX|{D(1)=0,D(2)=1}

U spill
t = E[Yt − Y0|D(1) = 0, D(2) = 1] −

∫
min{θ

(2,0)
t (X), θ

(1,0)
t (X)} dPX|{D(1)=0,D(2)=1}

The proof is similar to Proposition 3 and omitted.

Remark. Suppose there is no carryover effect from Phase 1, in the sense that Yt(2, 0) =
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Yt(0, 0) = Yt(1, 0) a.s. for all t ∈ T (2), or under the weaker condition of

E[Yt(d, 0) − Y0(d, 0)|X, D(1) = d, D(2) = 0] = E[Yt(0, 0) − Y0(0, 0)|X, D(1) = d, D(2) = 0]

for both d ∈ {1, 2}. Then the bounds collapse to a point and we obtain point identification
of θtreat

t , θspill
t . In other words, for the bounds to collapse we require both the treated and

untreated coffees in treated stores to revert back to the counterfactual state where Phase 1
never happened.
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t

E[Yt(., .)|X, D(1), D(2)]

}θtreat
t

}θspill
t ≤ δt(X)

≥ δt(X)

(D(1) = 2, D(2) = 0)

(D(1) = 1, D(2) = 0)

(D(1) = 0, D(2) = 2)

(D(1) = 0, D(2) = 1)

Pre Phase 1 Phase 2

Figure 3: Stylized visualization of the identification argument. Solid lines indicate observ-
able outcomes, while the blue and red dashed lines are the counterfactual trends. In Phase
1, we assume that the blue counterfactual for the treated groups are parallel to the ob-
served outcomes of the untreated for point-identification. In Phase 2, we assume that the
red counterfactual for the treated groups are bounded by the observable outcomes (in the
shaded yellow region) of the no longer treated groups for partial identification.
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Figure 4: This plot shows the observed trend in sales for each of the four subgroups averaged
over stores. The blue lines labeled Y20 and Y10 correspond to the set of treated and
untreated coffees in treated stores, while the red lines labeled Y02 and Y01 are initially
untreated but switch on during Phase 2 (dashed line). Note that the identification argument
is conditional on store characteristics as well as the type of coffee so this plot should be
interpreted by pairwise comparisons of the corresponding blue and red lines (e.g. (Y20,
Y02), and (Y10, Y01)).
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4 Estimation and Inference

For estimation and inference at the coffee-level, we first impose some simple restrictions on
the error terms. Note that Assumption 1 implies that the coffee-level panel is i.i.d. across
stores, but may be dependent within stores. As the goal of this paper is to analyze the
empirical setting with weak assumptions, we do not impose any functional form restrictions
and assume the true data generating process at the coffee-level is given by

Yjst = m(Xjs, Djst) + ϵjst

where m(Xjs, Djst) := E[Yjst|Xjs, Djst], and so by construction E[ϵjst|Xjs, Djst] = 0. Recall
that Xjs = (X(tc)

j , Xs) is a high-dimensional vector consisting of a test coffee indicator X
(tc)
j

and store-level characteristics Xs, and Xs = (X1s, X2s, . . . , X|J |s) denotes the collection of
coffee-level covariates for a store.

Assumption 10. (Conditional Variance of Errors)

E[ϵ2
jst|Xs, Dst] = E[ϵ2

jst|Xjs, Djst] = σ2(Xjs)

E[ϵjstϵj′st|Xs, Dst] = E[ϵjstϵj′st|Xjs, Xj′s, Djst, Dj′st] = σ(Xjs, Xj′s) ∀ j′ ̸= j

This assumption states that the conditional variance of the error for each unit depends only
on its own covariates, and that the conditional covariance of the error between any two
coffees depend only on the test coffee indicator and shared store-level covariates.

4.1 Semiparametric Estimation and Reduced Form

We first consider Phase 1 where the main parameters of interest, treatment effects and
spillover effects, are point-identified.

For estimation and inference, the conventional way is to assume a linear parametric structure
and estimate some variant on two way fixed effects models. However recent literature has
pointed out that if there is substantial heterogeneity in treatment effects, the regression
coefficients can be inconsistent, difficult to interpret, and even be the wrong sign entirely
due to a ”negative weighting” problem (Chaisemartin and D’Haultfoeuille 2022; Goodman-
Bacon 2021; Sun and Abraham 2021).

In our empirical application, there is a strong possibility that treatment effects are het-
erogeneous across both units and time since consumers may receive diminishing marginal
utility from repeatedly supporting social causes such as Fair Trade, and especially when
prices were raised during the Price Experiment. Consumers with different levels of income,
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education, age, and other demographics are also likely to have highly different valuations
of ethical sourcing that may induce strong heterogeneity in treatment effects. Given the
large variation in socioeconomic characteristics as noted in Section 2, the heterogeneity can
be substantial. Furthermore, two way fixed effects models impose a particular parametric
assumption on the conditional means which may be highly misleading if misspecified. In
particular since the set of covariates we use to justify conditional parallel trends is high-
dimensional, the risk of functional form misspecification is especially large.

Under conditional identification and the possibility of heterogeneous effects, Abadie (2005)
proposes a semiparametric estimator for difference-in-differences that flexibly incorporates
covariates through the propensity score. Related earlier work by Heckman, Ichimura, and
Todd (1997) also considers matching estimators based on the propensity score. In light of
the issues pointed out with standard fixed effects models under heterogeneity, the recent
literature on difference-in-differences has seen a surge of interest in semiparametric and
doubly robust methods including machine learning, see for instance Sant’Anna and Zhao
(2020), Callaway and Sant’Anna (2021), and Chang (2020).

The following proposition then derives the relevant moment conditions for our parameters
of interest.

Proposition 5. Under Assumptions 2-5, average treatment effects on the treated and
spillover effects are identified by the following moment conditions:

θtreat
t = E


(
Yt − Y0

)(
1{D=2}p(0)(X) − 1{D=0}p(2)(X)

)
p(0)(X)P(D = 2)


θspill

t = E

(Yt − Y0)
(
1{D=1}p(0)(X) − 1{D=0}p(1)(X)

)
p(0)(X)P(D = 1)


where p(d)(X) = P(D = d|X). The proof is in Appendix A.3.

Rearranging the moment condition for treatment effects, we can see that

θtreat
t = E

[
Yt − Y0
P(D = 2)

(
1{D=2} − 1{D=0}

p(2)(X)
p(0)(X)

)]

where we may interpret w(X) := p(2)(X)
p(0)(X) as a weighting function that ensures covariate

balance between the treated and untreated groups. For any covariates such that w(X) is
small so that they are unlikely to be treated, the distribution of Yt −Y0 is weighted down in
the untreated group. For any covariates such that w(X) is large so that they are likely to be
treated, the distribution is weighted up in the untreated group. It is precisely this idea that
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allows propensity score-based weighting methods to adjust for selection bias (Abadie 2005;
Heckman, Ichimura, and Todd 1997), though potentially at the cost of efficiency (Hirano,
Imbens, and Ridder 2003).

By the sample analogue principle, this then motivates the following semiparametric estima-
tor

θ̂treat
t = 1

n

|J |;S∑
j=1;s=1

Yjst − Yjs0
ĝ(2)

(
1{Djst = 2} − 1{Djst = 0} p̂(2)(Xjs)

p̂(0)(Xjs)
)

where n = S|J |, and ĝ(d) = 1
n

∑
j;s 1{Djst = d}, p̂(d)(X) are consistent estimators for P(D =

d),P(D = d|X) respectively. Due to the high-dimensional covariates however, estimation of
the propensity score becomes challenging with classical nonparametric methods. This would
typically require either imposing some parametric restrictions on the propensity score, or
using Double Machine Learning12 as proposed by Chernozhukov et al. (2018).

In our application however, this problem simplifies considerably since propensity scores
are actually known if we include the type of coffee in the covariates. Recall that Xjs =
(X(tc)

j , Xs) where X
(tc)
j = 1{j ∈ J (tc)} is a binary indicator for if it is a test coffee. Since

we know the treatment assignment mechanism, then by construction with our choice of
covariates the propensity scores are known and given by

p(2)(Xjs) = P(Djst = 2|Xjs) =

1/2 if X
(tc)
j = 1

0 if X
(tc)
j = 0

p(1)(Xjs) = P(Djst = 1|Xjs) =

0 if X
(tc)
j = 1

1/2 if X
(tc)
j = 0

p(0)(Xjs) = P(Djst = 0|Xjs) =

1/2 if X
(tc)
j = 1

1/2 if X
(tc)
j = 0

Remark. Hirano, Imbens, and Ridder (2003) shows that for average treatment effects,
even if true propensity scores were known then estimating it anyways could lead to effi-
ciency gains. However for average treatment effects on the treated, Hahn (1998) shows
that the asymptotic semiparametric efficiency bound is lower if true propensity scores were
known13. Removing X

(tc)
j from the set of covariates could still justify identification if we

12Chernozhukov et al. (2018) shows that simply plugging in a machine learning estimator for infinite-
dimensional nuisance parameters complicates inference and can lead to a large bias in estimates, as machine
learning estimators generally converge slower than the parametric

√
n-rate due to overfitting or regulariza-

tion. The general idea behind Double Machine Learning is to Neyman-orthogonalize the moment condition
such that it is locally insensitive to noisy estimation of the nuisance parameters, which allows the orthogo-
nalized estimator to attain the

√
n-rate when using cross-fitting with i.i.d. data.

13For selection on observables settings.
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were to incorporate additional coffee-level characteristics such as average historical sales
that controls for differences between the coffee types. This could potentially allow for the
usage of more coffees in the control group and improve estimates in finite samples. However
in doing so we would only obtain partial knowledge of the propensity scores which would
require high-dimensional estimation. Due to the additional complications from cluster sam-
pling, we do not further consider the problem of efficiency in this paper.

With the known propensity scores, note that the weighting function simplifies into w(X) =
p(2)(X)
p(0)(X) = X(tc) ∈ {0, 1} depending on whether it is a test coffee or not. Furthermore since
D = 2 implies X(tc) = 1 a.s., the semiparametric estimator for treatment effects then
simplifies into

θ̂treat
t = 1

n

|J |S∑
j=1;s=1

(
Yjst − Yjs0

ĝ(2) 1{Djst = 2} − Yjst − Yjs0
ĝ(2) 1{Djst = 0}

)
X

(tc)
j

where the term ĝ(2) = 1
n

∑
j;s 1{Djst = 2} is just a scaling constant to balance against the

fact that we are dividing by the full sample size n.

This implies that even though we have not made any functional form assumptions on
the data generating process, allowed for arbitrary heterogeneity, and relied on a high-
dimensional set of conditioning variables for identification, we can still estimate θtreat

t by
a simple difference-in-differences between test coffees in treated stores, and test coffees in
untreated stores. This is of course not true in general14, but holds given that the distribu-
tions of covariates we conditioned on were balanced for these two specific subgroups. We
may then estimate the simple linear model

Yjst = α + τt + δDjst + θtDjstτt + ϵjst

on the subset of the data containing test coffees, where τt is a binary time indicator. For
inference, we use cluster-robust standard errors at the store-level. A potential concern here
however is the sample size, as clustered standard errors can be heavily biased in small
samples (MacKinnon, Nielsen, and Webb 2023). Recall that there are only two test coffees
in each of the 26 stores, of which half are untreated. Recent work by Egami and Yamauchi
(2023) suggests the usage of additional pre-treatment periods to improve the precision of
point estimates and efficiency. In our setting, even though the sample size is small during
the experiment we observe a long history of sales in these stores dating back two years. We

14For example, if we were to add further coffee-level characteristics which were not used in the matching
process.
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incorporate the additional historical data15 and found substantial gains in efficiency.

The case for spillover effects follows analogously, with

θ̂spill
t = 1

n

|J |S∑
j=1;s=1

(
Yjst − Yjs0

ĝ(1) 1{Djst = 1} − Yjst − Yjs0
ĝ(1) 1{Djst = 0}

)
(1 − X

(tc)
j )

which becomes a simple difference-in-differences between the set of untreated coffees in
treated stores and untreated coffees in untreated stores.

4.2 Estimation of Partially Identified Regions

We now consider estimation of the parameters of interest in Phase 2 after the treatment
crossover. Recall that the partially identified regions are given by

Θtreat
t =

[
Ltreat

t , U treat
t

]
Θspill

t =
[
Lspill

t , U spill
t

]
To simplify the notation, let

h∨
t (X) = max{θ

(2,0)
t (X), θ

(1,0)
t (X)}

h∧
t (X) = min{θ

(2,0)
t (X), θ

(1,0)
t (X)}

be the upper and lower bounds on the counterfactual trends from Assumption 9. The
bounds on the partially identified regions can then be written as

Ltreat
t = E[Yt − Y0|D(1) = 0, D(2) = 2] −

∫
h∨

t (X) dPX|{D(1)=0,D(2)=2}

U treat
t = E[Yt − Y0|D(1) = 0, D(2) = 2] −

∫
h∧

t (X) dPX|{D(1)=0,D(2)=2}

Lspill
t = E[Yt − Y0|D(1) = 0, D(2) = 1] −

∫
h∨

t (X) dPX|{D(1)=0,D(2)=1}

U spill
t = E[Yt − Y0|D(1) = 0, D(2) = 1] −

∫
h∧

t (X) dPX|{D(1)=0,D(2)=1}

Since X is high-dimensional, for estimation of the nuisance functions h∨, h∧ we consider
using a plug-in machine learning estimator16 by nonparametrically fitting the conditional
means, taking the minimum or maximum, then integrating over the empirical conditional

15Identification would require parallel trends to also hold in the historical data, but presumably this was
also used in the initial matching of stores so our assumptions on parallel trends should also extend to the
historical data.

16This would likely substantially complicate inference on the partially identified set, though we only
consider estimation of these bounds in this paper.
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distributions of the data.

More precisely, we let m̂(d,0)(X) be a machine learning estimator for θ
(d,0)
t (X) = E[Yt −

Yt−1|X, D(1) = d, D(2) = 0], and form the plug-in estimators

ĥ∨
t (X) = max{m̂(2,0)(X), m̂(1,0)(X)}

ĥ∧
t (X) = min{m̂(2,0)(X), m̂(1,0)(X)}

The estimator for the bounds are then given by

L̂treat
t = 1

n02

|J |;S∑
j=1;s=1

(
(Yjst − Yjs0) − ĥ∨

t (Xjs)
)
1{D

(1)
jst = 0, D

(2)
jst = 2}

Û treat
t = 1

n02

|J |;S∑
j=1;s=1

(
(Yjst − Yjs0) − ĥ∧

t (Xjs)
)
1{D

(1)
jst = 0, D

(2)
jst = 2}

L̂spill
t = 1

n01

|J |;S∑
j=1;s=1

(
(Yjst − Yjst) − ĥ∨

t (Xjs)
)
1{D

(1)
jst = 0, D

(2)
jst = 1}

Û spill
t = 1

n01

|J |;S∑
j=1;s=1

(
(Yjst − Yjst) − ĥ∧

t (Xjs)
)
1{D

(1)
jst = 0, D

(2)
jst = 1}

where n0d = ∑
j;s 1{D

(1)
jst = 0, D

(2)
jst = d}.

5 Empirical Results

5.1 Label Experiment

In the Label Experiment, recall that test coffees in treated stores were assigned a Fair Trade
label as shown in Figure 1. Alternative coffees in treated stores were assigned a generic label
to avoid any general effects from labeling unrelated to Fair Trade. This experiment was
conducted from January-March 2009. After four weeks, the treated coffees had their labels
immediately removed while another set of coffees in other stores were assigned labels.

Table 4 presents the full results across both phases of the experiment, and Figure 5 shows
an event-study visualization of the two phases. For Phase 1 (Weeks 1-4), the table shows
point estimates of dynamic treatment and spillover effects. We also show estimates for ag-
gregated effects across time, which may be interpreted as the average effect of the treatment
throughout all of Phase 1.

For Phase 2 (Weeks 5-8), the table shows estimates of the partially identified region. For
estimation of the infinite-dimensional nuisance functions h∧

t , h∨
t in the bounds, we used a
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random forest to nonparametrically fit the conditional means. Since the stores were matched
on a large set of socioeconomic and store-level characteristics, it is likely that there are simi-
lar treatment effect dynamics between the treated coffees in Phase 1 and the treated coffees
in Phase 2. For example if variables such as income or education play a role in consumers’
preferences of Fair Trade, then the matching likely induces some degree of homogeneity in
treatment effects across the two groups even though they are treated at different times.
Interestingly, the estimated partially identified region seems to capture similar trends and
dynamics in the treatment effects that the first group of coffees experienced during Phase
1.

A surprising result is that both treatment effects and spillover effects are near zero at the
start of the experiment, but both are positive during Weeks 3 and 4. This suggests that on
average, consumers tended to purchase both more Fair Trade and non-Fair Trade coffees
due to the labeling. It could be possible that simply having large labels on the bulk coffee
bins induced new purchases from consumers who otherwise would not have purchased any
coffee from the stores.

However the sample size of treated coffees for each week is quite small and so the point
estimates may be imprecise, as can be seen from the large standard errors. Even though
we incorporated a large set of historical data and found substantial gains in efficiency, the
average effects are insignificant at conventional levels after controlling for correlation within
stores. This result is not particularly surprising, since when taken together with Figure
4, we can see that the average sales between the treated test coffees and untreated test
coffees are similar during Phase 1 despite one group being treated. However as the average
weekly sales of coffees is around 12 pounds, the cumulative treatment effect from Fair Trade
labeling in Phase 1 does result in an average increase of 1.15 pounds. This corresponds to
approximately a 9.5% increase17, which is similar to the findings of 10% from Hainmueller,
Hiscox, and Sequeira (2015) under different assumptions including homogeneous effects.

Average effects also mask potentially insightful heterogeneity. In addition to time-varying
dynamics, there is a strong possibility of heterogeneity across units given the large differences
in socioeconomic characteristics noted earlier such as income, public welfare programs, and
age. Figure 6 shows the distribution of conditional treatment and spillover effects, which we
non-parametrically estimated using machine learning based on the difference-in-differences
decomposition in Proposition 1 and 2. A particularly interesting result is that while the
average effects appear stable, the distribution of spillovers has increasingly large left tails

17This is of course a very crude approximation. While it is common to use a log transformation for these
types of interpretations, parallel trends holding in levels generally does not imply it holds in logs unless we
are willing to make much stronger assumptions on the full distribution of potential outcomes (Roth and
Sant’Anna 2023).
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as time passes. This may indicate a growing shift in the distribution of tastes due to Fair
Trade labeling, while average effects remain mostly stable due to the matched design.

Treatment Effects Spillover Effects
Week θ̂treat

t se(θ̂treat
t ) 95% CI θ̂spill

t se(θ̂spill
t ) 95% CI

t = 1 0.206 2.117 [-3.943, 4.355] -0.165 1.560 [-3.221, 2.892]
t = 2 -0.302 1.438 [-3.121, 2.516] -0.027 1.015 [-2.017, 1.962]
t = 3 0.706 1.436 [-2.108, 3.520] 0.984 1.199 [-1.367, 3.334]
t = 4 0.538 1.530 [-2.461, 3.536] 1.231 1.225 [-1.170, 3.631]
t = 5 [0.052, 1.620] - - [0.113, 1.720] - -
t = 6 [-0.486, 1.619] - - [-0.352, 1.821] - -
t = 7 [0.297, 2.356] - - [0.401, 2.478] - -
t = 8 [0.285, 2.510] - - [-0.744, 1.514] - -
Num. Obs.: 17674, Clusters: 26

Note: This table presents estimates of treatment and spillover effects for the Label Experiment. Weeks 1-4
correspond to Phase 1, where we have point-identification of the effects of interest. Weeks 5-8 correspond to
Phase 2, where the reported estimates are the partially identified regions. For the point estimates, standard
errors were clustered at the store-level. For the partially identified regions, nuisance functions were estimated
nonparametrically with random forests. The number of observations include a large set of historical data.

Table 4: Label Experiment Results

5.2 Price Experiment

In the Price Experiment, test coffees were assigned a Fair Trade label as before but also
had their prices raised by $1 per pound. This corresponds to an 8.3% increase in prices
for French Roast and 9.1% increase for Coffee Blend. However an important implication of
this is that when compared to other coffees in the stores, French Roast now becomes the
most expensive coffee and Coffee Blend no longer one of the cheapest. This experiment was
conducted several months after the Label Experiment ended.

Table 5 and Figure 7 shows the results. In contrast to the Label Experiment, here we see
a noticeably large decrease in sales after prices were raised. An interesting result in the
dynamics of the treatment effects is that the downward trend plateaus after two weeks,
where the distribution of tastes seem to stabilize afterwards. When taken together with
the previous results, this may suggest that average consumer preferences for Fair Trade
gradually shift rather than abruptly change.

Another interesting result is that treatment effects and spillover effects are highly asym-
metrical. If consumers would simply substitute towards a cheaper option, then we should
see a growing trend in spillover effects. However the spillover effects are mostly near-zero,
which may indicate that consumers had opted to not purchase any coffee from the store
entirely due to the price raise. The partially identified region also captures similar dynam-
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Figure 5: Estimates of dynamic treatment and spillover effects over time for the Label
Experiment, along with their corresponding 95% confidence intervals. The shaded yellow
region indicates the estimated partially identified region for coffees treated during Phase 2.
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(b) Label Experiment: Conditional Spillover Effects

Figure 6: These plots show θ̂treat
t (X), θ̂spill

t (X) over the empirical conditional distributions
of X|D = 2 and X|D = 1 respectively for the Label Experiment. The black line indicates
the mean, and the dashed grey line indicates the median.
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ics as those treated in Phase one, with both bounds on treatment effects in the negative
region. However there is a slight upward trend in the partially identified treatment effects
for Phase 2, with a corresponding downward trend in spillover effects. After the treatment
switch, the treated coffees had their prices lowered back to regular pricing and the labels
removed. A possible explanation for the trend in the bounds is due to carryover effects,
where consumers who opted to exit the market entirely may re-enter after seeing the price
hike was reverted. As the distribution of tastes seem to have stabilized after two weeks, it
is also possible that when the treatment was removed some consumers view it as a discount
rather than a return to regular pricing.

Figure 8 shows the distribution of conditional treatment and spillover effects. In contrast to
the Label Experiment, there is a noticeably heavy left tail on conditional treatment effects
and a corresponding heavy right tail on spillover effects. This may indicate that some
consumers in particular are especially sensitive to the price hike, and substitute immediately
to other options. This may be especially prevalent in communities with low average income
who are more sensitive to prices.

Treatment Effects Spillover Effects
Week θ̂treat

t se(θ̂treat
t ) 95% CI θ̂spill

t se(θ̂spill
t ) 95% CI

t = 1 0.850 1.196 [-1.494, 3.194] 9.478 1.261 [-1.992, 2.950]
t = 2 -0.691 1.262 [-3.166, 1.783] 0.017 1.257 [-2.446, 2.481]
t = 3 -2.133 1.141 [-4.369, 0.103] -0.191 1.433 [-3.00, 2.617]
t = 4 -2.187 1.044 [-4.234, -0.140] 0.003 0.506 [-0.988, 0.994]
t = 5 [-2.952, -1.191] - - [-0.207, 1.531] - -
t = 6 [-2.214, -0.267] - - [0.115, 2.053] - -
t = 7 [-2.530, -0.166] - - [-2.396, -0.114] - -
t = 8 [-2.286, 0.246] - - [-2.584, -0.146] - -
Num. Obs.: 5908, Clusters: 26

Note: This table presents estimates of treatment and spillover effects for the Price Experiment. Weeks 1-4
correspond to Phase 1, where we have point-identification of the effects of interest. Weeks 5-8 correspond to Phase
2, where the reported estimates are the partially identified regions. For the point estimates, standard errors were
clustered at the store-level. For the partially identified regions, nuisance functions were estimated nonparametrically
with random forests. The number of observations includes a large set of historical data.

Table 5: Price Experiment Results
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Figure 7: Estimates of dynamic treatment and spillover effects over time for the Price
Experiment, along with their corresponding 95% confidence intervals. The shaded yellow
region indicates the estimated partially identified region for coffees treated during Phase 2.
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Figure 8: These plots show θ̂treat
t (X), θ̂spill

t (X) over the empirical conditional distributions
of X|D = 2 and X|D = 1 respectively for the Price Experiment. The black line indicates
the mean, and the dashed grey line indicates the median.
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6 Discussion

In this paper, we complement the analysis of the field experiment conducted by Hain-
mueller, Hiscox, and Sequeira (2015) by focusing on heterogeneity in valuations of ethical
sourcing and price sensitivities. Overall, we found that consumers do prefer ethically sourced
products when they are offered without a price premium. However in contrast to survey
responses, the average consumer is sensitive to prices and unwilling to pay a price premium
of 8 − 9% for Fair Trade coffees. By analyzing the distribution of estimated conditional
treatment effects, we find strong heterogeneity in both preferences for Fair Trade and aver-
sion towards price premiums. These results are similar to those found by Hainmueller,
Hiscox, and Sequeira (2015) which also indicate strong heterogeneity in the valuation of
ethical sourcing.

A potential limitation of our study are in the relatively small sample sizes, where each
week consists of only 170 observations across the stores. As we further restrict this to
only comparing specific types of coffees across treated and untreated stores, it is difficult to
conclusively determine whether the time-varying dynamics are due to changing valuations
of ethical sourcing (such as decreasing marginal utilities from repeatedly supporting social
initiatives) or simply naturally occurring consumption cycles in bulk purchasing habits.
However comparing both treatment and spillover effects mitigates this to an extent.

Another area that could be developed further is on efficiency. While incorporating the his-
torical data made a large difference, it may be worth exploring other cluster-robust methods
for inference, especially since the number of clusters is relatively small. Alternatively, incor-
porating additional coffee-level characteristics and estimating propensity scores could allow
for the usage of more coffees in the control group rather than limiting it to only comparisons
between specific coffee types. This could benefit inference, though weaken the identification
argument in Phase 1 which is currently strongly justified by the matched design. As for
Phase 2, the partially identified bounds could potentially be sharpened further. For exam-
ple the current bounds require both the treated group and those subject to spillovers to not
have any carryover effects in order to collapse to a point. In the case where only one group
has no carryover effect, then we already have point identification but only one side of the
bounds would collapse. This scenario is possible, but somewhat unlikely since both groups
belong to the same set of stores and are likely highly related.

Overall, this paper analyzed the empirical setting under a different set of assumptions and
found similar results with existing work, which strengthens the validity of these findings.
By focusing on heterogeneity, we provide new insights complementary to existing work
on the time-varying dynamics and variation in ethical valuation induced by socioeconomic
differences.
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Appendix: Proofs

A.1

Proof of Proposition 1.

Let θtreat
t (X) := E[Yt(2) − Yt(0)|X, D = 2].

First note that under Assumption 4, by a telescoping sum

E[Yt(0) − Y0(0)|X, D = 2] = E
[

t∑
k=1

Yk(0) − Yk−1(0)
∣∣X, D = 2

]

=
t∑

k=1
E

[
Yk(0) − Yk−1(0)

∣∣X, D = 2
]

=
t∑

k=1
E

[
Yk(0) − Yk−1(0)

∣∣X, D = 0
]

= E[Yt(0) − Y0(0)|X, D = 0]

so that conditional parallel trends also holds between time t and time 0. Adding and
subtracting E[Yt(0)|X, D = 2] along with no anticipation effects from Assumption 2, we
then have

E[Yt(0)|X, D = 2] = E[Y0(0)|X, D = 2] + E[Yt(0) − Y0(0)|X, D = 2]

= E[Y0|X, D = 2] + E[Yt(0) − Y0(0)|X, D = 0]

= E[Y0|X, D = 2] + E[Yt − Y0|X, D = 0]

This implies that

θtreat
t (X) = E

[
Yt(2) − Yt(0)

∣∣∣X, D = 2
]

= E[Yt − Y0|X, D = 2] − E[Yt − Y0|X, D = 0]

By the support condition in Assumption 3, it follows by the Law of Iterated Expectations
that

θtreat
t =

∫
θtreat

t (X) dPX|D=2

is non-parametrically point identified.
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A.2

Proof of Proposition 3.

Let θtreat
t (X) := E[Yt(0, 2) − Yt(0, 0)|X, D(1) = 0, D(2) = 2].

By Assumption 6 along with Assumption 8, we then have

E[Yt(0, 0)|X, D(1) = 0, D(2) = 2]

= E[Y0(0, 0)|X, D(1) = 0, D(2) = 2] + E[Yt(0, 0) − Y0(0, 0)|X, D(1) = 0, D(2) = 2]

= E[Y0|X, D(1) = 0, D(2) = 2] +
t∑

k=1
E[Yt(0, 0) − Yt−1(0, 0)|X, D(1) = 0, D(2) = 2]

= E[Y0|X, D(1) = 0, D(2) = 2] +
t∑

k=1
δk(X)

This implies that

θtreat
t (X) = E[Yt − Y0|X, D(1) = 0, D(2) = 2] −

t∑
k=1

δk(X)

Using the bounds on δt(X) from Assumption 9 then gives the upper bound on conditional
treatment effects

θtreat
t (X) ≤ E[Yt − Y0|X, D(1) = 0, D(2) = 2] − min{θ

(2,0)
t (X), θ

(1,0)
t (X)}

By the Law of Iterated Expectations, monotonicity of integrals, and with support conditions
in Assumption 7, this implies that

θtreat
t ≤ E[Yt − Y0|D(1) = 0, D(2) = 2] −

∫
min{θ

(2,0)
t (X), θ

(1,0)
t (X)} dPX|{D(1)=0,D(2)=2}

Similarly for the lower bound, we have

θtreat
t ≥ E[Yt − Y0|D(1) = 0, D(2) = 2] −

∫
max{θ

(2,0)
t (X), θ

(1,0)
t (X)} dPX|{D(1)=0,D(2)=2}
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A.3

Proof of Proposition 6.

Let D̃(ω) = 1{D=2}(ω) be a binary indicator. First note that by no anticipation in Assump-
tion 2,

E
[

(Yt − Y0)D̃
P(D̃ = 1)

]
= 1

P(D̃ = 1)

(
E[(Yt − Y0)D̃|D̃ = 1]P(D̃ = 1) + E[(Yt − Y0)D̃|D̃ = 0]P(D̃ = 0)

)
= E[Yt − Y0|D̃ = 1] = E[Yt − Y0|D = 2]

= E[Yt(2) − Y0(0)|D = 2]

From Assumptions 3-4,

E[Yt(0) − Y0(0)|D = 2] = E[
(
Yt(0) − Y0(0)

)
D̃|D̃ = 1]

= E
[(

Yt(0) − Y0(0)
)
D̃

P(D̃ = 1)

]

= E
[
E[Yt(0) − Y0(0)|X, D̃ = 1]P(D̃ = 1|X)

P(D̃ = 1)

]

= E
[
E[Yt(0) − Y0(0)|X, D = 0]P(D̃ = 1|X)

P(D̃ = 1)

]

= E
[
E[Yt − Y0|X, D = 0]P(D̃ = 1|X)

P(D̃ = 1)

]
(*)

We then have

E[(Yt − Y0)(1 − D)|X] = E[Yt − Y0|X, D = 0]P(D = 0|X) − E[Yt − Y0|X, D = 2]P(D = 2|X)

= E[Yt − Y0|X, D = 0]P(D = 0|X) − E[Yt − Y0|X, D̃ = 1]P(D̃ = 1|X)

= E[Yt − Y0|X, D = 0]P(D = 0|X) − E[
(
Yt − Y0

)
D̃|X]

This implies that

E[Yt − Y0|X, D = 0] =
E

[(
Yt − Y0

)(
1 − D + D̃

)∣∣∣X]
P(D = 0|X)

Combining with (∗) then gives

E[Yt(0) − Y0(0)|D = 2] = E
[(

Yt − Y0
)
(1 − D + D̃)P(D̃ = 1|X)

P(D = 0|X)P(D̃ = 1)

]
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Putting it all together, and it follows that

θtreat
t = E[Yt(2) − Yt(0)|D = 2]

= E[Yt(2) − Y0(0)|D = 2] − E[Yt(0) − Y0(0)|D = 2]

= E


(
Yt − Y0

)(
D̃

(
P(D = 0|X) − P(D̃ = 1|X)

)
−

(
1 − D

)
P(D̃ = 1|X)

)
P(D = 0|X)P(D̃ = 1)


= E


(
Yt − Y0

)(
1{D=2}

(
P(D = 0|X) − P(D = 2|X)

)
−

(
1 − D

)
P(D = 2|X)

)
P(D = 0|X)P(D = 2)


= E


(
Yt − Y0

)(
1{D=2}P(D = 0|X) − 1{D ̸=2}(1 − D)P(D = 2|X)

)
P(D = 0|X)P(D = 2)


= E


(
Yt − Y0

)(
1{D=2}P(D = 0|X) − 1{D=0}P(D = 2|X)

)
P(D = 0|X)P(D = 2)



The proof for θspill
t is similar. By defining D̃ = 1{D=1}, and starting from (∗),

E[Yt − Y0|D = 0, X] =
E

[
(Yt − Y0)(2 − D − D̃)

∣∣∣X]
2P(D = 0|X)

This gives

E[Yt(0) − Y0(0)|D = 1] = E
[

(Yt − Y0)(2 − D − D̃)P(D̃ = 1|X)
2P(D = 0|X)P(D̃ = 1)

]

It follows that

θspill
t = E[Yt(1) − Yt(0)|D = 1]

= E[Yt(1) − Y0(0)|D = 1] − E[Yt(0) − Y0(0)|D = 1]

= E

(Yt − Y0)
(
D̃

(
2P(D = 0|X) + P(D̃ = 1|X)

)
− (2 − D)P(D̃ = 1|X)

)
2P(D = 0|X)P(D̃ = 1)


= E

(Yt − Y0)
(
1{D=1}2P(D = 0|X) − 1{D ̸=1}(2 − D)P(D = 1|X)

)
2P(D = 0|X)P(D = 1)


= E

(Yt − Y0)
(
1{D=1}P(D = 0|X) − 1{D=0}P(D = 1|X)

)
P(D = 0|X)P(D = 1)
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