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ABSTRACT

Diagnostic pathology and histopathology images play a critical role in the diagnosis and

treatment of carcinomas. In order to achieve satisfactory performance, we usually need

a large amount of labeled data. Annotating a large number of histopathology images for

training machine learning models can be expensive and time-consuming. We explored sev-

eral machine learning approaches in a low-data regime for histopathology images, leading to a

caption generation model for histopathology images [Zhang et al., 2020b], a hyperbolic atten-

tion model for histopathology images [Zhang et al., 2020a], a deep Bayesian active learning

method [Zhang et al., 2023b] to enable efficient selection of training examples that can un-

dergo expensive annotation, and representation learning approach [Zhang et al., 2023a] that

utilize existing coarse-grained labels of whole slide images to improve model performance

on limited fine-grained data. Our experiments demonstrate that these approaches can im-

prove the performances of models in the low-data regime while maintaining high levels of

interpretability, minimizing labeling costs, and showing analytical advantages. The results

of this study provide valuable insights for future research in the area of machine learning in

low-data regimes for histopathology images.
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CHAPTER 1

INTRODUCTION

Machine learning involves the development of algorithms that can learn from and make

decisions or predictions based on data. In recent years, machine learning techniques have

demonstrated remarkable success in various domains, including computer vision, natural

language processing, and computational biology. This dissertation focuses specifically on

the application of machine learning to healthcare, notably in histopathology image analysis.

Histopathology, a crucial branch of pathology, involves the microscopic study of biological

tissues to identify diseases. With advances in medical technology, digital pathology has

come to the forefront. Digital pathology digitizes histopathological slides, enabling easier

examination, storage, and sharing of these critical images, and has greatly enhanced the

medical field.

The advent of digital pathology has introduced an abundance of complex, high-resolution

data, presenting significant analysis and interpretation challenges. The traditional methods

of examining these images, which often depend on the trained eyes of pathologists, are

increasingly strained by the volume and complexity of the data. Machine learning can

potentially facilitate this process by automating the examination of these images, leading

to faster and possibly more precise diagnoses. However, this task is not straightforward; it

demands complex algorithms to analyze the detailed patterns within the images, creating a

computationally challenging process.

In low-data settings, the challenges become even starker due to a scarcity of labeled

data. Supervised machine learning algorithms require training on labeled data, meaning in

this context, histopathology images annotated with correct diagnoses. Collecting such data

requires substantial time, resources, and the expertise of skilled pathologists, making it a

daunting task. This dissertation aims to investigate these challenges and devise new machine

learning strategies to improve the diagnostic efficiency of histopathology image analysis. The
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objective is not merely about creating better algorithms but making a significant contribu-

tion to the transformation of pathology from a traditional microscope-based discipline to a

digitized, data-driven one. The ultimate goal is to advance healthcare and, potentially, save

lives by improving diagnostic procedures.

The first stage of our research investigates machine learning methodologies that leverage

the structure of histopathology images for predicting captions and bio-markers. By leverag-

ing the power of deep neural networks, coupled with the semantic interpretation capabilities

provided by natural language processing, we aim to design a system capable of automat-

ically generating clinically relevant captions. These captions, derived from the rich visual

information present in histopathology images, provide a concise summary of vital diagnostic

details. However, the scarcity of pre-existing captions and the special hierarchical structure

of histopathology images make the tasks non-trivial. Furthermore, we amalgamate three

core concepts—multi-scale medical image analysis, attention mechanisms, and hyperbolic

embeddings into a cohesive bio-marker prediction framework. This framework underwent a

thorough evaluation of two classification tasks using histopathology image datasets. The out-

comes of our experiments reveal substantial enhancements in the performance of commonly

utilized deep learning models.

In the subsequent stage, we explore the potential of using coarse-grained labels, such

as organ-level annotations, to improve the representation learning and classification perfor-

mance of our models. By leveraging the hierarchical relationships that exist between organs

and their constituent tissues, we aim to provide a broader context for these images. This

involves using labels that denote larger, broader categories (for example, identifying the or-

gan from which a tissue sample originates) to understand finer, more specific details within

histopathology images (such as distinguishing between healthy and diseased cells). This ap-

proach could enhance the precision of classifications at a more granular level within these

complex whole-slide images.
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Our research also investigates active learning, an approach that strategically selects the

most informative samples for labeling. Since expert labeling is expensive in terms of time

and resources, integrating active learning techniques into the training process could greatly

reduce the manual effort required in data annotation, thereby improving efficiency. This

approach can be particularly advantageous in the analysis of histopathology images, where

achieving high performance usually requires a large volume of annotated data.

Overall, this dissertation provides an in-depth exploration of various strategies for ap-

plying machine learning to the complex field of histopathology image analysis, especially in

settings where labeled data is scarce. Our goal is to expand the knowledge base and capa-

bilities of machine learning in this domain while also contributing to practical advancements

in medical diagnostics and disease management. Through this research, we aim to demon-

strate the transformative potential of machine learning in healthcare, with the ultimate goal

of enhancing patient care and outcomes.

1.1 Motivation

Learning under the low-data regime in the context of histopathology images presents sev-

eral challenges. Histopathology involves the microscopic examination of tissue samples to

diagnose diseases, such as cancer, based on the appearance of cells and tissues. However,

due to the complex and high-dimensional nature of histopathology images, obtaining large

labeled datasets for training deep learning models can be challenging. Here are some specific

challenges associated with learning under the low-data regime in histopathology:

• Limited availability of labeled data: Collecting labeled histopathology images requires

expert pathologists to annotate and classify each image, which is time-consuming and

expensive. As a result, the number of available labeled images is often limited, making

it difficult to train deep learning models effectively.
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• High-dimensional data: Histopathology images are typically high-resolution and con-

tain a large number of pixels. Deep learning models require a substantial amount of

labeled data to learn complex patterns and features from such high-dimensional data.

When the available data is limited, it becomes difficult to extract meaningful and

representative features.

• Annotation variability and subjectivity: Histopathology image interpretation and an-

notation can be subjective, with different pathologists having varying opinions and

expertise. Inconsistencies in annotations can introduce noise and ambiguity in the

training data, making it challenging to train accurate and reliable models.

Mitigating these challenges requires the development of specialized techniques and strate-

gies. Multi-scale models, active learning, and representation learning are some approaches

that can be employed to address the limitations of low-data histopathology image learning.

1.2 Summary of Contributions

The primary contribution of this thesis is to investigate the machine learning methods in

low data regimes for histopathology images and to propose solutions for different appli-

cations including caption generation, whole slide image classification, active learning, and

representation learning with coarse-grained labels.

Multi-scale learning for histopathology images The analysis of histopathology im-

ages poses unique challenges due to their high-dimensional nature and the need for accu-

rate and efficient interpretation. To address these challenges, researchers have been explor-

ing innovative approaches that leverage deep learning techniques. We made two contribu-

tions: the development of caption generation models specifically designed for histopathology

whole-slide images and the integration of hyperbolic attention models into the classification

4



of histopathology images. These advancements offer novel perspectives and demonstrate

promising results in enhancing the understanding and analysis of histopathology images.

• Caption generation from histopathology images: The automatic generation of captions

from medical images offers an efficient solution for annotating histopathology images,

facilitating image retrieval tasks, and promoting the standardization of clinical ontolo-

gies. In this study, our focus lies on the development and methodical evaluation of

a novel caption generation framework specifically designed for histopathology whole-

slide images. Introducing PathCap, a deep learning multi-scale framework, we leverage

multi-scale views of whole-slide images to predict accurate and informative captions.

Through comprehensive evaluations, we demonstrate the superior performance of our

framework compared to a standard baseline model across a diverse range of human tis-

sues. Furthermore, our approach provides interpretable contextual cues that enhance

the understanding of generated captions. Additionally, we present a novel dataset

of histopathology images with captions sourced from the Genotype-Tissue Expression

(GTEx) project. This dataset serves as a valuable resource for the machine learn-

ing and healthcare community, enabling benchmarking of future caption prediction

and interpretation methods. The reference code for our work is publicly available at

https://github.com/zhangrenyuuchicago/PathCap.

• Hyperbolic attention model for histopathology image classification: Our work in-

tegrates three fundamental concepts—multi-scale medical image analysis, attention

mechanisms, and hyperbolic embeddings—into a unified framework. Notably, the for-

mulation and evaluation of hyperbolic attention models for multi-scale medical image

analysis have remained unexplored until now. In this paper, we present a compre-

hensive evaluation of a hyperbolic attention model on two classification tasks using

histopathology image datasets. Our experiments demonstrate significant improvements

compared to commonly used deep learning models. By directly capturing the multi-
5
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scale structure of histopathology images, our method effectively highlights one or more

discriminative structures at various scales, facilitated by the inherent nature of the hy-

perbolic attention mechanism. We release the reference code for our approach, which

is available at https://github.com/zhangrenyuuchicago/PathHyperbolic.

Both the caption generation model, PathCap, and the hyperbolic attention model have

demonstrated notable performance improvements and enhanced interpretability in the anal-

ysis of histopathology images. PathCap outperforms standard baseline models in accurately

predicting informative captions, while the hyperbolic attention model effectively highlights

discriminative structures at various scales, leading to significant improvements over com-

monly used deep learning models. These advancements not only contribute to the field

of histopathology image analysis but also provide valuable insights and tools for improved

understanding and interpretation of complex medical image data.

Deep Bayesian active learning approach for data acquirement In the context of

histopathology image analysis, where labeled data is often limited, researchers have been

exploring various methods to enhance model performance. One such method is active learn-

ing, which offers a smarter approach to selecting samples for expert annotation, resulting in

improved performance while minimizing the query cost. Active learning has demonstrated

its data efficiency across numerous fields, including histopathology. Existing active learn-

ing algorithms, especially in the context of batch-mode deep Bayesian active models, rely

heavily on the quality of uncertainty estimations of the model and are often challenging to

scale to large batches. In this paper, we propose Batch-BALanCe, a scalable batch-mode

active learning algorithm, which combines insights from decision-theoretic active learning,

combinatorial information measure, and diversity sampling. At its core, Batch-BALanCe

relies on a novel decision-theoretic acquisition function that facilitates differentiation among

different equivalence classes. Intuitively, each equivalence class consists of hypotheses (e.g.,
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posterior samples of deep neural networks) with similar predictions, and Batch-BALanCe

adaptively adjusts the size of the equivalence classes as learning progresses. To scale up

the computation of queries to large batches, we further propose an efficient batch-mode ac-

quisition procedure, which aims to maximize a novel information measure defined through

the acquisition function. We show that our algorithm can effectively handle realistic multi-

class classification tasks and achieves compelling performance on several benchmark datasets

for active learning under both low- and large-batch regimes. Reference code is released at

https://github.com/zhangrenyuuchicago/BALanCe.

Representation learning with coarse-grained labels for histopathology images

Classifying clinical properties directly from histopathology images is a vital step toward im-

proving and augmenting processes in clinical and healthcare settings. A large number of

labels for histopathology images are needed for models to get a good performance. To ad-

dress this issue, we introduce a novel representation learning approach designed to leverage

the hierarchical relationship between organs, which bear coarse-grained labels, and tissues,

which carry fine-grained labels. The coarse-grained labels are easier to get than the fine-

grained labels and there are many publicly available coarse-grained labels for histopathology

images. The proposed few-shot algorithm, requiring only a handful of fine-grained anno-

tated samples, learns representations that enable proficient fine-grained label predictions.

Empirical evaluations conducted across diverse histopathology image datasets demonstrate

the algorithm’s efficacy, with the model exhibiting superior performance in comparison to

established pretraining and self-supervised learning techniques. A theoretical analysis of

the algorithm is also presented. These findings suggest that our approach may provide a

promising avenue for the development of efficient learning models for histopathology im-

ages, even in the presence of limited fine-grained data. We released our reference code in

https://github.com/zhangrenyuuchicago/FACILE.
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1.3 Thesis Organization

This thesis is organized into five chapters, each focusing on a specific aspect of machine

learning in the low-data regime for histopathology images. The chapters are structured as

follows:

Chapter 1: Introduction The first chapter provides an introduction to the research

topic, outlining the motivation, objectives, and research questions addressed in the thesis.

It highlights the significance of machine learning in the context of histopathology image

analysis and sets the foundation for the subsequent chapters.

Chapter 2: Background The second chapter presents a comprehensive background on

the relevant theories, methodologies, and techniques in machine learning for histopathology

image analysis. It reviews the existing literature on low-data regime approaches, active learn-

ing, caption generation, and learning with coarse-grained labels. This chapter establishes

the theoretical framework for the subsequent chapters and provides a solid understanding of

the key concepts.

Chapter 3: Caption Generation Chapter 3 delves into the topic of caption genera-

tion for histopathology images. It explores the different approaches, such as deep learning

models and natural language processing techniques, used to generate informative and accu-

rate captions from histopathology images. The chapter discusses the challenges specific to

histopathology images and presents novel methods and algorithms to address them.

Chapter 4: This chapter discusses the integration of deep learning in computer vision,

focusing on histopathology imaging and the limitations of traditional Euclidean embeddings

for complex hierarchical data. It introduces an innovative approach using hyperbolic spaces

to improve the handling and classification of large-scale histopathology images. The text
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highlights the potential of this method to enhance histopathology image analysis by effec-

tively combining different magnifications and details within a hyperbolic framework.

Chapter 5: Learning with Coarse-Grained Labels Chapter 5 focuses on learning

with coarse-grained labels in histopathology image analysis. It investigates the use of easily

accessible coarse-grained annotations, such as organ-level labels, to enhance representation

learning and improve the classification and analysis of histopathology images. The chapter

presents novel methodologies that leverage the hierarchical relationships between organs and

tissues to facilitate learning in the low-data regime.

Chapter 6: Active Learning Chapter 6 explores the use of active learning techniques in

histopathology image analysis. It discusses strategies to intelligently select the most informa-

tive samples for annotation, thereby maximizing the effectiveness of the limited labeled data

available. The chapter investigates the integration of active learning with machine learning

models for histopathology image classification and other tasks, highlighting the benefits and

challenges associated with this approach.

Chapter 7: Conclusion and Future Directions Following the main chapters, the

thesis concludes with a summary of the key findings, contributions, and implications of the

research. It also highlights potential avenues for future research in machine learning for

histopathology image analysis in the low-data regime.

1.4 List of Publications

This dissertation is based on materials from our following conference publications:

• Renyu Zhang, Christopher Weber, Robert Grossman, and Aly A Khan. Evaluating

and interpreting caption prediction for histopathology images. In Machine Learning

for Healthcare Conference (MLHC), pages 418–435. PMLR, 2020b.
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• Renyu Zhang, Aly A Khan, and Robert L Grossman. Evaluation of hyperbolic at-

tention in histopathology images. In 2020 IEEE 20th International Conference on

Bioinformatics and Bioengineering (BIBE), pages 773–776. IEEE, 2020a.

• Renyu Zhang, Aly A Khan, Robert L Grossman, and Yuxin Chen. Scalable batch-

mode deep Bayesian active learning via equivalence class annealing. In The Eleventh

International Conference on Learning Representations (ICLR), 2023.

• Renyu Zhang, Aly A Khan, Yuxin Chen, and Robert L Grossman. Enhancing Instance-

Level Image Classification with Set-Level Labels. In The Twelfth International Con-

ference on Learning Representations (ICLR), 2024.
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CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Histopathology Images

We provide an overview of the processes involved in tissue preparation, staining, and digiti-

zation of histological slides. In the typical workflow at a hospital, tumor excisions or biopsies

are performed in the operating room, and the collected material is then sent to the pathology

lab for analysis.

The initial step in the tissue preparation process involves formalin fixation and embedding

in paraffin. The tissue samples are immersed in formalin to ensure preservation and then

embedded in paraffin blocks. To create thin sections for analysis, a microtome, which is

a precise cutting instrument, is used to cut sections with a thickness of 3 − 5µm. These

sections are then mounted on glass slides.

Although the structures of interest in the tissue, such as nuclei and cytoplasm, are not

easily visible on the mounted sections, they can be highlighted through staining. The stan-

dard staining protocol involves the use of hematoxylin and eosin (H&E). Despite being in

use for nearly a century, H&E staining remains the primary diagnostic and prognostic pro-

cedure for most patients. Hematoxylin binds to DNA, resulting in a blue/purple coloration

of the nuclei, while eosin binds to proteins, dyeing other structures such as the cytoplasm

and stroma pink.

By employing the H&E staining technique, pathologists can identify and analyze cellular

structures, aiding in the diagnosis and characterization of tissue samples. It serves as a

fundamental step in histopathology analysis, providing valuable information for medical

professionals.

In addition to tissue preparation and staining, digitization of histological slides has

become increasingly important. The process involves capturing high-resolution images of
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stained slides using digital scanners. This digitization allows for convenient storage, sharing,

and analysis of histopathology images, facilitating remote consultations, research collabora-

tions, and computer-aided diagnostic systems.

2.2 Caption Prediction

Early image caption generation focused on detection [Kulkarni et al., 2013] followed by

template filling. Since the rise of deep learning, most caption generation models have adopted

the encoder-and-decoder paradigm [Vinyals et al., 2015b, Xu et al., 2015]. These methods

typically use non-medical images, such as nature scenes found in ImageNet [Russakovsky

et al., 2015b]. Typically, the encoder is a CNN that extracts features from input images, and

the decoder uses an LSTM [Hochreiter and Schmidhuber, 1997] to generate tokens step by

step. Notably, Xu et al. [2015] incorporated the attention mechanism into the encoder-and-

decoder paradigm by feeding an attention-weighted combination of features to the LSTM.

This approach has proven to be very effective in terms of performance and now defines

the standard baseline caption model. However, the visualization and interpretation of the

attention weight on the input images can be very ambiguous and non-specific. Subsequent

work in this field focused on further exploiting attention, e.g., You et al. [2016] plugged the

attention-weighted features over semantic concepts into hidden states of LSTM and words

generation layers, and Liu et al. [2017a] proposed to use instance segmentation to improve

the correctness of attention.

More closely related to medical imaging, Zhang et al. [2017] was aimed at generating semi-

structured pathology descriptions. In order to gain effective gradient flow for training, they

utilized a predefined subset of descriptions extracted from the reports. They demonstrated

slightly better performance in their experiments compared to a standard baseline caption

model. Jing et al. [2017] also adopted an encoder-and-decoder paradigm for X-ray images

and developed a hierarchical LSTM model to specifically overcome the challenges of long
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paragraphs in clinical reports.

Collectively, these methods all require non-trivial changes to adapt to histopathology

images due to the lack of instance segmentation information in routine imaging data and

robust clinical pathology instance detectors. Furthermore, these methods require rescaling

whole-slide images for implementation, causing loss of high-resolution information about the

sample tissue and morphology and thus, limiting their ability to utilize full-resolution data

for generating salient captions.

2.3 Active Learning

Active learning (AL) [Settles, 2012] characterizes a collection of techniques that efficiently

acquire data for training machine learning models. In the pool-based setting, an active

learner selectively queries the labels of data points from a pool of unlabeled examples and

incurs a certain cost for each label obtained. The goal is to minimize the total cost while

achieving a target level of performance. A common practice for AL is to devise efficient

surrogates, also known as acquisition functions, to assess the effectiveness of unlabeled data

points in the pool. In our study, we designed a novel acquisition function to better suit

Bayesian neural networks and data characteristics, leading to more cost-effective learning.

Additionally, the methodologies reviewed here influenced the design of our data selection

strategies.

There has been a vast body of literature and empirical studies [Huang et al., 2010, Houlsby

et al., 2011, Wang and Ye, 2015, Huang et al., 2016, Sener and Savarese, 2017, Ducoffe and

Precioso, 2018, Ash et al., 2019, Liu et al., 2020, Yan et al., 2020] suggesting a variety of

heuristics as potential acquisition functions for AL. Among these methods, Bayesian Active

Learning by Disagreement (BALD) [Houlsby et al., 2011] has attained notable success in

the context of deep Bayesian AL, while maintaining the expressiveness of Bayesian models

[Gal et al., 2017, Janz et al., 2017, Shen et al., 2017]. Concretely, BALD relies on a most
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informative selection (MIS) strategy—a classical heuristic that dates back to Lindley [1956]—

which greedily queries the data point exhibiting the maximal mutual information with the

model parameters at each iteration. Despite the overwhelming popularity of such heuristics

due to the algorithmic simplicity [MacKay, 1992, Chen et al., 2015c], the performance of

these AL algorithms unfortunately is sensitive to the quality of uncertainty estimations of

the underlying model, and it remains an open problem in deep AL to accurately quantify

the model uncertainty, due to limited access to training data and the challenge of posterior

estimation.

Bayesian active learning Batch-mode AL has shown promising performance for practi-

cal AL tasks. Recent works, including both Bayesian [Houlsby et al., 2011, Gal et al., 2017,

Kirsch et al., 2019] and non-Bayesian approaches [Sener and Savarese, 2017, Ash et al., 2019,

Citovsky et al., 2021, Kothawade et al., 2021, Hacohen et al., 2022], have been enormous

and we hardly do it justice here. We mentioned what we believe is the most relevant in the

following. Among the Bayesian algorithms, Gal et al. [2017] choose a batch of samples with

top acquisition functions. These methods can potentially suffer from choosing similar and

redundant samples inside each batch. Kirsch et al. [2019] extended Houlsby et al. [2011]

and proposed a batch-mode deep Bayesian AL algorithm, namely BatchBALD. Chen and

Krause [2013b] formalized a class of interactive optimization problems as adaptive submod-

ular optimization problems and proved a greedy batch-mode approach to these problems is

near-optimal as compared to the optimal batch selection policy. ELR focuses on a Bayesian

estimate of the reduction in classification error and takes a one-step-look-ahead strategy [Roy

and McCallum, 2001]. Inspired by ELR, WMOCU [Zhao et al., 2021] extends MOCU [Yoon

et al., 2013] with a theoretical guarantee of convergence. However, none of these algorithms

extend to the batch setting.
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Non-Bayesian active learning Among the non-Bayesian approaches, Sener and Savarese

[2017] proposed a CoreSet approach to select a subset of representative points as a batch.

BADGE [Ash et al., 2019] selects samples by using the k-MEANS++ seeding algorithm from

the AL pool, which are the gradient embeddings of DNN’s last layer induced by hallucinated

labels. Contemporary works propose AL algorithms that work for different settings including

text classification [Tan et al., 2021], domain shift and outlier [Kirsch et al., 2021b], low-budget

regime [Hacohen et al., 2022], very large batches (e.g., 100K or 1M) [Citovsky et al., 2021],

rare classes, and OOD data [Kothawade et al., 2021].

2.4 Few-shot Learning

In recent years, few-shot learning (FSL) has gained popularity as a method for adapting

models to new tasks with limited labeled data [Vinyals et al., 2016, Finn et al., 2017, Wang

and Hebert, 2016, Triantafillou et al., 2017, Snell et al., 2017, Sung et al., 2018, Wang

et al., 2018, Oreshkin et al., 2018, Rusu et al., 2018, Ye et al., 2020, Lee et al., 2019b, Li

et al., 2019]. In traditional supervised learning approaches, a large amount of labeled data

is typically required to learn a robust model. However, in real-world scenarios, obtaining

enough labeled data for each task is frequently difficult or impossible. FSL addresses this by

employing techniques that allow a model to generalize from a few data points to new tasks

and classes not seen during training, simulating a more human-like rapid learning ability.

The categorization of FSL methods is often grouped into three main categories based on

their underlying principles and methodologies: metric learning, model-based Learning, and

optimization-based Learning. Each of these categories utilizes different strategies to tackle

the small sample size problem inherent in FSL.

Metric learning methods focus on learning a similarity function that maps inputs to an

embedding space where the distance between similar items is minimized, and the distance

between dissimilar items is maximized. Siamese Networks [Koch et al., 2015] utilize a twin
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network architecture that learns to differentiate between pairs of inputs, training on whether

pairs are similar or not. Prototypical Networks [Snell et al., 2017] learn a metric space in

which classification can be performed by computing distances to prototype representations

of each class that are the mean of the embedded points belonging to that class. Match-

ing Networks [Vinyals et al., 2016] frame the FSL problem as a weighted nearest neighbor

classification, updated by an attention mechanism over a learned embedding.

Model-based methods attempt to learn a predictive model that can quickly adapt to new

tasks with minimal data. Memory-augmented neural networks [Santoro et al., 2016] incorpo-

rate external memory components to rapidly assimilate new data and make predictions with

them, facilitating fast learning and adaptation. Meta Networks [Munkhdalai and Yu, 2017]

implement meta-learning through fast parameterization and slow learning weights, enabling

quick adaptation to new tasks.

Optimization-based learning methods are designed to optimize the model parameters

effectively for fast learning on new tasks, typically through the initialization of model pa-

rameters that are particularly adaptable. Model-Agnostic Meta-Learning (MAML) [Finn

et al., 2017] optimizes a model’s initial parameters so that a small number of gradient up-

dates will lead to good performance on a new task. Reptile [Nichol and Schulman, 2018] is

a simplification of MAML that performs stochastic gradient descent on a small number of

tasks and moves the initialization towards the weights that perform well on these tasks.

Self-supervised learning has recently emerged as a promising approach for FSL by leverag-

ing unlabeled data to learn useful representations without the need for extensively annotated

datasets [Brown et al., 2020, Lu et al., 2022]. This method is especially valuable in scenarios

where labeled data is scarce or costly to acquire. In the realm of image classification, Gidaris

et al. [2019], Mangla et al. [2020], Su et al. [2020] utilize the pretext tasks of self-supervised

learning as an auxiliary loss to enhance the representation learning of supervised pretraining.

However, the performance of these methods significantly degrades without supervision. An-
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other approach involves unsupervised FSL, where Antoniou and Storkey [2019], Hsu et al.

[2018], Khodadadeh et al. [2019, 2020], Lee et al. [2020], Medina et al. [2020], Qin et al.

[2020], Lu et al. [2022] adapt existing supervised meta-learning methods to unsupervised

versions. Additionally, similar efforts in continual [Gallardo et al., 2021] and open-world

learning [Dhamija et al., 2021] also benefit from self-supervised learning to enhance their

performance.

FSL in medical images is still at its early stage [Yang et al., 2022]. Mahajan et al. [2020]

proposed an FSL method named Meta-DermDiagnosis for skin lesion datasets. Chen et al.

[2021c] used momentum contrastive learning [He et al., 2020] to train an encoder with a large

and publicly available lung dataset and adopt the prototypical network [Snell et al., 2017]

for classification. Medela et al. [2019] proposed to train VGG16 [Simonyan and Zisserman,

2014] with a non-linear version of triplet loss [Schroff et al., 2015] and fine-tune a SVM to

test on new tasks. Sikaroudi et al. [2020] explored the performance of DNN and triplet loss

[Schroff et al., 2015] in the area of representation learning and applied FSL to two publicly

available datasets: The Cancer Genome Atlas (TCGA) and colorectal cancer (CRC) dataset

[Kather et al., 2016]. Teh and Taylor [2020] showed that features learned from weakly

labeled dataset, i.e., KimiaPath24 [Babaie et al., 2017], are transferable and allow us to

achieve highly competitive path classification results on CRC dataset [Kather et al., 2016]

and PatchCamelyon (PCam) dataset [Veeling et al., 2018] while using an order of magnitude

less labeled data. Sikaroudi et al. [2020] proposed a benchmark for the few-shot classification

of histology images. Yang et al. [2022] conducted investigations on more settings including

generalized few-shot learning and hetero-/homo-geneous few-shot selection.

2.5 Self-supervised Learning

Self-supervised learning (SSL) has emerged as a promising approach in machine learning,

particularly in the field of computer vision, for learning representations without the need
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for explicit labels. We follow the survey of Uelwer et al. [2023] and categorize SSL methods

into five main groups: pretext task methods, information maximization methods, clustering-

based methods, contrastive learning methods, and teacher-student methods. In our research,

we employ and compare with SSL methods, which have proven effective in previous studies

for histopathology images, to train our few-shot learning model [Yang et al., 2022]. This

choice was influenced by their demonstrated ability to enhance feature discriminability with

minimal labeled data. Furthermore, we integrate insights from the latent augmentation

method [Yang et al., 2022] to improve the robustness and generalizability of our model.

Pretext task methods revolve around the idea of creating a supervised learning scenario

wherein the model is trained to predict artificially created labels. Tasks such as predicting

the rotation of an image [Gidaris et al., 2018], solving jigsaw puzzles, or reconstructing

images [Le Cun and Fogelman-Soulié, 1987, Vincent et al., 2010, Rifai et al., 2011, Kingma

and Welling, 2013] are typical examples. These tasks encourage the model to focus on

the inherent structure of the data necessary for performing these tasks, thereby learning

useful features for downstream applications. For instance, the Rotation Network encourages

learning features that are orientation-invariant, useful for tasks where orientation changes

but the semantic content does not.

Information maximization methods aim to learn representations that are invariant to

input transformations while maximizing the information content in the learned features.

Approaches like Barlow Twins [Zbontar et al., 2021] and VICReg [Bardes et al., 2021] work

by reducing redundancy among the features, thus preventing the collapse of representations

(where different inputs might produce the same output features). These methods often em-

ploy statistical constraints such as cross-correlation matrices between different augmented

views of the same image to ensure the learned features are both diverse and rich in informa-

tion.

Clustering-based methods, such as DeepCluster [Caron et al., 2018] and SwAV [Caron
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et al., 2020], utilize unsupervised clustering techniques to group the data into clusters, which

are then used as pseudo-labels for training. This approach not only helps in learning features

that are invariant to input modifications (as the same object in different orientations should

ideally belong to the same cluster) but also aligns closely with how humans categorize objects

in the real world—based on their overall similarity rather than specific labels.

Contrastive learning methods, like SimCLR [Chen et al., 2020a,b] and MoCo [He et al.,

2020, Chen et al., 2020c, 2021d], leverage the contrast between similar (positive) and dissim-

ilar (negative) examples to guide the learning process. By pushing apart dissimilar examples

and pulling together similar ones, these methods encourage the model to learn generalizable

features that robustly categorize the data. The effectiveness of these methods often hinges

on the choice of positive and negative samples, the transformation strategies used to generate

these samples, and the architectural details like the use of projection heads.

Teacher-student methods such as BYOL [Grill et al., 2020] and SimSiam [Chen and

He, 2021] involve pairs of networks where the ’student’ learns to predict the output of the

’teacher’. This setup is beneficial as it stabilizes the learning process—the teacher gradu-

ally evolves during training, providing a moving target for the student’s predictions, which

prevents overfitting and helps the student explore a richer set of features. Notably, these

methods do not require negative pairs (common in contrastive learning), simplifying training

and reducing the potential for representational collapse.

These SSL methods have shown impressive performance in learning powerful representa-

tions from unlabeled data. They have been successfully applied to various computer vision

tasks, such as image classification, object detection, and semantic segmentation. The ef-

fectiveness of SSL has opened up new possibilities for learning from unannotated data and

reducing the dependency on large labeled datasets.
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CHAPTER 3

CAPTION GENERATION FOR HISTOPATHOLOGY IMAGES

3.1 Motivation

In the past decades, significant advancements in clinical pathology, such as biospecimen fix-

ation, staining, and digital microscopy, have revolutionized the field by enabling the routine

digitization of histopathology slides [Bera et al., 2019]. Histopathological images contain a

wealth of clinical diagnostic information. For instance, in colonic biopsies, they offer insights

into architectural details, including crypt abnormalities and the distribution of inflamma-

tory cells, which provide valuable insights into disease processes. Anatomic pathologists

have developed specialized language and lexicons to effectively communicate these descrip-

tive findings. However, automatically describing the content of histopathology images poses

a grand challenge in machine learning, as it requires the integration of computer vision

and natural language processing disciplines. Accurate machine learning methods capable of

generating and visualizing captions from histopathology images have the potential to revo-

lutionize various applications. Firstly, they can support pathologists by providing caption

prompts and visual cues to facilitate clinical review. Secondly, they can enable image re-

trieval tasks, such as searching for specific labels or descriptions in archival histopathology

slide images. The development of such methods holds tremendous promise for enhancing the

practice of histopathology and expanding its applications in healthcare.

The precise characterization of fine-grained morphological and pathological features that

distinguish various classifications in histopathology traditionally relies on expert visual as-

sessment, necessitating years of training and honing visual skills [Brugnara et al., 1994].

Surprisingly, the application of machine learning techniques for automatically generating

natural language descriptions from histopathology images has received limited attention, and

the availability of benchmark datasets for histopathology caption prediction tasks remains
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inadequate. Motivated by this gap, our study aims to methodically evaluate the feasibility of

generating short, clinically relevant descriptions (captions) from H&E histopathology whole-

slide images using automated methods. Furthermore, we contribute a benchmark dataset

tailored for the machine learning community, promoting advancements in this domain and

encouraging further research in histopathology caption generation.

Deep neural networks have demonstrated remarkable success in various complex tasks

involving histopathology images, such as tissue classification [Bejnordi et al., 2017], disease

outcome prediction [Mobadersany et al., 2018], and genetic alteration prediction [Coudray

et al., 2018]. These networks can directly learn fine-grained features from raw images in

supervised learning settings. However, applying standard machine learning techniques to

caption prediction in histopathology faces significant challenges. Firstly, histopathology im-

ages often exceed one billion pixels (gigapixel), posing memory limitations for off-the-shelf

deep neural network models. Rescaling high-resolution images to circumvent memory con-

straints can lead to the loss of crucial contextual and spatial information, hindering the

generation of relevant descriptions from whole-slide histopathology images. Secondly, there

is a need for methods to evaluate and visually interpret the generated captions, enabling their

effective adoption in clinical practice. Consequently, the joint task of predicting and inter-

preting captions in the context of gigapixel-sized images presents a technically demanding

problem that is largely unique to the healthcare domain.

We present PathCap, a novel multi-scale view framework designed for histopathology

whole-slide images. PathCap employs a two-step approach, starting with the clustering of

high-resolution tiles extracted from the images. Subsequently, it combines a single low-

resolution thumbnail view of the whole-slide image with randomly sampled tiles from the

high-resolution clusters. Through our experiments, we demonstrate that PathCap effectively

leverages and integrates information from both high-resolution and low-resolution views. To

evaluate our framework, we conducted tests on data obtained from the Genotype-Tissue
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Expression (GTEx) project [Lonsdale et al., 2013]. Additionally, we collaborated with a

pathologist to evaluate our caption predictions, enabling us to identify both the limitations

and opportunities associated with caption prediction from histopathology images. Parts of

this chapter are replicated from Zhang et al. [2020b] with some modifications.

3.2 Methods

3.2.1 Overview

The tissue regions within H&E whole-slide images {si}Mi=1 are tiled into non-overlapping

sections (1000x1000px) {tij}N
i

j=1. Here M is the number of whole-slide images in the dataset.

The N i is the number of tiles that contain tissues and are extracted from slide si. The tissue

region is deduced by selecting tiles with an average grayscale pixel value in the range [0.2,

0.7]. An autoencoder is trained on tissue containing tiles {tij}N
i

j=1 using both reconstruction

loss and triplet loss. We cluster the tiles {tij}N
i

j=1 extracted from each slide si based on the

embeddings {eij}N
i

j=1 learned from the autoencoder. For simplicity, we focus our study on

k-means, but other clustering approaches can be used as well. K-means takes a set of vectors

as input, in our case the embedding produced by an autoencoder, and clusters {eij}N
i

j=1 into

K distinct groups {Ci
k}Kk=1 based on a Euclidean distance. Thus, if we fix the cluster number

K as 5, the tiles from tissue regions in each histopathology image are clustered into 5 groups.

Next, a rescaled thumbnail bi and tiles {tik}Kk=1 sampled from each cluster {Ci
k}Kk=1 of

a slide si are fed into our caption generation model (PathCap) during training and testing.

If the cluster number is set to K = 5, five tiles, 1 from each cluster, are sampled randomly.

The thumbnail bi is used to initialize the LSTM, and tiles {tik}Kk=1 are fed to the LSTM

step by step. Our attention module is based on the sampled tiles. To enable visualization

of the attention across the whole slide image, we can show the attention weights over all

tiles {tik}Kk=1 from a given cluster {Ci
k}Kk=1. We used PyTorch to implement our model
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Vinodababu [2019].

3.2.2 Metric Learning with Triplet Loss

A key step in PathCap involves clustering semantically similar high-resolution tiles from

histopathology whole-slide images. In order to cluster tiles within a whole-slide image, we

sought to learn embeddings for arbitrary image tiles such that similar tiles have similar

embeddings. To accomplish this we used metric learning, which aims to produce a feature

space F with a certain metric structure, where similarity can be captured by some distance

function, typically the Euclidean distance [Ho et al., 2019]. In the context of deep learn-

ing, classic metric learning uses no additional layers. Several variants have been proposed

[Movshovitz-Attias et al., 2017], [Sohn, 2016], [Hadsell et al., 2006], and [Chopra et al., 2005];

among which triplet loss [Schroff et al., 2015], [Wang et al., 2014], [Bell and Bala, 2015], and

[Weinberger and Saul, 2009] is the most popular. In practice, triplets make the training dif-

ficult by increasing the sample number cubically. Many methods have sought to accelerate

the training [Wang et al., 2014], [Bell and Bala, 2015], [Schroff et al., 2015], and [Oh Song

et al., 2016].

An autoencoder is trained on all tissue containing tiles {tij} extracted from all slides

{si}Mi=1 in the dataset. An autoencoder is an unsupervised method that generates a small

compressed feature representation or embedding for each input sample. These features can

capture the variance of the whole dataset while exhibiting a small amount of reconstruction

loss. The large amount of tiles extracted from gigapixel histopathology slides makes it

computationally expensive to process all the tiles from a slide within one single pass. Instead,

we randomly sample a limited number of tiles for each slide.

To learn a more robust embedding, in addition to the reconstruction loss, we use triplet

loss. Specifically, during the training of the autoencoder, the data loader returns a set of

triplet (tij , t
i
k, t

i
l) tiles from each slide si. tij is the anchor tile. tik is a positive example of tij .
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(a) Anchor tile (b) Positive tile (c) Negative tile

Figure 3.1: Example tiles used for triplet loss. (a) is the anchor tile showing colonic mu-
cosa, (b) shows predominantly colonic mucosa, and (c) shows mostly smooth muscle (from
muscularis propria). (b) and (c) correspond to positive and negative samples respectively
for triplet loss.

Figure 3.2: Example clustering visualization. The box color of each tile represents the
cluster membership (K = 5). The tile cluster colors demonstrate that tiles in a cluster are
semantically coherent across and within pieces.
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Here we define positive examples as an adjacent tile. til is a negative example of tij , which

means til is not adjacent to tij . Tile examples can be seen in Figure. 3.1. The loss is as

follows:

L(tij , t
i
k, t

i
l) = µ ·max(d(eij , e

i
k)− d(eij , e

i
l) +m, 0) + d(tij , D(eij))

E is encoder and D is decoder. eij = E(tij). d(·, ·) represents the distance. m is the margin

and µ is the factor for triplet loss. We use mean squared deviation as the distance.

We train the autoencoder with the Adam method [Kingma and Ba, 2014]. The autoen-

coder is trained for 4 epochs. After the training of the autoencoder is finished, we use the

autoencoder to obtain representations for all the tiles. For each slide, we perform k-means

clustering for all the tiles in the slide. Clustering example is shown in Figure. 3.2.

3.2.3 Neural Network Architecture

Low-resolution thumbnail images are used to initialize the LSTM [Hochreiter and Schmidhu-

ber, 1997]. An attention mechanism on tiles is adopted for each step of generating captions,

following the approach from Ilse et al. [2018]. Overall, PathCap contains three modules

(Figure. 3.3): the thumbnail encoder, tiles encoder, and decoder.

For the thumbnail encoder part, the standard ResNet-18 [He et al., 2016] extracts the fea-

ture vector from a given input image thumbnail bi. The feature vector is linearly transformed

and then used to initialize LSTM.

The tile encoder contains another ResNet-18 to extract representations from tiles {tik}Kk=1.

Let Hi = {hik}Kk=1 be a bag of K representations of K tiles from different clusters {Ci
k}Kk=1

of a slide si. The attention-weighted representation zt at step t for a slide si is

zt =
K∑
k=1

αtkhk
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Figure 3.3: Overall architecture of PathCap. One ResNet-18 is used to extract visual features
from the thumbnail of a histopathology image and pass it to the LSTM. The other ResNet-18
extracts features from randomly sampled tiles from different clusters of the histopathology
image and passes them to the attention module and LSTM step by step.

where:

αtk =
exp(wT tanh(V [hk,m

t])∑K
g=1 exp(w

T tanh(V [hg,mt])

mt is the hidden state of LSTM at step t, and w and V are parameters of two linear layers.

[·, ·] is the concatenation operation.

For the decoder part of PathCap, source and target texts are predefined. For example, if

the image description is “2 pieces, 15% vessel stroma, rep delineated", the source sequence

is a list containing [‘<start>’, ‘2’, ‘pieces’, ‘,’, ‘ 15%’, ‘vessel’, ‘stroma’, ‘rep’, ‘delineated’]

and the target sequence is a list containing [‘2’, ‘pieces’, ‘,’, ‘ 15%’, ‘vessel’, ‘stroma’, ‘rep’,

‘delineated’, ‘<end>’]. Using these source and target sequences and the feature vector, the

LSTM decoder is trained as a language model conditioned on the image feature vector.

Notably, we can use the attention mechanism to extract features from sampled tiles and

visualize the weights when generating each word of a caption for histology images.
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(a) Slide thumbnail (b) Without triplet loss (c) With triplet loss

Figure 3.4: Example tile clustering (K =5) with triplet loss. (a) is the original slide. (b)
and (c) show the tile clustering after we train the autoencoder without and with triplet loss
respectively. The colors of the boxes show the cluster membership.

3.2.4 Data Augmentation and Hyperparameter Settings

Each training slide contained between 10 to 1000 tiles (median 372). During the autoencoder

and PathCap training, we applied several data augmentation strategies similar to Liu et al.

[2017b] to improve model robustness. First, we randomly applied left-right and top-down

flips. Second, we perturbed color: brightness with a maximum delta of 64/255, saturation

with a maximum delta of 0.25, hue with a maximum delta of 0.04, and contrast with a max-

imum delta of 0.75. The Adam optimizer [Kingma and Ba, 2014] and validation data were

used for parameter learning. Both the ResNet-18 for thumbnails and tiles were fine-tuned

with a learning rate of 1e-4. The decoder’s learning rate was 4e-4. We decay the learning rate

with factor 0.8 if there is no improvement for 8 consecutive epochs, and terminate training

if there is no improvement for 20 consecutive epochs.

3.2.5 Cohort

We downloaded all clinical slides from the Genotype-Tissue Expression (GTEx) portal.1 The

GTEx project aims to provide the scientific community with a common resource with which

to study human gene expression and regulation and its relationship to genetic variation.

Notably, the GTEx Portal also provides open access to histopathology imaging data of

donor tissue and histopathology notes describing the tissue sample quality. An example can

1. http://gtexportal.org/home/histologyPage
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be seen in Figure. 3.5.

Figure 3.5: Example slide and caption from GTEx sample GTEX-131XE-0826: 6 pieces; 4
pieces have full thickness elements with well preserved mucosa; 2 have no mucosa (in this
section).

After selecting slides with captions and removing slides with sparse tissue content, we cu-

rated 9727 slide-caption pairs spanning 41 different tissue types. These pairs were randomly

split into 7795 training, 948 validation, and 984 sized testing sets.

For the imaging data, we did not use any preprocessing methods on the whole-slide

images. All histopathology slide images were subjected to digital tissue segmentation and

segmented regions were clipped into non-overlapping 1000x1000px sized sections at 20x mag-

nification. We removed tiles with an intensity greater than 0.70 or less than 0.2 to remove

the background. For the caption data, all the captions were converted to lowercase. Tokens

with less than 5 frequency were removed from the captions, resulting in 971 tokens that

cover 95.06% word occurrences in the dataset.
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3.3 Results on Real Data

3.3.1 Results on Caption Generation

We first compared PathCap to a baseline model, which only takes low-resolution thumbnails

as input and uses the Xu et al. [2015] approach in Table 3.1. For each step generating words,

the model follows an attention mechanism and gives a weight for the spatial features extracted

from thumbnails by ResNet-18 [He et al., 2016]. We used the Microsoft COCO [Chen et al.,

2015a] tool to quantitatively compare the performance of models with different inputs. Here

we used beam size = 1 and metrics including BLEU (columns labeled B-1, B-2, B-3, and

B-4) [Papineni et al., 2002], Meteor [Denkowski and Lavie, 2014], Rouge-L [Lin, 2004] and

CIDEr Vedantam et al. [2015]. We also examined a version of PathCap that only used tiles

and without access to a thumbnail view, and found that using tiles alone performed slightly

better than the baseline model. Taken together, PathCap, which combines information from

high-resolution tile and low-resolution thumbnail views performed the best. All the metrics

of PathCap are averaged over 20 rounds of testing.

Table 3.1: Performance on test set

Method B-1 B-2 B-3 B-4 METEOR ROUGE_L CIDEr
Baseline 0.3822 0.2833 0.1996 0.1377 0.1958 0.4282 0.8936

PathCap 0.4046 0.2986 0.2114 0.1455 0.2059 0.4290 0.9038
Tiles-only 0.3944 0.2905 0.2040 0.1383 0.2032 0.4312 0.9003

3.3.2 Results on Metric Learning

In order to demonstrate the superiority of triplet loss on tile embeddings, we trained two

autoencoders. One autoencoder was trained only with reconstruction (mean squared error,

MSE) loss. The other autoencoder was trained with reconstruction loss and triplet loss.

The encoder part of the autoencoder was composed of two convolutional layers and two

maxpooling layers. The output of the encoder (embedding) is of length 460. The decoder
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part contained three convolutional layers. The µ was set to 0.1, and the margin 0.001. We

trained two separate PathCap models with the clusters using the representations from each

of the two different autoencoders.

We observed that the two different autoencoders produced qualitatively different tile

clusterings (Figure. 3.4). Next, we used the Microsoft COCO [Chen et al., 2015a] tool again

to quantitatively compare the performance of models with different metrics, including BLEU

[Papineni et al., 2002], Meteor [Denkowski and Lavie, 2014], Rouge-L [Lin, 2004] and CIDEr

[Vedantam et al., 2015]. Table 3.2 shows the performance of our models when we used

different metric learning methods for clustering. As above, B-1, B-2, etc. refer to the BLEU

score. Overall, we demonstrate both a qualitative improvement in tile-level clustering and a

quantitative improvement in caption generation using metric learning.

Table 3.2: Influence of triplet loss

Loss B-1 B-2 B-3 B-4 METEOR ROUGE_L CIDEr
MSE only 0.3944 0.2878 0.2011 0.1381 0.2005 0.4219 0.8703

MSE & triplet loss 0.4046 0.2986 0.2114 0.1455 0.2059 0.4290 0.9038

3.3.3 Results on Clustering

In order to explore the influence of cluster number K, we trained models with K from

2 to 5. An autoencoder was trained with reconstruction loss and triplet loss to generate

embeddings for tiles extracted from each slide. After training the autoencoders, we generated

representations for all tiles and performed k-means clustering using K from 2 to 5. In order

to generate confidence intervals, we repeated this process 20 rounds.

For each PathCap trained model for each K, we evaluated our prediction on the testing

dataset over 20 rounds. The average metrics over 20 rounds are reported in Table 3.3. The

corresponding 95% confidence interval (CI) for each metric when cluster number = 3 are

B-1 [0.3981,0.4111], B-2 [0.2938,0.3035], B-3 [0.2067,0.2162], B-4 [0.1406,0.1504], METEOR

[0.2018,0.2100], ROUGE_L [0.4232,0.4348] and CIDEr [0.8598,0.9478]. Overall, our analysis
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suggests that PathCap is robust to cluster size changes, and demonstrates stable metrics

across K from 2 to 5.

Table 3.3: Performance of PathCap with different cluster number (K)

K = B-1 B-2 B-3 B-4 METEOR ROUGE_L CIDEr
2 0.3797 0.2814 0.1976 0.1334 0.1973 0.4249 0.8627
3 0.4046 0.2986 0.2114 0.1455 0.2059 0.4290 0.9038
4 0.3887 0.2863 0.2003 0.1355 0.1990 0.4280 0.8989
5 0.3885 0.2909 0.2084 0.1447 0.2015 0.4367 0.9621

3.3.4 Results on Visualization

PathCap has the advantage of visualizing the caption prediction based on the attention

weight given to tiles from a cluster. As a reference, visualization using the standard baseline

model [Xu et al., 2015] is depicted in Figure. 3.6. The visualization and interpretation of

the attention weight on the whole-slide images can be very ambiguous and non-specific.

In contrast, with PathCap, an attention mechanism over tile features is deployed for our

models. These tiles are sampled from different clusters. The clustering of tiles based on the

embeddings learned using triplet loss underlies the potential of better separating the whole

slides by small tiles. After the model is trained, weights on different clusters can be shown

on the whole slide in the test dataset when the model predicts each word. We observe the

model attends at word-level to both the inner parts of the tissue or texture and also the

boundaries, depending on the caption context. Examples are shown in the Table 3.4.

Expert evaluation of the examples demonstrates broadly coherent and interpretable re-

sults. In the liver example, the predicted caption and visualization are appropriate for

macrovesicular steatosis. Next, for the Esophagus example, the use of the phrase “good

specimens” in the prediction is highly subjective and likely an atypical way to annotate

specimens. However, the detection of muscularis propria provides improved context relative

to the reference caption. For the skin example, the prediction of “5% dermal fat" is appropri-
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(a) Thumbnail for GTEx-15CHR-0625 (b) Attention weight for word “myometrium”

(c) Thumbnail for GTEx-Y3I4-0925 (d) Attention weight for word “muscularis”

Figure 3.6: Example of visualizing caption tokens with a standard baseline model [Xu et al.,
2015]. (a) and (c) are the input thumbnails to the model. (b) and (d) show the attention
weights when the model generates the “myometrium" and “muscularis" tokens respectively.
White/bright indicates more attention weight, black/dark indicates less attention weight.

ate, however, the tile clusters visualized for the “fat" token are instead squamous epithelium.

Finally, for the colon example, the predicted caption and visualization are correct in that the

full thickness section contains about 1 mm thickness of colon, but it is mostly an irrelevant

measure. Notably, the caption neglected to capture autolytic properties from the autopsy

material.

3.4 Discussion

In this work, we present and examine the complex task of generating short, clinically rel-

evant captions from gigapixel whole-slide histopathology images. We show that clustering
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Table 3.4: Visualization of the PathCap method on four test slides from four different tis-
sues. The last column shows some examples of attention weights when the model generates
the corresponding tokens. White/bright indicates more attention weight, and black/dark
indicates less attention weight.

Slide PathCap Prediction Reference Example

Livera

a. GTEx sample
ID: 13FLV-0326

2 pieces, diffuse
macrovesicular steato-
sis involves 70 % of
parenchyma

2 pieces; includes a
portion of the capsule
( target is 1 cm below
capsule ), mild steato-
sis, passive congestion,
focal portal chronic in-
flammation

“macrovesicular"

Esophagusb

b. GTEx sample
ID: 13FTW-1926

6 pieces , up to <unk>
; all muscularis , good
specimens

6 pieces ; well trimmed

“muscularis"

Skinc

c. GTEx sample
ID: 13NYS-0126

6 pieces ; well trimmed
; 5 % dermal fat

6 pieces ; <unk> epi-
dermis ( <unk> ) ,
solar elastosis ; well
trimmed , 10 % dermal
fat

“fat"

Colond

d. GTEx sample
ID: 13O3P-2326

6 pieces , mucosa up to
1mm , <unk> % thick-
ness

6 pieces ; mucosa au-
tolyzed ; muscularis
preserved

“mucosa"
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tiles based on the embeddings learned using triplet loss allows for coherent segmentation

of whole-slide images and results in improved visualization of attention. Thus, our specific

technical contribution of clustering tiles within histopathology images in order to facili-

tate downstream tasks, such as caption generation and interpretation, suggests a promising

strategy for other machine learning tasks in digital pathology. Finally, we demonstrate the

relative effectiveness of PathCap compared to a standard baseline caption prediction ap-

proach and propose the GTEx dataset as a novel benchmark for future caption prediction

and interpretation methods.

Limitations We note some important limitations in our work. First, while PathCap

achieves better performance over the standard baseline caption prediction method, there

is significant room for improvement. Our results confirm that caption generation from

histopathology images is a unique and technically challenging problem. Future work in

caption prediction could benefit from considering this specific problem setting. Second, we

trained and tested our model only on the GTEx data. Due to limitations in publicly avail-

able paired caption and histology images, we were unable to evaluate domain adaptation or

consider other imaging datasets. Future work should consider evaluating PathCap generated

captions on additional datasets as they become available. Third, our captions are short de-

scriptions relating to specimen quality from GTEx (e.g., sample composition). We did not

test our model on text from large reports or clinical notes. We hypothesize that integration

of a hierarchical LSTM model, such as one proposed by Jing et al. [2017], may be useful for

these scenarios.
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CHAPTER 4

HYPERBOLIC ATTENTION MODEL FOR HISTOPATHOLOGY

IMAGES

4.1 Motivation

In the field of computer vision, deep learning methods have made significant strides over

the past decade, achieving remarkable performance in image classification and image re-

trieval tasks. Deep neural networks have demonstrated their ability to learn intricate fea-

tures directly from various biomedical imaging modalities, including X-ray, CT, MRI, and

histopathology images, and have been successfully applied to complex tasks like disease

prediction and outcome analysis [Litjens et al., 2017, Shen et al., 2017]. These networks typ-

ically employ a sequence of convolutional transformations to encode images into embeddings

within Euclidean space. However, emerging evidence suggests that certain types of data,

particularly those exhibiting hierarchical or multi-scale structures, may not be efficiently

represented in Euclidean space [Nickel and Kiela, 2017, Ganea et al., 2018a, Gulcehre et al.,

2018, Chami et al., 2019]. Therefore, there is a growing interest in exploring alternative

spaces, such as hyperbolic geometry, to more effectively capture and model the intrinsic

properties of such data.

Simultaneously, medical images, such as histopathology images, often pose challenges

due to their large size, surpassing the capacity of most modern GPUs and off-the-shelf deep

learning models. Consequently, various approaches have been adopted to handle this issue,

including image rescaling to lower resolutions or segmenting images into smaller tiles that

fit into GPU memory. However, these solutions present trade-offs. Rescaling images can

lead to distortion and the loss of crucial image details, while image segmentation into tiles,

although high-resolution, may sacrifice contextual and spatial information. In this context,

a compelling question arises: Is there a middle ground where we can integrate differently
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Figure 4.1: Example digital hematoxylin and eosin (H&E) stained histopathology slide image
with differently scaled views and the relative hierarchy.

scaled versions of an image to harness both lower-resolution contextual information and

higher-resolution detailed views?

Histopathology images exhibit a hierarchical or multi-scale structure, as they can be

examined at various magnifications or scales. Surprisingly, the exploration of robust ap-

proaches to effectively utilize multi-scaled views in histopathology images remains limited.

In this study, we introduce and evaluate a straightforward hyperbolic modification to exist-

ing deep learning architectures, enabling the integration of information from different scales

Figure. 4.1.

Hyperbolic space, although diffeomorphic to standard Euclidean space, possesses a con-

stant negative sectional curvature. The Poincaré ball model serves as a valuable representa-

tion of hyperbolic space, wherein the distance from the origin to the boundary exponentially

increases. This property renders Poincaré embeddings akin to continuous analogs of trees

[Nickel and Kiela, 2017]. Consequently, they offer a suitable framework for learning em-

beddings that capture natural hierarchies, such as different magnifications of image sections

[Ganea et al., 2018a]. Our approach draws inspiration from recent advancements that lever-
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age Poincaré embeddings to model hierarchical structures [Gulcehre et al., 2018, Chami et al.,

2019, Khrulkov et al., 2020].

We propose a hyperbolic counterpart to the standard attention-based models commonly

utilized in medical imaging. Through empirical examples, we demonstrate that leveraging

hyperbolic spaces can potentially enhance the performance of tissue classification tasks in

H&E images. Our contributions encompass the following: (1) an extension of previous

research in computer vision [Khrulkov et al., 2020] by introducing a novel formulation of

hyperbolic attention; (2) compelling evidence showcasing the potential benefits of modeling

multi-scale views of H&E images using hyperbolic spaces. Finally, we conclude the paper

by discussing current challenges and illuminating future opportunities. Parts of this chapter

are replicated from Zhang et al. [2020a] with some modifications.

4.2 Method

We introduce a hyperbolic generalization to traditional CNN architectures in order to extract

visual features from different scales and perform operations in hyperbolic space. Briefly, a

traditional CNN, such as ResNet18 He et al. [2016], can be used to generate feature represen-

tations of tiles extracted from whole-slide H&E images. Next, we define a bijective mapping

of the generated features to hyperbolic space. We then define linear, multinomial regression

and attention layers operating in hyperbolic space. We note the attention layer operates in

hyperbolic space and computes a slide-level representation. Finally, we define classification

using a multinomial regression layer. We derive and present our formal definitions in the

following subsections and adopt notations from Ganea et al. [2018b] and Khrulkov et al.

[2019]. We denote the resulting model as a hyperbolic-attention model.
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4.2.1 Poincaré Ball Model

The Poincaré model (Dn, gD) is defined by the manifold Dn = {x ∈ Rn : ∥x∥ < 1}

equipped with Riemannian metric gDx = λ2xg
E where λx := 2

1−∥x∥2 . gE = In is the

Euclidean metric tensor. To make use of the Poincaré ball of radius c ≥ 0, we denote

Dn
c :=

{
x ∈ Rn : |c∥x∥2 < 1

}
. If c = 0, Dn

c = Rn; If c > 0, it is a open ball with radius

1/
√
c.

4.2.2 Möbius Addition

For a pair of x,y ∈ Dn
c , the Möbius addition is defined as follows

x⊕c y :=

(
1 + 2c⟨x,y⟩+ c∥y∥2

)
x+

(
1− c∥x∥2

)
y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2 (4.1)

With c→ 0 we can obtain the Euclidean distance of two vectors in Rn.

4.2.3 Exponential and Logarithmic Maps

In order to do operations in hyperbolic space, bijective maps are defined to map from Rn to

Dn
c . The exponential map expcx is a function from Rn to Dn

c

expcx(v) := x⊕c

(
tanh

(√
c
λcx∥v∥

2

)
v√
c∥v∥

)
(4.2)

The inverse map is defined as

logcx(y) :=
2√
cλcx

arctanh
(√

c ∥−x⊕c y∥
) −x⊕c y

∥−x⊕c y∥
(4.3)

In practice, we use the maps expc0 and logc0 for transition between the Euclidean and

Poincar´e ball representations of a vector.
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4.2.4 Hyperbolic Linear Layer

Similar to Khrulkov et al. [2019], we define a hyperbolic linear layer a map from Dn1
c to Dn2

c .

For input x ∈ Dn1
c to this layer and a trainable matric M of size n2 × n1, if Mx ̸= 0, the

output of this layer is

Mc(x) :=
1√
c
tanh

(∥Mx∥
∥x∥ arctanh(

√
c∥x∥)

)
Mx

∥Mx∥ (4.4)

otherwise Mc(x) := 0. For a bias verctor b ∈ Dn2
c , the corresponding linear layer is Mc(x)⊕c

b.

4.2.5 Klein Model

In order to define the hyperbolic attention model, we will make use of the Klein model and

hyperbolic averaging. Similar to Poincaré model, it is defined in Kn = {x ∈ Rn : ∥x∥ < 1}.

Let xD and xK denote the coordinates of the same point in the Poincaré and Klein models.

We use the following formulas to map from each other.

xD =
xK

1 +

√
1− c

∥∥xK∥∥2 (4.5)

xK =
2xD

1 + c
∥∥xD∥∥2 (4.6)

4.2.6 Hyperbolic Attention

Given a set of vDi ∈ Dn, the corresponding coordinates in Klein model are vKi , we define the

attention weights αi as follows.

αi = f
(
vDi

)
(4.7)
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The function f(·) is a hyperbolic neural network followed by softmax or sigmoid. The outputs

mK for the hyperbolic attention module are as follows.

mK
(
{αi} ,

{
vKi

})
=
∑
i

αiγ
(
vKi

)
vKi∑

ℓ αlγ
(
vKl

) (4.8)

where the γ
(
vKi

)
are the Lorentz factors,

γ
(
vKi

)
=

1√
1− c

∥∥∥vKi ∥∥∥2
(4.9)

After we get the hyperbolic attention output mD
i of the Klein model, we can map it to the

Poincaré model.

4.2.7 Multiclass Logistic Regression

The resulting formula for hyperbolic multiclass logistic regression for K classes is written

below; here pk ∈ Dn
c and ak ∈ TpkD

n
c \{0} are learnable parameters.

p(y = k|x) ∝ exp

λcpk
∥ak∥√
c

arcsinh

 2
√
c ⟨−pk ⊕c x, ak⟩(

1− c ∥−pk ⊕c x∥2
)
∥ak∥

 (4.10)

4.3 Results

We compare the performance of our hyperbolic-attention model with a baseline model and

the Deep MIL attention-based model on simple tissue classification tasks using two well-

known public datasets. We provide a thorough description of each experiment in the following

subsections.
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4.3.1 Camelyon16

The Camelyon16 challenge Litjens et al. [2018] was organized by the IEEE International

Symposium on Biomedical Imaging. It evaluated various machine learning models to detect

cancer metastasis. There are 159 slides with normal tissue class labels and 111 slides with

tumor tissue class labels in the training set. The test data set contains 80 slides with normal

tissue and 50 slides with tumor tissue. In this work, we evaluate our model on classifications

based on slide-level annotations. We perform minimal data pre-processing. Tile sizes of

500x500 pixels (500px) and 1000x1000 pixels (1000px) are extracted without overlap, and

2000x2000 pixels (2000px) tiles are extracted with step size 1000. In order to filter out non-

tissue containing or background tiles, we only keep those tiles with average intensity less

than 0.85 and greater than 0.2.

We implemented a baseline approach similar to Coudray et al. [2018]. We used ResNet18

He et al. [2016] pretrained on ImageNet Russakovsky et al. [2015a]. We fine-tuned the model

by updating all layers to classify tiles extracted from H&E slides. Tiles of different sizes were

re-scaled to the default ResNet18 input layer size and generated embeddings of length 10.

We labeled all tiles with the same label as the slide from which they were extracted. During

validation or testing, the model aggregated all the tile predictions of a slide by taking the

average and using this average as a slide-level prediction.

We implemented the Deep MIL attention-model by randomly sampling 5 tiles as input for

each slide. We used ResNet18 pretrained on ImageNet as a feature extractor. We again fine-

tuned the model by updating all layers to classify tiles extracted from H&E slides. Similarly,

tiles of different sizes were re-scaled to the default ResNet18 input layer size and generated

embeddings of length 10. We performed test-time augmentation for each slide in the test

data set, where the model generated a prediction for each test slide 10 times and randomly

sampled 5 tiles each time. We calculated the average of all the 10 predictions as the final

output.
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We sought to compare performance between the baseline model and the Deep MIL

attention-based model using tiles from a single fixed scale view. We independently eval-

uated performance on 3 different scales (Table I). The models were tested in a 5-fold cross-

validation manner. We choose 4 folds as training and 1 fold as a validation data set for each

assignment. We trained the models 4 times for each assignment. Both models were trained

with the Adam optimization method with learning rate=1e-4, β1 = 0.9, β2 = 0.999, and

ϵ=1e-8. To ensure numerical stability, clipping by norm, similar to Khrulkov et al. [2019], is

performed. For all the 20 checkpoints of each model, we tested the performance on the test

dataset and the mean AUC and confidence interval (CI) are reported in Table 4.1. We can

see that for the baseline model, the best tile size is 1000. Deep MIL performs similarly for

the 3 scales and demonstrates it is always better than the baseline model.

Table 4.1: Performance of single scale models

Scale Baseline model Deep MIL
Mean AUC CI(0.95) Mean AUC CI(0.95)

500px 0.569 [0.474,0.663] 0.619 [0.524,0.714]
1000px 0.597 [0.467,0.726] 0.602 [0.505,0.700]
2000px 0.583 [0.460,0.706] 0.613 [0.540,0.687]

Next, we sought to compare the performance between the Deep MIL attention-model

and our hyperbolic attention model in a multi-scale setting. We combined and used 15

tiles, 5 tiles from each of the previous 3 scales, to train and evaluate slide-level classification

accuracy. We also examined the effect of different embedding lengths, by setting lengths

to 5, 10, and 100. The results are reported in Table 4.2. By combining tiles from different

scales, the Deep MIL model does not outperform a single scale. However, the hyperbolic

attention model is better than Deep MIL when using multi-scale views. This suggests that

our hyperbolic attention model can learn better multi-scale embeddings.
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Table 4.2: Performance of multiple scale models

Embed Deep MIL Hyperbolic attention
size Mean AUC CI(0.95) Mean AUC CI(0.95)
5 0.602 [0.513,0.690] 0.623 [0.536,0.710]
10 0.606 [0.519,0.693] 0.615 [0.537,0.692]
100 0.592 [0.491,0.694] 0.637 [0.574,0.700]

4.3.2 TCGA

We consider a second general tissue classification task involving normal and lung cancer

subtypes (LUAD and LUSC) as presented in Coudray et al. [2018]. We downloaded H&E

lung slides from the TCGA Genomic Data Commons Grossman et al. [2016]. There were

811 LUAD slides, 745 LUSC slides, and 585 adjacent normal slides. We processed all tiles

in the same way as we did for the Camelyon16 data set.

We evaluated our model with the baseline model and the Deep MIL model on the lung

classification task. All slides were again split into 5-fold and we tested all models on the

lung data set in a 5-fold cross-validation manner. The models were trained 4 times with the

same settings as with the Camelyon16 dataset. The mean Macro-average AUC and CI(0.95)

of 20 checkpoints are reported in Table 4.3 and Table 4.4.

Table III shows the performance of baseline models and Deep MIL models trained on 3

different scales. We find that the Deep MIL models produce slightly better results.

Table 4.3: Performance of single scale models

Scale Baseline model Deep MIL
Mean AUC CI(0.95) Mean AUC CI(0.95)

500px 0.969 [0.954,0.985] 0.973 [0.957,0.989]
1000px 0.971 [0.955,0.986] 0.972 [0.954,0.990]
2000px 0.966 [0.945,0.987] 0.967 [0.949,0.985]

Table 4.4 shows the performance of Deep MIL and our hyperbolic attention model when
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we combine tiles from 3 scales. Note that in this example, single-scale and multiple-scale Deep

MIL produce comparable results. Our model’s performance is better when the embedding

size is 5 or 10. When the embedding size is 100, the performances of the two models are

comparable. Overall, this again suggests that our hyperbolic attention model can learn

better multi-scale embeddings.

Table 4.4: Performance of multiple scale models

Embed Deep MIL Hyperbolic attention
size Mean AUC CI(0.95) Mean AUC CI(0.95)
5 0.967 [0.952,0.983] 0.971 [0.958,0.985]
10 0.970 [0.948,0.992] 0.974 [0.961,0.988]
100 0.973 [0.958,0.988] 0.972 [0.958,0.986]

4.4 Discussion and conclusion

In this paper, we develop a hyperbolic-attention model using a Poincaré ball and Klein

model to classify histopathology slide images. Our results suggest that our hyperbolic atten-

tion model can efficiently learn multi-scale embeddings. However, we note some important

limitations in our work and plan to explore these in future work. First, while our hyperbolic-

attention model achieves better performance over the standard baseline and the Deep MIL

model, there is still room for improvement, especially when the slide number is limited. Sec-

ond, we did not explore an integrative interpretation of hyperbolic space geometry and the

use of attention to identify salient structures and scales that are associated with improved

model performance. Third, while we evaluated our model on two independent datasets, we

think future work should also examine additional datasets and data types, such as X-ray

images.
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CHAPTER 5

ENHANCING INSTANCE-LEVEL IMAGE CLASSIFICATION

WITH SET-LEVEL LABELS

5.1 Motivation

A large amount of labeled data from the source domain is typically required in traditional

machine learning approaches, e.g., few-shot learning (FSL) and transfer learning (TL), to

learn a robust model. However, procuring sufficient labeled data for each task is often

challenging or infeasible in real-world scenarios. In this paper, we consider a novel problem

setting where similar to FSL, we have a limited number of fine-grained labels in the target

domain. In the source domain, though, we have a large amount of coarse-grained set-level

labels, which are easier to obtain and relevant to fine-grained labels. For example, in a

digital library, there are coarse-grained set-level labels indicating the general content of

photo albums, such as “beach vacation”, “nature landscapes”, or “picnic”. However, within

each of these albums, there are numerous individual images, each with its own unique details

and characteristics that are not explicitly labeled. In the downstream task, for instance, we

care about the object classification such as “tree”, “beach”, or “mountain”. Similarly, in the

medical domain, it is often useful to predict fine-grained labels of tissues, while only set-level

annotations of histopathology slides are available for training at scale. We seek to enhance

the downstream classification tasks with the coarse-grained set-level labels.

An effective approach to addressing the overreliance on abundant training data is FSL—a

paradigm that has gained significant attention in recent years [Vinyals et al., 2016, Wang

and Hebert, 2016, Triantafillou et al., 2017, Finn et al., 2017, Snell et al., 2017, Sung et al.,

2018, Wang et al., 2018, Oreshkin et al., 2018, Rusu et al., 2018, Ye et al., 2018, Lee et al.,

2019b, Li et al., 2019]. FSL pretrains a model that can quickly adapt to new tasks using only

a few labeled examples. Recent studies [Chen et al., 2019, Tian et al., 2020b, Shakeri et al.,
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2022, Yang et al., 2022] have shown that pretraining, coupled with fine-tuning on a new task,

outperforms more sophisticated episodic training methods. This involves initially training a

base model on a diverse set of tasks using abundant labeled data from a source domain, and

subsequently fine-tuning the model using only a small number of labeled examples specific to

the target task. Despite their promising performance, existing FSL models typically depend

on finely labeled source data for predicting fine-grained labels.

As an illustrative example, we consider histopathology image classification where ac-

quiring a substantial number of fine-grained labels for individual patches (e.g., tissue labels

shown in the lower row of Figure. 5.1a) is challenging. Conversely, a wealth of coarse-grained

labels (e.g. the site of origin of the tumors associated with whole slide images (WSIs) from

TCGA shown on the left-hand side of the upper row of Figure. 5.1a) are easily available.

This motivates us to leverage these abundant and cost-efficient coarse-grained labels and hi-

erarchical relationships, such as between organs and tissues (as depicted in Figure. 5.1b), to

enhance representation learning. Tissues consist of cellular assemblies with shared function-

alities, while organs are comprised of multiple tissues. This hierarchical relationship serves

as a conceptual foundation for our representation learning and provides significant contex-

tual information for facilitating representation learning. By using coarse-grained information

within this hierarchy, our goal is to learn efficiently fine-grained tissue representations within

WSIs. Another example is shown in the upper row of Figure. 5.1a. We emulate a program-

matic labeler that uses heuristics such as keywords, regular expressions, or knowledge bases

to solicit sets of images. The coarse-grained labels, e.g., the most frequent superclass of im-

ages in the set, can be used to facilitate representation learning for downstream tasks such

as instance-level image classification.

In this chapter, we introduce Fine-grAined representation learning from Coarse-graIned

LabEls (FACILE), a novel generic representation learning framework that uses easily acces-

sible coarse-grained annotations to quickly adapt to new fine-grained tasks. Distinct from
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Figure 5.1: (a) A collection of image sets sampled from CIFAR-100 are in the upper row.
The coarse-grained label of a set is the most frequent superclass of images inside the set. WSI
examples from TCGA and patches from NCT dataset are in the lower row. (b) Hierarchy of
coarse- and fine-grained labels for histopathology images.

existing practices in FSL and TL, our approach utilizes coarse-grained labels in the source

domain. This sets our methodology apart from conventional FSL and TL techniques, which

typically rely on meticulously labeled source data to train models. Parts of this chapter are

replicated from Zhang et al. [2023a] with some modifications.

We provide an initial theoretical analysis to motivate the empirical success of FACILE

and examine the convergence rate for the excess risk of downstream tasks under a novel

Lipschitzness condition on the loss function concerning the fine-grained labels. Our study

reveals that the availability of coarse-grained labels can lead to a substantial acceleration in

the excess risk rate for fine-grained label prediction tasks, achieving a fast rate of O(1/n),

where n represents the number of fine-grained data points. This analysis highlights the

significant potential for leveraging coarse-grained labels to enhance the learning process in

fine-grained label prediction tasks.

In our experiments, we thoroughly investigate the effectiveness of FACILE through a

series of extensive experiments on natural image datasets and histopathology image datasets.

For natural image datasets, we sample input sets from training data from CIFAR-100 and

use the unique superclass number and most frequent superclass as coarse-grained labels. The

generated datasets are used to evaluate different models. We also evaluate models by fine-
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tuning the fully connected layer appended to ViT-B/16 [Dosovitskiy et al., 2020] of CLIP

[Radford et al., 2021] in an anomaly detection dataset based on CUB200 [He and Peng, 2019].

For histopathology applications, we leverage two large datasets with coarse-grained labels to

pretrain our models. Subsequently, we evaluate the performance of these trained models on

a diverse collection of histopathology datasets. Our algorithm achieves strong performance

on 4 downstream datasets. Notably, when tested on LC25000 [Borkowski et al., 2021], our

model achieves roughly 90% average ACC with 1,000 randomly sampled tasks which only

have 5 fine-grained labeled data points for each of the 5 classes, outperforms the strongest

baseline by roughly 13% with logistic regression fine-grained classifier. We further evaluate

various models by fine-tuning the fully connected layer appended to ViT-B/14 [Dosovitskiy

et al., 2020] of DINO V2 [Oquab et al., 2023]. These models can leverage the capability of

“foundation” models and enhance the model performance on target tasks. Our experiments

provide compelling evidence of the efficacy and generalizability of FACILE across various

datasets, highlighting its potential as a robust representation learning framework.

5.2 Fine-Grained Representation Learning from Coarse-Grained

Labels

Notations Our model pretrains on a collection of samples, denoted by {(si, wi)}mi=1. Each

si is a set of instances {xj}aj=1, where a is the set size that can very. {wi} are the coarse-

grained labels. The space of all instances is X and the space of all instance labels, which

we call fine-grained labels, is Y . The space of pretraining data is S × W , where S ={
{x1, . . . , xa} : xj ∈ X for ∀j ∈ [a]

}
. We receive (X, Y ) from product space X × Y and

corresponding (S,W ) from product space S × W . The goal is to predict the strong labels

y ∈Y from the instance features x ∈X . The model could benefit from the information on

the coarse-grained labels.
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<latexit sha1_base64="G/MWgpyb1ZsFnTDF3kntBcRGeFc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHjp92i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5V9fK+VqnX8jiKcAKncA4eXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMiuo2s</latexit>

Xa

<latexit sha1_base64="T6o2QJ1saISZ91QqVmi+UPFyQ38=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5oHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WDGSfoR3QgecgZNVa6f+x5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yenF3Xqmd53EU4QiO4RQ8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfc941+</latexit>

Z1

<latexit sha1_base64="J+Yv07mr0vLzct91VkoN3+fFVac=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJPo4kXjxilEeEDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqAccJ9yM6UCIUjKKV7h97lV6x5JbdOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqalbJ3Wb64q5Zq1SyOPJzAKZyDB1dQg1uoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4A3nuNfw==</latexit>

Z2

<latexit sha1_base64="wbHMcjSal2w3E+D1MvDtLyf0j/E=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5oHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WOP9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZvbg7r9TO8ziKcATHcAoeXEENbqEODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMlxo2u</latexit>

Za

<latexit sha1_base64="n7vrU2XHSIJa6VxI5nCAcwVzQv8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5iHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WOP9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZvbg7r9TO8ziKcATHcAoeXEENbqEODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMkQI2t</latexit>

Ya
<latexit sha1_base64="JGtm/ywH6XCqsxgda6hhcFz1+Mk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5iHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WDGSfoR3QgecgZNVa6f+x5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yenF3Xqmd53EU4QiO4RQ8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfbcY19</latexit>

Y1
<latexit sha1_base64="ZLOgYt4IjCqyE1YWku0fc4RUvFU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJPo4kXjxilIeBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqAccJ9yM6UCIUjKKV7h97lV6x5JbdOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqalbJ3Wb64q5Zq1SyOPJzAKZyDB1dQg1uoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4A3PWNfg==</latexit>

Y2

<latexit sha1_base64="TpC3sRcWKe3DryEmch9a4/XbApg=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGMQ9IljA76U2GzM4uM7NCWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQy/rlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzS+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV0rqoelfVy/tapV7L4yjCCZzCOXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH5qOjWE=</latexit>{ <latexit sha1_base64="GMbBjfCGkB8yhvSi83+o7z0Z6n0=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGMQ9IljA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHnrTfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVR9a6ql/e1Sr2Wx1GEEziFc/DgGupwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP52WjWM=</latexit>} <latexit sha1_base64="C9vkdpk7JfrPBLZL01LrGzmLBXw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKfFyEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVIT3vgTLpPUoGSLRWEqiInJ7GvS5wqZEWNLKFPc3krYkCrKjM2mYEPwll9eJc2LsndVvqxXStVKFkceTuAUzsGDa6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCL14y9</latexit>=
<latexit sha1_base64="ZE2p/5Vg/5YNs/m36p3jz7C1ps4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo4kXjxClEcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/b5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3lX5sl4pVStZHHk4gVM4Bw+uoQp3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8Aa0vjNM=</latexit>

S

<latexit sha1_base64="J9AxLsXphdcJbNsXNPd0j2oK6HM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cEzAOSJcxOepMxs7PLzKwQlnyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUaPfLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS96+pV47JSu8zjKMIJnMI5eHADNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPsz+M1w==</latexit>

W

<latexit sha1_base64="TpC3sRcWKe3DryEmch9a4/XbApg=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGMQ9IljA76U2GzM4uM7NCWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQy/rlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzS+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV0rqoelfVy/tapV7L4yjCCZzCOXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH5qOjWE=</latexit>{ <latexit sha1_base64="GMbBjfCGkB8yhvSi83+o7z0Z6n0=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGMQ9IljA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHnrTfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpHVR9a6ql/e1Sr2Wx1GEEziFc/DgGupwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP52WjWM=</latexit>} <latexit sha1_base64="C9vkdpk7JfrPBLZL01LrGzmLBXw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKfFyEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVIT3vgTLpPUoGSLRWEqiInJ7GvS5wqZEWNLKFPc3krYkCrKjM2mYEPwll9eJc2LsndVvqxXStVKFkceTuAUzsGDa6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCL14y9</latexit>=
<latexit sha1_base64="QKFBI0VFeCUYRqYzlNr6zPEgMAc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXrwICZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6Hbmt55QaR7LBzNO0I/oQPKQM2qsVL/vFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVIT3vgTLpPUoGSLRWEqiInJ7GvS5wqZEWNLKFPc3krYkCrKjM2mYEPwll9eJc2LsndVvqxXStVKFkceTuAUzsGDa6jCHdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCkF4zN</latexit>

M

<latexit sha1_base64="HrnlPUC+7zCgAavo+lX/5mlbots=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1rqqXzVqlXsvjKMIJnMI5eHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPyHeM5Q==</latexit>e

<latexit sha1_base64="5myCwdkPYMi3rI3T2wFeBdBnyGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmmG/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6peNmuVei2PowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/yfuM5g==</latexit>

f
<latexit sha1_base64="5myCwdkPYMi3rI3T2wFeBdBnyGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmmG/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6peNmuVei2PowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/yfuM5g==</latexit>

f
<latexit sha1_base64="5myCwdkPYMi3rI3T2wFeBdBnyGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmmG/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6peNmuVei2PowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/yfuM5g==</latexit>

f

<latexit sha1_base64="HrnlPUC+7zCgAavo+lX/5mlbots=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1rqqXzVqlXsvjKMIJnMI5eHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPyHeM5Q==</latexit>e <latexit sha1_base64="HrnlPUC+7zCgAavo+lX/5mlbots=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1rqqXzVqlXsvjKMIJnMI5eHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPyHeM5Q==</latexit>e

<latexit sha1_base64="F5uLjRBHSvjMcRItyv6Bdx/nfiE=">AAAB6HicbVDJSgNBEK2JWxyXRD16aQyCXsKMuN0MiOAxAbNAMoSeTk3Spmehu0cIIV/gxYMiXv0N/8Kbn+Bf2FkOmvig4PFeFVX1/ERwpR3ny8osLa+srmXX7Y3Nre1cfme3puJUMqyyWMSy4VOFgkdY1VwLbCQSaegLrPv967Fff0CpeBzd6UGCXki7EQ84o9pIlW47X3CKzgRkkbgzUijlvq+O7Y+bcjv/2erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNQyMaovKGk0NH5NAoHRLE0lSkyUT9PTGkoVKD0DedIdU9Ne+Nxf+8ZqqDS2/IoyTVGLHpoiAVRMdk/DXpcIlMi4EhlElubiWsRyVl2mRjmxDc+ZcXSe2k6J4XzyomjVOYIgv7cABH4MIFlOAWylAFBgiP8Awv1r31ZL1ab9PWjDWb2YM/sN5/AF/aj40=</latexit>g

Figure 5.2: Schema of the FACILE model. The dotted lines represent the flow of fine-grained
data, and the solid lines denote the flow of coarse-grained labels.

5.2.1 The FACILE Algorithm

We study the model in a FSL setting where we have three datasets: (1) pretraining coarse-

grained datasets Dcg
m = {(si, wi)}mi=1 sampled i.i.d. from PS,W (2) fine-grained support

dataset Dfg
n = {(xi, yi)}ni=1 sampled i.i.d., from PX,Y , and (3) query set Dquery. The

support set Dfg
n contains c classes and k samples x in each class (i.e., n ≡ kc). We assume

a latent space Z for embedding Z. We define instance feature maps E = {e : X → Z},

set-input functions G = {g : M → W} where M = {{z1, . . . , za} : zj ∈ Z for j ∈ [a]},

and fine-grained label predictors F = {f : Z → Y}. The corresponding set-input feature

map of an instance feature map e is defined as ϕe : S → M. We assume the class of f is

parameterized and identify f with parameter vectors for theoretical analysis. We then learn

feature map e, fine-grained label predictor f , and predict fine-grained label with f ◦ e. The

schema of our model is illustrated in Figure. 5.2.

We assume two loss functions: ℓfg : Y × Y → R for fine-grained label prediction and

ℓcg : W × W → R for coarse-grained label prediction. ℓfg measures the loss of the fine-

grained label predictor. We assume this loss is differentiable in its first argument. ℓcg

measures the loss of pretraining with coarse-grained labels. For theoretical analysis, we are

interested in two particular cases of ℓcg: i) ℓcg(w,w′) = 1
{
w ̸= w′

}
whereW is a categorical
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Algorithm 1 FACILE algorithm

1: Input: loss functions ℓfg, ℓcg, predictors E , G, F , datasets Dcg
m and Dfg

n
2: obtain feature map ê← A(ℓcg,Dcg

m , E)
3: create dataset Dfg,aug

n = {(zi, yi) : zi = ê(xi), (xi, yi) ∈ Dfg
n }ni=1

4: obtain fine-grained label predictor f̂ ◦ ê, where f̂ ← A(ℓfg,Dfg,aug
n ,F)

5: Return: f̂ ◦ ê

space; and ii) ℓcg(w,w′) =
∥∥w − w′

∥∥ (for some norm ∥·∥ on W) where W is a continuous

space. We can also measure the loss of a feature map e by ℓ
cg
e = ℓcg(ge ◦ ϕe(s), w), where

ge ∈ argming EPS,W
ℓcg(g ◦ ϕe(S),W ). We assume there is an unknown “good” embedding

M = ϕe0(S) ∈ M, by which a set-input function ge0 can determine W , i.e., ge0(M) =

ge0 ◦ ϕe0(S) = W . The strict assumption of equality can be relaxed by incorporating an

additive error term into our risk bounds of ge0 ◦ ϕe0 .

Our primary goal is to learn an instance label predictor or fine-grained label predictor

f̂ ◦ ê that achieves low risk EPX,Y
[ℓfg(f̂ ◦ ê(X), Y )] and we can bound the excess risk:

EPX,Y
[ℓfg(f̂ ◦ ê(X), Y )− ℓfg(f∗ ◦ e∗(X), Y )] (5.1)

where e∗ ∈ argmine∈E EPS,W
ℓ
cg
e (S,W ) and f∗ ∈ argminf∈F EPX,Y

[ℓfg(f ◦ e∗(X), Y )].

The pseudocode for FACILE is provided in algorithm 1, and we further illustrate the

FACILE algorithm in Figure. 5.3. Given an input set si comprising instances x1, . . . , xa,

the feature map e is employed to extract instance-level features for all the instances within

the input set. Subsequently, a set-input model g is utilized to generate set-level features

based on the instance-level features. Our FACILE framework is designed to be a generic

algorithm that is compatible with any supervised learning method in its pretraining stage.

We chose SupCon (Supervised Contrastive Learning) [Khosla et al., 2020] and FSP as they

are representative of the two main approaches within supervised learning: contrastive and

non-contrastive (traditional supervised) learning, respectively. During testing, we extract

the pretrained feature map ê and fine-tune a classifier f using the generated embeddings
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Figure 5.3: An overview of the FACILE algorithm. (a) Pretraining step of FACILE with
coarse-grained labels. The input is a set of images and the target is set-level coarse-grained
label. e is an instance feature map and ϕe is the corresponding set-input feature map. g
is the set-input model. We can instantiate the A(ℓcg,Dcg

m , E) with any supervised learning
algorithms, e.g., fully supervised pretraining (FSP) with cross-entropy loss and the SupCon
model. (b) Fine-grained learning of FACILE with fine-grained labels. The learned instance
feature map ê extracts instance-level features from patches of the support set and query set.
f is the fine-grained label predictor.

from ê and the fine-grained labels of the support set. The performance of the classifier f̂

is then reported for the query set. Note that Algorithm 1 is generic since the two learning

steps can use any supervised learning algorithm.

5.2.2 Theoretical Analysis

We denote the underlying distribution of Dcg
m as PS,W and the underlying distribution of Dfg

n

as PX,Y . We assume the joint distribution of Z and Y is PZ,Y . After we learn the feature map

ê, we can define a new distribution P̂Z,Y = P (Z, Y )1{Z = ê(X)}, where 1 is the indicator

function. TheDfg,aug
n is i.i.d. samples from P̂Z,Y . In order to include the underlying distribu-

tion of Dcg
m , and Dfg

n into analysis, with a slight abuse of notation we use Am(ℓcg, PS,W , E)

to denote A(ℓcg,Dcg
m , E) and use An(ℓ

fg, P̂Z,Y ,F) to denote A(ℓfg,Dfg,aug
n ,F). The two

learning algorithms are described as follows.

Definition 1. (Coarse-grained learning; pretraining) Let Ratem(ℓcg, PS,W , E ; δ) (abbreviated

to Ratem(ℓcg, PS,W , E)) be the rate of Am(ℓcg, PS,W , E) which takes ℓcg, E and m i.i.d.
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observations from PS,W as input, and return a feature map ê ∈ E such that

EPS,W
ℓ
cg
ê (S,W ) ≤ Ratem(ℓcg, PS,W , E ; δ)

with probability at least 1− δ.

Definition 2. (Fine-grained learning; downstream task learning) Let Raten(ℓfg, PZ,Y ,F ; δ)

(abbreviated to Raten(ℓ
fg, PZ,Y ,F)) be the excess risk rate of An(ℓ

fg, PZ,Y ,F) which take

ℓfg, F , and n i.i.d. observations from a distribution PZ,Y as input, and returns a fine-

grained predictor f̂ ∈ F such that EPZ,Y

[
ℓ
fg

f̂
(Z, Y )− ℓ

fg
f∗(Z, Y )

]
≤ Raten(ℓ

cg, PZ,Y ,F ; δ)

with probability at least 1− δ.

Next, we introduce our relative Lipschitz assumption and the central condition for quan-

tifying task relatedness. The Lipschitz property requires that small perturbations to the

feature map e that do not harm the pretraining task, do not affect the loss of downstream

task much either.

Definition 3. We say that f is L-Lipschitz relative to E if for all s ∈ S, x ∈ s, y ∈ Y, and

e, e′ ∈ E,

|ℓfg(f ◦ e(x), y)− ℓfg(f ◦ e′(x), y)| ≤ Lℓcg(ge ◦ ϕe(s), ge′ ◦ ϕe
′
(s))

The function class F is L-Lipschitz relative to E, if every f ∈ F is L-Lipschitz relative to E.

Definition 3 generalizes the definition of L-Lipschitzness in Robinson et al. [2020] to

bound the downstream loss deviation through the loss of the set label predictions. In the

special case where s = {x}, and g is a classifier for the pretraining labels, our Lipschitz

condition reduces to the Lipschitzness definition of Robinson et al. [2020].

The central condition is well-known to yield fast rates for supervised learning [Van Erven

et al., 2015]. Please refer to Definition 6 for the definition of central condition. We show

that our surrogate problem (ℓfg, P̂Z,Y ,F) satisfies a central condition in Proposition 7.
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Theorem 4. Suppose that (ℓfg, PZ,Y ,F) satisfies the central condition, F is L-Lipschitz

relative to E, ℓfg is bounded by B > 0, F is L′-Lipschitz in its d-dimensional parameters

in the l2 norm, F is contained in the Euclidean ball of radius R, and Y is compact. We

also assume that Ratem(ℓcg, PS,W , E) = O (1/mα). Then when An(ℓ
fg, P̂Z,Y ,F) is ERM we

obtain excess risk EPX,Y

[
ℓ
fg

f̂◦ê(X, Y )− ℓ
fg
f∗◦e∗(X, Y )

]
bound with probability at least 1− δ by

O
(

dαβ logRL′n+log 1
δ

n + B+2L
nαβ

)
if m = Ω(nβ) and ℓcg(w,w′) = 1{w ̸= w′}.

For a typical scenario where Ratem(ℓcg, PS,W , E) = O(1/√m), we can obtain fast rates

with m = Ω(n2). Similarly, in the scenario where Am(ℓcg, PS,W , E) achieves fast rate, i.e.,

Ratem(ℓcg, PS,W , E) = O(1/m), one can obtains fast rates when m = Ω(n). More generally,

if αβ ≥ 1, we observe fast rates.

We prove our theorem by first showing that the excess risk of f̂ ◦ ê can be bounded

by 2LRatem(ℓcg, PS,W , E) + Raten(ℓ
fg, P̂Z,Y ,F) in Proposition 5. Then, we show that

(ℓfg, P̂Z,Y ,F) also satisfies the weak central condition in Proposition 7. Thus, Raten(ℓfg, P̂Z,Y ,F)

is also bounded by Proposition 8. We refer interested readers to §A.8 for full details of the

proof.

In the next section, we first aim to empirically study the relationship between general-

ization error, coarse-grained dataset size, and fine-grained dataset size that our theoretical

analysis predicts in §5.3.3 and §5.3.5. We also demonstrate the exceptional efficacy of the

proposed algorithm compared to baseline models on natural image datasets and histopathol-

ogy image datasets.

5.3 Results

5.3.1 Baseline Models and Algorithm Instantiation

We consider two sets of baseline models: self-supervised models [Bachman et al., 2019, He

et al., 2020, Chen et al., 2020a, Caron et al., 2020, Grill et al., 2020, Chen and He, 2021] and
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weakly supervised models [Donahue et al., 2014, Sun et al., 2017, Zeiler and Fergus, 2014,

Robinson et al., 2020].

Self-supervised models Given pretraining data (S,W ), self-supervised learning models

ignore the labels W and learn ê from S. Then, we can test ê with a new task, which consists

of a support set and a query set. A new model that leverages the learned ê is fine-tuned

on the support set and tested on the query set. We performed two self-supervised learning

models in two categories, e.g., SimCLR [Chen et al., 2020a] for contrastive learning and

SimSiam [Chen and He, 2021] for non-contrastive learning. Details of these self-supervised

learning algorithms can be found in §A.7.

Weakly supervised models We assign each instance, from the pretraining dataset, a

label of the input set to which it belongs. We train feature map ê appended with a linear

classifier on the pretraining dataset. We call this model FSP-Patch, where FSP stands for

fully supervised pretraining and the model is trained with the assigned instance-level labels.

For a new task with a support set and a query set, we use the ê to extract features for both

sets, train a classifier on the support set features, and test the classifier on the query set

features.

Following previous work in FSL [Tian et al., 2020b, Chen et al., 2019], we use l2-

normalized features for downstream tasks. Unless otherwise specified, we evaluate methods

with 1,000 randomly sampled meta-tasks from each dataset. All meta-tasks use 15 sam-

ples per class as the query set. The average F1/ACC and 95% confidence interval (CI) are

reported. We follow the test setting of Yang et al. [2022] and use NearestCentroid (NC),

LogisticRegression (LR), and RidgeClassifier (RC).

5.3.2 Pretrain with Unique Class Number of Input Sets

In order to show the advantages of using the coarse-grained labels, we introduce a new task

of pretraining with the unique class number of input sets. Inspired by Lee et al. [2019a],
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we use the CIFAR-100 [Krizhevsky et al., 2009] dataset, which contains 100 classes grouped

into 20 superclasses. We generate input sets by sampling between 6 and 10 images from

CIFAR-100 training data. The targets of the input sets are the unique superclass number of

the input sets. In our downstream tasks, we perform few-shot classifications of fine-grained

classes. Despite being distinct from the downstream fine-grained labels, the coarse-grained

labels offer useful information for learning useful representations for downstream tasks.

pretraining method unique superclass number most frequent superclass
NC LR RC NC LR RC

SimCLR 76.07± 0.97 75.88± 1.01 75.50± 1.02 75.91± 1.00 75.82± 1.01 75.91± 1.02
SimSiam 78.15± 0.93 79.44± 0.92 79.03± 0.95 78.80± 0.93 79.44± 0.95 79.43± 0.93

FSP-Patch N/A N/A N/A 73.21± 0.97 73.92± 0.98 73.40± 0.98
FACILE-SupCon N/A N/A N/A 79.54± 0.92 79.54± 0.96 79.12± 0.95

FACILE-FSP 86.25± 0.79 85.42± 0.82 85.84± 0.81 82.04± 0.84 81.70± 0.91 81.75± 0.90

Table 5.1: Pretraining on input sets from CIFAR-100. Testing with 5-shot 5-way meta-test
sets; average F1 and CI are reported.

The ResNet18 [He et al., 2016] is used as feature maps ê. For FACILE-FSP, we pretrain

the feature map ê from these input sets and targets with ℓ1 loss. The features of CIFAR-100

test images are extracted with ê. Training settings of SimSiam, SimCLR, and FACILE-FSP

can be found in §A.1.1. We then test ê in a few-shot manner. We random sample 5 classes,

5 examples from each class, for each meta-test dataset. The fine-grained label predictor f̂ is

trained on the support examples and tested on the query examples. The performance of these

models is reported in Table 5.1. We can see that FACILE-FSP outperforms self-supervised

learning models by a large margin.

5.3.3 Pretrain with Most Frequent Class Label

We sample input sets randomly from training data of CIFAR-100. The targets are the most

frequent superclass of the input sets. If there is a tie in an input set, we choose a random

top frequent superclass as the target of the input set. Training settings are similar to §5.3.2

and can be found in §A.1.1. The performances of all models are reported in Table 5.1. We
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can see that FACILE-FSP obtains better results compared to other models.

Note that the excess risk bound of the form b = C/nγ implies a log-linear relationship

log b = logC − γ log n between the error and the number of fine-grained labels. We can

visually interpret the learning rate γ. We study two cases: when the number of coarse-

grained labels m grows linearly with the number of fine-grained labels, and when the number

of coarse-grained labels m grows quadratically with the number of fine-grained labels. In

order to show the generalization error rate of FACILE-FSP w.r.t. fine-grained label number

on the CIFAR-100 test dataset, we randomly sample 5 classes (i.e., 5-way testing) for each

task. We then sample n/5 fine-grained examples in each class for the support set and sample

15 examples for each class for the query set. The curves are shown in Figure. 5.4. The figure

shows the log-linear relationship of FACILE-FSP’s generalization error on downstream tasks

w.r.t. fine-grained label number. This visualization effectively captures how coarse-grained

label number m impacts the model’s generalization capabilities.

5.3.4 Fine-tune CLIP Model with Anomaly Detection Dataset

In this experiment, we sought to enhance model performance with coarse-grained labels of

the anomaly detection datasets [Zaheer et al., 2017, Lee et al., 2019a]. A total of 11,788

input sets of size 10 are constructed from the CUB200 [He and Peng, 2019] training dataset

by including one example that lacks an attribute common to the other examples in the

input set. The coarse-grained labels are the positions of the anomalies. This setup creates

a challenging scenario for models, as they must identify the outlier among otherwise similar

instances. In downstream tasks, we evaluate the fine-tuned feature encoder composed of the

fixed CLIP [Radford et al., 2021] image encoder ViT-B/16 and appended a fully connected

layer on the classification of species of the CUB200 test dataset. The batch normalization

[Ioffe and Szegedy, 2015] and ReLU are applied to the fully-connected layer.

Following this experiment setup, the rationale behind utilizing coarse-grained labels is
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grounded in their potential to enhance model discernment in downstream tasks. By training

the model to identify anomalies in sets where one item diverges from the rest, we essentially

teach it to focus on subtle differences and critical attribute features. This enhanced focus is

particularly beneficial for fine-grained classification tasks in the CUB200 test dataset, where

distinguishing between closely related species requires the model to recognize and prioritize

minute, yet significant, differences.
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Figure 5.4: Generalization error
(with two growth rates) of FACILE-
FSP on CIFAR-100 test dataset as
a function of the number of coarse-
grained labels m.

The model training approach in this experiment

centered around the CLIP image encoder, enhanced

with an additional fully connected layer. FACILE-

FSP and FACILE-SupCon incorporate this setup, uti-

lizing the CLIP-based feature encoder and focusing

on finetuning the fully connected layer through the

FACILE pretraining step. In contrast, the SimSiam

approach leverages the CLIP image encoder as a back-

bone while finetuning the projector and predictor

components. Similarly, the SimCLR method also uses

the CLIP encoder as its foundation but focuses solely

on finetuning the projector. These varied strategies

reflect our efforts to optimize the feature encoder for accurately identifying anomalies and

improving classification performance in related tasks. The training details can be found in

§A.1.2.

Note that Table 5.2 clearly demonstrates that all models tested benefit from incorporating

data from the target domain. Notably, both FACILE-SupCon and FACILE-FSP exhibit

superior performance compared to other baseline models. This observation underscores the

effectiveness of our models in leveraging coarse-grained labels to enhance their anomaly

detection capabilities.
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pretraining method NC LR RC
CLIP (ViT-B/16) 83.84± 1.10 81.01± 1.23 82.75± 1.17

SimCLR 84.03± 1.08 83.49± 1.14 86.30± 1.03
SimSiam 84.02± 1.10 83.90± 1.13 85.68± 1.07

FACILE-SupCon 87.49± 0.99 86.57± 1.07 88.01± 0.99
FACILE-FSP 88.74± 0.94 88.45± 0.96 88.36± 0.95

Table 5.2: Pretraining on input sets from CUB200. Testing with 5-shot 20-way meta-test
sets; average F1 and CI are reported.

5.3.5 Evaluation on Histopathology Images

Datasets and data extraction We pretrain our models using two independent sources

of WSIs. First, we downloaded data from The Cancer Genome Atlas (TCGA) from the NCI

Genomic Data Commons (GDC) [Heath et al., 2021]. Two collections of non-overlapping

patches with different patch sizes, i.e., 224 × 224 and 1, 000 × 1, 000 at 20X magnification.

Background patches with high or low intensity were removed. Because the number of patches

generated with size 224 × 224 at 20X magnification is very large, at most 1, 000 randomly

selected patches are kept for each slide. The names of the tumors/organs, from which slides

are collected, are used as coarse-grained labels. Second, we downloaded all clinical slides from

the Genotype-Tissue Expression (GTEx) project [Lonsdale et al., 2013], which provides a

resource for studying human gene expression and regulation in relation to genetic variation.

We extracted non-overlapping patches with size 1, 000 × 1, 000 at 20X magnification and

patches with intensity larger than 0.1 and smaller than 0.85 are kept. For these slides, we

used the organs from which the tissues were extracted as coarse-grained labels. Examples

and class distributions for the two datasets can be found in §A.3.

We test models on 3 public datasets: LC [Borkowski et al., 2021], PAIP [Kim et al.,

2021], NCT [Kather et al., 2018] and 1 private dataset PDAC. Details of these datasets

are deferred to §A.3. Note that the TCGA and GTEx have meticulously categorized an

extensive array of cancer types and organs, covering a diverse range of tissues as outlined in

the LC, PAIP, and NCT. The strategic use of WSI-level labels is rooted in their potential
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to enrich tissue-level classification. While these labels may appear broad, they encapsulate

a wealth of underlying heterogeneity inherent to different cancer regions and tissue types.

Pretrain ResNet18 on TCGA with patch size 224× 224 We first train models on

TCGA patches with size 224× 224 at 20X magnification. After the models are trained, we

test the feature map in these models on LC, PAIP, and NCT. Full details about FACILE-

FSP, FACILE-SupCon, and baseline models’ training settings can be found in §A.1.3. Latent

augmentation (LA) has been shown to improve FSL performance for histopathology images

[Yang et al., 2022]. We use faiss [Johnson et al., 2019] to perform k-means clustering.

Following the setting of Yang et al. [2022], the number of prototypes in the base dictionary

is 16. Each sample is augmented 100 times by LA. We refer readers to §A.5 for details of

LA.

18 27 36 45 54 63 72
num fine-grained labels

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r

= 0.85

= 0.22

m = (n)
m = (n2)

Figure 5.5: Generalization error on
NCT dataset. The FACILE-FSP
trains on TCGA dataset with m
coarse-grained labels. We show the
error curve with two growth rates of
m.

The test result is shown in Table 5.3. In order

to show the performance improvement over models

pretrained on natural image datasets, we report the

performance of the FSP model pretrained on Ima-

geNet. We can see from Table 5.3 that our model

FACILE-FSP performs the best, with a large margin

compared to other models. The contrastive learning

model SimCLR performs worse than non-contrastive

learning model SimSiam. A possible reason could be

the small batch size we used for SimCLR. SimSiam

maintains high performance even with small batch

sizes. FSP-Patch achieves better performance com-

pared to self-supervised learning models and the Im-

ageNet pretrained model, which shows the usefulness of the coarse-grained labels for down-

stream tasks. More experiment results about test ACC on LC, PAIP, and NCT datasets
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can be found in §A.2.1. Test result with larger shot number is in §A.2.1. We further pre-

train models on GTEx and TCGA with patch size 1, 000 × 1, 000 and test the models on

our private dataset PDAC. We refer readers to §A.2.3 for experiment results on the PDAC

dataset.

We show the generalization error of FACILE-FSP w.r.t. fine-grained label number in

Figure. 5.5. The figure reveals a pronounced log-linear relationship. A larger growth rate of

coarse-grained labels implies a faster rate of excess risk.

Benefits of pretraining on Large Pathology Datasets In order to show the benefits

of pretraining on large pathology datasets, we pretrain different models on the NCT training

dataset and test the performance on the LC dataset, following the setting of Yang et al.

[2022]. Instead of separating the mixture-domain and out-domain tasks, we directly report

the average F1 and CI of LR models over all 5 classes of the LC dataset. Training details of

the models can be found in §A.2.2. The test result on the LC dataset is shown in Table 5.4.

We can see from Table 5.4 the best model pretrained on NCT, i.e., FSP with strong

augmentation, performs worse than our model FACILE-FSP in Table 5.3. Our method

gets roughly 13% improvement compared to Yang et al. [2022] on the LC dataset. The

large margin between the two best models pretrained on two different datasets shows the

importance of pretraining with a large number of coarse-grained labels. More results on LC

and PAIP can be found in Figure. A.3. Note that SimSiam model, trained with a batch size

of 55, maintains competitive performance to MoCo v3 which needs a large batch size.

More experiments and ablation study We refer interested readers to §A.6 for ab-

lation studies about set size, training procedures, and set-input models. These experiments

extend our analysis to specialized tasks, showcasing the adaptability of FACILE to founda-

tion models.
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5.3.6 Fine-tune ViT-B/14 of DINO V2 on TCGA Dataset

Similar to §5.3.4, we fine-tune a fully connected layer that is appended after DINO V2 Oquab

et al. [2023] ViT-B/14. This methodology is applied across various models to assess their

performance on histopathology image datasets. By adopting the DINO V2 trained models,

known for their robustness and effectiveness in visual representation learning, we aim to

harness their potential for the specialized domain of histopathology. We refer interested

readers to §A.1.4 for details of pretraining.

Notably, our methods, FACILE-SupCon and FACILE-FSP, demonstrated markedly su-

perior results in comparison to other baseline models when applied to histopathology image

datasets as shown in Table 5.5. This outcome highlights the effectiveness of these meth-

ods in leveraging coarse-grained labels specific to histopathology, thereby greatly enhancing

the model performance of downstream tasks. Another critical insight emerged from our re-

search: the current foundation model, DINO V2, exhibits limitations in its generalization

performance on histopathology images. This suggests that while DINO V2 provides a strong

starting point due to its robust visual representation capabilities, there is a clear need for

further finetuning or prompt learning to optimize its performance for the unique challenges

presented by histopathology datasets. This finding underscores the importance of specialized

adaptation in the application of foundation models to specific domains like medical imaging.

5.4 Related Work

Weakly supervised learning The concept of weakly supervised learning is introduced as

a means to alleviate the annotation bottleneck in the training of machine learning models.

There has been a large body of existing work in learning with only weak labels. A com-

prehensive survey about weakly supervised learning is provided in Zhou [2018], Zhang et al.

[2022]. We study a novel form of weak supervision which is provided by set-level coarse-

grained labels. Among weakly supervised learning methods, Robinson et al. [2020] studied
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the generalization properties of weakly supervised learning and proposed a generic learning

algorithm that can learn from weak and strong labels and can be proved to achieve a fast

rate. The authors consider a different setting where each instance has a weak label and

a strong label, and the strong label predictor learns to predict the strong labels from the

instances and their corresponding embeddings learned with weak labels. We consider the

setting where we have some coarse-grained labels of some sets, rather than instances and the

downstream classifiers only use the learned embeddings to train and test on the downstream

tasks.

Multiple-instance learning for WSIs WSI classification and regression are formulated

based on multiple-instance learning (MIL) [Campanella et al., 2019, Xu et al., 2022, Ilse

et al., 2018, Sharma et al., 2021, Hashimoto et al., 2020, Shao et al., 2021, Yao et al.,

2020, Lu et al., 2021b,a, Chen et al., 2021b, Li et al., 2021, Chen et al., 2021a, Myronenko

et al., 2021, Xiang and Zhang, 2022, Javed et al., 2022]. These MIL models employ two

procedures: i) feature extraction for patches cropped from a WSI and ii) aggregation of

features from the same WSI. ImageNet pretrained backbones, self-supervised backbones

pretrained on histopathology images, or backbones fine-tuned during training are used to

extract features from patches. Deep attention pooling, graph neural networks, or sequence

models, adapted for WSIs, are used for feature aggregation. In this paper, we consider a

different problem setting where we enhance patch-level classification with related set-level

labels. In the application of histopathology images, line 2 of our generic algorithm can be

instantiated with any MIL models that have the backbones with trainable modules to extract

patch-level features, e.g., Ilse et al. [2018]. A complete comparison of MIL models for WSIs

is out of the scope of this paper.

Learning from coarsely-labeled data Another related line of research is Wu et al.

[2018a], Phoo and Hariharan [2021], where the authors assume a taxonomy of classes with

two levels, i.e., a set of fine-grained classes that are more challenging to annotate and a
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set of coarse-grained classes that are easier to annotate. In our paper, we do not assume

a taxonomy of classes for the coarse-grained and fine-grained labels. The coarse-grained

and fine-grained labels are closely related via a hierarchy. Also, the inputs that are fed to

models to predict the coarse-grained or fine-grained labels are different, i.e., set input for

coarse-grained labels and instances for fine-grained labels.

5.5 Conclusion and Discussion

Summary We introduce FACILE, a representation learning framework that leverages coarse-

grained labels for model training and enhances model performance for downstream tasks.

Our theoretical analysis highlights the significant potential of leveraging set-level labels to

benefit the learning process of fine-grained label prediction tasks. To demonstrate the ef-

fectiveness of FACILE, we conduct pretraining on CIFAR-100-based datasets and two large

public histopathology datasets using coarse-grained labels and evaluate our model on a di-

verse collection of datasets with fine-grained labels.

Limitation and future work In this paper, we consider a novel problem setting where

we enhance downstream fine-grained label classification with easily available coarse-grained

labels and propose a generic algorithm that contains two supervised learning steps. It is

important to note that the separate utilization of loosely related coarse-grained labels and

fine-grained labels can be expensive. Specifically, the pretraining of our proposed algorithm

could be expensive given large amounts of coarse-grained data and the nature of the set-input

data. For this reason, we are investigating methods of selecting a subset of the coarse-grained

dataset to accelerate pretraining.
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pretraining method NC LR RC LR+LA RC+LA
1-shot 5-way test on LC dataset

ImageNet (FSP) 63.26± 1.46 63.13± 1.41 63.24± 1.40 64.51± 1.41 64.95± 1.39
SimSiam 65.83± 1.32 66.52± 1.31 66.24± 1.32 67.21± 1.29 67.83± 1.33
SimCLR 64.57± 1.36 63.85± 1.37 64.16± 1.37 65.78± 1.33 66.81± 1.40

FSP-Patch 66.73± 1.29 66.25± 1.29 66.59± 1.28 68.01± 1.24 68.28± 1.26
FACILE-SupCon 74.91± 1.25 76.23± 1.16 75.01± 1.19 75.60± 1.19 75.64± 1.18

FACILE-FSP 77.39± 1.21 76.14± 1.25 75.18± 1.30 77.55± 1.17 73.72± 1.34
5-shot 5-way test on LC dataset

ImageNet (FSP) 82.82± 0.75 80.13± 0.82 80.23± 0.83 84.70± 0.70 84.42± 0.74
SimSiam 85.12± 0.68 82.69± 0.75 82.80± 0.76 87.45± 0.63 87.50± 0.66
SimCLR 83.45± 0.77 81.93± 0.83 81.40± 0.89 85.69± 0.73 84.93± 0.79

FSP-Patch 84.96± 0.64 84.10± 0.69 84.45± 0.68 86.31± 0.65 86.29± 0.68
FACILE-SupCon 91.09± 0.47 90.34± 0.48 90.25± 0.48 91.32± 0.47 90.94± 0.50

FACILE-FSP 91.67± 0.45 90.64± 0.50 90.52± 0.52 92.07± 0.48 89.81± 0.61
1-shot 3-way test on PAIP dataset

ImageNet (FSP) 45.96± 1.22 47.82± 1.29 47.43± 1.29 46.38± 1.24 44.90± 1.24
SimSiam 46.43± 1.21 47.93± 1.24 47.74± 1.23 47.20± 1.21 46.31± 1.22
SimCLR 44.51± 1.16 46.44± 1.14 45.59± 1.15 45.40± 1.14 45.04± 1.16

FSP-Patch 48.85± 1.21 49.44± 1.26 50.27± 1.22 49.76± 1.20 48.44± 1.21
FACILE-SupCon 46.60± 1.20 48.63± 1.22 48.46± 1.21 47.13± 1.20 47.87± 1.22

FACILE-FSP 45.40± 1.24 46.71± 1.20 46.60± 1.21 46.36± 1.22 45.49± 1.20
5-shot 3-way test on PAIP dataset

ImageNet (FSP) 60.73± 1.02 61.21± 1.12 61.04± 1.11 61.66± 0.91 59.30± 0.93
SimSiam 62.88± 0.97 62.59± 1.08 63.48± 1.04 65.01± 0.88 63.22± 0.89
SimCLR 60.99± 0.93 61.38± 1.00 61.62± 1.02 62.39± 0.91 61.29± 0.90

FSP-Patch 64.45± 0.92 64.60± 0.98 64.49± 0.99 64.08± 0.89 62.79± 0.89
FACILE-SupCon 64.74± 0.91 65.63± 0.97 65.93± 0.97 66.68± 0.86 66.48± 0.82

FACILE-FSP 63.90± 0.94 64.59± 0.96 65.43± 0.96 66.77± 0.86 66.34± 0.85
1-shot 9-way test on NCT dataset

ImageNet (FSP) 57.35± 1.68 56.39± 1.64 56.08± 1.64 57.78± 1.66 55.85± 1.64
SimSiam 63.60± 1.62 64.43± 1.54 64.79± 1.53 65.26± 1.56 65.39± 1.53
SimCLR 59.73± 1.57 59.61± 1.57 59.34± 1.56 60.57± 1.57 60.99± 1.53

FSP-Patch 60.08± 1.46 61.55± 1.50 62.32± 1.50 61.99± 1.42 60.62± 1.38
FACILE-SupCon 68.10± 1.29 69.63± 1.25 69.81± 1.24 69.54± 1.25 69.77± 1.22

FACILE-FSP 66.38± 1.38 67.03± 1.34 67.56± 1.32 68.35± 1.33 69.77± 1.30
5-shot 9-way test on NCT dataset

ImageNet (FSP) 74.59± 1.11 73.21± 1.13 74.60± 1.07 76.68± 1.04 74.39± 1.09
SimSiam 79.97± 1.05 79.81± 1.03 80.84± 0.98 83.45± 0.92 83.61± 0.90
SimCLR 76.80± 1.09 76.95± 1.07 78.25± 1.03 80.54± 0.97 81.13± 0.95

FSP-Patch 79.50± 0.94 79.54± 0.95 81.00± 0.88 82.42± 0.81 81.33± 0.79
FACILE-SupCon 86.79± 0.61 87.89± 0.58 89.10± 0.52 89.53± 0.52 88.58± 0.54

FACILE-FSP 84.68± 0.74 85.47± 0.72 87.44± 0.64 88.00± 0.63 87.51± 0.66

Table 5.3: Test result on LC, PAIP, and NCT dataset; average F1 and CI are reported.
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pretraining method NC LR RC LR+LA RC+LA
SimSiam 76.21± 0.87 74.05± 1.10 74.59± 1.10 77.87± 0.87 76.03± 0.94

MoCo v3 ([Yang et al., 2022]) 72.82± 1.25 70.29± 1.43 71.31± 1.40 78.72± 1.00 79.71± 0.95
FSP (simple aug; [Yang et al., 2022]) 56.44± 1.50 52.27± 1.81 55.62± 1.74 63.47± 1.37 63.47± 1.46

FSP (strong aug) 83.53± 0.79 80.81± 1.01 80.27± 1.08 85.57± 0.77 84.06± 0.89
SupCon 81.51± 0.85 78.77± 1.03 78.65± 1.08 83.51± 0.84 83.31± 0.91

Table 5.4: Pretraining on NCT and 5-shot 5-way testing on LC dataset; average F1 and CI
are reported.
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pretraining method NC LR RC LR+LA RC+LA
1-shot 5-way test on LC dataset

DINO V2 (ViT-B/14) 44.82± 1.41 47.51± 1.39 47.63± 1.38 47.36± 1.39 48.88± 1.44
SimSiam 48.79± 1.37 49.43± 1.35 48.43± 1.36 49.38± 1.34 49.50± 1.34
SimCLR 50.47± 1.31 50.52± 1.33 50.44± 1.32 51.66± 1.32 51.78± 1.38

FSP-Patch 49.73± 1.41 53.59± 1.38 53.07± 1.41 51.79± 1.40 51.27± 1.43
FACILE-SupCon 56.24± 1.43 56.51± 1.41 55.95± 1.42 56.29± 1.43 54.07± 1.44

FACILE-FSP 55.67± 1.40 56.26± 1.36 55.83± 1.35 56.01± 1.38 55.35± 1.40
5-shot 5-way test on LC dataset

DINO V2 (ViT-B/14) 66.12± 0.98 64.71± 1.12 66.36± 1.10 72.95± 0.93 75.11± 0.91
SimSiam 67.51± 0.96 64.99± 1.05 65.39± 1.05 70.30± 0.93 71.19± 0.93
SimCLR 70.10± 0.92 69.28± 0.96 69.18± 0.97 72.99± 0.92 72.91± 0.94

FSP-Patch 71.97± 0.96 71.11± 1.04 71.19± 1.03 73.96± 0.94 73.20± 0.96
FACILE-SupCon 75.58± 0.88 74.26± 0.94 73.20± 0.95 75.81± 0.90 74.34± 0.96

FACILE-FSP 75.86± 0.86 74.64± 0.89 74.12± 0.93 76.17± 0.88 75.08± 0.95
1-shot 3-way test on PAIP dataset

DINO V2 (ViT-B/14) 41.51± 1.27 44.37± 1.26 44.28± 1.25 42.43± 1.27 42.78± 1.27
SimSiam 49.42± 1.28 48.07± 1.35 48.44± 1.36 48.76± 1.33 46.48± 1.37
SimCLR 48.60± 1.19 48.76± 1.25 47.98± 1.26 48.94± 1.23 47.20± 1.26

FSP-Patch 46.09± 1.17 47.44± 1.18 48.09± 1.19 46.76± 1.18 43.68± 1.22
FACILE-SupCon 51.97± 1.18 52.25± 1.22 51.80± 1.22 51.36± 1.22 50.24± 1.23

FACILE-FSP 51.34± 1.16 51.18± 1.19 51.51± 1.19 51.50± 1.16 49.77± 1.22
5-shot 3-way test on PAIP dataset

DINO V2 (ViT-B/14) 57.59± 1.07 58.19± 1.10 59.37± 1.07 61.84± 0.85 60.81± 0.86
SimSiam 61.56± 0.97 62.52± 1.01 62.81± 1.01 64.40± 0.86 62.44± 0.93
SimCLR 62.20± 0.93 61.78± 0.99 63.20± 0.97 63.38± 0.86 63.03± 0.88

FSP-Patch 63.77± 0.88 63.85± 0.94 63.85± 0.93 63.61± 0.85 60.91± 0.87
FACILE-SupCon 67.16± 0.84 67.29± 0.89 66.88± 0.90 67.61± 0.85 66.34± 0.84

FACILE-FSP 67.14± 0.85 67.67± 0.84 67.54± 0.86 67.12± 0.81 66.05± 0.83
1-shot 9-way test on NCT dataset

DINO V2 (ViT-B/14) 56.03± 1.62 59.11± 1.57 60.13± 1.55 58.71± 1.57 59.06± 1.55
SimSiam 62.60± 1.45 61.89± 1.50 61.90± 1.51 62.27± 1.47 61.05± 1.44
SimCLR 65.43± 1.43 64.18± 1.44 64.15± 1.46 64.83± 1.43 62.69± 1.38

FSP-Patch 65.22± 1.49 65.93± 1.41 65.94± 1.40 65.26± 1.45 62.66± 1.46
FACILE-SupCon 71.55± 1.36 70.36± 1.37 70.52± 1.35 71.05± 1.35 68.85± 1.40

FACILE-FSP 72.05± 1.34 70.70± 1.35 70.77± 1.34 71.14± 1.34 68.03± 1.40
5-shot 9-way test on NCT dataset

DINO V2 (ViT-B/14) 76.85± 0.98 76.51± 1.02 78.67± 0.94 82.20± 0.82 82.75± 0.83
SimSiam 80.81± 0.85 80.06± 0.87 81.55± 0.85 83.18± 0.80 82.39± 0.83
SimCLR 82.87± 0.80 81.91± 0.82 82.86± 0.80 83.92± 0.77 82.89± 0.79

FSP-Patch 83.63± 0.83 83.49± 0.80 84.34± 0.78 85.32± 0.75 83.03± 0.79
FACILE-SupCon 87.74± 0.64 87.00± 0.64 87.38± 0.62 87.82± 0.63 86.15± 0.69

FACILE-FSP 87.93± 0.65 87.52± 0.65 87.72± 0.62 88.01± 0.64 86.46± 0.70

Table 5.5: Test result on LC, PAIP, and NCT dataset with ViT-B/14 from DINO V2; average
F1 and CI are reported.
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CHAPTER 6

DEEP BAYESIAN ACTIVE LEARNING

6.1 Motivation

Active learning (AL) [Settles, 2012] characterizes a collection of techniques that efficiently

select data for training machine learning models. In the pool-based setting, an active learner

selectively queries the labels of data points from a pool of unlabeled examples and incurs a

certain cost for each label obtained. The goal is to minimize the total cost while achieving a

target level of performance. A common practice for AL is to devise efficient surrogates, aka

acquisition functions, to assess the effectiveness of unlabeled data points in the pool.

There has been a vast body of literature and empirical studies [Huang et al., 2010,

Houlsby et al., 2011, Wang and Ye, 2015, Hsu and Lin, 2015, Huang et al., 2016, Sener and

Savarese, 2017, Ducoffe and Precioso, 2018, Ash et al., 2019, Liu et al., 2020, Yan et al.,

2020] suggesting a variety of heuristics as potential acquisition functions for AL. Among

these methods, Bayesian Active Learning by Disagreement (BALD) [Houlsby et al., 2011]

has attained notable success in the context of deep Bayesian AL, while maintaining the

expressiveness of Bayesian models [Gal et al., 2017, Janz et al., 2017, Shen et al., 2017].

Concretely, BALD relies on a most informative selection (MIS) strategy—a classical heuristic

that dates back to Lindley [1956]—which greedily queries the data point exhibiting the

maximal mutual information with the model parameters at each iteration. Despite the

overwhelming popularity of such heuristics due to the algorithmic simplicity [MacKay, 1992,

Chen et al., 2015b, Gal and Ghahramani, 2016], the performance of these AL algorithms,

unfortunately, is sensitive to the quality of uncertainty estimations of the underlying model,

and it remains an open problem in deep AL to accurately quantify the model uncertainty,

due to limited access to training data and the challenge of posterior estimation.

In Figure. 6.1, we demonstrate the potential issues of MIS-based strategies introduced
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Figure 6.1: (a) The embeddings are generated by applying t-SNE on the hypotheses’ predic-
tions on a random hold-out dataset. The colorbar indicates the (approximate) test accuracy
of the sampled neural networks on the MNIST dataset. See §B.1 for details of the exper-
imental setup. (b) Probability mass (y-axis) of equivalence classes (sorted by the average
accuracy of the enclosed hypotheses as the x-axis).

by inaccurate posterior samples from a Bayesian Neural Network (BNN) on a multi-class

classification dataset. Here, the samples (i.e. hypotheses) from the model posterior are

grouped into equivalence classes (ECs) [Golovin et al., 2010] according to the Hamming

distance between their predictions as shown in Figure. 6.1a. Informally, an equivalence

class contains hypotheses that are close in their predictions for a randomly selected set of

examples. We note from Figure. 6.1a that the probability mass of the models sampled from

the BNN is centered around the mode of the approximate posterior distribution, while little

coverage is seen on models of higher accuracy. Consequently, MIS tends to select data points

that reveal the maximal information w.r.t. the sampled distribution, rather than guiding the

active learner towards learning high accuracy models.

In addition to the robustness concern, another challenge for deep AL is the scalability to

large batches of queries. In many real-world applications, fully sequential data acquisition

algorithms are often undesirable especially for large models, as model retraining becomes

the bottleneck of the learning system [Mittal et al., 2019, Ostapuk et al., 2019]. Due to
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such concerns, batch-mode algorithms are designed to reduce the computational time spent

on model retraining and increase labeling efficiency. Unfortunately, for most acquisition

functions, computing the optimal batch of queries function is NP-hard [Chen and Krause,

2013a]; when the evaluation of the acquisition function is expensive or the pool of candidate

queries is large, it is even computationally challenging to construct a batch greedily [Gal

et al., 2017, Kirsch et al., 2019, Ash et al., 2019]. Recently, efforts in scaling up batch-

mode AL algorithms often involve diversity sampling strategies [Sener and Savarese, 2017,

Ash et al., 2019, Citovsky et al., 2021, Kirsch et al., 2021a]. Unfortunately, these diversity

selection strategies either ignore the downstream learning objective (e.g., using clustering as

by [Citovsky et al., 2021]) or inherit the limitations of the sequential acquisition functions

(e.g., sensitivity to uncertainty estimate as elaborated in Figure. 6.1 [Kirsch et al., 2021a]).

Motivated by these two challenges, this chapter aims to simultaneously (1) mitigate the

limitations of uncertainty-based deep AL heuristics due to inaccurate uncertainty estimation,

and (2) enable efficient computation of batches of queries at scale. Parts of this chapter are

replicated from Zhang et al. [2023b] with some modifications.

We propose Batch-BALanCe—an efficient batch-mode deep Bayesian AL framework—

which employs a decision-theoretic acquisition function inspired by Golovin et al. [2010],

Chen et al. [2016]. Concretely, Batch-BALanCe utilizes BNNs as the underlying hypotheses

and uses Monte Carlo (MC) dropout [Gal and Ghahramani, 2016, Kingma et al., 2015] or

Stochastic gradient Markov Chain Monte Carlo (SG-MCMC) [Welling and Teh, 2011, Chen

et al., 2014, Ding et al., 2014, Li et al., 2016a] to estimate the model posterior. It then selects

points that can most effectively tell apart hypotheses from different equivalence classes (as

illustrated in Figure. 6.1). Intuitively, such disagreement structure is induced by the pool of

unlabeled data points; therefore our selection criterion takes into account the informativeness

of a query with respect to the target models (as done in BALD) while putting less focus

on differentiating models with little disagreement on target data distribution. As learning
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progresses, Batch-BALanCe adaptively anneals the radii of the equivalence classes, resulting

in selecting more “difficult examples” that distinguish more similar hypotheses as the model

accuracy improves.

When computing queries in small batches, Batch-BALanCe employs an importance sam-

pling strategy to efficiently compute the expected gain in differentiating equivalence classes

for a batch of examples and chooses samples within a batch in a greedy manner. To scale

up the computation of queries to large batches, we further propose an efficient batch-mode

acquisition procedure, which aims to maximize a novel combinatorial information measure

[Kothawade et al., 2021] defined through our novel acquisition function. The resulting al-

gorithm can efficiently scale to realistic batched learning tasks with reasonably large batch

sizes.

Finally, we demonstrate the effectiveness of variants of Batch-BALanCe via an extensive

empirical study, and show that they achieve compelling performance—sometimes by a large

margin—on several benchmark datasets.

6.2 Problem Setup

6.2.1 Problem Statement

Notations We consider pool-based Bayesian AL, where we are given an unlabelled dataset

Dpool drawn i.i.d. from some underlying data distribution. Further, assume a labeled dataset

Dtrain and a set of hypotheses H = {h1, . . . , hn}. We would like to distinguish a set of

(unknown) target hypotheses among the ground set of hypotheses H. Let H denote the

random variable that represents the target hypotheses. Let p(H) be a prior distribution over

the hypotheses. In this paper, we resort to BNN with parameters ω ∼ p(ω | Dtrain)
1.

1. We use the conventional notation ω to represent the parameters of a BNN and use ω and h inter-
changeably to denote a hypothesis.
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Problem Statement An AL algorithm will select samples from Dpool and query labels

from experts. The experts will provide label y for given query x ∈ Dpool. We assume labeling

each query x incurs a unit cost.

Our goal is to find an adaptive policy for selecting samples that allows us to find a

hypothesis with a target error rate σ ∈ [0, 1] while minimizing the total cost of the queries.

Formally, a policy π is a mapping π from the labeled dataset Dtrain to samples in Dpool.

We use Dπ
train to denote the set of examples chosen by π. Given the labeled dataset Dπ

train,

we define pERR(π) as the expected error probability w.r.t. the posterior p(ω | Dπ
train). Let the

cost of a policy π be cost(π) ≜ max
∣∣Dπ

train

∣∣, i.e., the maximum number of queries made by

policy π over all possible realizations of the target hypothesis H ∈ H. Given a tolerance pa-

rameter σ ∈ [0, 1], we seek a policy with minimal cost, such that upon termination, it will get

an expected error probability less than σ. Formally, we seek argminπ cost(π), s.t.pERR(π) ≤

σ.

6.2.2 Most Informative Selection Criterion

BALD uses mutual information between the model prediction for each sample and the

parameters of the model as the acquisition function. It captures the reduction of model

uncertainty by receiving a label y of a data point x:

I (y;ω | x,Dtrain) = H (y | x,Dtrain) − Ep(ω|Dtrain)
[H (y | x, ω,Dtrain)] where H denotes

the Shannon entropy [Shannon, 1948]. Kirsch et al. [2019] further proposed BatchBALD as

an extension of BALD whereby the mutual information between a joint of multiple data

points and the model parameters is estimated as

∆BatchBALD(x1:b | Dtrain) ≜ I(y1:b;ω | x1:b,Dtrain).
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Limitation of the BALD algorithm BALD can be ineffective when the hypothesis

samples are heavily biased and cluttered towards sub-optimal hypotheses. Below, we provide

a concrete example where such selection criteria may be undesirable.
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Figure 6.2: A stylized example where the most informative selection criterion underperforms
the equivalence-class-based criterion.

Consider the problem shown in Figure. 6.2. The hypothesis class H = {h1, . . . , hn} is

structured such that

dH(hi, hj) =


21−i − 21−j if i < j,

21−j − 21−i o.w.

where dH(hi, hj) denotes the fraction of labels hi and hj disagree upon when making predic-

tions on i.i.d. samples of data points. We further assume that for any subset of hypotheses

S ⊆ H, there exists a data point whose label they agree upon.

Assume each hypothesis hi has an equal probability and the target error rate is σ. On

the one hand, note that BALD does not consider dH(hi, hj), and therefore on average it

requires log n examples to identify any target hypothesis. On the other hand, to achieve a

target error rate of σ, one only needs to differentiate all pairs of hypotheses hi, hj of distance

dH(hi, hj) > σ (i.e., by selecting training examples to rule out at least one of hi, hj).

Therefore, a “smarter” AL policy could query examples to sequentially check the consistency

of h1, h2, . . . , hn until all remaining hypotheses are within distance σ. It is easy to check that

this requires log(1/σ) examples before reaching the error rate σ. The gap between BALD

and the above policy log n
log(1/σ)

could be large as n increases.
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6.2.3 Equivalence-class-based Selection Criterion

As alluded in §6.1 and Figure. 6.1, the MIS strategy can be ineffective when the samples

from the model posterior are heavily biased and cluttered toward sub-optimal hypotheses.

A “smarter” strategy would instead leverage the structure of the hypothesis space induced

by the underlying (unlabeled) pool of data points. In fact, this idea connects to an important

problem for approximate AL, which is often cast as learning equivalence classes [Golovin

et al., 2010]:

Definition 1 (Equivalence Class). Let (H, d) be a metric space where H is a hypothesis

class and d is a metric. For a given set V ⊆ H and centers S = {s1, ..., sk} ⊆ V of size k,

let rS : V → [k] be a partition function over V and Di := {h ∈ V | rS(h) = i}, such that

∀i, j ∈ [k], rS(si) = i and ∀h ∈ Di, d(h, si) ≤ d(h, sj). Each Di ⊆ V is called an equivalence

class induced by si ∈ S.

Consider a pool-based AL problem with hypothesis space H, a sampled set V ⊆ H,

and an unlabeled dataset D̄pool which is drawn i.i.d. from the underlying data distribution.

Each hypothesis h ∈ H can be represented by a vector vh indicating the predictions of all

samples in D̄pool. We can construct equivalence classes with the Hamming distance, which

is denoted as dH(h, h
′), and equivalence class number k on sampled hypotheses V . Let

dSH(V) := maxh,h′∈V:rS(h)=rS(h′) dH(h, h
′) be the maximal diameter of equivalence classes

induced by S.

Therefore, the error rates of any unordered pair of hypotheses {h, h′} that lie in the

same equivalence class are at most dSH(V) away from each other. If we construct the k

equivalence-class-inducing centers (as in Definition 1) as the solution of the max-diameter

clustering problem: C = argmin|S|=k d
S
H(V), we can obtain the minimal worst-case relative

error (i.e. difference in error rate) between hypotheses pair {h, h′} that lie in the same

equivalence class.
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We denote E = {{h, h′} : rC(h) ̸= rC(h′)} as the set of all (unordered) pairs of hypotheses

(i.e. undirected edges) corresponding to different equivalence classes with centers in C.

Equivalence class edge cutting Consider the problem statement in §6.2.1. If σ = 0

and tests are noise-free, this problem can be solved near-optimally by the equivalence class

edge cutting (EC2) algorithm [Golovin et al., 2010]. EC2 employs an edge-cutting strategy

based on a weighted graph G = (H, E), where vertices represent hypotheses and edges link

hypotheses that we want to distinguish between. Here E ≜ {{h, h′} : r(h) ̸= r(h′)} contains

all pairs of hypotheses that have different equivalence classes. We define a weight function

W : E → R≥0 by W ({h, h′}) ≜ p(h) · p(h′). A sample x with label y is said to "cut" an

edge if at least one hypothesis is inconsistent with y. Denote E(x, y) ≜ {{h, h′} ∈ E : p(y |

x, h) = 0 ∨ p(y | x, h′) = 0} as the set of edges cut by labeling x as y. The EC2 objective

is then defined as the total weight of edges cut by the current Dtrain: fEC2 (Dtrain) ≜

W
(⋃

(x,y)∈Dtrain
E (x, y)

)
. EC2 algorithm greedily maximizes this objective per iteration.

The acquisition function for EC2 is

∆EC2 (x | Dtrain) ≜ Ey [f (Dtrain ∪ {(x, y)})− f(Dtrain) | Dtrain] . (6.1)

The equivalence class edge discounting algorithm In the noisy setting, the acquisi-

tion function of Equivalence Class Edge Discounting algorithm (ECED) [Chen et al., 2016]

takes undesired contribution by noise into account. Given a data point and its label (x, y),

ECED discounts all model parameters by their likelihood ratio: λh,y ≜ p(y|h,x)
maxy′ p(y

′|h,x) .

After we get Dtrain, the value of assigning label y to a data point x is defined as the total

amount of edge weight discounted: δ(x, y | Dtrain) ≜
∑
{h,h′}∈E p(h,Dtrain)p(h

′,Dtrain) ·(1−

λh,yλh′,y), where E = {{h, h′} : r(h) ̸= r(h′)} consists of all unordered pairs of hypothesis

corresponding to different equivalence classes. Further, ECED augments the above value

function δ with an offset value such that the value of a non-informative test is 0. The offset
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value of labeling x as label y is defined as: ν(x, y | Dtrain) ≜
∑
{h,h′}∈E p(h,Dtrain)p(h

′,Dtrain)·

(1−maxh λ
2
h,y). The overall acquisition function of ECED is:

∆ECED(x | Dtrain) ≜ Ey [δ(x, y | Dtrain)− ν(x, y | Dtrain)] . (6.2)

Limitation of existing EC-based algorithms Existing EC-based AL algorithms (e.g.,

EC2 [Golovin et al., 2010] and ECED [Chen et al., 2016]) are not directly applicable to

deep Bayesian AL tasks. This is because computing the acquisition function (i.e., Eq. (6.1)

and Eq. (6.2)) needs to integrate over the hypotheses space, which is intractable for large

models (such as deep BNN). Moreover, it is nontrivial to extend to batch-mode setting

since the number of possible candidate batches and the number of label configurations for

the candidate batch grows exponentially with the batch size. Therefore, we need efficient

approaches to approximate the ECED acquisition function when dealing with BNNs in both

fully sequential setting and batch-mode setting.

6.3 Our Approach

We first introduce our acquisition function for the sequential setting, namely BALanCe

(as in Bayesian Active Learning via Equivalence Class Annealing), and then present the

batch-mode extension under both small and large batch-mode AL settings.

6.3.1 The BALanCe Acquisition Function

We resort to the Monte Carlo method to estimate the acquisition function. Given all available

labeled samples Dtrain at each iteration, hypotheses ω are sampled from the BNN posterior.

We instantiate our methods with two different BNN posterior sampling approaches: MC

dropout [Gal and Ghahramani, 2016] and cSG-MCMC [Zhang et al., 2019]. MC dropout is

easy to implement and scales well to large models and datasets very efficiently [Kirsch et al.,
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2019, Gal and Ghahramani, 2016, Gal et al., 2017]. However, it is often poorly calibrated

[Foong et al., 2020, Fortuin et al., 2021]. cSG-MCMC is more practical and indeed has

high-fidelity to the true posterior [Zhang et al., 2019, Fortuin et al., 2021, Wenzel et al.,

2020].

In order to determine if there is an edge {ω̂, ω̂′} that connects a pair of sampled hypotheses

ω̂, ω̂′ (i.e., if they are in different equivalence classes), we calculate the Hamming distance

dH(ω̂, ω̂
′) between the predictions of ω̂, ω̂′ on the unlabeled dataset D̄pool. If the distance is

greater than some threshold τ , we consider the edge {ω̂, ω̂′} ∈ Ê ; otherwise not. We define

the acquisition function of BALanCe for a set x1:b ≜ {x1, ..., xb} as:

∆BALanCe(x1:b | Dtrain) ≜ Ey1:bEω,ω′∼p(ω|Dtrain)
1dH(ω,ω′)>τ ·

(
1− λω,y1:bλω′,y1:b

)
(6.3)

where λω,y1:b ≜
p(y1:b|ω,x1:b)

maxy′
1:b

p(y′1:b|ω,x1:b)
is the likelihood ratio2 [Chen et al., 2016], and 1dH(ω̂k,ω̂′

k)>τ

is the indicator function. We can adaptively anneal τ by setting τ proportional to BNN’s

validation error rate ε in each AL iteration.

In practice, we cannot directly compute Eq. (6.3); instead we estimate it with sampled

BNN posteriors: We first acquire K pairs of BNN posterior samples {ω̂, ω̂′}. The Hamming

distances dH(ω̂, ω̂
′) between these pairs of BNN posterior samples are computed. Next, we

calculate the weight discount factor 1 − λω̂k,y1:bλω̂′
k,y1:b

for each possible label y and each

pair {ω̂, ω̂′} where dH(ω̂, ω̂
′) > τ . At last, we take the expectation of the discounted weight

over all y1:b configurations. In summary, ∆BALanCe(x1:b) is approximated as

1

2K2

∑
y1:b

K∑
k=1

(
p(y1:b | ω̂k) + p(y1:b | ω̂′k)

) K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ

(
1− λω̂k,y1:bλω̂′

k,y1:b

)
. (6.4)

Dtrain is omitted for simplicity of notations. Note that in our algorithms we never

2. The likelihood ratio is used here (instead of the likelihood) so that the contribution of “non-informative
examples” (e.g., p(y′1:b | ω, x1:b) = const ∀y′1:b, ω) is zeroed out.
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explicitly construct equivalence classes on BNN posterior samples, due to the fact that (1)

it is intractable to find the exact solution for the max-diameter clustering problem and (2)

an explicit partitioning of the hypotheses samples tends to introduce “unnecessary” edges

where the incident hypotheses are closeby (e.g., if a pair of hypotheses lie on the adjacent

edge between two hypothesis partitions), and therefore may overly estimate the utility of

a query. Nevertheless, we conducted an empirical study of a variant of BALanCe with

explicit partitioning (which underperforms BALanCe). We defer detailed discussion on

this approach, as well as empirical study, to the

Algorithm 2 Active selection w/ Batch-BALanCe

1: input: Dpool,D̄pool, aquisition batch size B, coldness parameter β, threshold τ , and
downsampling subset size |C|.

2: draw K random pairs of BNN posterior samples {ω̂k, ω̂′k}Kk=1
3: if B is sufficiently small (see §6.4.2) then
4: AB ← GreedySelection(Dpool, D̄pool, {ω̂k, ω̂′k}Kk=1, τ, B) {see §6.3.2}
5: else
6: downsample subset C ⊂ Dpool with p(x) ∼ ∆BALanCe(x)

β

7: S1:B , µ1:B ← BALanCe-Clustering(C, D̄pool, {ω̂k, ω̂′k}Kk=1, τ, β, B) {see §6.3.3}
8: AB ← µ1:B
9: output: AB

In the fully sequential setting, we choose one sample x with top ∆BALanCe(x) in each

AL iteration. In the batch-mode setting, we consider two strategies for selecting samples

within a batch: greedy selection strategy for small batches and acquisition-function-driven

clustering strategy for large batches. We refer to our full algorithm as Batch-BALanCe

(algorithm 2) and expand on the batch-mode extensions in the following two subsections.

6.3.2 Greedy Selection Strategy

To avoid the combinatorial explosion of possible batch number, the greedy selection strat-

egy selects sample x with maximum ∆BALanCe(x1:b−1 ∪ {x}) in the b-th step of a batch.

However, the configuration y1:b of a subset x1:b expands exponentially with subset size b. In
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order to efficiently estimate ∆BALanCe(x1:b), we employ an importance sampling method.

The current M configuration samples of y1:b are drawn by concatenating previous drawn M

samples of y1:b−1 and M samples of yb (samples drawn from proposal distribution). The

pseudocode for the greedy selection strategy is provided in algorithm 3.

Algorithm 3 Greedy selection

1: input: a set of samples D, D̄pool, {ω̂k, ω̂′k}Kk=1, threshold τ , and B

2: A0 = ∅

3: for b ∈ [B] do

4: for all x ∈ D\Ab−1 do

5: sx ← ∆BALanCe(Ab−1
⋃{x})

6: xb ← argmaxx∈D\Ab−1
sx

7: Ab ← Ab−1
⋃{xb}

8: output: batch AB = {x1, . . . , xB}

Importance sampling of configurations When b becomes large, it is infeasible to enu-

merate all label configurations y1:b. We use M MC samples of y1:b to estimate the acquisition

function and importance sampling to further reduce the computational time3. Given that

p(y1:b | ω) can be factorized as p(y1:b−1 | ω) · p(yb | ω), the acquisition function can be

written as:

∆Batch−BALanCe(x1:b | Dtrain)

≜Ey1:b

[
Ep(ω|Dtrain)

1dH(ωk,ω
′
k)>τ

(
1− λω,y1:bλω′,y1:b

)]
=Ep(ω|Dtrain)

Ep(y1:b|ω)
[
Eω,ω′∼p(ω|Dtrain)

1dH(ωk,ω
′
k)>τ

(
1− λω,y1:bλω′,y1:b

)]
=Ep(ω|Dtrain)

Ep(y1:b−1|ω)Ep(yb|ω)
[
Eω,ω′∼p(ω|Dtrain)

1dH(ωk,ω
′
k)>τ

(
1− λω,y1:bλω′,y1:b

)]
3. A similar importance sampling procedure was proposed in Kirsch et al. [2019] to estimate the mutual

information. Here, we show how one can adapt the strategy to enable efficient estimation of ∆Batch−BALanCe.
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Suppose we have M samples of y1:b−1 from p(y1:b−1), we perform importance sampling using

p(y1:b−1) to estimate the acquisition function:

∆Batch−BALanCe(x1:b | Dtrain)

=Ep(ω|Dtrain)
Ep(y1:b−1)

p(y1:b−1 | ω)
p(y1:b−1)

Ep(yb|ω)
[
Eω,ω′∼p(ω|Dtrain)

1dH(ω,ω′)>τ

(
1− λω,y1:bλω′,y1:b

)]
=Ep(y1:b−1)

Ep(ω|Dtrain)
Ep(yb|ω)

p(y1:b−1 | ω)
p(y1:b−1)

[
Eω,ω′∼p(ω|Dtrain)

1dH(ω,ω′)>τ

(
1− λω,y1:bλω′,y1:b

)]
≈ 1

M

M∑
ŷ1:b−1

∑
ŷb

1
K

∑K
k=1 p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) + p(ŷ1:b−1 | ω̂′k)p(ŷb | ω̂′k)

p(ŷ1:b−1)
·

 1

K

K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ

(
1− λω̂k,ŷ1:bλω̂′

k,ŷ1:b

)
=

(
1

K
1dH(ω̂k,ω̂

′
k)>τ

)⊤(
1− P̂1:b−1 ⊗ P̂b

Â1:b

⊙
P̂ ′1:b−1 ⊗ P̂ ′b

Â′1:b

)
 1

M

P̂⊤1:b−1P̂b + P̂ ′⊤1:b−1P̂
′
b

1⊤
(
P̂1:b−1 + P̂ ′1:b−1

)
⊤ .

(6.5)

Here we save p(ŷ1:b−1 | ω̂k) and p(ŷ1:b−1 | ω̂′k) for M samples in P̂1:b−1 and P̂ ′1:b−1. The

shape of P̂1:b−1 and P̂ ′1:b−1 is K ×M . ⊙ is element-wise matrix multiplication and ⊗ is

the outer-product operator along first dimension. After the outer product operation, we can

reshape the matrix by flattening all the dimensions after the 1st dimension. 1 is a matrix of

1s with shape K × 1. P̂⊤1:b−1P̂b and P̂ ′⊤1:b−1P̂
′
b are of shape M × C and their sum is reshape

to 1×MC after divided by 1
⊤
(
P̂1:b−1 + P̂ ′1:b−1

)
.

Efficient implementation for greedy selection In algorithm 3, we can store p(ŷ1:b−1 |

ω̂k) in a matrix P̂1:b−1 and p(ŷ1:b−1 | ω̂′k) in matrix P̂1:b−1 for iteration b− 1. The shape of

P̂1:b−1 and P̂ ′1:b−1 is K × Cb−1. p(ŷb | ω̂k) can be stored in P̂b and p(ŷb | ω̂′k) in P̂ ′b. The
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shape of P̂b and P̂ ′b is K × C. Then, we compute probability of p(ŷ1:b) as follows:

p(ŷ1:b) =
1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′k)

=
1

2K

K∑
k=1

p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) + p(ŷ1:b−1 | ω̂′k)p(ŷb | ω̂′k)

=
1

2K
(P̂⊤1:b−1P̂b + P̂ ′⊤1:b−1P̂

′
b).

The P̂⊤1:b−1P̂b and P̂ ′⊤1:b−1P̂
′
b can be flattened to shape 1×Cb after matrix multiplication.

We store maxŷ1:b−1
p(ŷ1:b−1 | ω̂k) in a matrix Â1:b−1 and maxŷ′1:b−1

p(ŷ′1:b−1 | ω̂′k) in a matrix

Â′1:b−1. The shape of Â1:b−1 and Â′1:b−1 is K×1. We can compute λω̂,ŷ1:b inside edge weight

discount expression by

Â1:b = Â1:b−1 ⊙max
ŷb

P̂b;

p(ŷ1:b | ω̂k) = p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) = P̂1:b−1 ⊗ P̂b;

λω̂,ŷ1:b =
p(ŷ1:b | ω̂k)

maxŷ1:b p(ŷ1:b | ω̂k)
=

P̂1:b−1 ⊗ P̂b

Â1:b

.

⊙ is element-wise matrix multiplication and ⊗ is the outer-product operator along the

first dimension. After the outer product operation, we can reshape the matrix by flattening

all the dimensions after 1st dimension to maintain consistency. Similarly, we can compute

Â′1:b, p(ŷ1:b | ω̂′k) and λω̂′,ŷ1:b with matrix operations. The indicator function 1dH(ω̂k,ω̂
′
k)>τ

can be stored in a matrix with shape K×1. The acquisition function can be computed with

all matrix operations as follows:
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∆Batch−BALanCe(x1:b | Dtrain)

=Ep(ω|Dtrain)
Ep(y1:b|ω)

[
Eω,ω′∼p(ω|Dtrain)

1dH(ω,ω′)>τ

(
1− λω,y1:bλω′,y1:b

)]
≈
∑
ŷ1:b

 1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′k)

 1

K

K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ

(
1− λω̂k,ŷ1:bλω̂′

k,ŷ1:b

)
=

(
1

K
1D(ω̂k,ω̂

′
k)>τ

)⊤(
1− P̂1:b−1 ⊗ P̂b

Â1:b

⊙
P̂ ′1:b−1 ⊗ P̂ ′b

Â′1:b

)[
1

2K
(P̂⊤1:b−1P̂b + P̂ ′⊤1:b−1P̂

′
b)

]⊤
.

Algorithm 4 BALanCe-Clustering

1: input: C ⊂ Dpool, D̄pool, {ω̂k, ω̂′k}Kk=1, threshold τ , coldness parameter β, and cluster

number B

2: sample initial centroids O = {µj}Bj=1 ⊂ C with p(x) ∼ ∆BALanCe(x)
β

3: while O not converged do

4: for all x ∈ C do

5: ax ← argmaxj I∆BALanCe(x, µj)

6: Sj ← {x ∈ C : ax = j}

7: for all j ∈ [B] do

8: µj ← argmaxy∈Sj
∑

x∈Sj I∆BALanCe(x, y)

9: output: S1:B , µ1:B

6.3.3 Stochastic Selection with Power Sampling and BALanCe-Clustering

A simple approach to apply our new acquisition function to a large batch is stochastic batch

selection [Kirsch et al., 2021a], where we randomly select a batch with power distribution

p(x) ∼ ∆BALanCe(x)
β . We call this algorithm PowerBALanCe.

Next, we sought to further improve PowerBALanCe through a novel acquisition-function-

driven clustering procedure. Inspired by Kothawade et al. [2021], we define a novel infor-
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mation measure I∆BALanCe(x, y) for any two data samples x and y based on our acquisition

function:

I∆BALanCe(x, y) = ∆BALanCe(x) + ∆BALanCe(y)−∆BALanCe({x, y}) (6.6)

Intuitively, I∆BALanCe(x, y) captures the amount of overlap between x and y w.r.t. ∆BALanCe.

Therefore, it is natural to use it as a similarity measure for clustering and use the cluster

centroids as candidate queries. The BALanCe-Clustering algorithm is illustrated in algo-

rithm 4.

Concretely, we first sample a subset C ⊂ Dpool with p(x) ∼ ∆BALanCe(x)
β similar to

[Kirsch et al., 2021a]. The BALanCe-Clustering then runs an Lloyd’s algorithm (with a

non-Euclidean metric) to find B cluster centroids (see Line 3-8 in algorithm 4): it takes the

subset C, {ω̂k, ω̂′k}Kk=1, threshold τ , coldness parameter β, and cluster number B as input. It

first samples initial centroids O with p(x) ∼ ∆BALanCe(x)
β . Then, it iterates the process

of adjusting the clusters and centroids until convergence and outputs B cluster centroids as

candidate queries.

6.4 Experiments

In this section, we sought to show the efficacy of Batch-BALanCe on several diverse

datasets, under both small batch setting and large batch setting.

6.4.1 Datasets

In the main paper, we consider four datasets (i.e. MNIST [LeCun et al., 1998], Repeated-

MNIST [Kirsch et al., 2019], Fashion-MNIST [Xiao et al., 2017] and EMNIST [Cohen et al.,

2017]) as benchmarks for the small-batch setting, and two datasets (i.e. SVHN [Netzer

et al., 2011], CIFAR [Krizhevsky et al., 2009]) as benchmarks for the large-batch setting.
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The reason for making the splits is that for the more challenging classification tasks on SVHN

and CIFAR-10, the performance improvement for all baseline algorithms from a small batch

(e.g., with batch size < 50) is hardly visible. We split each dataset into unlabeled AL

pool Dpool, initial training dataset Dtrain, validation dataset Dval, test dataset Dtest, and

unlabeled dataset D̄pool. D̄pool is only used for calculating the Hamming distance between

hypotheses and is never used for training BNNs.

MNIST. We randomly split the MNIST training dataset into Dval with 10,000 samples,

D̄pool with 10,000 samples, and Dpool with the rest. The initial training dataset contains 20

samples with 2 samples in each class chosen from the AL pool. The BNN model architecture

is similar to Kirsch et al. [2019]. It consists of two blocks of [convolution, dropout, max-

pooling, relu] followed by a two-layer MLP that a two-layer MLP and one dropout between

the two layers. The dropout probability is 0.5 in the dropout layers.

Repeated-MNIST. Kirsch et al. [2019] show that applying BALD to a dataset that

contains many (near) replicated data points leads to poor performance. We again randomly

split the MNIST training dataset similar to the settings used on the MNIST dataset. We

replicate all the samples in the AL pool two times and add isotropic Gaussian noise with a

standard deviation of 0.1 after normalizing the dataset. The BNN architecture is the same

as the one used on the MNIST dataset.

EMNIST. We further consider the EMNIST dataset under 3 different settings: EMNIST-

Balanced, EMNIST-ByClass, and EMNIST-ByMerge. The EMNIST-Balanced contains 47

classes with balanced digits and letters. EMNIST-ByMerge includes digits and letters for

a total of 47 unbalanced classes. EMNIST-ByClass represents the most useful organization

for classification as it contains the segmented digits and characters for 62 classes comprising

[0-9],[a-z], and [A-Z]. We randomly split the training set into Dval with 18,800 images, D̄pool
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with 18,800 images, and Dpool with the rest of the samples. Similar to Kirsch et al. [2019],

we do not use an initial dataset and instead perform the initial acquisition step with the

randomly initialized model. The model architecture contains three blocks of [convolution,

dropout, max-pooling, relu], with 32, 64, and 128 3x3 convolution filters and 2x2 max

pooling. We add a two-layer MLP following the three blocks. 4 dropout layers in total are

in each block and MLP with a dropout probability of 0.5.

Fashion-MNIST Fashion-MNIST is a dataset of Zalando’s article images that consists

of a training set of 60,000 examples and a test set of 10,000 examples. Each example is

a 28x28 grayscale image, associated with a label from 10 classes. We randomly split the

Fashion-MNIST training dataset into Dval with 10,000 samples, D̄pool with 10,000 samples,

and Dpool with the rest of the samples. We obtain the initial training dataset that contains

20 samples with 2 samples in each class randomly chosen from the AL pool. The model

architecture is similar to the one used on the EMNIST dataset with 10 units in the last

MLP.

SVHN We randomly select initial training dataset with 5,000 samples, D̄pool with 2,000

samples, and validation dataset Dval with 5,000 samples. Similarly for CIFAR-10 dataset,

CIFAR we random select initial training dataset with 5,000 samples, D̄pool with 5,000

samples, and validation dataset Dval with 5,000 samples.

6.4.2 Experimental Setup

BNN models At each AL iteration, we sample BNN posteriors given the acquired training

dataset and select samples from Dpool to query labels according to the acquisition function

of a chosen algorithm. To avoid overfitting, we train the BNNs with MC dropout at each

iteration with early stopping. for MNIST, Repeated-MNIST, EMNIST, and FashionMNIST,
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we terminate the training of BNNs with a patience of 3 epochs. For SVHN and CIFAR-10,

we terminate the training of BNNs with a patience of 20 epochs. The BNN with the highest

validation accuracy is picked and used to calculate the acquisition functions. Additionally,

we use weighted cross-entropy loss for training the BNN to mitigate the bias introduced by

imbalanced training data. The BNN models are reinitialized in each AL iteration similar

to Gal et al. [2017], Kirsch et al. [2019]. It decorrelates subsequent acquisitions as the final

model performance is dependent on a particular initialization. We use Adam optimizer

[Kingma and Ba, 2017] for all the models in the experiments.

For cSG-MCMC, we use ResNet-18 [He et al., 2016] and run 400 epochs in each AL

iteration. We set the number of cycles to 8 and the initial step size to 0.5. 3 samples are

collected in each cycle.

Acquisition criterion for Batch-BALanCe under different bach sizes For small

AL batch with B < 50, Batch-BALanCe takes the greedy selection approach. For large

AL batch with B ≥ 50, BALanCe takes the clustering approach described in §6.3.3. In the

small batch-mode setting, if b < 4, Batch-BALanCe enumerates all y1:b configurations to

compute the acquisition function ∆(Batch−)BALanCe according to Eq. (6.4); otherwise, it

uses M = 10, 000 MC samples of y1:b and importance sampling to estimate ∆Batch−BALanCe

according to Eq. (6.5). All our results report the median of 6 trials, with lower and upper

quartiles.

Baselines For the small-batch setting, we compare Batch-BALanCe with Random, Varia-

tion Ratio [Freeman and Freeman, 1965], Mean STD [Kendall et al., 2015] and BatchBALD.

To the best of the authors’ knowledge, Batch-BALD still achieves state-of-the-art perfor-

mance for deep Bayesian AL with small batches. For large-batch setting, it is no longer

feasible to run BatchBALD [Citovsky et al., 2021]; we consider other baseline models both

in Bayesian setting, e.g., PowerBALD, and Non-Bayesian setting, e.g., CoreSet and BADGE.
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AL algorithms Complexity
Mean STD O

(
|Dpool|(CK + logB)

)
Variation Ratio O

(
|Dpool|(CK + logB)

)
PowerBALD O

(
|Dpool|(CK + logB)

)
BatchBALD O

(∣∣Dpool

∣∣BMK
)

CoreSet (2-approx) O(|Dpool|HB)

BADGE O(|Dpool|HCB2)
PowerBALanCe O

(
|Dpool|(C · 2K + logB)

)
Batch-BALanCe O

(∣∣Dpool

∣∣BM · 2K
)

(GreedySelection)
Batch-BALanCe O(|Dpool|C · 2K + |C|2(C2 · 2K + T ))(BALanCe-Clustering)

Table 6.1: Computational complexity of AL algorithms.

6.4.3 Computational Complexity Analysis

Table 6.1 shows the computational complexity of the batch-mode AL algorithms evaluated

in this paper. Here, C denotes the number of classes, B denotes the acquisition size, K is

the pair number of posterior samples and M is the sample number for y1:b configurations.

We assume the number of the hidden units is H. T is # iterations for BALanCe-Clustering

to converge and is usually less than 5. In Figure. 6.3 we plot the computation time for

a single batch (in seconds) by different algorithms. As the batch size increases, variants

of Batch-BALanCe (including Batch-BALanCe and PowerBALanCe as its special case)

both outperform CoreSet in run time. In later subsections, we will demonstrate that this

gain in computational efficiency does not come at a cost of performance.

6.4.4 Batch-mode Deep Bayesian AL with Small Batch Size

We compare 5 different models with acquisition sizes B = 1, B = 3, and B = 10 on the

MNIST dataset. K = 100 for all the methods. The threshold τ for Batch-BALanCe is

annealed by setting τ to ε/2 in each AL loop. Note that when B = 3, we can compute the

acquisition function with all y1:b configurations for b = 1, 2, 3. When b ≥ 4, we approximate
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Figure 6.3: Run time vs. batch size.

the acquisition function with importance sampling. Figure. 6.4 (a)-(c) show that Batch-

BALanCe are consistently better than other baseline methods for the MNIST dataset.

We then compare Batch-BALanCe with other baseline methods on three datasets with

balanced classes—Repeated-MNIST, Fashion-MNIST, and EMNIST-Balanced. The acqui-

sition size B for Repeated-MNIST and Fashion-MNIST is 10 and is 5 for the EMNIST-

Balanced dataset. The threshold τ of Batch-BALanCe is annealed by setting τ = ε/44.

The learning curves of accuracy are shown in Figure. 6.4 (d)-(f). For the Repeated-MNIST

dataset, BALD performs poorly and is worse than random selection. BatchBALD is able

to cope with the replication after a certain number of AL loops, which is aligned with the

result shown in Kirsch et al. [2019]. Batch-BALanCe is able to beat all the other methods

on this dataset.

For the Fashion-MNIST dataset, Batch-BALanCe outperforms random selection but

the other methods fail. For the EMNIST dataset, Batch-BALanCe is slightly better than

BatchBALD.

4. Empirically we find that τ ∈ [ε/8, ε/2] works generally well for all datasets.
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(a) MNIST
B = 1, K = 100
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(b) MNIST
B = 3, K = 100
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(c) MNIST
B = 10, K = 100
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(d) Repeated-MNIST
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(e) Fashion-MNIST
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(f) EMNIST-Balanced
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B = 5, K = 10

0 100 200 300 400

number of labeled samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

C

Random
BatchBALD
Mean STD
Variation Ratio
Batch-BALanCe

(h) EMNIST-ByClass
B = 5, K = 10

Figure 6.4: Experimental results on MNIST, Repeated-MNIST, Fashion-MNIST, EMNIST-
Balanced, EMNIST-ByClass, and EMNIST-ByMerge datasets in the small-batch regime.
For all plots, the y-axis represents accuracy and x-axis represents the number of queried
examples.

We further compare different algorithms with two unbalanced datasets: EMNIST-ByMerge

and EMNIST-ByClass. The τ for Batch-BALanCe is set ε/4 in each AL loop. B = 5 and

K = 10 for all the methods. As pointed out by Kirsch et al. [2019], BatchBALD performs

poorly in unbalanced dataset settings. BALanCe and Batch-BALanCe can cope with the

unbalanced data settings. The result is shown in Figure. 6.4 (g) and (h).

6.4.5 Effect of Different Choices of Hyperparameters

We compare BALD and BALanCe with batch size B = 1 and different K’s on an imbalanced

MNIST dataset which is created by removing a random portion of images for each class in

the training dataset. Figure. 6.5 (a) shows that BALanCe performs the best with a large
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margin to the curve of BALD. Note that BALanCe with K = 50 is also better than BALD

with K = 100.
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(a) ACC vs. # samples for different K’s.
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Figure 6.5: Learning curves of different K and τ for BALanCe.

We also study the influence of τ for BALanCe on the MNIST dataset. Denote the

validation error rate of the BNN model by ε. BALanCe with fixed τ = 0.05, 0.15, 0.3 and

annealing τ = ε/2, ε/4, ε/8 are run on MNIST dataset and the learning curves are shown in

Figure. 6.5 (b). The BALanCe is robust to τ . However, when τ is set to 0.3 and the test

accuracy gets around 0.88, the accuracy improvement becomes slow. The reason for this

slow improvement is that the threshold τ is too large and all the pairs of posterior samples

are treated as in the same equivalence class and the acquisition functions for all the samples

in the AL pool are zeros. In other words, the BALanCe degrades to random selection when

τ is too large.

We further pick a data point from this imbalanced MNIST dataset and gradually increase

the posterior sample number K to estimate the acquisition function value ∆BALanCe for

this data point. For each posterior sample number K, we estimate the acquisition function
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Figure 6.6: Estimated acquisition function values ∆BALanCe of BALanCe vs. posterior
sample number K

∆BALanCe 10 times with 10 sets of posterior sample pairs. The mean and std for this K

are calculated and shown in Figure. 6.6.

6.4.6 Experiments on Tabular Datasets

We compare different AL algorithms on tabular datasets including Human Activity Recog-

nition Using Smartphones Data Set [Anguita et al., 2013] (HAR), Gas Sensor Array Drift

[Vergara et al., 2012] (DRIFT), and Dry Bean Dataset [Koklu and Ozkan, 2020], as well as

a more difficult dataset CINIC-10 [Darlow et al., 2018].

HAR, DRIFT and Dry Bean Dataset We run 6 AL trials for each dataset and algo-

rithm. In each iteration, the BNNs are trained with a learning rate of 0.01 and patience

equal to 3 epochs. The BNNs all contain three-layer MLP with ReLU activation and dropout

layers in between. The datasets are all split into a starting training set, validation set, testing

set, and AL pool. The AL pool is also used as D̄pool. The τ for Batch-BALanCe is set ε/4
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in each AL loop. See Table 6.2 for more experiment details of these 3 datasets.

dataset val set size test set size hidden unit # sample # per epoch K B
HAR 2K 2,947 (64,64) 4,096 20 10

DRIFT 2K 2K (32,32) 4,096 20 10
Dry Bean 2K 2K (8,8) 8,192 20 10

Table 6.2: Experment details for HAR, DRIFT and Dry Bean Dataset

The learning curves of all 5 algorithms on these 3 tabular datasets are shown in Fig-

ure. 6.7. Batch-BALanCe outperforms all the other algorithms for these 3 datasets. For

the HAR dataset, both Batch-BALanCe and BatchBALD work better than random selec-

tion. In Figure. 6.7 (b) and (c), Mean STD, Variation Ratio, and BatchBALD perform worse

than random selection. We find a similar effect for some other imbalanced datasets.
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(a) ACC, HAR dataset
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(b) ACC, DRIFT dataset
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(c) ACC, Dry Bean Dataset

Figure 6.7: Experimental results on 3 tabular datasets. For all plots, the y-axis represents
accuracy and x-axis represents the number of queried examples.

CINIC-10 CINIC-10 is a large dataset with 270K images from two sources: CIFAR-10

[Krizhevsky et al., 2009] and ImageNet [Rasmus et al., 2015]. The training set is split into an

AL pool with 120K samples, 40K D̄pool samples, 20K validation samples, and 200 starting

training samples with 20 samples in each class. We use VGG-11 as the BNN. The number

of sampled MC dropout pairs is 50 and the acquisition size is 10. We run 6 trials for this

experiment. The learning curves of 5 algorithms are shown in Figure. 6.8. We can see from
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Figure. 6.8 that Batch-BALanCe performs better than all the other algorithms by a large

margin in this setting.
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Figure 6.8: ACC vs. # samples on the CINIC-10 dataset.

Repeated-MNIST with different amounts of repetitions In order to show the effect

of redundant data points on BathBALD and Batch-BALanCe, we ran experiments on

Repeated-MNIST with an increasing number of repetitions. The learning curves of accuracy

for Repeated-MNIST with different repetition numbers can be seen in Figure. 6.9. A detailed

model accuracy on the test dataset when the acquired training dataset size is 130 is shown in

Table 6.3. Even though Batch-BALanCe can improve data efficiency [Kirsch et al., 2019],

there are still large gaps between the learning curves of Batch-BALD and Batch-BALanCe

and the gaps become larger when the number of repetitions increases.

In order to compare our algorithms with other AL algorithms in this small batch size

regime, we further run PowerBALanCe, PowerBALD, BADGE, and CoreSet on the Repeated-
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(a) repeat 0 time
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(b) repeat 1 times
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(c) repeat 2 times
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(d) repeat 3 times

Figure 6.9: Performance of Random selection, BatchBALD, and Batch-BALanCe on
Repeated-MNIST for an increasing number of repetitions. For all plots, the y-axis rep-
resents accuracy and the x-axis represents the number of queried examples. We can see that
BatchBALD also performs worse as the number of repetitions is increased. Batch-BALanCe
outperforms BatchBALD with large margins and remains similar performance across differ-
ent numbers of repetitions.

MNIST with repeat number 3. As shown in Figure. 6.10, Batch-BALanCe achieves the best

performance. Note that both PowerBALD and PowerBALanCe are efficient in selecting AL

batch and show similar performance compared to the BADGE algorithm.
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Figure 6.10: ACC vs. # samples on RepeatedMNIST dataset with repeat number 3.

CIFAR-100 For CIFAR-100, we use 100 fine-grained labels. The dataset is split into

an initial training dataset with 5,000 samples, D̄pool with 5,000 samples, and a validation

dataset Dval with 5,000 samples. The experiment is conducted with batch size B = 5, 000

and a budget of 25,000. The cSG-MCMC is used for BNN with epoch number 200, initial

step size 0.5, and cycle number 4. We can see in Figure. 6.11 that both PowerBALanCe

and Batch-BALanCe perform well in this dataset.

6.4.7 Additional Evaluation Metrics

Besides accuracy, we compared macro-average AUC, macro-average F1, and NLL for 5 dif-

ferent methods on EMNIST-Balanced and EMNIST-ByMerge datasets in Figure. 6.12. The

acquisition size for all the AL algorithms is 5. Batch-BALanCe is annealed by setting

τ = ε/4. A macro-average AUC computes the AUC independently for each class and then

94



5000 7500 10000 12500 15000 17500 20000 22500 25000

number of labeled samples

0.45

0.50

0.55

0.60

0.65

0.70

0.75

AC
C

Random
CoreSet
BADGE
PowerBALD
PowerBALanCe
Batch-BALanCe

16000 18000 20000 22000 24000

0.66

0.68

0.70

0.72

0.74

0.76

Figure 6.11: ACC vs. # samples, cSG-MCMC, CIFAR-100

takes the average. Both macro-average AUC and macro-average F1 take class imbalance into

account. As shown in Figure. 6.12, Batch-BALanCe attains better data efficiency compared

with baseline models on both balanced and imbalanced datasets.

We also evaluated the negative log-likelihood (NLL) for different AL algorithms. NLL

is a popular metric for evaluating predictive uncertainty [Quinonero-Candela et al., 2005].

As shown in Figure. 6.12, Batch-BALanCe maintains a better or comparable quality of

predictive uncertainty over test data.

6.4.8 BALanCe via Explicit Partitioning over the Hypothesis Posterior

Samples

Another way of estimating the acquisition function is to construct the equivalence classes

explicitly first (e.g. by partitioning the hypothesis spaces into k Voronoi cells via max-
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Figure 6.12: Compare different metrics for EMNIST-Balanced and EMNIST-Bymerge

diameter clustering and calculate the weight discounts of edges that connect different equiv-

alence classes. Intuitively, explicitly constructing equivalence classes may introduce unnec-

essary edges as two closeby hypotheses can be partitioned into different equivalence classes;

therefore leading to an overestimate of the edge weight discounted. We call this algorithm

BALanCe-Partition.

In order to compare with BALanCe and Batch-BALanCe, we sampled K pairs of

MC dropouts to estimate the acquisition function of BALanCe-Partition. All the repre-

sentations of 2K MC dropouts on D̄pool are generated. We run FFT [Gonzalez, 1985] with

Hamming distances and threshold τ on these representations to get approximated ECs. Each

data point has at most τ Hamming distance to the corresponding cluster center. FFT is a

2-approx algorithm and the optimal solution with the same cluster number has cluster diam-

eter ≥ τ
2 . After equivalence classes are returned, BALanCe-Partition calculates the edges

discounts of all edges that connect different equivalence classes and estimates the acquisition
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function values of each data sample in the AL pool.

Although a faster method that utilizes complete homogeneous symmetric polynomials

[Javdani et al., 2014] can be implemented to estimate the acquisition function values for

BALanCe-Partition, experiments in Figure. 6.13 show that BALanCe-Partition can not

achieve better performance than BALanCe and increasing the MC dropout number does

not improve performance significantly.
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Figure 6.13: ACC vs. # samples for BALanCe-Partition and BALanCe.

Method repeat 1 time repeat 2 times repeat 3 times repeat 4 times
Random 0.887± 0.017 0.883± 0.012 0.881± 0.013 0.895± 0.009

BatchBALD 0.917± 0.005 0.892± 0.023 0.883± 0.025 0.881± 0.014
Batch-BALanCe 0.926± 0.008 0.923± 0.008 0.929± 0.004 0.927± 0.010

Table 6.3: Mean±STD of test accuracies when acquired training set size is 130

6.4.9 Batch-mode Deep Bayesian AL with Large Batch Size

Batch-BALanCe with MC dropout We test different AL models on two larger datasets

with larger batch sizes. The acquisition batch size B is set to 1,000 and τ = ε/8. We use
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(a) ACC, MC dropout, SVHN
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Figure 6.14: Performance on SVHN and CIFAR-10 datasets in the large-batch regime.

VGG-11 as the BNN and train it on all the labeled data with patience equal to 20 epochs in

each AL iteration. The VGG-11 is trained using SGD with a fixed learning rate of 0.001 and

momentum of 0.9. The size of C for Batch-BALanCe is set to 2B. Similar to PowerBALD

[Kirsch et al., 2021a], we also find that PowerBALanCe and BatchBALanCe are insensitive

to β and β = 1 works generally well. We thus set the coldness parameter β = 1 for all

algorithms.

The performance of different AL models on these two datasets is shown in Figure. 6.14

(a) and (b). PowerBALD, PowerBALanCe, BADGE, and BatchBALanCe get similar per-

formance on SVHN dataset. For the CIFAR-10 dataset, BatchBALanCe shows compelling

performance. Note that PowerBALanCe also performs well compared to other methods.

Batch-BALanCe with cSG-MCMC We test different AL models with cSG-MCMC

on CIFAR-10. The acquisition batch size B is 5,000. The size of C for Batch-BALANCE is

set to 3B. In order to apply the CoreSet algorithm to BNN, we use the average activations of

all posterior samples’ final fully-connected layers as the representations. For BADGE, we use

the label with maximum average predictive probability as the hallucinated label and use the

average loss gradient of the last layer induced by the hallucinated label as the representation.
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Figure 6.15: ACC vs. # samples, multi-chain cSG-MCMC, CIFAR-10

We can see from Figure. 6.14 (c) that Batch-BALanCe achieves the best performance.

6.4.10 Batch-BALanCE with Multi-chain cSG-MCMC

cSG-MCMC can be improved by sampling with multiple chains [Zhang et al., 2019]. In

order to evaluate different AL algorithms with this improved parallel cSG-MCMC method,

we conduct experiment on the CIFAR-10 dataset with batch size B = 5, 000. We sample

posteriors with 3 chains. Each chain trains the model 200 epochs. The cycle number for

each chain is 4 and 3 posterior samples are collected in each cycle. The result is shown in

Figure. 6.15, Batch-BALanCe achieves better performance than BADGE.
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6.5 Conclusion

We have proposed a scalable batch-mode deep Bayesian active learning framework, which

leverages the hypothesis structure captured by equivalence classes without explicitly con-

structing them. Batch-BALanCe selects a batch of samples at each iteration, which can

reduce the overhead of retraining the model and save labeling effort. By combining in-

sights from decision-theoretic active learning and diversity sampling, the proposed algo-

rithms achieve compelling performance efficiently on active learning benchmarks both in

small batch- and large batch-mode settings. Given the promising empirical results on the

standard benchmark datasets explored in this paper, we are further interested in under-

standing the theoretical properties of the equivalence annealing algorithm under controlled

studies as future work.
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CHAPTER 7

CONCLUSION AND OUTLOOK

7.1 Conclusion and Discussion

This dissertation has made several significant contributions to the field of machine learning

with a focus on the analysis of histopathology images in low-data regimes. The primary goal

was to develop and evaluate methods that enhance the efficiency and effectiveness of machine

learning applications from caption generation and image classification to active learning

strategies and representation learning. Each of these contributions not only addresses specific

challenges within the field but also opens up new avenues for research and application.

The introduction of the PathCap and PathHyperbolic models represents a foundational

advancement in the use of deep learning for interpreting complex medical images. The Path-

Cap model leverages multi-scale views to generate accurate, informative captions for whole-

slide histopathology images, significantly outperforming baseline models. This not only aids

in standardizing clinical ontologies but also improves the accessibility and annotation quality

of medical images, which is critical for both educational and diagnostic purposes in medi-

cal fields. Similarly, the PathHyperbolic model integrates hyperbolic spaces with attention

mechanisms to enhance image classification tasks. This novel approach has shown superior

performance by effectively highlighting discriminative structures across various scales, thus

providing a more nuanced analysis than traditional models. The success of these models

demonstrates the potential of advanced machine learning techniques in transforming med-

ical image analysis, offering more precise and interpretable results that can greatly benefit

clinical practices.

The development of the Batch-BALanCe algorithm underlines the effectiveness of using

deep Bayesian active learning frameworks to manage the scarcity of labeled data in medical

imaging fields. By innovatively applying decision-theoretic principles and combinatorial
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optimization, this approach not only refines the model’s learning process but also significantly

reduces the cost and effort required in data annotation. Batch-BALanCe’s capability to

efficiently select informative samples from large datasets without compromising performance

is a critical enhancement that promises to streamline workflows in clinical image analysis.

The exploration of representation learning using coarse-grained labels has set a new

precedent in the utilization of available data. By focusing on the hierarchical relationships

between different data granularities, the proposed few-shot learning algorithm efficiently

predicts fine-grained labels even from limited data. This approach not only circumvents the

challenge of acquiring extensive fine-grained annotations but also maximizes the predictive

performance using minimal resources, showcasing the feasibility of sophisticated machine

learning models in resource-constrained settings.

In conclusion, this dissertation represents a significant leap forward in applying machine

learning to enhance histopathology image analysis in scenarios characterized by data scarcity.

By introducing groundbreaking models like PathCap and PathHyperbolic, and by advancing

active learning strategies through the Batch-BALanCe algorithm, this work has effectively

pushed the boundaries of what is achievable in medical image analysis. Furthermore, the

innovative use of representation learning with coarse-grained labels exemplifies a smart ap-

proach to overcoming common data limitations in medical settings. These contributions not

only fulfill the dissertation’s primary goals but also establish a solid foundation for future

research, offering promising pathways for both academic exploration and practical imple-

mentation in medical diagnostics and education. The techniques developed here hold the

potential to significantly influence clinical practices and patient outcomes by enhancing the

accuracy and efficiency of medical diagnostics through advanced machine learning.
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Future Directions

We require an efficient and precise analysis system for histopathology images. The devel-

opment of such systems requires collaborative, interdisciplinary approaches that translate

diverse sources of raw information into accessible scientific insight. To this end, more re-

search can be done to expand upon a strong foundation built by our past and current

research. Furthermore, some efficient strategies can be designed to use available data and

make effective use of data from more recent technologies.

Active Data Acquisition and Subset Selection from Source Domain

Transfer learning/broad transfer [Ilharco et al., 2022] offers great potential to adapt founda-

tion models to specialized domains. However, the domain shift poses intertwined challenges

for active data acquisition and (robust) subset selection from the source domain. The goal

is to optimize the transfer learning/broad transfer process by judiciously utilizing data from

related but distinct source domains. This involves identifying and leveraging subsets of

source domain data that are most beneficial for specific downstream tasks. The core chal-

lenge in both tasks lies in establishing robust methodologies to determine the relevance and

adaptability of source data.

Active data acquisition from source domain By actively acquiring data from loosely

related source domains, we could leverage the lower cost of annotation in these domains

to bolster the performance on more complex downstream tasks. The strategic selection of

subsets from the source domain, which offer gradients aligned with the downstream task,

could optimize the transfer learning process. This approach hinges on developing robust

methods for identifying which source domain data will produce gradient alignment, thereby

facilitating more efficient and effective learning. Further exploration into this area may also

involve understanding the limits of domain adaptability and the extent to which data from
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the source domain can be used. Such advancements could significantly reduce the need for

expensive labeling efforts in specialized domains and enhance the practicality of machine

learning models in various applications.

(Robust) subset selection from source domain Understanding and quantifying the

relationship between source and target domains in transfer learning and few-shot learning can

be challenging, especially when they are not closely related. The research should aim to tackle

this by considering various degrees of relatedness and types of data representation. More

research is needed to establish criteria and develop algorithms to assess the “transferability”

of source data based on how well it aligns with the gradient directions beneficial for the

target task. This may include creating metrics for gradient alignment which quantify the

relevance of source domain data to the target task’s learning process.

Integration with Vision-Language Models and Prompt Learning

Classifying WSIs presents significant challenges due to the vast number of unlabeled patches

within each slide, compounded by the availability of only slide-level labels. This scarcity

of detailed labels poses substantial hurdles for both the performance and interpretability

of models in histopathology. To address these issues, advanced foundation models can be

leveraged with the goal of enhancing both the performance and interpretability of models

in analyzing histopathology images. This direction aims to provide a more nuanced under-

standing and precise classification of WSIs, bridging the gap between abundant data and

limited labeling.

Improve model performance with prompt learning Future research may explore

the potential of integrating prompt learning with vision-language models to enhance whole

slide image classification, particularly in few-shot learning scenarios. The proposed direction

involves developing a prompt-guided pooling mechanism that leverages the Transformer ar-
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chitecture’s ability to capture complex dependencies. This method could potentially allow

for the prioritization and effective integration of patch-level information, aiming to extract

more robust slide-level features. Such an approach might address the challenges inherent in

the vast and complex nature of pathological slides, where each patch’s relevance can vary

dramatically and important diagnostic features may be sparsely distributed. If successful,

this strategy could not only improve the model’s discriminatory power but also contribute

to more nuanced and interpretable AI-driven diagnostics. Furthermore, the adaptability of

prompt learning might enable customizable tuning of the model to specific types of pathol-

ogy, potentially obviating the need for extensive retraining or new data collection, thus

positioning it as a candidate for rapid, efficient, and scalable deployment in clinical settings.

Enhance visualization with prompt learning Foundation models hold promise for en-

hancing the interpretability and visualization of histopathology image models. A potential

research direction involves the integration of additive multiple instance learning [Javed et al.,

2022] with foundation models. Additive multiple-instance learning provides a framework

that not only boosts model performance but also enhances interpretability. By attributing

explicit spatial credit, this approach enables a more detailed understanding of model deci-

sions, which closely aligns with the diagnostic regions identified by pathologists and offers

clearer and more relevant insights than traditional attention mechanisms. The envisioned re-

search path could include merging additive multiple-instance learning with prompt learning

to further enhance the model’s visualization and interpretative capabilities. This combined

approach is anticipated to leverage the strengths of both methodologies, potentially pro-

viding deep insights into machine learning-driven diagnostics, especially useful in few-shot

learning scenarios where data scarcity poses significant challenges.
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Integration with Next-generation Molecular Profiling Technology

The intricate spatial geometry of tissue biopsies, which is indicative of complex cellular in-

teractions, represents a rich dataset for advancing representation learning in computational

biology. The emergence of spatial transcriptomics (ST) [Ståhl et al., 2016] techniques has

significantly enhanced our ability to measure RNA expressions within these cellular microen-

vironments, offering a novel perspective for enriching the data fidelity of single-cell RNA

sequencing (scRNA-seq) and histopathology image analysis. However, current images pro-

duced by ST are often of low magnification, and the RNA expression data they yield can be

marred by high levels of noise. This poses a significant hurdle in accurately interpreting the

complex interplay of cellular activities and understanding the nuanced spatial relationships

within tissues. Overcoming these limitations requires developing computational methods

capable of extracting meaningful insights from noisy expression data and low-magnification

images, thereby unlocking the full potential of ST for revolutionizing our understanding of

cellular mechanisms and disease pathology.

Improve identification of spatially varying genes and cell types The potential

refinement of integrating ST data with H&E stained images could be explored through

automated region alignment and simulation of gene expression across these aligned regions

within a unified algorithmic framework. This approach aims to automate the intricate process

of identifying and characterizing inflammatory conditions, such as those seen in inflammatory

bowel disease (IBD), across the intestinal walls. Such integration could potentially enhance

the precision and efficiency of disease characterization by augmenting pathologists’ expertise

with machine learning capabilities. This could contribute significantly to the development

of targeted therapies. Moreover, this strategy may represent a step toward automated,

scalable analysis of histopathological data, potentially facilitating rapid and informed clinical

decision-making.
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Improve representation learning with ST Future research might capitalize on the dual

perspectives provided by ST microscope imaging and single-cell RNA sequencing (scRNA-

seq) data. This could be achieved by employing contrastive learning or multi-view learning

paradigms to refine representation learning models. Such approaches have the potential

to create more nuanced and informative representations that more accurately capture the

biological complexity of tissue samples. The prospect of these enhanced representations rev-

olutionizing the understanding of cellular mechanisms is considerable. Additionally, quanti-

tatively evaluating the improvements in representations for scRNA-seq and histopathology

images could establish measurable benchmarks for progress in this field. This direction could

potentially pave the way for novel diagnostic and therapeutic strategies that are informed

by deeper, data-driven insights.

107



REFERENCES

Brigham & Women’s Hospital & Harvard Medical School Chin Lynda 9 11 Park Peter J. 12
Kucherlapati Raju 13, Genome data analysis: Baylor College of Medicine Creighton Chad
J. 22 23 Donehower Lawrence A. 22 23 24 25, Institute for Systems Biology Reynolds
Sheila 31 Kreisberg Richard B. 31 Bernard Brady 31 Bressler Ryan 31 Erkkila Timo 32
Lin Jake 31 Thorsson Vesteinn 31 Zhang Wei 33 Shmulevich Ilya 31, et al. Comprehensive
molecular portraits of human breast tumours. Nature, 490(7418):61–70, 2012.

Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for
multiple-instance learning. Advances in neural information processing systems, 15, 2002.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis Reyes Or-
tiz. A public domain dataset for human activity recognition using smartphones. In Pro-
ceedings of the 21th International European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, pages 437–442, 2013.

Antreas Antoniou and Amos Storkey. Assume, augment and learn: Unsupervised few-shot
meta-learning via random labels and data augmentation. arXiv preprint arXiv:1902.09884,
2019.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

Morteza Babaie, Shivam Kalra, Aditya Sriram, Christopher Mitcheltree, Shujin Zhu, Amin
Khatami, Shahryar Rahnamayan, and Hamid R Tizhoosh. Classification and retrieval
of digital pathology scans: A new dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages 8–16, 2017.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by
maximizing mutual information across views. Advances in neural information processing
systems, 32, 2019.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regu-
larization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Ginneken,
Nico Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F
Manson, Maschenka Balkenhol, et al. Diagnostic assessment of deep learning algorithms
for detection of lymph node metastases in women with breast cancer. Jama, 318(22):
2199–2210, 2017.

Sean Bell and Kavita Bala. Learning visual similarity for product design with convolutional
neural networks. ACM transactions on graphics (TOG), 34(4):1–10, 2015.

108



Gowtham Bellala, Suresh K Bhavnani, and Clayton Scott. Extensions of generalized binary
search to group identification and exponential costs. In NIPS, pages 154–162, 2010.

Kaustav Bera, Kurt A Schalper, David L Rimm, Vamsidhar Velcheti, and Anant Madab-
hushi. Artificial intelligence in digital pathology—new tools for diagnosis and precision
oncology. Nature reviews Clinical oncology, 16(11):703–715, 2019.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural networks, 2015.

Andrew A Borkowski, Marilyn M Bui, L Brannon Thomas, Catherine P Wilson, Lauren A
DeLand, and Stephen M Mastorides. Lc25000 lung and colon histopathological image
dataset, 2021.

Herb Brody. Medical imaging. Nature, 502(7473):S81–S81, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Carlo Brugnara, Terry Fenton, and James W Winkelman. Management training for pathol-
ogy residents: I. results of a national survey. American journal of clinical pathology, 101
(5):559–563, 1994.

Gabriele Campanella, Matthew G Hanna, Luke Geneslaw, Allen Miraflor, Vitor Werneck
Krauss Silva, Klaus J Busam, Edi Brogi, Victor E Reuter, David S Klimstra, and Thomas J
Fuchs. Clinical-grade computational pathology using weakly supervised deep learning on
whole slide images. Nature medicine, 25(8):1301–1309, 2019.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments. Ad-
vances in neural information processing systems, 33:9912–9924, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pages 9650–9660,
2021.

Venkatesan T Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and
Mukesh Mohania. Decision trees for entity identification: Approximation algorithms and
hardness results. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 53–62. ACM, 2007.

109



Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolu-
tional neural networks. Advances in neural information processing systems, 32, 2019.

Richard J Chen, Ming Y Lu, Muhammad Shaban, Chengkuan Chen, Tiffany Y Chen,
Drew FK Williamson, and Faisal Mahmood. Whole slide images are 2d point clouds:
Context-aware survival prediction using patch-based graph convolutional networks. In
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th In-
ternational Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings,
Part VIII 24, pages 339–349. Springer, 2021a.

Richard J Chen, Ming Y Lu, Wei-Hung Weng, Tiffany Y Chen, Drew FK Williamson,
Trevor Manz, Maha Shady, and Faisal Mahmood. Multimodal co-attention transformer
for survival prediction in gigapixel whole slide images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4015–4025, 2021b.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo.
In International conference on machine learning, pages 1683–1691. PMLR, 2014.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hin-
ton. Big self-supervised models are strong semi-supervised learners. Advances in neural
information processing systems, 33:22243–22255, 2020b.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A
closer look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Xiaocong Chen, Lina Yao, Tao Zhou, Jinming Dong, and Yu Zhang. Momentum contrastive
learning for few-shot covid-19 diagnosis from chest ct images. Pattern recognition, 113:
107826, 2021c.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
15750–15758, 2021.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server.
arXiv preprint arXiv:1504.00325, 2015a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 9640–9649, 2021d.

110



Yuxin Chen and Andreas Krause. Near-optimal batch mode active learning and adaptive
submodular optimization. In International Conference on Machine Learning (ICML),
June 2013a.

Yuxin Chen and Andreas Krause. Near-optimal batch mode active learning and adaptive
submodular optimization. In International Conference on Machine Learning, pages 160–
168. PMLR, 2013b.

Yuxin Chen, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential informa-
tion maximization: When is greedy near-optimal? In Proc. International Conference on
Learning Theory (COLT), July 2015b.

Yuxin Chen, S Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential information
maximization: When is greedy near-optimal? In Conference on Learning Theory, pages
338–363. PMLR, 2015c.

Yuxin Chen, S. Hamed Hassani, and Andreas Krause. Near-optimal bayesian active learning
with correlated and noisy tests, 2016.

Yuxin Chen, Jean-Michel Renders, Morteza Haghir Chehreghani, and Andreas Krause. Ef-
ficient online learning for optimizing value of information: Theory and application to
interactive troubleshooting. arXiv preprint arXiv:1703.05452, 2017.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,
with application to face verification. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546. IEEE,
2005.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Af-
shin Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. Advances in Neural
Information Processing Systems, 34:11933–11944, 2021.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an exten-
sion of mnist to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. Journal of artificial intelligence research, 4:129–145, 1996.

Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos, Navneet Narula,
Matija Snuderl, David Fenyö, Andre L Moreira, Narges Razavian, and Aristotelis Tsiri-
gos. Classification and mutation prediction from non–small cell lung cancer histopathology
images using deep learning. Nature medicine, 24(10):1559–1567, 2018.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not
imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. Advances in neural infor-
mation processing systems, 17:337–344, 2005.

111



Sanjoy Dasgupta and J Langford. Active learning. Encyclopedia of Machine Learning, 2011.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evalua-
tion for any target language. In Proceedings of the ninth workshop on statistical machine
translation, pages 376–380, 2014.

Akshay Raj Dhamija, Touqeer Ahmad, Jonathan Schwan, Mohsen Jafarzadeh, Chunchun
Li, and Terrance E Boult. Self-supervised features improve open-world learning. arXiv
preprint arXiv:2102.07848, 2021.

Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the multiple
instance problem with axis-parallel rectangles. Artificial intelligence, 89(1-2):31–71, 1997.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut
Neven. Bayesian sampling using stochastic gradient thermostats. Advances in neural
information processing systems, 27, 2014.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recogni-
tion. In International conference on machine learning, pages 647–655. PMLR, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via
learning the representation, provably. arXiv preprint arXiv:2002.09434, 2020.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a
margin based approach. arXiv preprint arXiv:1802.09841, 2018.

Harrison Edwards and Amos Storkey. Towards a neural statistician. arXiv preprint
arXiv:1606.02185, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages
1126–1135. PMLR, 2017.

Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. On the expressiveness of
approximate inference in bayesian neural networks. Advances in Neural Information Pro-
cessing Systems, 33:15897–15908, 2020.

112



Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Rätsch, Richard Turner,
Mark van der Wilk, and Laurence Aitchison. Bayesian neural network priors revisited.
arXiv preprint arXiv:2102.06571, 2021.

Linton C Freeman and Linton C Freeman. Elementary applied statistics: for students in
behavioral science. New York: Wiley, 1965.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning, pages
1050–1059. PMLR, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with
image data. In International conference on machine learning, pages 1183–1192. PMLR,
2017.

Jhair Gallardo, Tyler L Hayes, and Christopher Kanan. Self-supervised training enhances
online continual learning. arXiv preprint arXiv:2103.14010, 2021.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Ad-
vances in neural information processing systems, 31, 2018a.

Octavian Ganea, Gary Becigneul, and Thomas Hofmann. Hyperbolic neural networks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 5345–5355. Curran
Associates, Inc., 2018b. URL http://papers.nips.cc/paper/7780-hyperbolic-neura
l-networks.pdf.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning
by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu Cord. Boost-
ing few-shot visual learning with self-supervision. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 8059–8068, 2019.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning
with noisy observations. arXiv preprint arXiv:1010.3091, 2010.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
computer science, 38:293–306, 1985.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning.
Advances in neural information processing systems, 33:21271–21284, 2020.

113

http://papers.nips.cc/paper/7780-hyperbolic-neural-networks.pdf
http://papers.nips.cc/paper/7780-hyperbolic-neural-networks.pdf


Robert L Grossman, Allison P Heath, Vincent Ferretti, Harold E Varmus, Douglas R Lowy,
Warren A Kibbe, and Louis M Staudt. Toward a shared vision for cancer genomic data.
New England Journal of Medicine, 375(12):1109–1112, 2016.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor placements
in gaussian processes. In Proceedings of the 22nd international conference on Machine
learning, pages 265–272, 2005.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu,
Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al.
Hyperbolic attention networks. arXiv preprint arXiv:1805.09786, 2018.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite
strategies suit high and low budgets. arXiv preprint arXiv:2202.02794, 2022.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

Noriaki Hashimoto, Daisuke Fukushima, Ryoichi Koga, Yusuke Takagi, Kaho Ko, Kei Kohno,
Masato Nakaguro, Shigeo Nakamura, Hidekata Hontani, and Ichiro Takeuchi. Multi-scale
domain-adversarial multiple-instance cnn for cancer subtype classification with unanno-
tated histopathological images. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 3852–3861, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9729–9738, 2020.

Xiangteng He and Yuxin Peng. Fine-grained visual-textual representation learning. IEEE
Transactions on Circuits and Systems for Video Technology, 30(2):520–531, 2019.

Allison P Heath, Vincent Ferretti, Stuti Agrawal, Maksim An, James C Angelakos, Renuka
Arya, Rosita Bajari, Bilal Baqar, Justin HB Barnowski, Jeffrey Burt, et al. The nci
genomic data commons. Nature genetics, 53(3):257–262, 2021.

Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In Inter-
national conference on machine learning, pages 4182–4192. PMLR, 2020.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International conference on machine learning,
pages 1861–1869. PMLR, 2015.

114



R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.

Chih-Hui Ho, Pedro Morgado, Amir Persekian, and Nuno Vasconcelos. Pies: Pose invari-
ant embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12377–12386, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Steven CH Hoi, Rong Jin, and Michael R Lyu. Large-scale text categorization by batch
mode active learning. In Proceedings of the 15th international conference on World Wide
Web, pages 633–642, 2006a.

Steven CH Hoi, Rong Jin, Jianke Zhu, and Michael R Lyu. Batch mode active learning and
its application to medical image classification. In Proceedings of the 23rd international
conference on Machine learning, pages 417–424, 2006b.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learn-
ing for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via meta-learning. arXiv
preprint arXiv:1810.02334, 2018.

Wei-Ning Hsu and Hsuan-Tien Lin. Active learning by learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2015.

Jiaji Huang, Rewon Child, Vinay Rao, Hairong Liu, Sanjeev Satheesh, and Adam
Coates. Active learning for speech recognition: the power of gradients. arXiv preprint
arXiv:1612.03226, 2016.

Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative
and representative examples. Advances in neural information processing systems, 23, 2010.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, and Nicholas Carlini.
Rohan 377 taori, achal dave, vaishaal shankar, hongseok namkoong, john miller, hannaneh
hajishirzi, 378 ali farhadi, and ludwig schmidt. Openclip, July, 1(2):4, 2021.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Ha-
jishirzi, Simon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary
models by interpolating weights. Advances in Neural Information Processing Systems, 35:
29262–29277, 2022.

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance
learning. In International conference on machine learning, pages 2127–2136. PMLR, 2018.

115



Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins,
David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson,
Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. Chexpert:
A large chest radiograph dataset with uncertainty labels and expert comparison, 2019.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson.
What are bayesian neural network posteriors really like? In International conference on
machine learning, pages 4629–4640. PMLR, 2021.

David Janz, Jos van der Westhuizen, and José Miguel Hernández-Lobato. Actively learning
what makes a discrete sequence valid. arXiv preprint arXiv:1708.04465, 2017.

Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, and Sid-
dhartha Srinivasa. Near optimal bayesian active learning for decision making. In Artificial
Intelligence and Statistics, pages 430–438. PMLR, 2014.

Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, and
Aaditya Prakash. Additive mil: intrinsically interpretable multiple instance learning for
pathology. Advances in Neural Information Processing Systems, 35:20689–20702, 2022.

Mark A Jensen, Vincent Ferretti, Robert L Grossman, and Louis M Staudt. The nci genomic
data commons as an engine for precision medicine. Blood, The Journal of the American
Society of Hematology, 130(4):453–459, 2017.

Baoyu Jing, Pengtao Xie, and Eric Xing. On the automatic generation of medical imaging
reports. arXiv preprint arXiv:1711.08195, 2017.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

Matti Kääriäinen. Active learning in the non-realizable case. In International Conference
on Algorithmic Learning Theory, pages 63–77. Springer, 2006.

Athresh Karanam, Krishnateja Killamsetty, Harsha Kokel, and Rishabh K Iyer. Orient:
Submodular mutual information measures for data subset selection under distribution
shift. Advances in neural information processing systems, 2022.

Jakob Nikolas Kather, Cleo-Aron Weis, Francesco Bianconi, Susanne M Melchers, Lothar R
Schad, Timo Gaiser, Alexander Marx, and Frank Gerrit Zöllner. Multi-class texture anal-
ysis in colorectal cancer histology. Scientific reports, 6(1):1–11, 2016.

116



Jakob Nikolas Kather, Niels Halama, and Alexander Marx. 100,000 histological images
of human colorectal cancer and healthy tissue. https://doi.org/10.5281/zenodo.1214456,
April 2018. doi:10.5281/zenodo.1214456. URL https://doi.org/10.5281/zenodo.121
4456.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model uncer-
tainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv
preprint arXiv:1511.02680, 2015.

Ashish Khetan, Zachary C Lipton, and Anima Anandkumar. Learning from noisy singly-
labeled data. arXiv preprint arXiv:1712.04577, 2017.

Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. Unsupervised meta-learning for
few-shot image classification. Advances in neural information processing systems, 32, 2019.

Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, and Ladis-
lau Bölöni. Unsupervised meta-learning through latent-space interpolation in generative
models. arXiv preprint arXiv:2006.10236, 2020.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances
in neural information processing systems, 33:18661–18673, 2020.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan V. Oseledets, and Victor S.
Lempitsky. Hyperbolic image embeddings. CoRR, abs/1904.02239, 2019. URL http:
//arxiv.org/abs/1904.02239.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor
Lempitsky. Hyperbolic image embeddings. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6418–6428, 2020.

Yoo Jung Kim, Hyungjoon Jang, Kyoungbun Lee, Seongkeun Park, Sung-Gyu Min, Choyeon
Hong, Jeong Hwan Park, Kanggeun Lee, Jisoo Kim, Wonjae Hong, et al. Paip 2019: Liver
cancer segmentation challenge. Medical Image Analysis, 67:101854, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Danilo J Rezende, Shakir Mohamed, and Max Welling. Semi-supervised
learning with deep generative models. arXiv preprint arXiv:1406.5298, 2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. arXiv preprint arXiv:1506.02557, 2015.

117

https://doi.org/10.5281/zenodo.1214456
https://doi.org/10.5281/zenodo.1214456
https://doi.org/10.5281/zenodo.1214456
http://arxiv.org/abs/1904.02239
http://arxiv.org/abs/1904.02239


Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse
batch acquisition for deep bayesian active learning. Advances in neural information pro-
cessing systems, 32, 2019.

Andreas Kirsch, Sebastian Farquhar, and Yarin Gal. A simple baseline for batch active
learning with stochastic acquisition functions. arXiv preprint arXiv:2106.12059, 2021a.

Andreas Kirsch, Tom Rainforth, and Yarin Gal. Test distribution-aware active learn-
ing: A principled approach against distribution shift and outliers. arXiv preprint
arXiv:2106.11719, 2021b.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for
one-shot image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

Murat Koklu and Ilker Ali Ozkan. Multiclass classification of dry beans using computer
vision and machine learning techniques. Computers and Electronics in Agriculture, 174:
105507, 2020.

Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, and Rishabh Iyer. Similar: Sub-
modular information measures based active learning in realistic scenarios. Advances in
Neural Information Processing Systems, 34:18685–18697, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Citeseer, 2009.

Girish Kulkarni, Visruth Premraj, Vicente Ordonez, Sagnik Dhar, Siming Li, Yejin Choi,
Alexander C Berg, and Tamara L Berg. Babytalk: Understanding and generating simple
image descriptions. IEEE transactions on pattern analysis and machine intelligence, 35
(12):2891–2903, 2013.

Yann Le Cun and Françoise Fogelman-Soulié. Modèles connexionnistes de l’apprentissage.
Intellectica, 2(1):114–143, 1987.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong Bok Lee, Dongchan Min, Seanie Lee, and Sung Ju Hwang. Meta-gmvae: Mixture
of gaussian vae for unsupervised meta-learning. In International Conference on Learning
Representations, 2020.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks.
In International Conference on Machine Learning, pages 3744–3753. PMLR, 2019a.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning
with differentiable convex optimization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10657–10665, 2019b.

118



Alexander C Li, Alexei A Efros, and Deepak Pathak. Understanding collapse in non-
contrastive siamese representation learning. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXI, pages
490–505. Springer, 2022.

Bin Li, Yin Li, and Kevin W Eliceiri. Dual-stream multiple instance learning network for
whole slide image classification with self-supervised contrastive learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 14318–14328,
2021.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochas-
tic gradient langevin dynamics for deep neural networks. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016a.

Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, and Lawrence Carin.
Learning weight uncertainty with stochastic gradient mcmc for shape classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5666–5675, 2016b.

Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, and Xiaogang Wang. Finding
task-relevant features for few-shot learning by category traversal. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1–10, 2019.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summa-
rization branches out, pages 74–81, 2004.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130, 2017.

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals
of Mathematical Statistics, 27(4):986–1005, 1956.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken,
and Clara I Sánchez. A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

Geert Litjens, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka Balken-
hol, Peter Bult, Altuna Halilovic, Meyke Hermsen, Rob Van de Loo, Rob Vogels, et al.
1399 h&e-stained sentinel lymph node sections of breast cancer patients: the camelyon
dataset. GigaScience, 7(6):giy065, 2018.

Chenxi Liu, Junhua Mao, Fei Sha, and Alan Yuille. Attention correctness in neural image
captioning. In Proceedings of the AAAI conference on artificial intelligence, 2017a.

Qiang Liu, Zhaocheng Liu, Xiaofang Zhu, and Yeliang Xiu. Deep active learning by model
interpretability. arXiv preprint arXiv:2007.12100, 2020.

119



Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo Kohlberger, Alek-
sey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q Nelson, Greg S Cor-
rado, et al. Detecting cancer metastases on gigapixel pathology images. arXiv preprint
arXiv:1703.02442, 2017b.

John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad,
Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, et al. The genotype-tissue
expression (gtex) project. Nature genetics, 45(6):580–585, 2013.

Ming Y Lu, Tiffany Y Chen, Drew FK Williamson, Melissa Zhao, Maha Shady, Jana Lipkova,
and Faisal Mahmood. Ai-based pathology predicts origins for cancers of unknown primary.
Nature, 594(7861):106–110, 2021a.

Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri, and
Faisal Mahmood. Data-efficient and weakly supervised computational pathology on whole-
slide images. Nature biomedical engineering, 5(6):555–570, 2021b.

Yuning Lu, Liangjian Wen, Jianzhuang Liu, Yajing Liu, and Xinmei Tian. Self-supervision
can be a good few-shot learner. In European conference on computer vision, pages 740–758.
Springer, 2022.

David JC MacKay. Information-based objective functions for active data selection. Neural
computation, 4(4):590–604, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. Advances in Neural
Information Processing Systems, 32, 2019.

Kushagra Mahajan, Monika Sharma, and Lovekesh Vig. Meta-dermdiagnosis: Few-shot skin
disease identification using meta-learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pages 730–731, 2020.

Puneet Mangla, Nupur Kumari, Abhishek Sinha, Mayank Singh, Balaji Krishnamurthy, and
Vineeth N Balasubramanian. Charting the right manifold: Manifold mixup for few-shot
learning. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pages 2218–2227, 2020.

Alfonso Medela, Artzai Picon, Cristina L Saratxaga, Oihana Belar, Virginia Cabezón, Ric-
cardo Cicchi, Roberto Bilbao, and Ben Glover. Few shot learning in histopathological
images: reducing the need of labeled data on biological datasets. In 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI 2019), pages 1860–1864. IEEE,
2019.

Carlos Medina, Arnout Devos, and Matthias Grossglauser. Self-supervised prototypical
transfer learning for few-shot classification. arXiv preprint arXiv:2006.11325, 2020.

120



Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant rep-
resentations. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6707–6717, 2020.

Sudhanshu Mittal, Maxim Tatarchenko, Özgün Çiçek, and Thomas Brox. Parting with
illusions about deep active learning. arXiv preprint arXiv:1912.05361, 2019.

Pooya Mobadersany, Safoora Yousefi, Mohamed Amgad, David A Gutman, Jill S Barnholtz-
Sloan, José E Velázquez Vega, Daniel J Brat, and Lee AD Cooper. Predicting cancer
outcomes from histology and genomics using convolutional networks. Proceedings of the
National Academy of Sciences, 115(13):E2970–E2979, 2018.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh
Singh. No fuss distance metric learning using proxies. In Proceedings of the IEEE inter-
national conference on computer vision, pages 360–368, 2017.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International conference on
machine learning, pages 2554–2563. PMLR, 2017.

Andriy Myronenko, Ziyue Xu, Dong Yang, Holger R Roth, and Daguang Xu. Accounting
for dependencies in deep learning based multiple instance learning for whole slide imag-
ing. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 329–338. Springer, 2021.

Mohammad Naghshvar, Tara Javidi, and Kamalika Chaudhuri. Noisy bayesian active learn-
ing. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1626–1633. IEEE, 2012.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approxi-
mations for maximizing submodular set functions—i. Mathematical programming, 14(1):
265–294, 1978.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learning 2011, 2011.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical repre-
sentations. Advances in neural information processing systems, 30, 2017.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via
lifted structured feature embedding. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4004–4012, 2016.

121



Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell
Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike
Rabbat, Mido Assran, Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien
Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust
visual features without supervision, 2023.

Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent
adaptive metric for improved few-shot learning. Advances in neural information processing
systems, 31, 2018.

Natalia Ostapuk, Jie Yang, and Philippe Cudré-Mauroux. Activelink: deep active learning
for link prediction in knowledge graphs. In The World Wide Web Conference, pages 1398–
1408, 2019.

Anabik Pal, Zhiyun Xue, Kanan Desai, Adekunbiola Aina F Banjo, Clement Akinfolarin
Adepiti, L Rodney Long, Mark Schiffman, and Sameer Antani. Deep multiple-instance
learning for abnormal cell detection in cervical histopathology images. Computers in
Biology and Medicine, 138:104890, 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318, 2002.

Cheng Perng Phoo and Bharath Hariharan. Coarsely-labeled data for better few-shot trans-
fer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9052–9061, 2021.

Tiexin Qin, Wenbin Li, Yinghuan Shi, and Yang Gao. Diversity helps: Unsupervised few-shot
learning via distribution shift-based data augmentation. arXiv preprint arXiv:2004.05805,
2020.

Joaquin Quinonero-Candela, Carl Edward Rasmussen, Fabian Sinz, Olivier Bousquet, and
Bernhard Schölkopf. Evaluating predictive uncertainty challenge. In Machine Learning
Challenges Workshop, pages 1–27. Springer, 2005.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning trans-
ferable visual models from natural language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021.

Colin Raffel and Daniel PW Ellis. Feed-forward networks with attention can solve some
long-term memory problems. arXiv preprint arXiv:1512.08756, 2015.

122



Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-
supervised learning with ladder networks. arXiv preprint arXiv:1507.02672, 2015.

Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and
Christopher Ré. Training complex models with multi-task weak supervision. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 4763–4771, 2019.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré.
Data programming: Creating large training sets, quickly. Advances in neural information
processing systems, 29, 2016.

Pierre H Richemond, Jean-Bastien Grill, Florent Altché, Corentin Tallec, Florian Strub,
Andrew Brock, Samuel Smith, Soham De, Razvan Pascanu, Bilal Piot, et al. Byol works
even without batch statistics. arXiv preprint arXiv:2010.10241, 2020.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive
auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
international conference on international conference on machine learning, pages 833–840,
2011.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation
for neural networks. In 6th International Conference on Learning Representations, ICLR
2018-Conference Track Proceedings, volume 6. International Conference on Representation
Learning, 2018.

Joshua Robinson, Stefanie Jegelka, and Suvrit Sra. Strength from weakness: Fast learning
using weak supervision. In International Conference on Machine Learning, pages 8127–
8136. PMLR, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through monte carlo
estimation of error reduction. ICML, Williamstown, 2:441–448, 2001.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015a. doi:10.1007/s11263-015-0816-y.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale
visual recognition challenge. International journal of computer vision, 115:211–252, 2015b.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv
preprint arXiv:1807.05960, 2018.

123

https://doi.org/10.1007/s11263-015-0816-y


Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International conference on
machine learning, pages 1842–1850. PMLR, 2016.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter Battaglia, and Timothy Lillicrap. A simple neural network module for relational
reasoning. Advances in neural information processing systems, 30, 2017.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Burr Settles. Active learning: Synthesis lectures on artificial intelligence and machine learn-
ing. Long Island, NY: Morgan & Clay Pool, 10:S00429ED1V01Y201207AIM018, 2012.

Fereshteh Shakeri, Malik Boudiaf, Sina Mohammadi, Ivaxi Sheth, Mohammad Havaei, Is-
mail Ben Ayed, and Samira Ebrahimi Kahou. Fhist: A benchmark for few-shot classifica-
tion of histological images. arXiv preprint arXiv:2206.00092, 2022.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system tech-
nical journal, 27(3):379–423, 1948.

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al. Trans-
mil: Transformer based correlated multiple instance learning for whole slide image classi-
fication. Advances in neural information processing systems, 34:2136–2147, 2021.

Yash Sharma, Aman Shrivastava, Lubaina Ehsan, Christopher A Moskaluk, Sana Syed, and
Donald Brown. Cluster-to-conquer: A framework for end-to-end multi-instance learning
for whole slide image classification. In Medical Imaging with Deep Learning, pages 682–698.
PMLR, 2021.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod, and Animashree Anandku-
mar. Deep active learning for named entity recognition. arXiv preprint arXiv:1707.05928,
2017.

Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. Deeppano: Deep panoramic rep-
resentation for 3-d shape recognition. IEEE Signal Processing Letters, 22(12):2339–2343,
2015.

Milad Sikaroudi, Amir Safarpoor, Benyamin Ghojogh, Sobhan Shafiei, Mark Crowley, and
Hamid R Tizhoosh. Supervision and source domain impact on representation learning: A
histopathology case study. In 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), pages 1400–1403. IEEE, 2020.

124



Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active learning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
5972–5981, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances
in neural information processing systems, 29, 2016.

Cancer Genome Atlas Research Network Tissue source sites: Duke University Medical School
McLendon Roger 1 Friedman Allan 2 Bigner Darrell 1, Emory University Van Meir Erwin
G. 3 4 5 Brat Daniel J. 5 6 M. Mastrogianakis Gena 3 Olson Jeffrey J. 3 4 5, Henry Ford
Hospital Mikkelsen Tom 7 Lehman Norman 8, MD Anderson Cancer Center Aldape Ken 9
Alfred Yung WK 10 Bogler Oliver 11, University of California San Francisco VandenBerg
Scott 12 Berger Mitchel 13 Prados Michael 13, et al. Comprehensive genomic characteriza-
tion defines human glioblastoma genes and core pathways. Nature, 455(7216):1061–1068,
2008.

Patrik L Ståhl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro,
Jens Magnusson, Stefania Giacomello, Michaela Asp, Jakub O Westholm, Mikael Huss,
et al. Visualization and analysis of gene expression in tissue sections by spatial transcrip-
tomics. Science, 353(6294):78–82, 2016.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE inter-
national conference on computer vision, pages 945–953, 2015.

Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. When does self-supervision improve
few-shot learning? In European conference on computer vision, pages 645–666. Springer,
2020.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreason-
able effectiveness of data in deep learning era. In Proceedings of the IEEE international
conference on computer vision, pages 843–852, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. Learning to compare: Relation network for few-shot learning. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1199–1208,
2018.

Wei Tan, Lan Du, and Wray Buntine. Diversity enhanced active learning with strictly proper
scoring rules. Advances in Neural Information Processing Systems, 34:10906–10918, 2021.

125



Eu Wern Teh and Graham W Taylor. Learning with less data via weakly labeled patch clas-
sification in digital pathology. In 2020 IEEE 17th International Symposium on Biomedical
Imaging (ISBI), pages 471–475. IEEE, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XI 16, pages 776–794. Springer, 2020a.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Re-
thinking few-shot image classification: a good embedding is all you need? In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XIV 16, pages 266–282. Springer, 2020b.

Simon Tong and Daphne Koller. Support vector machine active learning with applications
to text classification. Journal of machine learning research, 2(Nov):45–66, 2001.

Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-shot learning through an
information retrieval lens. Advances in neural information processing systems, 30, 2017.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu,
Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-
dataset: A dataset of datasets for learning to learn from few examples. arXiv preprint
arXiv:1903.03096, 2019.

Tobias Uelwer, Jan Robine, Stefan Sylvius Wagner, Marc Höftmann, Eric Upschulte, Se-
bastian Konietzny, Maike Behrendt, and Stefan Harmeling. A survey on self-supervised
representation learning. arXiv preprint arXiv:2308.11455, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

Tim Van Erven, Peter Grunwald, Nishant A Mehta, Mark Reid, Robert Williamson, et al.
Fast rates in statistical and online learning. MIT Press, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural infor-
mation processing systems, 30, 2017.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based
image description evaluation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4566–4575, 2015.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
equivariant cnns for digital pathology. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September
16-20, 2018, Proceedings, Part II 11, pages 210–218. Springer, 2018.

126



Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A Ryan, Margie L Homer, and
Ramón Huerta. Chemical gas sensor drift compensation using classifier ensembles. Sensors
and Actuators B: Chemical, 166:320–329, 2012.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol,
and Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of machine learning research, 11
(12), 2010.

Sagar Vinodababu. a-pytorch-tutorial-to-image-captioning. https://github.com/sgrvino
d/a-PyTorch-Tutorial-to-Image-Captioning, 2019.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence
for sets. arXiv preprint arXiv:1511.06391, 2015a.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural
image caption generator. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3156–3164, 2015b.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin,
Bo Chen, and Ying Wu. Learning fine-grained image similarity with deep ranking. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1386–1393, 2014.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-effective active
learning for deep image classification. IEEE Transactions on Circuits and Systems for
Video Technology, 27(12):2591–2600, 2016.

Yu-Xiong Wang and Martial Hebert. Learning to learn: Model regression networks for
easy small sample learning. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14, pages 616–
634. Springer, 2016.

Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning
from imaginary data. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7278–7286, 2018.

Zheng Wang and Jieping Ye. Querying discriminative and representative samples for batch
mode active learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 9
(3):1–23, 2015.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of machine learning research, 10(2), 2009.

127

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning


Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin.
How good is the bayes posterior in deep neural networks really? arXiv preprint
arXiv:2002.02405, 2020.

Zhirong Wu, Alexei A Efros, and Stella X Yu. Improving generalization via scalable neigh-
borhood component analysis. In Proceedings of the european conference on computer vision
(ECCV), pages 685–701, 2018a.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning
via non-parametric instance discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742, 2018b.

Jinxi Xiang and Jun Zhang. Exploring low-rank property in multiple instance learning for
whole slide image classification. In The Eleventh International Conference on Learning
Representations, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In International conference on machine learning, pages 2048–2057.
PMLR, 2015.

Zhixin Xu, Seohoon Lim, Hong-Kyu Shin, Kwang-Hyun Uhm, Yucheng Lu, Seung-Won
Jung, and Sung-Jea Ko. Risk-aware survival time prediction from whole slide pathological
images. Scientific Reports, 12(1):21948, 2022.

Yi-Fan Yan, Sheng-Jun Huang, Shaoyi Chen, Meng Liao, and Jin Xu. Active learning
with query generation for cost-effective text classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 6583–6590, 2020.

Jiawei Yang, Hanbo Chen, Jiangpeng Yan, Xiaoyu Chen, and Jianhua Yao. Towards better
understanding and better generalization of few-shot classification in histology images with
contrastive learning. arXiv preprint arXiv:2202.09059, 2022.

Shuo Yang, Lu Liu, and Min Xu. Free lunch for few-shot learning: Distribution calibration.
arXiv preprint arXiv:2101.06395, 2021.

Jiawen Yao, Xinliang Zhu, Jitendra Jonnagaddala, Nicholas Hawkins, and Junzhou Huang.
Whole slide images based cancer survival prediction using attention guided deep multiple
instance learning networks. Medical Image Analysis, 65:101789, 2020.

128



Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Learning embedding adaptation for
few-shot learning. arXiv preprint arXiv:1812.03664, 7, 2018.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding
adaptation with set-to-set functions. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8808–8817, 2020.

Byung-Jun Yoon, Xiaoning Qian, and Edward R Dougherty. Quantifying the objective cost
of uncertainty in complex dynamical systems. IEEE Transactions on Signal Processing,
61(9):2256–2266, 2013.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning
with semantic attention. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4651–4659, 2016.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. Advances in neural information processing
systems, 30, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International conference on machine
learning, pages 12310–12320. PMLR, 2021.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer, 2014.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A survey on
programmatic weak supervision. arXiv preprint arXiv:2202.05433, 2022.

Renyu Zhang, Aly A Khan, and Robert L Grossman. Evaluation of hyperbolic attention in
histopathology images. In 2020 IEEE 20th International Conference on Bioinformatics
and Bioengineering (BIBE), pages 773–776. IEEE, 2020a.

Renyu Zhang, Christopher Weber, Robert Grossman, and Aly A Khan. Evaluating and inter-
preting caption prediction for histopathology images. In Machine Learning for Healthcare
Conference, pages 418–435. PMLR, 2020b.

Renyu Zhang, Aly A Khan, Yuxin Chen, and Robert L Grossman. Enhancing instance-level
image classification with set-level labels. arXiv preprint arXiv:2311.05659, 2023a.

Renyu Zhang, Aly A Khan, Robert L Grossman, and Yuxin Chen. Scalable batch-mode deep
bayesian active learning via equivalence class annealing. In The Eleventh International
Conference on Learning Representations, 2023b.

129



Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wil-
son. Cyclical stochastic gradient mcmc for bayesian deep learning. arXiv preprint
arXiv:1902.03932, 2019.

Zizhao Zhang, Yuanpu Xie, Fuyong Xing, Mason McGough, and Lin Yang. Mdnet: A
semantically and visually interpretable medical image diagnosis network. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 6428–6436, 2017.

Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis Alexander, and Xiaoning Qian.
Uncertainty-aware active learning for optimal bayesian classifier. In International Confer-
ence on Learning Representations (ICLR 2021), 2021.

Alice X Zheng, Irina Rish, and Alina Beygelzimer. Efficient test selection in active diagnosis
via entropy approximation. arXiv preprint arXiv:1207.1418, 2012.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong.
ibot: Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832,
2021.

Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National science review,
5(1):44–53, 2018.

Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised
learning of visual embeddings. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6002–6012, 2019.

130



APPENDIX A

APPENDIX FOR ENHANCING INSTANCE-LEVEL IMAGE

CLASSIFICATION WITH SET-LEVEL LABELS

A.1 Training Details

A.1.1 Pretrain with Unique Class Number and Most Frequent Class of Input

Sets

In our study, an epoch refers to going through all the input sets in the dataset once. SimSiam

is trained for 2,000 epochs using a batch size of 512. SGD is employed with a learning rate

of 0.1, weight decay of 1e-4, and momentum of 0.9. The training process incorporates a

cosine scheduler. Similarly, SimCLR is trained for 2,000 epochs with a batch size of 256 and

a temperature of 0.07. SGD is used with a learning rate of 0.05, weight decay of 1e-4, and

momentum of 0.9. The training also utilizes a cosine scheduler.

We train FSP-Patch for 800 epochs with a batch size of 256. The SGD is used with a

weight decay of 1e-4, momentum of 0.9, and cosine scheduler.

FACILE-FSP is trained for 800 epochs with a batch size of 64. SGD is used with a

learning rate of 0.0125, weight decay of 1e-4, and momentum of 0.9. ℓ1 loss is optimized

for pretraining with unique class numbers of input sets. For FACILE-SupCon, we train the

model with 2,000 epochs and a batch size of 256. An additional temperature parameter is set

to 0.07. The SGD is used with a learning rate of 0.05, weight decay of 1e-4, and momentum

of 0.9.

A.1.2 Fine-tune ViT-B/16 of CLIP with CUB200

SimSiam is trained for 400 epochs using a batch size of 64. SGD is used with an initial

learning rate of 0.0125, weight decay of 1e-4, and momentum of 0.9. The cosine scheduler is
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used for the optimizer. SimCLR is also trained for 400 epochs with a batch size of 64. An

additional temperature parameter is set to 0.07. SGD is used with a learning rate of 0.0125,

weight decay of 1e-4, and momentum of 0.9. The training also uses a cosine scheduler.

FACILE-FSP is trained for 200 epochs with a batch size of 64. SGD is used with a

learning rate of 0.0125, weight decay of 1e-4, and momentum of 0.9. For FACILE-SupCon,

we train the model with 800 epochs and a batch size of 64. An additional temperature

parameter is set to 0.07. The SGD is used with an initial learning rate of 0.0125, weight

decay of 1e-4, and momentum of 0.9. Both models’ training utilized a cosine annealing

scheduler.

A.1.3 Pretrain ResNet18 with TCGA and GTEx Dataset

In SimSiam, SimCLR, and FSP-Patch models, the data loader samples one patch for each

slide. In FACILE-FSP and FACILE-SupCon, the data loader samples a set of a patches for

each slide.

SimSiam is trained for 5,000 epochs using a batch size of 55. SGD is employed with

a learning rate of 0.01, weight decay of 1e-4, and momentum of 0.9. The training process

incorporates a cosine scheduler. Similarly, SimCLR is trained for 5,000 epochs with a batch

size of 32. An additional temperature parameter is set to 0.07. SGD is used with a learning

rate of 0.006, weight decay of 1e-4, and momentum of 0.9. The training also utilizes a cosine

scheduler.

FSP-Patch is trained for 1,000 epochs with a batch size of 64. We employ SGD with

a learning rate of 0.05, weight decay of 1e-4, and momentum of 0.9. The training process

includes the utilization of a cosine scheduler.

FACILE-FSP is trained for 3,000 epochs with batch size 32. The input set size is 5 by

default. We employ SGD with a learning rate of 0.0125, weight decay of 1e-4, and momentum

of 0.9. The training process includes the utilization of a cosine scheduler. Set Transformer
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with 3 inducing points and 4 attention heads is used for the set-input model g. Similarly,

for our FACILE-SupCon model, we use the same input set size and set-input model. The

training process is configured with a batch size of 32 and extends over 3,000 epochs. An

additional temperature parameter is set to 0.07. We use SGD with a learning rate of 0.00625,

weight decay of 1e-4, and momentum of 0.9. We use an MLP as a projection head with two

fc layers, a hidden dimension of 512, and an output dimension of 512.

A.1.4 Fine-tune ViT-B/14 of DINO V2 with TCGA

SimSiam is trained for 400 epochs with a batch size of 64, utilizing Stochastic Gradient

Descent (SGD) with an initial learning rate of 0.0125, a weight decay of 1e-4, and a mo-

mentum of 0.9. A cosine scheduler was employed. SimCLR underwent a similar training

regimen for 400 epochs and a batch size of 64, with an additional temperature parameter set

at 0.07 and identical SGD parameters, including the use of a cosine scheduler for learning

rate adjustments.

FSP-Patch also completed 400 epochs of training with a batch size of 64. The model

employed SGD with a learning rate of 0.0125, a weight decay of 1e-4, and a momentum of

0.9, along with a cosine scheduler to modulate the learning rate.

For FACILE-FSP, training spanned 200 epochs with a batch size of 64, using SGD with

the same learning rate, weight decay, and momentum settings. FACILE-SupCon extended

its training to 800 epochs with a batch size of 64, including an additional temperature setting

of 0.07 and the same SGD configuration. Both FACILE-FSP and FACILE-SupCon models

utilized a cosine annealing scheduler.
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A.2 Additional Result

A.2.1 Pretrain ResNet18 on TCGA with Patch Size 224X224

ACC on LC, PAIP, and NCT Datasets

We pretrain the models on TCGA datasets with patches size 224×224 at 20X magnification.

Then, these pretrained models are tested on LC, PAIP, and NCT datasets. The average ACC

and CI on the LC, PAIP, and NCT datasets are shown in Table A.1.

Test with Large Shot Number

We further test the trained models with a larger shot number k. The result is shown in

Table A.2

A.2.2 Benefits of Pretraining on Large Pathology Datasets

In order to demonstrate the advantages of pretraining on large pathology datasets, we com-

pare the performance of models pretrained on TCGA datasets with those pretrained on NCT

dataset, which are also studied in Yang et al. [2022].

The SimSiam model is trained for 100 epochs. SGD optimizer is used with a learning

rate of 0.01, weight decay of 0.0001, momentum of 0.9, and cosine learning rate decay. The

batch size is 55.

For MoCo v3, similar to [Chen et al., 2021d, Yang et al., 2022], LARS optimizer [You

et al., 2017] was used with an initial learning rate of 0.3, weight decay of 1.5e − 6, the

momentum of 0.9, and cosine decay schedule. MoCo v3 was trained with a batch size of 256

for 200 epochs.

The FSP model with simple augmentation follows the setting of Yang et al. [2022]. SGD

optimizer with a learning rate of 0.5, momentum of 0.9, and weight decay of 0 are used. A
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pretraining method NC LR RC LR+LA RC+LA
1-shot 5-way test on LC dataset

ImageNet (FSP) 65.64± 0.49 66.06± 0.46 65.92± 0.48 66.60± 0.48 67.09± 0.47
SimSiam 68.88± 0.51 68.53± 0.48 68.27± 0.48 68.81± 0.49 70.24± 0.47
SimCLR 66.41± 0.48 66.52± 0.46 66.10± 0.46 67.70± 0.45 68.71± 0.46

FSP-Patch 68.56± 0.46 68.51± 0.45 68.68± 0.46 69.38± 0.46 69.63± 0.46
FACILE-SupCon 76.64± 0.50 77.88± 0.47 76.77± 0.47 77.15± 0.48 77.16± 0.48

FACILE-FSP 79.01± 0.49 78.16± 0.48 77.43± 0.50 79.15± 0.47 75.81± 0.48
5-shot 5-way test on LC dataset

ImageNet (FSP) 82.79± 0.32 81.31± 0.31 81.13± 0.30 84.50± 0.30 84.73± 0.28
SimSiam 85.12± 0.30 83.39± 0.32 83.85± 0.30 87.74± 0.27 87.90± 0.26
SimCLR 83.75± 0.30 82.38± 0.30 82.32± 0.31 86.12± 0.28 85.40± 0.30

FSP-Patch 85.15± 0.29 84.38± 0.31 85.01± 0.29 86.71± 0.28 86.24± 0.27
FACILE-SupCon 91.16± 0.24 90.48± 0.24 90.40± 0.24 91.39± 0.24 91.03± 0.22

FACILE-FSP 91.77± 0.21 90.85± 0.23 90.77± 0.24 92.19± 0.22 90.02± 0.24
pretraining method NC LR RC LR+LA RC+LA

1-shot 3-way test on PAIP dataset
ImageNet (FSP) 48.44± 0.65 50.34± 0.65 50.21± 0.62 48.90± 0.62 47.51± 0.59

SimSiam 49.42± 0.65 50.25± 0.65 49.76± 0.65 49.51± 0.62 49.09± 0.63
SimCLR 47.39± 0.59 48.35± 0.59 47.97± 0.58 47.77± 0.59 47.65± 0.60

FSP-Patch 51.61± 0.68 51.61± 0.67 52.06± 0.67 51.74± 0.66 51.38± 0.66
FACILE-SupCon 49.65± 0.61 51.32± 0.66 51.16± 0.63 50.00± 0.62 50.81± 0.65

FACILE-FSP 48.91± 0.61 49.57± 0.63 49.68± 0.63 49.42± 0.65 48.60± 0.64
5-shot 3-way test on PAIP dataset

ImageNet (FSP) 62.46± 0.52 62.48± 0.48 63.14± 0.50 62.11± 0.51 60.52± 0.49
SimSiam 63.05± 0.52 64.44± 0.49 64.66± 0.50 65.44± 0.53 64.64± 0.55
SimCLR 61.48± 0.52 61.84± 0.53 62.75± 0.51 63.03± 0.52 61.70± 0.52

FSP-Patch 65.29± 0.49 65.81± 0.51 65.98± 0.48 65.70± 0.50 64.01± 0.52
FACILE-SupCon 65.44± 0.51 66.75± 0.52 67.11± 0.51 67.24± 0.53 67.06± 0.52

FACILE-FSP 64.68± 0.53 65.75± 0.49 66.58± 0.51 67.42± 0.53 67.06± 0.53
pretraining method NC LR RC LR+LA RC+LA

1-shot 9-way test on NCT dataset
ImageNet (FSP) 58.75± 0.35 58.66± 0.36 58.48± 0.34 58.83± 0.36 57.32± 0.36

SimSiam 64.76± 0.40 66.09± 0.39 66.09± 0.39 66.54± 0.40 67.05± 0.41
SimCLR 60.47± 0.41 61.17± 0.38 61.43± 0.39 61.65± 0.40 62.48± 0.38

FSP-Patch 61.03± 0.42 63.53± 0.40 63.26± 0.42 62.75± 0.43 61.57± 0.42
FACILE-SupCon 68.99± 0.45 70.76± 0.40 70.89± 0.41 70.45± 0.45 70.63± 0.44

FACILE-FSP 67.43± 0.44 68.45± 0.4 68.97± 0.42 69.53± 0.43 70.89± 0.42
5-shot 9-way test on NCT dataset

ImageNet (FSP) 74.82± 0.26 74.35± 0.26 75.20± 0.26 77.11± 0.23 74.89± 0.26
SimSiam 80.59± 0.23 80.51± 0.23 81.54± 0.21 83.68± 0.22 83.85± 0.22
SimCLR 77.30± 0.25 77.64± 0.24 79.17± 0.24 80.99± 0.24 81.71± 0.23

FSP-Patch 79.61± 0.25 79.89± 0.24 81.71± 0.23 82.92± 0.24 81.67± 0.24
FACILE-SupCon 86.89± 0.22 88.06± 0.20 89.26± 0.19 89.62± 0.19 88.67± 0.21

FACILE-FSP 84.83± 0.24 85.78± 0.23 87.68± 0.20 88.16± 0.20 87.67± 0.20

Table A.1: Models tested on LC, PAIP, and NCT dataset; average ACC and CI are reported.
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pretraining method NC LR RC LR+LA RC+LA
10-shot 5-way on LC

ImageNet (FSP) 78.76± 0.94 78.92± 0.92 80.45± 0.87 82.25± 0.83 80.20± 0.89
SimSiam 88.52± 0.55 87.20± 0.58 87.73± 0.56 91.62± 0.46 91.88± 0.47
SimCLR 87.02± 0.64 86.26± 0.64 85.61± 0.72 90.28± 0.52 89.60± 0.58

FSP-Patch 88.41± 0.53 88.64± 0.52 89.15± 0.51 90.49± 0.50 89.88± 0.54
FACILE-SupCon 92.84± 0.39 92.87± 0.38 93.21± 0.37 94.25± 0.36 93.72± 0.39

FACILE-FSP 93.10± 0.39 93.11± 0.38 93.63± 0.37 94.52± 0.35 93.07± 0.45
10-shot 3-way on PAIP

ImageNet (FSP) 65.36± 0.91 65.17± 1.00 65.40± 0.99 66.52± 0.81 64.45± 0.81
SimSiam 67.19± 0.88 67.35± 0.98 68.55± 0.94 70.88± 0.77 70.62± 0.77
SimCLR 65.77± 0.85 66.70± 0.91 67.01± 0.91 68.41± 0.79 66.96± 0.82

FSP-Patch 68.50± 0.82 69.12± 0.85 69.39± 0.85 70.13± 0.75 68.25± 0.76
FACILE-SupCon 70.03± 0.81 71.24± 0.84 72.17± 0.83 73.31± 0.71 72.50± 0.71

FACILE-FSP 69.19± 0.82 71.13± 0.82 71.78± 0.81 73.22± 0.73 72.78± 0.71
10-shot 9-way on NCT

ImageNet (FSP) 78.76± 0.94 78.92± 0.92 80.45± 0.87 82.25± 0.83 80.20± 0.89
SimSiam 82.92± 0.91 83.42± 0.89 84.76± 0.81 87.66± 0.72 88.12± 0.69
SimCLR 80.34± 0.96 81.67± 0.90 83.09± 0.84 85.96± 0.76 86.82± 0.72

FSP-Patch 83.36± 0.77 84.05± 0.74 85.93± 0.65 87.15± 0.62 86.05± 0.63
FACILE-SupCon 89.57± 0.49 91.11± 0.45 92.20± 0.41 92.88± 0.39 92.02± 0.41

FACILE-FSP 87.54± 0.61 89.25± 0.56 90.77± 0.49 91.63± 0.48 91.23± 0.50

Table A.2: Test result on LC, PAIP, and NCT dataset with shot number 10; average F1 and
CI are reported.

large batch size is used 512. The model is trained for 100 epochs with “step decay” schedule.

The learning rate multiplied by 0.1 at 30, 60, and 90 epochs respectively. The FSP model

with strong augmentation was trained for 50 epochs. The batch size is set to 64. The SGD

is used with a learning rate of 0.03, momentum of 0.9, weight decay of 0.0001, and the cosine

schedule. The model is trained for 50 epochs.

The SupCon model is trained with trained for 100 epochs. The batch size is set to 64.

The SGD optimizer is used with a learning rate of 0.01, momentum of 0.9, weight decay of

0.0001, and the cosine schedule.

Table A.3 shows the performance of the pretrained models on the LC and PAIP datasets

with shot numbers 1 or 5. Notably, the best-performing models on the two test datasets

exhibit a significant performance gap compared to the best models pretrained on TCGA

datasets as depicted in Table 5.3.
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pretraining method NC LR RC LR+LA RC+LA
1-shot 5-way test on LC dataset

SimSiam 59.30± 1.31 58.67± 1.41 58.58± 1.40 59.66± 1.35 59.85± 1.35
MoCo v3 ([Yang et al., 2022]) 59.38± 1.62 59.39± 1.68 59.46± 1.68 60.15± 1.59 60.54± 1.58

FSP (simple aug; [Yang et al., 2022]) 51.42± 1.59 46.06± 1.88 46.33± 1.86 50.53± 1.65 51.00± 1.65
FSP (strong aug) 68.00± 1.29 66.17± 1.41 66.18± 1.46 68.39± 1.34 68.02± 1.40

SupCon 64.48± 1.33 63.52± 1.42 63.84± 1.40 65.43± 1.33 65.98± 1.38
5-shot 5-way test on LC dataset

SimSiam 76.21± 0.87 74.05± 1.10 74.59± 1.10 77.87± 0.87 76.03± 0.94
MoCo v3 ([Yang et al., 2022]) 72.82± 1.25 70.29± 1.43 71.31± 1.40 78.72± 1.00 79.71± 0.95

FSP (simple aug; [Yang et al., 2022]) 56.44± 1.50 52.27± 1.81 55.62± 1.74 63.47± 1.37 63.47± 1.46
FSP (strong aug) 83.53± 0.79 80.81± 1.01 80.27± 1.08 85.57± 0.77 84.06± 0.89

SupCon 81.51± 0.85 78.77± 1.03 78.65± 1.08 83.51± 0.84 83.31± 0.91
1-shot 3-way test on PAIP dataset

SimSiam 37.13± 1.14 38.26± 1.13 37.93± 1.15 38.00± 1.12 38.67± 1.12
MoCo v3 ([Yang et al., 2022]) 43.17± 1.26 42.48± 1.30 43.02± 1.31 43.55± 1.28 44.57± 1.28

FSP (simple aug; [Yang et al., 2022]) 37.15± 1.07 36.69± 1.13 37.39± 1.08 37.40± 1.07 35.28± 1.09
FSP (strong aug) 47.67± 1.18 48.44± 1.19 48.16± 1.21 48.27± 1.17 49.38± 1.19

SupCon 48.45± 1.19 49.29± 1.20 48.97± 1.22 49.47± 1.20 48.53± 1.20
5-shot 3-way test on PAIP dataset

SimSiam 47.52± 1.00 48.12± 1.10 47.04± 1.11 52.70± 0.95 54.51± 1.00
MoCo v3 ([Yang et al., 2022]) 55.43± 1.00 54.23± 1.09 54.05± 1.09 56.07± 0.92 55.73± 0.93

FSP (simple aug; [Yang et al., 2022]) 44.98± 0.95 45.13± 0.96 45.30± 0.96 44.34± 0.87 44.03± 0.88
FSP (strong aug) 62.00± 0.88 62.48± 0.97 62.04± 0.98 64.82± 0.86 64.60± 0.87

SupCon 63.62± 0.91 64.38± 0.96 63.61± 1.00 64.37± 0.87 64.28± 0.88

Table A.3: pretraining on NCT dataset and testing on LC and PAIP dataset; average F1
and CI are reported.

A.2.3 Pretrain on TCGA and GTEx with Patch Size 1,000X1,000

We train the models using TCGA patches of size 1, 000×1, 000, which are extracted from 20X

magnification and resized to 224 × 224. Subsequently, the pretrained models are evaluated

on PDAC datasets, and the corresponding test performance is presented in Figure A.4.

Notably, for shot numbers of 1 and 5, our model significantly outperforms other models,

demonstrating a substantial performance margin.

Similarly, we train the models using GTEx patches with dimensions of 1, 000 × 1, 000.

The patches are extracted from 20X magnification and resized to 224× 224. The pretrained

models are tested on PDAC datasets, revealing similar outcomes, as illustrated in Table A.5.
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pretraining method NC LR RC LR+LA RC+LA
1-shot 5-way test

ImageNet (FSP) 29.57± 1.07 31.32± 1.09 31.16± 1.07 30.88± 1.08 30.14± 1.08
SimSiam 30.48± 1.08 30.18± 1.12 30.19± 1.13 30.41± 1.08 31.13± 1.10
SimCLR 30.79± 1.08 30.93± 1.13 30.78± 1.12 31.33± 1.08 31.22± 1.07

FSP-Patch 34.04± 1.16 33.99± 1.20 33.69± 1.20 34.29± 1.15 34.99± 1.16
FACILE-SupCon 35.44± 1.17 34.94± 1.20 34.58± 1.22 35.68± 1.16 35.27± 1.17

FACILE-FSP 37.36± 1.16 36.07± 1.23 36.93± 1.21 36.79± 1.19 36.81± 1.18
5-shot 5-way test

ImageNet (FSP) 41.83± 0.96 41.30± 1.10 41.08± 1.08 42.38± 0.94 41.29± 0.93
SimSiam 40.15± 1.03 37.29± 1.21 37.43± 1.21 41.87± 1.00 42.70± 1.01
SimCLR 40.30± 1.04 38.74± 1.19 39.02± 1.16 40.98± 0.96 40.90± 0.98

FSP-Patch 44.26± 1.10 42.99± 1.20 43.69± 1.12 46.32± 0.97 46.69± 0.96
FACILE-SupCon 45.83± 1.09 45.07± 1.18 45.93± 1.13 47.72± 0.95 47.00± 0.95

FACILE-FSP 48.21± 1.04 47.62± 1.12 47.94± 1.08 48.84± 0.95 48.37± 0.95

Table A.4: Models pretrained on TCGA and tested on PDAC dataset; average F1 and CI
are reported.

A.3 Datasets

A.3.1 GTEx Dataset

The Genotype-Tissue Expression (GTEx) project is a pioneering initiative aimed at con-

structing an extensive public repository to investigate tissue-specific gene expression and

regulation. The GTEx project collected samples from 54 non-diseased tissue sites across

nearly 1000 individuals, with an emphasis on molecular assays such as Whole Genome

Sequencing (WGS), Whole Exome Sequencing (WES), and RNA-sequencing. Addition-

ally, the GTEx Biobank contains a plethora of unutilized samples. The GTEx portal

(https://gtexportal.org/home/) provides unrestricted access to a plethora of data,

including gene expression levels, quantitative trait loci (QTLs), and histology images, to aid

the research community in advancing our understanding of human gene expression and its

regulation.

We downloaded all the slides from the GTEx portal. The organs from which the slides are

extracted are used for coarse-grained labels. We extract all the non-overlapping patches with

size 1, 000× 1, 000 and only keep those with intensity in [0.1, 0.85] to filter out backgrounds.
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pretraining method NC LR RC LR+LA RC+LA
1-shot 5-way test

SimSiam 34.78± 1.18 34.57± 1.25 35.30± 1.25 35.13± 1.19 35.27± 1.19
SimCLR 33.68± 1.14 33.74± 1.18 33.69± 1.17 34.28± 1.14 33.84± 1.12

FSP-Patch 31.87± 1.09 32.90± 1.13 32.53± 1.11 32.55± 1.09 32.10± 1.07
FACILE-SupCon 34.36± 1.06 34.35± 1.13 34.39± 1.14 34.70± 1.07 34.35± 1.07

FACILE-FSP 35.62± 1.10 35.51± 1.15 35.40± 1.13 35.87± 1.10 36.16± 1.09
5-shot 5-way test

SimSiam 46.00± 1.10 43.26± 1.30 44.19± 1.26 47.24± 1.00 47.85± 1.00
SimCLR 44.44± 1.08 43.40± 1.19 43.58± 1.15 44.60± 0.98 44.17± 0.96

FSP-Patch 42.09± 0.99 40.15± 1.15 40.69± 1.09 42.71± 0.92 42.66± 0.90
FACILE-SupCon 44.85± 1.02 43.65± 1.15 44.01± 1.13 46.37± 0.93 45.10± 0.92

FACILE-FSP 46.91± 0.97 46.32± 1.07 47.10± 1.02 48.01± 0.90 47.70± 0.89

Table A.5: Models pretrained on GTEx and tested on PDAC dataset; average F1 and CI
are reported.

The number of slides from each organ for GTEx can be found in Figure. A.1. Thumbnails

of WSI examples from the GTEx dataset can be found in Figure. A.2.
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Figure A.1: Slide number for each organ in GTEx

A.3.2 TCGA Dataset

The Cancer Genome Atlas (TCGA; https://www.cancer.gov/ccg/research/genome-s

equencing/tcga) is a project that aims to comprehensively characterize genetic mutations

responsible for cancer using genome sequencing and bioinformatics. The TCGA dataset con-

sists of 10,825 patient samples, including gene expression, DNA methylation, copy number
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Figure A.2: Randomly deleted examples from GTEx dataset
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variation, and mutation data, histopathology data, among others [source sites: Duke Uni-

versity Medical School McLendon Roger 1 Friedman Allan 2 Bigner Darrell 1 et al., 2008, 13

et al., 2012]. This large-scale dataset has enabled researchers to identify numerous genomic

alterations associated with cancer and has contributed to the development of new diagnostic

and therapeutic approaches.

We downloaded all the diagnostic slides from the GDC portal https://portal.gdc.c

ancer.gov/. The project names of the slides are used for coarse-grained labels. We extract

patches at two different scales, i.e., 224× 224 and 1, 000× 1, 000 at 20X magnification, from

all the slides.

The number of slides from each project for TCGA can be found in Figure. A.3. Thumb-
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Figure A.3: Slide number for each tumor in TCGA

nails of WSI examples from TCGA dataset can be found in Figure. A.4.

A.3.3 PDAC Dataset

To address the presence of multiple tissues within certain patches, we employ a labeling

strategy that involves identifying and labeling the centered tissues within these patches. To
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ensure annotation accuracy, each patch undergoes labeling by a minimum of two patholo-

gists, thereby maintaining the quality of the annotations. For the specific patch numbers

corresponding to each tissue in the PDAC dataset, please refer to Figure A.5. Furthermore,

examples of patches from the PDAC dataset are provided in Figure A.6, offering visual

illustrations of the dataset.
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Figure A.5: Patch number for each tissue for PDAC

Coarse-Grained Dataset Data type and annotation WSI number Extracted patch number
GTEx slides; organs 25,501 9,465,689

TCGA slides; tumors 11,638 10,321,273
(11,588,226 w/ size 224)

Fine-Grained Dataset Data type and annotation WSI number Extracted patch number
PDAC patches; tissues 194 12,250

LC25000 patches; tissues 1,250 25,000
PAIP19 patches; tissues 60 75,000

NCT-CRC-HE-100K patches; tissues 86 100,000

Table A.6: Dataset statistics

In order to validate our model on a real-world dataset, we generated WSIs of Pancre-

atic Ductal Adenocarcinoma (PDAC)1. PDAC, a particularly aggressive and lethal form of

1. We will make data publicly available upon acceptance of our paper
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Figure A.6: Randomly selected examples from each class of PDAC dataset.
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cancer originating in the pancreatic duct cells, presents various subtypes, each with distinct

morphological characteristics. These variations underscore the need for advanced automated

tools to accurately characterize and differentiate between these subtypes, thereby aiding dis-

ease studies and potentially informing treatment strategies. Examples of PDAC and class

distribution are detailed in §A.3. There are in total 12,250 annotated patches extracted from

194 slides. The patch size used for this analysis is 1, 000 × 1, 000 at a 20X magnification.

Each patch was annotated into one of 5 classes (i.e., Stroma, Normal Acini, Normal Duct,

Tumor, and Islet) and confirmed by at least two pathologists.

A.3.4 NCT, PAIP, and LC

We test our models on 4 datasets with fine-grained labels. These datasets are from diverse

body sites. Statistics of these datasets can be found in Table A.6.

NCT-CRC-HE-100K (NCT) is collected from colon [Kather et al., 2018]. It consists of

9 classes with 100K non-overlapping patches. The patch size is 224 × 224. LC25000 (LC)

is collected from lung and colon sites [Borkowski et al., 2021]. It has 5 classes and each

class has 5,000 patches. The patch size is 768 × 768. We resize the patches to 224 × 224.

PAIP19 (PAIP) is collected from liver site [Kim et al., 2021]. There are in total 50 WSIs.

The WSIs are cropped into patches with size 224 × 224. We only keep those patches with

masks and assign labels with majority voting similar to Yang et al. [2022]. We downsample

these patches to 75K patches, with 25K in each class.

A.4 Data Augmentation

Two data augmentation strategies are used in this paper.

Simple augmentation Following Yang et al. [2022], we also used a simple augmenta-

tion policy which includes random resized cropping and horizontal flipping. In our paper,
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this simple augmentation policy is only used for FSP-Patch model pretraining on the NCT

dataset.

Strong augmentation Following previous work [Grill et al., 2020, Chen et al., 2021d,

Yang et al., 2022], for SimCLR and SupCon models, we used similar strong data augmenta-

tion which contains random resized cropping, horizontal flipping, horizontal flipping, color

jittering [Wu et al., 2018b] with (brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2,

probability=0.8), grayscale conversion [Wu et al., 2018b] with (probability=0.2), Gaussian

blurring [Chen et al., 2020a] with (kernel size=5, min=0.1, max=2.0, probability=0.5), and

polarization [Grill et al., 2020] with (threshold=128, probability=0.2).

In implementing the SimSiam model, we adopted a comparable augmentation strategy,

utilizing robust data augmentation techniques. Specifically, we fine-tuned parameters for

color jittering, setting brightness, contrast, and saturation adjustments to 0.4, and hue to

0.1. These modifications were applied with a probability of 0.8, as informed by Chen and

He [2021].

A.5 Latent Augmentation

Latent augmentation (LA) was originally proposed in Yang et al. [2022] to improve the

performance of the few-shot learning system in a simple unsupervised way. The pretrained

feature extractor can only transfer parts of available knowledge in the pretraining datasets

by the learned weights of the feature extractor. More transferable knowledge is inherent in

the pretraining data representations.

In order to fully exploit the pretraining data, possible semantic shifts of clustered rep-

resentations of the pretraining dataset are transferred to downstream tasks besides the pre-

trained feature extractor weights. The k-means clustering method is performed on the rep-

resentations of pretraining datasets, which are generated by the pretrained feature extractor
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ê. Assume we obtain C clusters after clustering. The base dictionary B = {(ci,Σi)}Ci=1 is

constructed, where ci is the i-th cluster prototype, i.e., mean representation of all samples in

the cluster and Σi is the covariance matrix of the cluster. During downstream task testing,

LA uses the original representation z to select the closest prototype from B. We can get

additive augmentation z̃ = z + δ, where δ is sampled from N (0,Σi∗) and i∗ is the index of

closest prototype of z. The classifier of the downstream tasks is then trained on both the

original representations and the augmented representations.

A.6 Ablation Study

A.6.1 Set-input Models

Pooling architectures have been used in various set-input problems, e.g, 3D shape recognition

[Shi et al., 2015, Su et al., 2015], learning the statistics of a set [Edwards and Storkey, 2016].

Vinyals et al. [2015a], Ilse et al. [2018] pool elements in a set by a weighted average with

weights computed by the attention module. [Zaheer et al., 2017, Edwards and Storkey,

2016] proposed to aggregate embeddings of instances, extracted using a neural network, with

pooling operations (e.g., mean, sum, max). This simple method satisfies the permutation

invariant property and can work with any set size. Santoro et al. [2017] used a relational

network to model all pairwise interactions of elements in a given set. Lee et al. [2019a]

proposed to use the Transformer [Vaswani et al., 2017] to explicitly model higher-order

interactions among the instances in a set.

We evaluate three set-input models for the FACILE-FSP model: attention-based MIL

pooling [Ilse et al., 2018], Deep Set [Zaheer et al., 2017], and Set Transformer [Lee et al.,

2019a]. Attention-based MIL pooling uses a weighted average of instance embeddings from

a set where weights are determined by a neural network. The attention-based MIL pooling

corresponds to a version of attention [Lin et al., 2017, Raffel and Ellis, 2015]. It has been
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adapted by Zhang et al. [2020b,a], Pal et al. [2021] in the context of H&E images. It uses a

single fully connected layer and softmax with batch normalization and ReLU activation to

predict the attention weights for instances. In the Deep Set model, each instance in a set is

independently fed into a neural network that takes fixed-sized inputs. The extracted features

are then aggregated using a pooling operation (i.e., mean, sum, or max). The final output is

obtained by further non-linear operations. The simple architecture satisfies the permutation

invariant property and can work with any set size. Set Transformer adapted the Transformer

model for set data. It leverages the attention mechanism [Vaswani et al., 2017] to capture

interactions between instances of the input set. It applies the idea of inducing points from

the sparse Gaussian process literature to reduce quadratic complexity to linear in the size of

the input set.

We train FACILE-FSP with three set-input models. The set size a is set to 5. In the

attention-based MIL pooling model, we implemented the simple version, and use the single

fc layer with softmax to predict attention weights from ResNet18 extracted features. For the

Deep Set model, we use two fc layers with ReLU activation functions in between to extract

instance features before set pooling. In the Set Transformer, we use 4 attention heads and

3 inducing points.

From Table A.7, we conclude that none of the 3 set-input models used in FACILE-FSP

is consistently better than the other set-input models. The Deep Set model achieves the

highest average F1 score with more tasks.

A.6.2 Learning Curve

To validate the adequacy of training for all models, we assess the intermediate checkpoints

of each pretraining model on the LC dataset. The learning curves and confidence intervals

(CI) of FACILE-FSP, FSP-Patch, and SimSiam are displayed in Figure. A.7. Upon careful

examination of the learning curves in Figure. A.7, we observe conclusive evidence of complete
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set-input model NC LR RC LR+LA RC+LA
1-shot 5-way test on LC dataset

Attention-based MIL pooling 70.53± 1.32 69.86± 1.39 69.75± 1.37 71.15± 1.31 70.31± 1.34
Deep Set 77.84± 1.16 77.56± 1.16 77.56± 1.17 79.16± 1.09 77.38± 1.18

Set Transformer 75.09± 1.30 73.57± 1.29 73.16± 1.33 74.03± 1.28 72.88± 1.34
5-shot 5-way test on LC dataset

Attention-based MIL pooling 88.12± 0.59 81.60± 1.04 82.51± 0.97 89.18± 0.57 88.15± 0.65
Deep Set 90.35± 0.50 90.91± 0.47 91.54± 0.46 91.68± 0.50 90.97± 0.54

Set Transformer 90.67± 0.54 89.18± 0.61 89.02± 0.63 90.03± 0.59 88.71± 0.67
1-shot 3-way test on PAIP dataset

Attention-based MIL pooling 50.98± 1.37 51.93± 1.35 51.91± 1.36 51.98± 1.36 52.39± 1.35
Deep Set 52.04± 1.25 53.27± 1.25 54.19± 1.26 52.66± 1.25 52.79± 1.23

Set Transformer 48.81± 1.21 50.08± 1.24 50.75± 1.23 50.03± 1.23 49.41± 1.20
5-shot 3-way test on PAIP dataset

Attention-based MIL pooling 67.04± 1.00 66.06± 1.17 66.61± 1.10 70.19± 0.87 70.54± 0.81
Deep Set 69.42± 0.85 69.93± 0.92 70.52± 0.87 69.96± 0.84 68.39± 0.84

Set Transformer 66.61± 0.91 67.57± 0.95 67.78± 0.95 68.24± 0.85 67.20± 0.86
1-shot 9-way test on NCT dataset

Attention-based MIL pooling 60.04± 1.40 64.53± 1.29 64.81± 1.31 64.00± 1.34 66.66± 1.32
Deep Set 68.21± 1.30 68.17± 1.31 68.69± 1.30 69.24± 1.28 68.18± 1.33

Set Transformer 67.76± 1.31 68.52± 1.30 68.55± 1.28 68.33± 1.28 67.72± 1.28
5-shot 9-way test on NCT dataset

Attention-based MIL pooling 81.94± 0.75 82.40± 0.72 84.46± 0.65 86.49± 0.62 87.66± 0.59
Deep Set 85.18± 0.60 85.87± 0.60 87.11± 0.56 87.06± 0.61 85.81± 0.66

Set Transformer 86.45± 0.62 87.74± 0.59 87.97± 0.58 88.00± 0.59 86.92± 0.61

Table A.7: Performance of FACIEL-FSP with three different set-input models; average F1
and CI are reported.
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Figure A.7: Learning curves of FACILE-FSP model, FSP-Patch model, and SimSiam. The
mean F1 score and CI of 5 few-shot models tested on the LC dataset with 5-shot are shown
with curves.

training for all models, as they have reached convergence.
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A.6.3 Input Set Size

To examine the impact of input set size on downstream tasks, we conduct pretraining ex-

periments using FACILE-FSP on the TCGA dataset with varying input set sizes. The

resulting feature map e from the trained FACILE-FSP is then evaluated on LC, PAIP, and

NCT datasets with shot numbers 1 and 5. The corresponding performances are reported in

Table A.8.

Observing Table A.8, we find that models with an input set size of 5 consistently demon-

strate superior performance for LC and PAIP datasets. While slight improvements are ob-

served for larger input set sizes, they are not substantial. Conversely, for the NCT dataset,

as presented in Table A.8, the best performance is attained when the input set size is 10.

A.7 Contrastive and Non-contrastive Learning Models

Self-supervised learning achieves promising results on multiple visual tasks [Bachman et al.,

2019, He et al., 2020, Chen et al., 2020a, Grill et al., 2020, Caron et al., 2020, Chen and

He, 2021]. Contrastive learning method avoid collapse by encouraging the representations

to be far apart for views from different images. Henaff [2020], He et al. [2020], Misra and

Maaten [2020], Chen et al. [2020a] implemented instance discrimination, in which a pair of

augmented views from the same image are positive and others are negative. Caron et al.

[2020, 2018] contrasted different cluster of positives. Non-contrastive models [Grill et al.,

2020, Richemond et al., 2020, Chen and He, 2021] removed the reliance on negatives. These

non-contrastive models achieved strong results in the ImageNet [Deng et al., 2009] pretraining

setting. SimSiam [Chen and He, 2021] works with typical batches and does not rely on

large-batch training, which makes it preferable for academics and practitioners with low

computation resources.

In this section, some contrastive learning and non-contrastive learning models, e.g., Sim-

CLR, SupCon, and SimSiam, that are used in this paper are explained. Details of implemen-
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tation are provided. There are three main components in SimCLR and SupCon framework.

We follow the notation of Khosla et al. [2020] in this section to explain SimCLR and SupCon.

• Data augmentation Aug(·). For each input sample x, the augmentation module gen-

erates two random augmented views, i.e., x̃ ∼ Aug(x). The augmentation schedules

used in this paper are explained in §A.4.

• Encoder Enc(·). The encoder extracts a representation vector r = Enc(x̃). The pair

of augmented views are separately fed to the same encoder and generate a pair of

representations. The r is normalized to the unit hypersphere.

• Projection head Proj(·). It maps r to a vector z = Proj(r). We instantiate Proj(·)

as a multi-layer perceptron (MLP) with a single hidden layer of size 512 and output

vector size of 512. We also normalize the output to the unit hypersphere.

For a set of N randomly sampled sample/label pairs, {(xk, yk)}Nk=1. The corresponding

batch used for training consists of 2N pairs, {(x̃l, ỹl)}2Nl=1, where x̃2k−1 and x̃2k are two

random augmented views of xk and ỹ2k−1 = ỹ2k = yk.

A.7.1 SimCLR

Let i ∈ I ≡ {1 . . . 2N} be the index of an arbitrary augmented sample and let j(i) be

the index of the other augmented sample originating from the same source sample. The

abstraction of SimCLR structure can be found in Figure. A.8. In SimCLR, the loss takes

the following form.

Lself =
∑
i∈I
Lself
i = −

∑
i∈I

log
exp

(
zi · zj(i)/τ

)
∑

a∈A(i) exp (zi · za/τ)
(A.1)

where τ is the temperature parameter. A(i) ≡ I\{i}. The denominator has a total of

2N − 1 terms.
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Figure A.8: Abstraction of SimCLR structure

In this paper, the τ is always set to 0.07. The patches are augmented randomly by the

augmentation module described in §A.4. We use an MLP as a projection head with two

fully-connected layers, a hidden dimension of 512, and an output dimension of 512.

A.7.2 SupCon

For supervised learning, the contrastive loss in Eq. (A.1) cannot handle class discrimination

[Khosla et al., 2020]. Khosla et al. [2020] proposed two straightforward ways, as shown in

Eq. (A.2) and Eq. (A.3), to generalize Eq. (A.1) to incorporate supervison.

Lsup
out =

∑
i∈I
Lsup

out ,i =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp

(
zi · zp/τ

)∑
a∈A(i) exp (zi · za/τ)

(A.2)

Lsup
in =

∑
i∈I
Lsup
in,i =

∑
i∈I
− log

 1

|P (i)|
∑

p∈P (i)

exp
(
zi · zp/τ

)∑
a∈A(i) exp (zi · za/τ)

 (A.3)

Here P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the set of indices of all positives in the batch distinct

from i. The authors showed that Lsup
in ≤ Lsup

out and Lsup
out is the superior supervised loss

function. Thus, we use SupCon with Eq. (A.2) as the default loss. The τ is also set to 0.07.

In our model FACILE-SupCon, the input sample is a set of randomly sampled patches and
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labels are slide properties, i.e., organs or TCGA projects. Each patch is augmented randomly

by the augmentation module described in §A.4. The feature map e and set function g work

as the encoder Enc(·). We also use an MLP as a projection head with two fully-connected

layers, a hidden dimension of 512, and an output dimension of 512.

When employing set-input data with the SupCon method, the standard practice of aug-

menting each instance within a set poses significant challenges for the training of SupCon

models. These challenges stem from two main aspects: 1) Complexity in maximizing agree-

ment with set-input data: SupCon is traditionally trained to maximize agreement between

differently augmented views of the same data point using labeled data. In our application,

using set-input data means that we apply conventional data augmentation methods to each

instance within a set. This results in an independently augmented set of images, as opposed

to augmenting a single instance. This complexity makes it more challenging to achieve the

desired maximization of agreement. 2) Constraints on batch sizes due to set inputs: Set-

input models take a batch of sets as input instead of a batch of instances. It requires us

to use relatively smaller batch sizes when using the same hardware configuration because

of the set input. It’s important to emphasize that the batch size is a critical factor for the

effectiveness of the SupCon model.

We have observed that despite these challenges, the performance of FACILE-SupCon is

commendable in contexts involving smaller datasets or less complex models, i.e., CIFAR-100

in §5.3.2 and §5.3.3 or smaller trainable models as discussed in Appendices B.1 and B.3. We

believe that our approach, with its nuanced application of SupCon in a set-input context,

offers a valuable contribution to the field and shows the versatility of the FACILE algorithm.

A.7.3 SimSiam

Non-contrastive models, e.g., SimSiam and BYOL, achieve strong results in typical ImageNet

[Deng et al., 2009] pretraining setting [Chen and He, 2021, Grill et al., 2020, Li et al., 2022].
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Figure A.9: Abstraction of SimSiam structure

Among the non-contrastive models, SimSiam removes the negatives and uses stop-grad to

avoid collapse. Besides, it trains faster, requires less GPU memory, and works well with

small batch size [Chen and He, 2021, Li et al., 2022], which makes it extremely appealing to

academics.

The abstraction of SimSiam structure is shown in Figure. A.9. Given two augmented

views x̃1 and x̃2 of the same image x, SimSiam learns to use x̃1 to predict the representation

of x̃2. Specifically, x̃1 is passed into the online backbone network on the upper. The x̃2 is

passed into the target backbone network on the lower. The outputs of the two backbone

networks are passed to the projection MLPs and then a prediction MLP is used to predict

the projected representation of x̃2 from the projected representation of x̃1. SimSiam uses

the same network for the online and target backbone and projection networks.

In our paper, the projection MLP has 3 fully-connected layers with a hidden dimension

of 512 and an output dimension of 512. It has batch normalization (BN) applied to each

fully-connected layer including its output fully-connected layer. The prediction MLP also

has BN applied to its hidden fully-connected layer. Its output fully-connected layer does not

have BN or ReLU. The prediction MLP has 2 layers.
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A.7.4 DINO and DINO V2

In the realm of self-supervised learning, Caron et al. [2021] introduced a novel approach that

effectively utilizes concepts from knowledge distillation without the need for labels. Their

proposed framework, DINO, streamlines the learning process by employing a momentum

encoder within the teacher network and simplifies output prediction using standard cross-

entropy loss. This method primarily depends on the centering and sharpening of outputs

from the teacher network to preclude feature collapse. It notably sidelines the necessity for

additional components such as predictors [Grill et al., 2020], advanced normalization tech-

niques [Caron et al., 2020], or contrastive losses [He et al., 2020], which have been shown to

contribute minimally to either stability or performance enhancements. Crucially, the DINO

framework boasts flexibility, functioning effectively across both convolutional networks and

Vision Transformers (ViTs) without the need for architectural modifications or specialized

internal normalization adjustments [Richemond et al., 2020].

The operational mechanics of the model involve processing two distinct random trans-

formations of a single input image through parallel student and teacher networks, which

share the same architecture but differ in parameters. The output from the teacher net-

work is first centered using the mean of the batch, and then both networks generate a

K-dimensional feature vector. These vectors are normalized across the feature dimension

using a temperature-controlled softmax function. The similarity between these normalized

vectors is quantified using a cross-entropy loss function. To optimize learning, a stop-gradient

(sg) operator is applied to the teacher network, allowing gradients to propagate exclusively

through the student network. This method ensures that the teacher’s parameters are gradu-

ally updated, reflecting an exponential moving average (EMA) of the student’s parameters,

thereby enhancing the overall learning efficacy and stability of the model.

Oquab et al. [2023] revisited and refined existing self-supervised pretraining methodolo-

gies, demonstrating that these approaches can generate versatile, all-purpose features when
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trained on sufficiently large and diverse curated datasets. Their study enhanced pretraining

scalability in terms of both data volume and model size, focusing on maximizing efficiency

and stability during training. They developed an automated pipeline for assembling a ded-

icated, diverse, and curated image dataset, which contrasts with the typically uncurated

data used in self-supervised learning. Additionally, the authors trained a ViT model with

one billion parameters and successfully distilled this into smaller models that outperformed

the current leading all-purpose features from OpenCLIP [Ilharco et al., 2021] across various

benchmarks at both the image and pixel levels.

Oquab et al. [2023] adapted discriminative self-supervised approaches that learn features

at the image and patch levels, such as those pioneered by iBOT [Zhou et al., 2021]. By

reevaluating these methods with a larger dataset, they identified and implemented technical

enhancements aimed at stabilizing and accelerating the learning process. These advance-

ments not only improved the speed but also reduced the memory requirements compared

to similar methods, enabling more extended training periods and larger batch sizes. This

methodological evolution marks a significant step forward in developing efficient and robust

models capable of handling expansive and intricate datasets in self-supervised learning.

A.8 Excess Risk Bound of FACILE

Our proof framework follows closely the work of Robinson et al. [2020]. We consider the

setting where we have some coarse-grained labels of some sets, rather than instances and the

downstream classifiers only use the learned embeddings to train and test on the downstream

tasks. /Robinson et al. [2020] considers a different setting where each instance has a weak

label and a strong label, and the strong label predictor learns to predict the strong labels from

the instances and their corresponding embeddings learned with weak labels. The diagram

of only using trained embeddings for downstream tasks is more often used in self-supervised

learning and representation learning for FSL literature [Du et al., 2020, Yang et al., 2021,
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Bachman et al., 2019, He et al., 2020, Chen et al., 2020a, Grill et al., 2020, Caron et al.,

2020, Chen and He, 2021]. The coarse-grained data contains useful information, which is

characterized by our defined Lipschitzness, to pretrain a instance feature map that can be

leveraged for downstream FSL. We include the full proof of our key result as follows.

In order to prove Theorem 4, we first split the excess risk by the following proposition.

Proposition 5. Suppose that f∗ is L-Lipschitz relative to E. The excess risk

E
[
ℓ
fg

f̂◦ê(X, Y )− ℓ
fg
f∗◦e∗(X, Y )

]

is bounded by,

2LRatem(ℓcg, PS,W , E) + Raten(ℓ
fg, P̂Z,Y ,F)

Proof. We split the excess risk into three parts

EPX,Y

[
ℓ
fg

f̂◦ê(X, Y )− ℓ
fg
f∗◦e∗(X, Y )

]
=EPX,Y

[
ℓ
fg

f̂◦ê(X, Y )− ℓ
fg
f∗◦ê(X, Y )

]
+ EPX,Y

[
ℓ
fg
f∗◦ê(X, Y )− ℓ

fg
f∗◦e0(X, Y )

]
+ EPX,Y

[
ℓ
fg
f∗◦e0(X, Y )− ℓ

fg
f∗◦e∗(X, Y )

]
For the second term and third term, relative Lipschitzness of f∗ to E delivers

EPX,Y

[
ℓ
fg
f∗◦ê(X, Y )− ℓ

fg
f∗◦e0(X, Y )

]
= EPX,Y,S,W

[
ℓ
fg
f∗◦ê(X, Y )− ℓ

fg
f∗◦e0(X, Y )

]
≤ LEPX,Y,S,W

ℓcg (gê ◦ ê(S), ge0 ◦ e0(S))

= LEPS,W
ℓcg (gê ◦ ê(S), ge0 ◦ e0(S)) ,
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EPX,Y

[
ℓ
fg
f∗◦e0(X, Y )− ℓ

fg
f∗◦e∗(X, Y )

]
= EPX,Y,S,W

[
ℓ
fg
f∗◦e0(X, Y )− ℓ

fg
f∗◦e∗(X, Y )

]
≤ LEPX,Y,S,W

ℓcg (ge0 ◦ e0(S), ge∗ ◦ e∗(S))

= LEPS,W
ℓcg (ge0 ◦ e0(S), ge∗ ◦ e∗(S))

Since e∗ attains minimal risk and W = ge0 ◦ e0(S), the sum of the two terms can be

bounded by,

LEPS,W
ℓcg (gê ◦ ê(S), ge0 ◦ e0(S)) + LEPS,W

ℓcg (ge0 ◦ e0(S), ge∗ ◦ e∗(S))

≤2LEPS,W
ℓcg (gê ◦ ê(S),W ) ≤ 2LRatem(ℓcg, PS,W , E)

By combining the bounds on the three terms we can get the claim.

The central condition is well-known to yield fast rates for supervised learning [Van Erven

et al., 2015]. It directly implies that we could learn a map Z → Y with Õ(1/n) excess

risk. The difficulty is that at test time we would need access to latent value Z = e(X). To

circumnavigate this hurdle, we replace e0 with ê and solve the supervised learning problem

(ℓfg, P̂Z,Y ,F).

It is not clear whether this surrogate problem satisfies the central condition. We show

that (ℓfg, P̂Z,Y ,F) indeed satisfies a weak central condition and shows weak central condition

still enables strong excess risk guarantees.

Following Robinson et al. [2020], Van Erven et al. [2015], we define the central condition

on F .

Definition 6. (The central condition). A learning problem (ℓfg, PZ,Y ,F) on Z × Y is said
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to satisfy the ϵ-weak η-central condition if there exists an f∗ ∈ F such that

E(Z,Y )∼PZ,Y

[
e
η(ℓfg

f∗(Z,Y )−ℓfgf (Z,Y ))
]
≤ eηϵ

for all f ∈ F . The 0-weak central condition is known as the strong central condition.

Capturing relatedness of pretraining and downstream task with the central con-

dition. Intuitively, the strong central condition requires that the minimal risk model f∗

attains a higher loss than f ∈ F on a set of Z, Y with an exponentially small probability.

This is likely to happen when Z is highly predictive of Y so that the probability of P (Y |Z)

concentrates in a single location for most Z. If f∗ in F such that f∗(Z) maps into this

concentration, ℓfgf∗(Z, Y ) will be close to zero most of the time.

We assume that the strong central condition holds for the learning problem (ℓfg, PZ,Y ,F)

where Z = e0(X). Similar to Robinson et al. [2020], we split the learning procedure into

two supervised tasks as depicted in algorithm 1. In the algorithm, we replace (ℓfg, PZ,Y ,F)

with (ℓfg, P̂Z,Y ,F).

We will show that (ℓfg, P̂Z,Y ,F) satisfies the weak central condition.

Proposition 7. Assume that ℓcg(w,w′) = 1
{
w ̸= w′

}
and that ℓfg is bounded by B > 0,

F is L-Lipschitz relative to E, and that (ℓfg, PZ,Y ,F) satisfies ϵ-weak central condition.

Then (ℓfg, P̂Z,Y ,F) satisfies the ϵ + O
(
exp(ηB)

η Ratem
(
E , PS,W

))
-weak central condition

with probability at least 1− δ.

Proof. Note that

1

η
logE

P̂Z,Y
exp

(
η(ℓ

fg
f∗ − ℓ

fg
f )
)
=

1

η
logEPX,Y

exp
(
η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê)

)

To prove that (ℓfg, P̂Z,Y ,F) satisfies the central condition we therefore need to bound
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1
η logEPX,Y

exp
(
η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê)

)
by some constant.

1

η
logEPX,Y

exp
(
η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê)

)
=
1

η
logEPX,Y,S,W

exp
(
η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê)

)
=
1

η
logEPX,Y,S,W

[
exp(η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê))1{ĝê ◦ ê(S) = W}

]
+

1

η
logEPX,Y,S,W

[
exp(η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê))1{ĝê ◦ ê(S) ̸= W}

]
=

1

η
logEPX,Y,S,W

[
exp(η(ℓ

fg
f∗◦e0 − ℓ

fg
f◦e0))1{ĝê ◦ ê(S) = W}

]
︸ ︷︷ ︸

first term

+

1

η
logEPX,Y,S,W

[
exp(η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê))1{ĝê ◦ ê(S) ̸= W}

]
︸ ︷︷ ︸

second term

The third line follows from the fact that for any f in the event {ĝê ◦ ê(S) = W} we have

ℓ
fg
f◦ĝ = ℓ

fg
f◦g0 .

This is because |ℓfgf◦ê(X, Y )− ℓ
fg
f◦e0(X, Y )| ≤ Lℓcg(gê ◦ ê(S), ge0 ◦e0(S)) = Lℓcg(W,W ) =

0.

We get 1
η logEPX,Y,S,W

[
exp(η(ℓ

fg
f∗◦e0 − ℓ

fg
f◦e0))

]
after we drop the 1{ĝê ◦ ê(S) = W}. It

is bounded by ϵ with the weak central condition. The second term is bounded by

160



1

η
logEPX,Y,S,W

[
exp(η(ℓ

fg
f∗◦ê − ℓ

fg
f◦ê))1{ĝê ◦ ê(S) ̸= W}

]
≤1

η
logEPX,Y,S,W

[exp(ηB)1{ĝê ◦ ê(S) ̸= W}]

=
1

η
logEPS,W

[exp(ηB)1{ĝê ◦ ê(S) ̸= W}]

<
1

η
EPS,W

[exp(ηB)1{ĝê ◦ ê(S) ̸= W}]

=
exp(ηB)

η
PS,W (ĝê ◦ ê(S) ̸= W )

=
exp(ηB)

η
Ratem(ℓcg, PS,W , E)

The first inequality uses the fact that ℓfg is bounded by B. The forth line is because that

log x < x. By combining this bound with ϵ bound on the first term we can get the claimed

result of Proposition 7.

The proof of the main theorem further relies on a proposition provided by Robinson et al.

[2020], as we show below:

Proposition 8. Robinson et al. [2020] Suppose (ℓfg, QZ,Y ,F) satisfies the ϵ-weak central

condition, ℓfg is bounded by B > 0, F is L′-Lipschitz in its d-dimensional parameters in

the l2 norm, F is contained in Euclidean ball of radius R, and Y is compact. Then when

An(ℓ
fg, QZ,Y ,F) is ERM, the excess risk EZ,Y∼QZ,Y

[
ℓ
fg

f̂
(Z, Y )− ℓ

fg
f∗(Z, Y )

]
is bounded by,

O
(
V
d log RL′

ϵ + log 1
δ

n
+ V ϵ

)

with probability at least 1− δ, where V = B + ϵ.

Proof of the main theorem: If m = Ω(nβ), the Ratem(ℓcg, PS,W , E) = O( 1
mα ) =

O( 1
nαβ

). Proposition 7 concludes that (ℓfg, P̂Z,Y ,F) satisfies the O( 1
nαβ

)-weak central con-

dition with probability at least 1−δ. Thus by Proposition 8, we can get Raten(ℓfg, P̂Z,Y ,F) =
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O
(

dαβ logRL′n+log 1
δ

n + B
nαβ

)
. Combining bounds with Proposition 5 we conclude that

E
[
ℓ
fg

f̂◦ê(X, Y )− ℓ
fg
f∗◦e∗(X, Y )

]
≤2LRatem(ℓcg, PS,W , E) + Raten(ℓ

fg, P̂Z,Y ,F)

≤O
(
dαβ logRL′n+ log 1

δ

n
+

B

nαβ
+

2L

nαβ

)
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set size 2 5 10 15
1-shot 5-way test on LC dataset

NC 75.29± 1.33 77.84± 1.16 74.88± 1.36 75.25± 1.29
LR 73.72± 1.33 77.56± 1.16 73.84± 1.29 74.00± 1.27
RC 74.10± 1.34 77.56± 1.17 73.42± 1.31 73.42± 1.29

LR+LA 75.27± 1.28 79.16± 1.09 74.41± 1.31 74.92± 1.26
RC+LA 74.36± 1.33 77.38± 1.18 72.60± 1.34 73.16± 1.32

5-shot 5-way test on LC dataset
NC 90.62± 0.56 90.35± 0.50 90.62± 0.57 90.83± 0.55
LR 89.41± 0.63 90.91± 0.47 89.80± 0.59 89.63± 0.60
RC 89.11± 0.63 91.54± 0.46 89.26± 0.61 89.25± 0.60

LR+LA 90.46± 0.58 91.68± 0.50 90.29± 0.57 90.46± 0.56
RC+LA 89.64± 0.63 90.97± 0.54 88.52± 0.66 89.00± 0.64

NC 48.95± 1.24 52.04± 1.25 51.72± 1.22 52.46± 1.20
LR 50.55± 1.22 53.27± 1.25 52.33± 1.25 53.38± 1.23
RC 50.14± 1.25 54.19± 1.26 53.04± 1.24 52.68± 1.25

LR+LA 50.12± 1.22 52.66± 1.25 52.96± 1.21 53.41± 1.21
RC+LA 49.91± 1.22 52.79± 1.23 51.67± 1.17 51.51± 1.20

5-shot 3-way test on PAIP dataset
NC 66.99± 0.93 69.42± 0.85 69.10± 0.91 69.08± 0.87
LR 68.11± 0.94 69.93± 0.92 70.30± 0.90 69.28± 0.90
RC 68.63± 0.91 70.52± 0.87 70.45± 0.87 70.12± 0.90

LR+LA 69.03± 0.83 69.96± 0.84 70.25± 0.81 70.00± 0.81
RC+LA 67.32± 0.83 68.39± 0.84 68.35± 0.83 67.70± 0.81

NC 66.31± 1.36 68.21± 1.30 72.44± 1.25 72.05± 1.27
LR 68.55± 1.32 68.17± 1.31 72.62± 1.25 72.14± 1.27
RC 68.58± 1.32 68.69± 1.30 72.60± 1.25 72.04± 1.27

LR+LA 67.42± 1.33 69.24± 1.28 72.18± 1.26 71.92± 1.27
RC+LA 65.87± 1.36 68.18± 1.33 69.98± 1.31 69.88± 1.28

5-shot 9-way test on NCT dataset
NC 85.28± 0.72 85.18± 0.60 88.25± 0.56 88.22± 0.57
LR 86.39± 0.69 85.87± 0.60 88.80± 0.55 88.55± 0.55
RC 87.03± 0.66 87.11± 0.56 89.25± 0.52 89.02± 0.54

LR+LA 86.85± 0.65 87.06± 0.61 88.52± 0.59 88.93± 0.55
RC+LA 85.60± 0.70 85.81± 0.66 87.40± 0.63 87.74± 0.59

Table A.8: Abation on set size; models tested on LC, PAIP, and NCT dataset; average F1
and CI are reported.
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APPENDIX B

APPENDIX FOR DEEP BAYESIAN ACTIVE LEARNING

B.1 Implementation Details on the Empirical Example in

Figure. 6.1

We show an empirical example in Figure. 6.1 to provide some intuition as to why BALanCe

and Batch-BALanCe are effective in practice. We train a BNN with an imbalanced MNIST

training subset that contains 28 images for each digit in [1-8] and 1 image for digits 0 and

9. The cross-entropy loss is reweighted to balance the training dataset during training. We

obtain 200 posterior samples of BNN and use them to get the predictions on D̄pool. We com-

pute the Hamming distances for predictions of all sample pairs and use these precomputed

distances to plot the predictions with t-SNE [Van der Maaten and Hinton, 2008]. The equiv-

alence classes are approximated by the farthest-first traversal algorithm (FFT) [Gonzalez,

1985].

In Figure. 6.1, the equivalence classes are highly imbalanced. The ground truth D̄pool

dataset labels represent the target hypotheses embedding. This figure highlights the scenario

where the equivalence class-based methods, e.g. ECED and BALanCe are better than

BALD.

B.2 Coefficient of Variation

To gain more insight into why BALanCe and Batch-BALanCe work consistently better

than BALD and BatchBALD, we further investigate the dispersion of the estimated acqui-

sition function values for those methods. Since Batch-BALanCe and BatchBALD extend

their fully sequential algorithms similarly in a greedy manner, we only compare the acquisi-

tion functions of BALanCe and BALD.
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The coefficient of variation (CV) is chosen for the comparison of dispersion. It is de-

fined as the ratio of the standard deviation to the mean. CV is a standardized measure of

the dispersion of a probability distribution or frequency distribution. The value of CV is

independent of the unit in which it is taken.

We conduct the experiment on the imbalanced MNIST dataset in the setting of ap-

pendix B.1. We estimate the acquisition function values of BALanCe and BALD 5 times

with 5 sets of K MC dropouts for each sample in the AL pool. Then, the CVs are calculated

for these estimations. In Figure. B.1, we show histograms of CVs for both methods. The

estimated acquisition function values of BALanCe are less dispersed, which shows potential

for better performance.
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Figure B.1: Histograms for coefficient of variation.

B.3 Predictive Variance

In order to directly compare the accuracy improvement of batches selected by different

algorithms, instead of along the course of an AL trial, we conduct experiments with training

sets of various sizes and compare the accuracy improvement of batches selected by AL
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algorithms with the same training set. The initial training set has 10 sampled randomly

from Repeated-MNIST. In each step, we select 10 random samples and add them to the

training set. Hypotheses are drawn from BNN posterior given the current training set. We

perform different AL algorithms and select batches with batch size 20. After each batch is

added to the training set, we can estimate the accuracy improvement of the batch. In each

step, we perform each AL algorithm 20 times and estimate the mean and std of accuracy

improvement. The mean and std of BNNs’ accuracy are shown in Figure. B.2. We can

see in Figure. B.2 that our algorithms consistently select batches that have high accuracy

improvement and low variance.
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Figure B.2: We empirically show AL algorithms’ predictive variance.
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