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Abstract

This paper proposes the novel two-stage estimators for unbalanced panel data that
incorporate endogenous sample selection. Contrary to conventional methods, we rely on
a weaker assumption which not requires sample selection to be random and ignorable.
The first stage uses a bilateral truncated selection equation where we accommodate a
weak instrumental variable (IV). This is due to the recognition that original selection is
impacted on unobservable heterogeneity, so that unidentifiable endogenous selections
problem exits, which causes optimal IV extremely difficult to acquire. The second
stage develops Wooldridge’s (2019) model to account for the correlation between un-
observable heterogeneity in the main model with covariates and the heterogeneity in
the selection mechanism. Simulations demonstrate the efficacy of our estimators in
a variety of contexts. And an empirical application in financial panel data concludes
a more accurate result than previous literature, also proves the advancement of our
method.

Keywords: Unbalanced Panel Data, Endogenous Selection, Weak IV

1 Introduction

Panel data are widely used in economic and financial research due to its larger datasets
with more variability and the ability to control for individual heterogeneity. However, panel
datasets may exhibit bias due to sample selection problems (Baltagi and Song 2006) [13].
The panel data becomes unbalanced if the selection problem causes samples missing in the
dataset, and the unbalanced panel is possibly typical when the sample size and time period
are large enough. In empirical research, unbalanced panels are more frequently encountered
than their balanced counterparts.

When utilizing a panel dataset with missing values, employing the typical approach of
discarding any observations with missing information can lead to inefficient use of data and
potentially unrepresentative results. Therefore, specialized estimation techniques are cru-
cial for analyzing unbalanced panels. Researchers often base their studies on the assumption
that data missingness is either random or non-random, with the former being more prevalent
due to its reduced complexity in methodological handling. Popular methods for estimating
random unbalanced panels, such as those proposed by Wooldridge (1995 [14]) and 2019 [6]),
include strategies that allow unobserved heterogeneity to be correlated with observed co-
variates and sample selection in unbalanced panels. These methods are regarded as effective
due to their robust approach to parameter estimation in unbalanced panels, making them
valuable tools for empirical research.

However, assuming random unbalance is a very strong assumption for panel data. Addi-
tionally, another reason why most panels are unbalanced in practice is that missing obser-
vations may be created deliberately, indicating that the reason for unbalance is nonrandom.
Nonrandomly missing data can also occur due to various self-selection rules. This issue is
common in cross-sectional studies, but it is exacerbated in panel surveys. If missing obser-
vations in a panel dataset are not missing at random, many widely applied unbalanced panel
estimators may be inconsistent (Nijman and Verbeek 1992 [15]), and inference based on the
balanced subpanel is also inefficient (Baltagi and Song 2006 [13]). Consequently, specific
methods are required for nonrandom unbalanced panels.
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Since Hausman andWise (1979) [16] introduced their seminal two-period attrition model—the
first and most notable research in this field—many scholars have worked within the same
framework. They relaxed Hausman and Wise’s assumptions and expanded them in various
directions (Ridder 1990 [24], 1992 [29]; Nijman and Verbeek 1992 [15]; Van Den Berg et al.
1994 [26]; Rochina-Barrachina 1999 [17]). The selection rule was set as an indicator function
of a linear panel data model with additive heterogeneity; if the linear panel data model
within the indicator function satisfies a condition such as being greater than zero, the selec-
tion indicator is set to 1, and this sample is selected. Zable (1992) [30] further developed
this by using the mean of regressors in the linear selection model to explain the additive
heterogeneity. Additionally, endogenous variables were also incorporated as causes of unbal-
ance in the partial-population selection bias model by Moffitt, Fitzgerald, and Gottschalk
(1999) [18]. Beyond linear-type models, Tobit-type models are also commonly used (Kyri-
azidou 1997 [19]; Lee 2001 [28]; Honore and Kyriazidou 2000 [31]). Other popular methods
for selection equations include the Markov decision process (Sasaki 2015 [27]), standard
bias-correction procedures (Lee and Han 2018 [8]), and LSDV bias approximations (Bruno
2005 [12]). Building on these various endogenous selection rules, scholars have presented
their theoretical studies for unbalanced panels such as two-stage estimation with endoge-
nous variables (Vella and Verbeek 1999 [33]), semiparametric first-difference (Lee 2001 [28]),
semiparametric varying coefficient (Malikov et al. 2016 [1]) estimators, and CRE with IV
(Joshi and Wooldridge 2019 [21]). Additionally, some scholars have explored new estimation
methods using specific empirical datasets (Dustmann et al. 2007 [23]; Yang et al. 2023 [22]).

Sample selection rules play a crucial role in developing these methods (Wooldridge 2010
[20]). Verbeek and Nijman (1996) [25] explained that selection is ignorable if it does not
affect the joint distribution of dependent and independent variables; otherwise, it is non-
ignorable, also known as endogenous selection. It is always essential to distinguish between
ignorable and non-ignorable missingness because, for both types, conventional estimators
using the full unbalanced panel or the maximal balanced subset can be inconsistent if the
missingness is endogenous and correlated with the regression error (Lee and Han 2018 [8]).
Consequently, it is necessary to consider the mechanism causing the missing observations to
obtain consistent estimates of the parameters of interest.

In this work, we introduce a two-stage estimation process for unbalanced panel data under
conditions of endogenous selection. Building upon the foundational assumptions proposed
by Wooldridge (2019) [6], we adopt a weaker assumption wherein the original selection is
nonrandom, thereby deriving a newly randomized selection from our established selection
equation. Our methodology stands out from previous approaches due to its computational
efficiency and the flexibility afforded by these relaxed assumptions. Another manifestation of
these relaxed assumptions is the use of a weak instrumental variable (IV). In the first stage,
we tackle the challenge of identifying an ideal IV for endogenous selection in the presence
of individual effects by permitting the use of a weak IV. The potential biases introduced by
such a weak IV are mitigated through the implementation of a bilateral truncated selection
model, which differs from the commonly used single-side selection model in the previous
literature. The bilateral truncated selection model offers a balance between reducing sample
size and ensuring reliable estimation; this tradeoff is governed by the determination of the
truncation’s upper boundary.

In the second stage, we build upon the main model structures proposed by Chamberlain
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(1982) [7] and Wooldridge (2019), where the outcome is influenced by unobserved heterogene-
ity within the main model, and this heterogeneity is correlated with covariates and selections.
Additionally, we introduce another layer of unobserved heterogeneity within the first-stage
selection model. This consists of an individual effect that directly impacts selection and also
correlates with the heterogeneity in the main model. Consequently, the relationship now
encompasses both individual effects from selection and covariates correlated with the main
model’s heterogeneity. This approach not only corrects the influence from selection to main
heterogeneity but also enhances the accuracy of estimates and the robustness of inferences,
making it suitable for complex scenarios with multiple unobserved factors.

Furthermore, our estimator is designed to accommodate both linear (with a POLS type
estimator) and nonlinear models (with a M-estimator), thereby offering versatility in mod-
eling choices. Typically, we allow the use of semiparametric method if we lose the prior
information of relationship format between weak IV and selection, and between individual
effect in selection and main heterogeneity.

This paper is structured as follows: Section 2 details the first-stage strategy of our se-
lection model, incorporating our foundational assumptions and the formulation of selection
equations. Section 3 introduces the second-stage model and estimators, accommodating both
linear and non-linear approaches. Section 4 presents simulation experiments that compare
the efficacy of traditional methods with our novel approaches across various scenarios. Fi-
nally, Section 5 discusses an empirical application of our new estimator within financial panel
data, analyzing the impact of corruption on financial development across different countries.

2 Selection

2.1 The Assumptions

This subsection introduces the basic assumptions of our estimation methods, which are
weaker than those typically used in previous literature. We consider a standard unbalanced
panel data model, where ci represents additive heterogeneity.

yit = xitβ + ci + uit (1)

Where yit is element of a (N×T )×1 matrix Y , xit is element of a (N×T )×k matrix X, ci is
element of a (N×T )×1 matrix C, uit is element of a (N×T )×1 matrix U . i ∈ {1, 2, ..., N}
and t ∈ {1, 2, ..., T}. Wooldridge (2019)[6] define a selection indicator sit, sit is a dummy of a
random selection, if {xit, yit} is complete, sit = 1; otherwise sit = 0. Meanwhile, he assumes:

E[uit|xi, ci, si] = 0, E[yit|xi, ci, si] = E[yit|xi, ci] (2)

These indicate selection is independent to error term and conditional distribution of yit, so
the selection is random and ignorable. Note that ignorability means selection not influences
the joint distribution of yit , otherwise, we have non-ignorability (also called endogenous
selection). Ignorable and random selection is easier to estimate but it is a quite strong
assumption. Non-ignorable selection is more common in economic and financial emperical
research, such as research on financial development indicator may encounter unbalanced
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panel when important economic events happen like crises. If the assumptions in formula 2
is too strong to achieve, that is

E[uit|xi, ci, si] ̸= 0, E[yit|xi, ci, si] ̸= E[yit|xi, ci] (3)

Given the first inequation and the basic assumption of panel data that uit ⊥⊥ {xi, ci}, we
can summarize this selection is likely correlated with the error term. In other words, sit
is correlated something out of the model. Let sit be the identical selection. Suppose the
observable factor is the random instrumental variable git, which is the observable reasons
for the selection, specificly, git = {g1it, g2it}. g1it ∈ G1 is excluded IV, g1it ⊥̸⊥ uit. In previous
example, g1it could be crisis dummy. The g2it ∈ G2 is included IV. Where G1 and G2 are
(N × T )× d1 and (N × T )× d2 matrices 1, the dimension of endogenous selected variables
should equal to d1 + d2.

Since the panel data encompasses a large number of individuals (large N), we allow
sit to not only be correlated with the IV, but also with some unobserved individual effect
ai. Including this individual effect in the selection process is a common practice in the
literature, as evidenced by previous scholars such as Kyriazidou (1997) [19] and Dustmann
and Rochina-Barrachina (2007) [23]. Consequently, the selection equation for sit is given by:

sit = E(sit|git) +m∗
it (4)

where m∗
it = ai + eit represents the component of sit that cannot be explained by git. Sub-

sequently, we present a Wooldridge-type assumption

E[uit|xi, ci,m
∗
i ] = 0, E[yit|xi, ci,m

∗
i ] = E[yit|xi, ci] (5)

Wooldridge (2019)’s assumption necessitates that sit be independent and random. However,
our formula 5 requires only that the residuals of sit be independent and random, which is a
less stringent condition, thereby constituting a weaker assumption.

Given the selection equation in formula 4, we can express the model of interest 1

E(yit|xit, ci, ai, git, sit = 1) = xitβ + ci + h(ai, git) (6)

Where
h(ai, git) = E(uit|ai, git) (7)

We can estimate the parameter of interest by directly regressing using formula 6. However,
the function h(ai, git) is unknown, and additional assumptions are required. The inclusion
of ai complicates the formatting of h(ai, git), especially in the case of short panels where T is
limited. To circumvent this challenge, we will not directly utilize 6; instead, we demonstrate
that a suitable substitute exists.

E(yit|xit, ci, ai, git, sit = 1) = E(yit|xit, ci,mit = 1) (8)

1Usually, G2 includes some subsets of X or selection of these subsets. It is also possible that G2 = ∅.
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Where mit is a new selection dummy, mit = f(m∗
it) as functional transformation of m∗

it, and

E(yit|xit, ci,mit = 1) = xitβ + ci + E(uit|mit) (9)

Continuously, it is easy to prove that mit is a random selection indicator which satisfies
Woodridge-type assumption as well (proof in Appendix A.1)

E[uit|xi, ci,mi] = 0, E[yit|xi, ci,mi] = E[yit|xi, ci] (10)

Which implies mit⊥⊥ uit, and we can simplify 9 to

E(yit|xit, ci,mit = 1) = xitβ + ci (11)

That is much easier to estimate if we have this new dummy mit.
We require a random selection from the non-ignorable selection model, as posited in

formula 5. This approach of separating a random selection from a non-random selection
is analogous to the strategy employed by Malikov, Kumbhakar, and Sun (2016) [1]. The
subsequent subsection will introduce the design of the new selection variable mit.

2.2 Bilateral Truncated Selection

It is important to note that identifying the optimal instrumental variable (IV) for endoge-
nous selection influenced by unknown individual effects is more challenging than in typical
cases. Specifically, when individual effects are unknown and correlated with sit, isolating
purely exogenous variations becomes an increasingly complex task. Consequently, the IV
may not sufficiently explain the variation in the endogenous variable2. Previous scholars
have recognized this issue in empirical studies (Pokropek 2016 [10], Zawadzki et al. 2023
[9]) and have also demonstrated it theoretically (Cui et al. 2020 [32]). Therefore, a more
flexible IV condition is necessary. We allow git to be a weak IV,3 and if a weak IV is tolera-
ble, then any IV stronger than a weak IV is also acceptable4. If some endogenous selections
cannot be explained by the IV, we refer to these samples as Unidentifiable Endogenous Selec-
tions (UES), which also contribute to the weakness of the IV. The presence of unidentifiable
endogenous selections leads to biased and inconsistent estimations, as we demonstrate in
Appendix A.2.

Previous scholars typically employ a single-side indicator function to model the selection
indicator, as seen in works such as Kyriazidou (1997) [5], Semykina and Wooldridge (2013)
[3], Malikov and Kumbhakar (2014) [2], and Liu and Yu (2022) [4], where the selection in-
dicator is represented by 1(h(·) > 0), with h(·) being a function of selection. This type of
selection rule, while generally correct, becomes risky under nonrandom selection as it does
not address the issue of unidentifiable endogenous selection. To overcome this, we propose

2For instance, consider using bank failures as an IV. If there are unknown individual effects in selection,
such as a manager’s personal networking relationships or hidden reserves, the bank may still operate (data
exists) despite observed failures. Thus, the IV does not capture the endogeneity for these samples.

3Note that this does not imply that any weak variable can be randomly chosen as an IV. The IV is weak
primarily because of the existence of individual effects.

4While a weak IV is tolerable, a stronger IV is still preferred.
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using a bilateral truncation indicator function to model a new selection rule. Our objective
is to classify samples with unidentifiable endogenous selection as missing, specifically setting
mit = 0. As demonstrated in Appendix A.2, if we define bit as the bias, the selection indicator
becomes f(m∗

it + bit), with bit = 0 indicating the absence of unidentifiable endogenous selec-
tion issues. The distribution of m∗

it+bit shows that samples under unidentifiable endogenous
selection deviate significantly from normal samples, effectively becoming outliers.

Therefore, we design the selection rule as follows:

mit = 1(0 <
m∗

it − µm∗

σm∗
< zc) (12)

It employs a bilateral truncated method. In cases where the instrumental variable (IV)
is binary, we can directly identify a constant zc through observation. For more common
scenarios where the IV is not binary, to clarify the boundary conditions, we specify that

zc = |Φ−1[Pr[(sues,it ∈ S) ∩ (sit = 1)]]| (13)

zc is z score of standard normal distribution. Where, Pr[(sues,it ∈ S) ∩ (sit = 1)] is the
probability that UES appears in right tail. Suppose that S includes UES and S samples
locate at right tail are two independent event, then we have:

Pr[(sues,it ∈ S) ∩ (sit = 1)] = Pr(sues,it ∈ S) ∗ Pr(sit = 1) (14)

And

Pr(sues,it ∈ S) =
A′A

e′2e2 −
(e′2I)

2

NT

(15)

It represents the probability that sit is UES. e2 is (N × T )× 1 matrix of residual of regress
sit on g2it. And

Pr(sit = 1) =
1

NT

N∑
i=1

T∑
t=1

sit (16)

It is the probability that UES located at right tail. The bilateral truncation method is
based on the probability that a sample is located on the right side of the standard normal
distribution. For a detailed explanation and proof of this approach, see Appendix A.3
which discusses formula 13. In this method, we truncate the two tails of the standardized
distribution of m∗

it. It is important to note that mit = 0 represents three types of samples:
originally missing samples (where sit = 0), samples affected by endogenous selection, and
unidentifiable endogenous samples. Therefore, the subset {(yit, xit)|mit = 1} is an exogenous
subset of {(yit, xit)|sit = 1}.

We use partial R2 of G1, R2
G1
, as measurement of weakness of IV (Shea 1997 [38]).

Furthermore, in scenarios where an exactly weak IV is used—characterized by R2
G1

close to
0—it is necessary that Pr(sit = 1) > 0.5. This requirement ensures that at least half of the
data are non-missing. If this condition is not met, zc < 0, rendering the bilateral truncation
ineffective.

If there exists partial endogenous selection, this implies that the selection for some vari-
ables is random, while for others, it is not. Consider the case where the selection of yit is a
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random selection, denoted as syit, and the selection of xit is an endogenous selection, denoted
as sxit. The final selection indicator would then be given by mx

its
y
it, where mx

it is calculated
from sxit as previously described5.

2.3 Expectation of Selection

If we still use additive heterogeneity in selection equation, we have

sit = E(sit|git) + ai + eit (17)

The expectation form could be linear model or other dummy variable model as needed.
However, the choice of git plays an important role in our selection rule. The growth

of weakness of IV may cause more sample missing. As the suggestion of Han and Lee
(2018)[8], we may consider to try the lag of covariates. Let zit be the balanced subset of
xit, and model E(sit|zit−1) to test if zit−1 could be a IV for selection. If we also consider
previous selection’s influence to current selection, we modify the conditional expectation
to E(sit|git, sit−1). We can directly model the conditional expectation once we get git and
have reliable prior assumption of relationship between git and sit. But if we have no prior
assumption, we need a semiparametric model with η(git) as non-parametric term, that is

sit = η(git) + ai +m∗
it (18)

The non-parametric term allows all possible relationship between IV and selection. Applying
Boneva et al. (2015) [11] semiparametric estimation method, let η(git) =

∑K
k=1 αkµk(g).

6

µk(g) is nonparametric component functions(with k components), αk is the coefficient, the
estimator is

α̂ =

(
1

TN

T∑
t=1

N∑
i=1

π(git)µ̂(git)µ̂(git)
T

)−1(
1

TN

T∑
t=1

N∑
i=1

π(git)µ̂(git)sit

)
(19)

where π(.) is a weighting function, µ̂(.) is estimator of µ(.) through weighted Nadaraya–Watson.
This semiparametric approach to modeling an endogenous selection with a weak instrumen-
tal variable can enhance model flexibility and robustness (also improves the partial R2) by
not constraining the relationship to a specific functional form and by being more accommo-
dating of data complexity and nonlinearity. In conclusion, this selection equation can lead
to more reliable inference even when strong instruments are not available.

5This methodology is also applicable in the case of full endogenous selection, provided that multiple
different selection equations are required. In such cases, the final selection indicator would be the product∏k+1

j=1 m
j
it, where j ∈ {y, x1, ..., xk}.

6Boneva et al. (2015)’s original methods use ηi(git) =
∑K

k=1 αikµk(g), we slightly modify it because we
don’t need the coefficient change cross i
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3 Estimations

3.1 Linear Model

Given the selection indicator in last section, if we allow individual effect ai correlated to
gi, that is to continue Chamberlain (1982) and Wooldridge (2019)’s methods, we have

E(ai|git) = ḡiξg (20)

ξg is coefficient parameter. Or by formula 17 and without this assumption

E(ai|git, sit) = sit − E(sit|git) (21)

Similarly, if we allow both individual effect in selection and xit correlated to heterogeneity
in main model, that is

E(ci|xi, ai) = x̄iξx + E(ai|gi)γa (22)

where ξx and γa are coefficient parameters.
Then, we include them in our main models. Consider the simple linear nonrandom

unbalanced panel by Wooldridge-type formula with Mundlak device, that is

E(yit|ci, xit,mit = 1) = mitxitβ +mitE(ci|xi, ai) (23)

Or in other format,

mit[yit − θiȳi] = mit[xit − θix̄i]β +mit(1− θi)x̄iξx +mit(1− θi)ḡiξgγa +mit[uit − θiūi] (24)

where 7

θi = 1−
(

σ2
u

σ2
u + Ti(σ2

x̄i
ρ2x + σ2

ḡiρ
2
ḡiγ

2
ai
)

)1/2

(25)

σ2 is the variance of each variable, see Appendix A.3.1 for details of θi formula. Apply Pooled
OLS, define the quasi-time demeaning format x̃it = xit − θix̄i and ỹit = yit − θiȳi, then the
estimator of interest parameter β is

β̂ =

(
1

TN

T∑
t=1

N∑
i=1

x̃itm̂itx̃it

)−1(
1

TN

T∑
t=1

N∑
i=1

x̃itm̂itỹit

)
(26)

where m̂it is estimator of mit. The estimator β̂ is consistent, which is proved in Appendix
A.4. The estimator is FE estimator if θi = 1; it is RE estimator if 0 < θi < 1; POLS
estimator if θi = 0.

The asymptotic distribution of this estimator is

√
NT (β̂ − β)

d−→ N(0, σ′
u(X

′M̂X)−1σu) (27)

where X is (N × T )× k (k regressors) of xit, M̂ is (N × T )× (N × T ) matrix of m̂it.

7There could be a term of time constant variable zi like Mundlak and Wooldridge’s original formulas
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Although this estimator is consistent for short panel (large N, fix T), if we have long
panel with large T, we need consider the time influence in each series. We can modify to a
dynamic model by adding the lag of yit as covariates, but it is likely that the lag is correlated
to error, so we need to use GMM type methods to replace POLS.

3.2 Non-Linear Model

Nonlinear models are often considered in unbalanced panel data due to their ability to
handle more complex relationships among variables that linear models might oversimplify,
especially when data exhibits non-linear patterns. Suppose the interest distribution of yit
conditional on covariates, heterogenity and selection is

D(yit|xit, ci,mit) (28)

Given the selection is ignorable, that is

D(yit|xit, ci,mit) = D(yit|xit, ci) (29)

Next, consider the first stage of regression. Since sit includes a random effect ai, and ai could
be a function of git by Chamberlain and Wooldridge like before, we set the density of ai to
be

D(ai|git) (30)

Similarly, the random effect in the main model ci, also has distribution conditional on xit.
Since we allow the random effect ai correlated to selection, and selection may correlated to
ci in previous literature, we directly let ai correlated to ci in our case. That is

D(ci|xit, ai) (31)

Now we need to find the conditional distribution of ci on both xit and git because we only
observe them two. The ci is conditional on ai, but the ai is conditional on git, then get

D(ci|git, xit) =

∫
RA

D(ci|xit, ai)D(ai|git)dai (32)

Where A is dimension of ai. This formula indicates the relationship that git impacts on ai,
{git, ai} and xit impact on ci.

Meanwhile, modify the conditional distribution of yit, the distribution of yit conditional
on xit and git is

f(yt|xit, git) =

∫
RC

D(yt|ci, xit)D(ci|git, xit)dc (33)

Where C is the dimension of ci. This is similar to Wooldridge (2019)’s formula. Then plug
formula 32 into, we have

f(yt|xit, git) =

∫
RC

∫
RA

D(yt|ci, xit)D(ci|xit, ai)D(ai|git)dadc (34)
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The f(yt|xit, git) is final format we interest, it conditional only on given variables {git, xit}
rather than unobserveable random effect.

In order to achieve the estimator of f(yt|xit, git), the likelihood function is

l(β; yit, xit, git) =
N∑
i=1

T∑
t=1

mitlog[f(yit|xit, git)] (35)

Then, the M-estimator is
β̂M = argmaxβl(β; yit, xit, git) (36)

Continuously define the Jacobian and Hessian as following.

Jit(β) = ∇β log[f(yit|xit, git; β)]
′ (37)

Hit(β) = ∇2
β log[f(yit|xit, git; β)] (38)

Then we can use them to show the asymptotic property of this M-estimator.

√
NT (β̂ − β)

d−→ N(0, Vβ) (39)

Where V is variance-covriance matrix,

Vβ = (−E [MH])−1Var (MJ) (−E [MH])−1) (40)

Where H is matrix of Hit, J is matrix of Jit. The performance of this M-estimator is shown
in following section.

4 Simulation

This section will use simulation experiments to illuminate the performance of our new
estimation methods. For linear model,we generated a panel data samples xit and yit, where
yit = xitβ + ci + uit, β is set to 0.5, uit is random sampled from standard normal. The
endogenous selection is generated as a dummy variable strongly correlated to uit. Then, let
g2 be a dummy IV of sit, corr(sit, g2) < 0.5, and partial R2 = 0.4.

To compare our method with previous method, we firstly apply Wooldridge (2019)’s
method, and plot the asymptotic distribution of estimator with our new estimator in Fig
1a. The graph shows the new estimator is centered around the true value of 0.5, tails drop
off faster, more peaked and narrow than previous estimator. So if we naively ignore the
endogenous selection problem, the estimator become more biased, less sufficient and less
reliable.

Next, we consider the advantage of bilateral tails cutting. We design two mit, the one
is our two-sides tails cutting in formula 12, the other is single-side tail cutting, that is
m = 1(0 <

m∗
it−µm∗

σm∗
). Fig1b shows the difference of estimators with these two mit. The

distribution with double cutting are more unbiased and narrower. One the contrary, single-
side cutting method has a fatter or longer right tail, more susceptible to positive outliers
or extreme values. But, as shown in distribution, bilateral tails cutting usually has more
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(a) (b)

(c) (d)

Figure 1: Estimators’ Simulation Asymptotic Distributions

samples losing (smaller samples size) so that converges slower.
Fig 1c provides a visual reinforcement of the influence of sample size. We set three

different sample size: sample1 {N, T} = {50, 5}; sample2 {N, T} = {100, 10}; sample3
{N, T} = {150, 15}. All three samples have peaks around the same point of β, which
suggests that the estimator is unbiased and consistent across different sample sizes. But the
larger sample size yields a tighter distribution of estimated beta values, indicating reduced
variance and increased precision of the estimates. This enhances the reliability of statistical
inferences, making larger sample sizes preferable for robust estimation.

For the nonlinear model, we use example of probit response function. Let

P (yit = 1|xit, ci) = Φ(xitβ + ci) (41)

Then, assume D(ai|git) is linear normal, with

E(ai|git) = (ḡi − µg)ρg (42)

This is same as Wooldridge (2019)’s assumption. sit is still the selection equation in formula
20, also has normal density. Also normal density D(ci|xit, ai), with

E(ci|xit, ai) = (x̄i − µx)ρx + η(ai) (43)

11



where (x̄i+µx)θx is Wooldridge-type method as well, but η(ai) is unknown function of ai. It
could be non-parametric model, but we set as linear model to reduce computational burden
(with the coefficient γai). Let the conditional variance be

V ar(ci|xit, ai) = σ2
x̄i
ρ2x + σ2

ḡi
ρ2ḡiγ

2
ai

(44)

Then we have

P (yit = 1|xit, git,mit = 1) = Φ

 xitβ + E(ci|xit, ai)(
1 + σ2

x̄i
ρ2x + σ2

ḡiρ
2
ḡiγ

2
ai

) 1
2

 (45)

We set specific values for each parameters, and simulate to show the asymptotic distri-
bution of β̂ (with true β = 1.5) in Fig 1d. Note that we generate another weak IV g1 here,
g1 is stronger than g2. The asymptotic distributions of the estimators for g1 and g2 indicate
that both provide decently consistent estimations of the coefficients, as evidenced by their
peakedness at the true value. Estimator g1 demonstrates a slightly superior performance
with a tighter distribution, suggesting a more precise estimation compared to the broader
spread of g2’s estimator.

5 Application

Corruption is a pervasive issue in financial markets, commonly perceived as detrimental
to a country’s development. But some empirical research proposed that corruption may
improve economic or financial development (Ahlin and Pang 2008 [36]), typically in devel-
oping countries (Song et al. 2021 [37]). Conversely, other research indicates that reducing
corruption benefits advanced economies (Schneider et al. 2022 [35]). Although these findings
suggesting potential benefits of corruption cannot be outright dismissed as inaccurate, the
prevailing view supports the notion that corruption generally harms economic development,
regardless of a country’s economic status. That is because when we use financial panel across
countries, the unobserved individual effect may exist and impact on our estimation 8.

Our estimator is more safety than others because we control the bias from IV in en-
dogenous selection, so that we can control the unknown individual effect better. We will
use an unbalanced financial panel 9 of 140 country (from 2000 to 2014) to study how con-
trolling of corruption influence financial development. Specifically, we want to know how
controlling of corruption influence different sectors in financial development. We use IMF
Financial Development indicator as dependent variable. It includes 7 variables, that is
Y = [FD,FIA, FID, FIE, FMA,FMD,FME] 10. The independent matrices are X1 =

8For instance, special political system is one of the unobserved heterogeneity. In the developing country
Russia, the unique political system characterized by strong centralized authority and substantial state control
over the economy significantly influences financial development. This system enables corruption to facilitate
access to exclusive contracts and state funding, allowing those with government connections to thrive. As a
result, corruption can boost financial development by enabling quicker execution of large-scale projects.

9Data source is [34]
10F: financial, I: institution, M: market, D:depth, A: access, E:efficiency.
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[corr, lnGDP, comp] 11, X2 = [corr12, dep, corr× dep], dep is dummy for developed countries
13, this X2 is prepared for another regression model to compare the effect between country
types.

In order to estimate for first stage, set IV matrixG = [FM,FI, Crisis.dummy,GDP.per]
14. Then, we get the R2 = 7% form regress S on G, and select the samples for mit ∈
[0, z score = 1.28]. We study how corr influence FD by regressing Y on X1, the results are
in table 1 and left of table 2. Also study the difference between developed and developing
countries by regressing Y on X2 in right part of table 2. The rest results in Appendix A.5.

Table 1: Regression results for Y on X1 with samples of developed(left) and developing
(right)countries separately

Developed Countries (corr) Developing Countries (corr)

Indicator Coeff. se z-value p-value Coeff. se z-value p-value

FD 0.0415 0.0180 2.3021 0.0213 0.0039 0.0029 1.3521 0.1763
FIA -0.0102 0.0254 -0.4029 0.687 -0.0007 0.0059 -0.1214 0.9034
FIE 0.0534 0.0218 2.4478 0.0144 0.0044 0.0048 0.9127 0.3614
FID 0.0397 0.0246 1.6169 0.1059 0.0054 0.0026 2.1149 0.0344
FMA 0.0566 0.0295 1.9205 0.0548 0.0072 0.0036 2.0131 0.0441
FMD 0.0615 0.0362 1.6981 0.0895 0.0054 0.0045 1.1966 0.2315
FME 0.0261 0.0619 0.4211 0.6737 0.0058 0.0076 0.7645 0.4446

Table 2: Regression results for Y on X1 across all countries (left), and Y on X2 across all
countries (right)

All Countries(corr) corr × dep

Indicator Coeff. se z-value p-value Coeff. se z-value p-value

FD 0.0082 0.0029 2.8132 0.0049 0.0473 0.0186 2.5502 0.0108
FIA 0.0046 0.0056 0.8300 0.4065 -0.0169 0.0355 -0.4754 0.6345
FIE 0.0108 0.0045 2.3818 0.0172 0.0525 0.0281 1.8665 0.0620
FID 0.0092 0.0029 3.1900 0.0014 0.0304 0.0184 1.6509 0.0988
FMA 0.0108 0.0037 2.8820 0.0040 0.0504 0.0245 2.0577 0.0396
FMD 0.0134 0.0048 2.7876 0.0053 0.0584 0.0301 1.9442 0.0519
FME 0.0171 0.0081 2.1171 0.0343 0.0562 0.0506 1.1113 0.2665

The findings from our results challenge prior assumptions that controlling corruption
does not benefit financial development in developing countries. Contrary to earlier views,

11corr: control of corruption, lnGDP: ln(GDP), comp: competition indicators, comp =
[Boone, Lerner, Concentration Ratios]

12The World Bank world wide governance indicators: control of corruption
13depi = 1 if i is developed country, otherwise i is developing country.
14Crisis.dummy: dummy for economic crisis for i and t. GDP.per: GDP per capital
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the results show that improved corruption control significantly enhances financial develop-
ment, including the depth and efficiency of financial institutions and market access. But
not to financial institutions access. It makes sense because entrenched social and economic
inequalities can persist and impact on institution access even as corruption controls improve
in many developing countries. This indicates that, not only for advanced economics, effective
governance and corruption reduction are crucial for creating robust financial systems in de-
veloping nations, thus supporting economic growth and stability. The positive coefficients of
corr×dep suggest that as corruption control improves, its positive impact on financial market
efficiency is stronger in developed countries than in developing ones, which verifies previous
scholars’ results. Additionally, the traditional unbalanced panel estimator applied to this
dataset yielded results that demonstrate smaller coefficients and larger p-values compared
to our estimator, which also proves the advantage of our estimator.

6 Conclusion

We propose a novel two-stage estimator for unbalanced panel data that addresses endoge-
nous sample selection without relying on the assumption of randomness and ignorability in
selection. We base on Wooldridge (2019) but relax the fundamental assumption, we assume
the residual of selection is random rather than selection itself. In the first stage, we allow
unobserved heterogenity exist in selection equation. Our approach utilizes a bilateral trun-
cated selection model, allow a more flexible instrumental variable condition to manage the
complications arising from unobservable heterogeneity, which often hampers the identifica-
tion of endogenous selection issues and complicates the acquisition of an good IV. Any IV,
even a weak IV, is tolerable, because the truncation will correct the IV bias.

A new selection indicator mit is applied for second stage. By developing Wooldridge’s
(2019) model further, we account for the correlation between the unobservable heterogeneity
in the main model with covariates and the heterogeneity in the selection mechanism. And
developing both linear estimator and non-linear M-estimator for second stage.

Simulations demonstrate the robustness, consistency, and efficacy of our estimators in
various contexts, highlighting their superiority over traditional methods in dealing with dif-
ferent sample sizes and IV conditions. We applied our methodology to a financial panel
encompassing 140 countries to examine the impact of corruption control on financial devel-
opment. Our estimator, which effectively controls for unobserved heterogeneity and selection
bias, confirms the intuitive conclusion that controlling corruption benefits financial develop-
ment in both developed and developing countries. However, the impact is more pronounced
in developed countries. This finding contrasts with previous studies that suggested corrup-
tion control does not benefit financial development in developing countries. Our results not
only strengthen the theoretical underpinnings of our estimator but also offer crucial empirical
evidence that can inform policy-making in developing regions.
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A Appendix

A.1 Formula 10

Proof. Basing on the assumption in Formula 5, since uit is independent of mi given xi and
ci, and mit = f(m∗

it) is a binary variable determined by m∗
it but does not carry additional

information about uit, it follows that E[uit|xi, ci,mi] = 0.
Similarly, given that mit is an indicator function of m∗

it and partitions the sample space
defined by m∗

it without adding new information about yit beyond what is captured by xi and
ci, we have:

E[yit|xi, ci,mi] = E[yit|xi, ci,m
∗
i ] = E[yit|xi, ci].

A.2 Inconsistency and Bias by Unidentifiable Endogenous Selec-
tion

Proof. Consider the case of a linear model in unbalanced panel data, we apply Wooldridge
(1995 & 2019) method to estimate it, regress

f(m∗
it)[yit − ȳi] = f(m∗

it)[xit − x̄i]β + f(m∗
it)[uit − ūi]

Where f(m∗
it) is the selection indicator, rewrite it in sit

f(sit − E(sit|git))[yit − ȳi] = f(sit − E(sit|git))[xit − x̄i]β + f(sit − E(sit|git))[uit − ūi]

If there is unidentifiable endogenous selection, it means sit is significant influenced by uniden-
tifiable outside factors, then E(sit|git) not provides unbiased estimation for sit. Let the bias
be b(uit), a function of uit, b(uit) ̸= 0, since bias is strongly related uit. Then we have

m∗
it = sit − E(sit|git) + b(uit)

The basic assumption in Formula 5 is violated. The selection f(.) is still endogenous, and
a endogenous selection will cause inconsistent estimation (this is proved by Lee and Han
2018[8]). Meanwhile, the regression model becomes

f(sit−E(sit|git)+b(uit))[yit−ȳi] = f(sit−E(sit|git)+b(uit))[xit−x̄i]β+f(sit−E(sit|git)+b(uit))[uit−ūi]

Let x̃it = f(sit − E(sit|git) + b(uit))[xit − x̄i], easily find x̃it ⊥̸⊥ uit. Thus, the estimation will
be biased and inconsistent.

A.3 The Upper Boundary in Formula 12

Proof. WTS zc always capture the Unidentifiable Endogenous samples we want to drop. We
need: (1) know the Prob that the sample is Unidentifiable Endogenous sample; (2) Know
the location of these samples we want to drop in distribution
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Let S be (N × T ) × 1 matrix of sit, G be (d1 + d2) × (N × T ) matrix of G1 and G2, α
be k × 1 matrix of slopes, A be (N × T )× 1 matrix of unknown individual effect ai, m

∗ be
(N × T )× 1 matrix of residuals. The original selection model is (suppose linear)

S =

(
G1

G2

)
α + A+

(
e1
e2

)
(46)

But we don’t know A, we only have

S =

(
G1

G2

)
α∗ +

(
m1

m2

)
(47)

Where α∗ is a new slope matrix different from α. The estimation of α∗ may not be consistent,
but if we let α∗ = α, we have (

e1
e2

)
=

(
m1

m2

)
+ A (48)

Regress G1 on G2 get the residual as e3

m2 =e′3γ + ϵ (49)

e2 =e′3γ − A+ ϵ (50)

We only have the R2 form regression of m, rather than e. Denote it as R2
G1
, which is partial

R2 of IV G1.

1−R2
G1

=
(ϵ− A)′(ϵ− A)

SST
(51)

Given that A is independent with ϵ,

A′A

SST
= 1−R2

G1
− ϵ′ϵ

SST
(52)

Since the IV may not explain S well, there exist Unidentifiable Endogenous Samples (UES),
i.e. the samples in S that endogeneity in these S cannot be explained by our IV. Define Sues

to be the set of these UES samples. Our goal is to drop these UES, but we don’t know which
samples are Sues at this moment.

Set P (Sues ∈ S) as a probability, it reflects the proportion of the variability in the S that
cannot be explained by the IV G in model 47. It is probability that the sample in S and it
is UES.

P (Sues ∈ S) =
A′A

SST
(53)

A′A
TSS

is the proportion of the total variability in S that is explained by A given G1 which is

likely to be weak. We can suppose that var(ϵ) = 1, so that ϵ′ϵ
SST

becomes 1
SST

.
Next, need to know the location of Sues (in distribution), we locate Sues through the

distribution of its corresponding residual m∗
ues. Still consider the regression model 47

S = G′α∗ +m∗∗ (54)
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Where m∗∗ is a new residual matrix, it includes both normal residuals and m∗
ues. But m∗

only includes normal residuals. The estimator of α∗ is

α̂∗ = α̂ + b (55)

Where b is Omitted Variable Bias, because we omit A. The m∗ is

m∗ = S − Ŝ (56)

The distance (difference) between m∗ in formula 47 and m∗∗ in formula 54 is

|m∗∗ −m∗| = |S −G′α̂− S +G′α̂−G′bias| = |G′bias| (57)

Since the bias always not 0, that means these m∗
ues are outliers, always far away (has a

non-zero distance) to ordinary m∗. So the m∗
ues locate at the outermost tails of standard

normal distribution of m∗.
The probability that m∗ located in right tail is same as the probability that sit = 1, that

is

P (sit = 1) =
1

NT

∑∑
sit (58)

Then, the probability that the sample is UES and located at right tail is

P [(m∗
ues ∈ m∗) ∩ (sit = 1)] = P [(Sues ∈ S) ∩ (sit = 1)] = P (Sues ∈ S) ∗ P (sit = 1) (59)

Therefore, we need to cut zc-length the rightmost tail.

zc = |Φ−1[P [(m∗
ues ∈ m∗) ∩ (sit = 1)]]| (60)

zc is the z-score of standard normal.

A.3.1 Proof of θi in formula 25

Proof. By Wooldridge (2010), the original θi is

θi = 1−
(

σ2
u

σ2
u + TiV ar(ci)

)1/2

Since we have the conditional expectation of ci is

E(ci|xi, ai) = x̄iξx + ḡiξgγa

Then the conditional variance become

Var(ci|xit, ai) = Var(x̄i)ξ
2
x +Var(ḡi)ξ

2
ḡi
γ2
ai
+ 2ξxξgγaiCov(x̄i, ḡi)
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Suppose x and g independent,

V ar(ci|xit, ai) = σ2
x̄i
ξ2x + σ2

ḡi
ξ2ḡiγ

2
ai

A.4 Proof of Consistency of Linear Estimator

Proof. Suppose the consistent estimator of residual we get from first stage regression is m̂∗
it,

then

m̂it = 1(0 <
m̂∗

it − µm∗

σm∗
< zc)

m̂it is consistent estimator of mit since m̂∗
it is consistent.

Let Y be (N × T ) × 1 matrix of yit, X be (N × T ) × k (k regressors) of xit, M̂ be
(N × T ) × (N × T ) matrix of m̂it. X̃ = QX, Ỹ = QY , where Q = I − Θ1T (1

′
T1T )1

′
T , Θ

is a (N × T ) × (N × T ) block diagonal matrix with θi. Basing on Wooldridge (2019)’s [6]
proof, we only need to show the additional part (with new selection dummy) not impact on
consistency of β, it can be written as:

β̂ = (X̃ ′M̂X̃)−1(X̃ ′M̂Ỹ )

Substitute Ỹ from the model, Ỹ = X̃β + ε:

β̂ = (X̃ ′M̂X̃)−1(X̃ ′M̂(X̃β + ε))

Expand and simplify:
β̂ = β + (X̃ ′M̂X̃)−1(X̃ ′M̂ε)

To prove β̂
p−→ β, we need to show that:

(X̃ ′M̂X̃)−1(X̃ ′M̂ε)
p−→ 0

Given previous mean zero assumption of U, and iid sampling and weak law of large
numbers, we can conclude X̃ ′Ũ

p−→ 0. Meanwhile, X̃ ′MŨ is a submatrix of X̃ ′Ũ , M̂
p−→ M

so X̃ ′M̂Ũ is also a submatrix of X̃ ′Ũ . Thus, X̃ ′M̂Ũ
p−→ 0 by Componentwise Convergence

Theorem. Concluding that:
β̂

p−→ β

A.5 Additional Empirical Results

By the rest results, GDP consistently shows a significant positive impact on all financial
development indicators, highlighting the crucial role of economic growth in strengthening the
financial sector. In contrast, competition, measured by the Lerner and Boone indices, has
mixed effects: the Lerner index is generally positive, suggesting that less competition leads to
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greater efficiency and stability, while the Boone indicator often has a negative impact, imply-
ing that intense competition can destabilize financial markets by reducing profitability.These
results illustrate the intricate interplay between economic growth, competitive pressures, and
financial development, emphasizing the broader context within which measures to control
corruption operate and influence the financial sector.

Table 3: Random Effects Regression Results for Various Financial Variables

Dependent Variable Variable Coefficient Std. Error p-value

FD

lnGDP 0.13367 0.00472 < 2.2e− 16
Lerner 0.03024 0.00821 0.0002305

Bank.con -0.00001015 0.00009609 0.9158711
Boone -0.01168 0.00313 0.0001902

FIA

lnGDP 0.22491 0.00735 < 2.2e− 16
Lerner 0.03266 0.01499 0.0294

Bank.con -0.00102 0.000173 3.745e− 09
Boone 0.000655 0.00568 0.9082

FIE

lnGDP 0.08351 0.00594 < 2.2e− 16
Lerner 0.09639 0.01506 1.534e− 10

Bank.con -0.000262 0.000170 0.1230
Boone -0.01192 0.00562 0.0339

FID

lnGDP 0.11182 0.00546 < 2.2e− 16
Lerner 0.03531 0.00868 4.795e− 05

Bank.con -0.0001405 0.0001027 0.1712
Boone -0.0001057 0.00332 0.9746

FMD

lnGDP 0.13338 0.00802 < 2.2e− 16
Lerner 0.06169 0.01540 6.176e− 05

Bank.con -0.00015642 0.00017837 0.38052
Boone -0.01038 0.00585 0.07613

FME

lnGDP 0.05916 0.01283 4.015e− 06
Lerner -0.06103 0.02849 0.03217

Bank.con 0.00061936 0.00032531 0.05692
Boone -0.00504 0.01074 0.63876

FMA

lnGDP 0.08180 0.00742 < 2.2e− 16
Lerner 0.00717 0.01255 0.568

Bank.con 0.00089415 0.00014735 1.295e− 09
Boone -0.04425 0.00479 < 2.2e− 16
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Table 4: Random Effects Regression Results for Various Financial Variables

Dependent Variable Variable Coefficient Std. Error z-value p-value

FD

Intercept 0.285 0.014 19.95 < 2.2e− 16
corr 0.004 0.003 1.39 0.164
dep 0.371 0.048 7.73 0.000

corr:dep 0.047 0.019 2.55 0.011

FIA

Intercept 0.286 0.021 13.37 < 2.2e− 16
corr -0.001 0.006 -0.15 0.882
dep 0.453 0.082 5.52 0.000

corr:dep -0.017 0.036 -0.48 0.635

FID

Intercept 0.200 0.016 12.58 < 2.2e− 16
corr 0.006 0.003 2.00 0.045
dep 0.484 0.051 9.52 0.000

corr:dep 0.030 0.018 1.65 0.099

FIE

Intercept 0.618 0.012 49.61 < 2.2e− 16
corr 0.005 0.005 0.96 0.337
dep 0.049 0.059 0.83 0.404

corr:dep 0.052 0.028 1.87 0.062

FMA

Intercept 0.195 0.024 8.14 0.000
corr 0.007 0.004 1.94 0.053
dep 0.327 0.073 4.50 0.000

corr:dep 0.050 0.025 2.06 0.040

FMD

Intercept 0.179 0.018 9.87 < 2.2e− 16
corr 0.006 0.005 1.17 0.241
dep 0.443 0.070 6.37 0.000

corr:dep 0.058 0.030 1.94 0.052

FME

Intercept 0.194 0.026 7.47 0.000
corr 0.006 0.008 0.74 0.458
dep 0.372 0.110 3.37 0.0008

corr:dep 0.056 0.051 1.11 0.267
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