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ABSTRACT

Understanding the dynamics of large-scale brain activity is a tough challenge. One reason
for this is the presence of an incredible amount of complexity arising from having roughly 100
billion neurons connected via 100 trillion synapses. Because of the extremely high number of
degrees of freedom in the nervous system, the question of how the brain manages to properly
function and remain stable, yet also be adaptable, must be posed. Neuroscientists have
identified many ways the nervous system makes this possible, of which synaptic plasticity is
possibly the most notable one. On the other hand, it is vital to understand how the nervous
system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease
which affects 1% of the population.

In the following work, we seek to answer some of these questions from two different
perspectives. The first uses mean-field theory applied to neuronal populations, where the
variables of interest are the percentages of active excitatory and inhibitory neurons in a
network, to consider how the nervous system responds to external stimuli, self-organizes
and generates epileptiform activity. The second method uses statistical field theory, in the
framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed
from physics which posits that in some regime the brain operates in a collectively stable or
marginally stable manner. This will be examined in two different neuronal networks with
self-organized criticality serving as the overarching theme for the union of both perspectives.

One of the biggest problems in neuroscience is the question of to what extent certain
details are significant to the functioning of the brain. These details give rise to various
spatiotemporal properties that at the smallest of scales explain the interaction of single
neurons and synapses and at the largest of scales describe, for example, behaviors and

sensations. In what follows, we will shed some light on this issue.
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CHAPTER 1
INTRODUCTION

1.1 The neuroscience problem

Without question, the mammalian cortex is one of nature’s greatest unsolved mysteries.
At first glance, the fact that one hundred billion neurons connected to each other via one

037

hundred trillion synapses, resulting in a configuration space on the order of 10°', renders

understanding it hopeless. To put that last number in perspective, consider that there are

029 stars in the entire known universe. We would need one hundred

only roughly about 1
million universes, each with the same number of stars as our own, to equal the number
of ways our brain can be configured and generate activity patterns. However difficult this
may seem though, we do not need to know the details of every single neuron or synapse to
understand the brain’s large-scale important properties in the same way that, to understand
the thermodynamics of a liquid or gas, clearly macroscopic quantities, we do not need to
know what every atom or molecule is doing.

If we continue along with the analogy of atoms in a gas, it becomes obvious that another
significant issue arises. At what length scale do we start to keep track of important variables?
If we acknowledge that every single neuron and/or synapse isn’t important, where do we
draw the line? The philosophy of science is to answer every question possible and that
every question has an answer. However, with such a complex system and such limited
knowledge of it, where at this moment in history we are chiefly interested in how the brain

generally adapts and codes information, the first step in any theoretical model is to provide

an axiomatic answer these questions. This shall be our starting point.



1.2 Spatiotemporal models

In the following chapters, our starting point for analyzing neocortical properties will be
to consider neurons as simple switches, which are either firing an action potential or are
quiescent. These neurons will be connected to each other electrically via gap junctions or
chemically via synapses whose strengths will be free parameters and may or may not change
depending on the model. From here, we build our network, keeping track of the percentage
of active excitatory or inhibitory neurons, the reason of which will be explained in the
following chapter. The simplest (and influential) equations governing a network of only 1

type of excitatory and inhibitory neurons to date are the Wilson-Cowan equations, [125] and

[126]
dE
- = —E+ (1= E)SelwppE —wgl + P
dal
T]% = -1+ (1 — I)Si[w]EE - wIII‘l‘Q] (1'1)

where E and [ represent the fraction of active neurons for each respective population, 75 and
71 are time constants, Se and S; are firing functions, w;; are the inter- and intra-population
connection strengths, and P and @) are arbitrary external inputs. At this point we will leave
most of the significant details of these equations for later. All we need to mention here
is that these equations and their spatially inhomogeneous extension will be used heavily
to model spatiotemporal dynamics such as damped traveling waves, localized behavior and
then self-organization and epileptiform activity.

In the derivation of Equation 1.1, Wilson and Cowan time-course grained the activity to
eliminate fluctuations present in the full integro-differential equations. In other words, the
variables £ and [ are deterministic quantities i.e. we can calculate E(t) and I(t) exactly if
given initial conditions. However, it is obvious from neurophysiological recordings that noise
plays a crucial role in describing certain neural dynamics. Hence, in order to capture these
effects, we need to introduce a stochastic, modified Wilson-Cowan model to capture the

2



inherent randomness in neurons. As will also be expanded upon in further chapters, neurons
in this adjusted framework represent two-state Markov particles on a lattice with transition
rates between firing and quiescence. Thus, our second model is no longer deterministic and,
as with all non-deterministic theories, the important quantity to find is now a probability
distribution. The reason for this is because outcomes are no longer defined for all time by
just initial conditions. Rather, an outcome is described by a probability. We will see that the
probability distribution for all of the 1037 neural configurations is solved via what is known
as a master equation. While F and I maintain their same meaning as before, they are now
averaged quantities (with respect to the probability distribution). The master equation and

its implications will be discussed in ensuing chapters.

1.3 Properties of neocortical activity and the purpose of this

study

With the two models mentioned above, in this thesis, we study a range of properties of
neural networks, all of which shed light on how the cortex might maintain stability. We
first consider, in Chapter 2, the general modes of behavior for resting and driven activity.
Many of these behaviors have been previously studied and we show how both models can
be used to provide a quantitative account of the dynamics of this activity. We first begin
with the original Wilson-Cowan equations and then describe how the Markov model provides
an alternative examination of similar behavior. Our new contribution is to show that the
deterministic model can account for recent data indicating that there are two distinct modes
of response to stimuli: damped traveling waves resulting from weak inputs and localized
activity associated with strong stimuli. This is an interesting problem because it indicates
the brain is able to remain incredibly stable for large inputs, but loses much of its coding
ability unless the drive is small.

Next, Chapter 3 will introduce the idea of self-organized criticality, a property of cer-



tain systems which can intrinsically tune their dynamics towards a critical point where the
system becomes stable or marginally stable and displays spatiotemporal scale invariance.
We first show that two connected excitatory populations with a synaptically-plastic connec-
tion strength self-organizes to one of these locations and the statistical properties appear
to be that of a directed percolation phase transition seen in models of forest fires, reaction-
diffusion processes, etc. We show that an array of E and I populations can also self-organize
to a weakly stable node located near a similar critical point. However, because the £ — I
network never actually reaches the critical point, we refer to the process as self-organized
near-criticality. Both examples touch on a topic of considerable theoretical interest in the
neuroscience community, namely whether the brain has developed its own fine-tuning mech-
anism over years of evolution to allow itself to constantly change but still remain stable
under normal circumstances.

After investigating self-organized criticality, Chapter 4 in this thesis concerns epilepsy,
the neurological disease characterized by repeated seizures. While approximately 1% of the
population has epilepsy, its cause is still very much unknown and, unfortunately, modern
medication has not aided much in treatment. What is understood is that epileptiform activity
is a manifestation of the unstable neocortex. In particular, the activity patterns are large-
amplitude traveling waves. To get this spreading behavior, we noted that experimental data
taken during actual human seizures and also evoked epileptic activity suggest that neurons
saturate, resulting in a redefinition of the familiar firing functions used in Chapters 2-3. We
introduce this new framework in the Wilson-Cowan formalism and investigate a spatially
continuous 1-dimensional £ — I network to model epileptic waves. One of the outstanding
results of this work is that spreading inhibition precedes excitation, which is not possible
in the deterministic Wilson-Cowan model without taking saturation effects into account.
Because of the resulting spatiotemporal dynamics, it is clear how, theoretically, the brain
might lose stability. However, it is still unclear why the network properties that allow this

behavior to happen are present in the first place.



In the final chapter, we make closing remarks regarding neocortical activity and many of
the spatiotemporal properties discussed in previous chapters. Some philosophical comments
will be posed as well in light of what the preceding chapters have examined. Lastly, with an
emphasis on the implications of this work’s analysis, the overall theme will be summarized

and future directions will be mentioned.



CHAPTER 2
WILSON-COWAN EQUATIONS AND NEOCORTICAL
DYNAMICS

2.1 Introduction

The analysis of large-scale brain activity is a difficult problem. Of the roughly 100 billion
neurons in the cortex of the human brain, 80% are excitatory and the remaining 20% are
inhibitory. Each neuron has about seven thousand axon terminals from other neurons, but
there is some redundancy in the connectivity so that it has effective connections from about
80 other neurons, mostly nearest neighbors. Each neuron is actually a complex switching
device, but here, we introduce only the simplest cellular model in which neurons are binary
switches, either quiescent or activated. It follows that there are approximately 1037 config-
urations of activated or quiescent neurons. Such a large configuration space suggests the
need to use statistical methods to analyze large-scale brain activity. In addition there is
some degree of microscopic randomness in neural connectivity, and there are also random
fluctuations of neural activity, both of which support the need for a statistical treatment, as

noted by Sholl in 1956, [100].

2.2 Experimental data on large-scale brain activity

There is a large body of data on large-scale brain activity, including electroencephalographic
(EEG) recordings with large electrodes from the surface of the scalp, functional magnetic
resonance (fMRI) measurements of blood flow in different brain regions (also large-scale),
local field potentials (LFP) recorded with smaller electrodes, microelectrode recordings from
or near individual neurons, or (currently) microelectrode arrays (MEA) which can record the
simultaneous activity of many neighboring neurons. Currently, there are also new techniques

for forming optical images of local brain activity using voltage sensitive dyes (VSD). All such
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recordings can be classified as measuring either spontaneous (or resting) activity, or stimulus-

driven evoked activity.

2.2.1 Resting activity

We first consider the resting brain activity of unanaesthetized animals first observed in
animals by Caton in 1875, [28], and in humans by Berger in 1924, [14]. Recordings from
the human scalp are referred to as electroencephalographs (EEG) and are measured via
electrodes on the unshaven scalp. The voltage differences measured between such electrode

pairs are about 50 pV. Figure 2.1 shows a typical EEG recording.

Figure 2.1: The upper trace is the first recording of spontaneous electrical activity from the human
scalp. The lower trace is a 10 Hz oscillation. Reproduced from [14].

It will be seen that there are intermittent bursts of 10 Hz oscillations in the scalp activity.
These oscillations comprise the alpha rhythm, seen in awake relaxed humans, mainly in the
occipital region of the brain which processes visual signals from the eyes. Figure 2.2 shows

the power spectrum of such activity.
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Figure 2.2: The power spectrum of the occipital EEG of a resting, awake human. Reproduced
from [94].



It will be seen that there is a pronounced peak in the power spectrum at around 10 Hz
and a secondary peak around 20 Hz. This peak is said to be in the range of the beta rhythm
of occipital EEG activity. Interestingly if the contributions of such peaks are eliminated,
what is left can be fitted with the function a/(b + f?), where a and b are constants, and
f is the frequency in Hz. Figure 2.3 shows such a function and its fit to the EEG power

spectrum.

Power (uV2Hz)

1 I
0.1 1 10 100
f(Hz)

Figure 2.3: The left panel shows the function 75/(3 + f2), the right panel the fit of such a function
to the EEG power spectrum shown in Figure 2.2.

It is important to note that this power spectrum fit is that of Brownian motion, which
suggests that resting brain activity is largely desynchronized and random.

Other measurements of resting brain activity have been carried out on lightly anesthetized
animals using local field potential recordings of spiking neuron activity, or else via fMRI
measurements of blood flows in the brain that accompany unanesthetized brain activity.
Figure 2.4 shows examples.

Note the fit of the Brownian motion power spectrum 125/(5 4+ f2) to the resting LFP,

Isolated neocortex

But the most detailed studies, and the most information about the nature of spontaneous
activity, has been obtained from studies of isolated neocortical slabs. The first detailed
studies were carried out in the early 1950s by B. DeLisle Burns, on isolated slabs of parietal
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Figure 2.4: The left panel shows the power spectra of LFP recordings from cat visual cortex in
response to sine-wave modulated grating patterns. Reproduced from [55]. The right panel shows
fMRI recordings of both resting and stimulated human brain activity, and their associated power
spectra. Reproduced from [110].

neocortex, [22] and [23]. The main relevant result was that very lightly anesthetized slabs
spontaneously generated bursts of propagating activity from a number of randomly occurring
sites. Any variation of the level of anesthesia, either up or down, abolished the activity.

However, it was not until 2003 that a systematic study of such burst activity was carried
out by Beggs and Plenz, [9], using isolated slabs of rat somatosensory cortex, either in
mature tissue cultures, or else in slices. The tissue cultures exhibited spontaneous bursts of
propagating activity in the form of local field potentials recorded at microelectrodes. The
slices, however, were silent until stimulated with NMDA a glutamate-receptor agonist, in
combination with a dopamine Dq-receptor agonist. In contrast to DeLisle Burns, Beggs and
Plenz used an 8 x 8 microelectrode array to record local field potentials (LFPs) in the slab.
The main result of their experiments is summarized in Figures 2.5 and 2.6.

Beggs and Plenz’s conclusion is that such bursts of activity are avalanches defined as
follows: the configuration of active electrodes in the array during one time bin of width
At is termed a frame, and a sequence of frames preceded and followed by blank frames, is
called an avalanche. However successive frames are not highly correlated, so the activity
is not wave-like: it is in fact self-similar, and in addition, the avalanche size distribution
follows the power law P[n] oc n®. In addition the exponent « is approximately —1.5. This

is the mean-field exponent of a critical branching process, [5]. This result was a step beyond
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Figure 2.5: Electrode data from slices of rat neocortex. The top graph is a raster plot of electrode
activation times. They seem synchronous, but closer examination reveals that the times exhibit
self-similarity. The bottom graphs show a sequence of electrode activations in the original array.
Reproduced from [9].
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Figure 2.6: Probability distribution of burst sizes at different bin widths A¢. Inset: Dependence
of slope exponent « on bin width. Reproduced from [9].
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that of Softky and Koch, [103], who found Poisson-like spiking activity in individual cortical
neurons, and introduced the possibility of criticality in brain dynamics. In fact this mean-
field exponent turns up in several kinds of percolation processes on random graphs, including
both isotropic and directed percolation. But branching and annihilating random walks are
equivalent to directed percolation, so it is possible that what Beggs & Plenz observed in

cortical slices was a form of directed percolation. We will return to this topic later.

2.2.2  Driven or stimulated activity

In case there is an external stimulus, neocortical dynamics indicates a very different picture.
It turns out that there is a big difference in the responses to weak stimuli, compared to those
triggered by stronger stimuli. In addition correlations between pairs of neurons in driven

neocortex have a shorter length scale than those found in spontaneous activity.

Weak stimuli

The basic result for weak stimuli is that the cortical response is a propagating wave whose
amplitude decays exponentially with distance. Figure 2.7 shows the cortical responses to
low amplitude stimuli in the form of spikes, recorded by an implanted microelectrode array
in three monkey visual cortices by Nauhaus et al, [82]. Each row shows data from the
spike triggered local field potentials (LFP) from a single location. The first column shows
the dependence of time to peak of the LFP as a function of the cortical distance from the
triggering electrode, and estimated propagation velocities. The second column shows the
propagating wave, both as a pseudo-colored Image, and as a plot of wave amplitude vs
distance from the triggering electrode, together with estimates of the space-constants of the
decaying waves. The third column shows average LFP waveforms at three locations from
the triggering spike.

It will be seen that the response is indeed a traveling LFP, whose velocity is about 25— 30

cm/sec. In addition the LFP amplitude decays exponentially, with a decay constant A of
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Figure 2.7: Spikes of low amplitude initiate traveling waves of LFP in the cortex. See text for
details. Reproduced from [82].

about 3 mm.

Strong stimuli

In contrast the basic result for strong stimuli is that cortical responses to such stimuli are
much more localized. Figure 2.8 shows a comparison of cortical responses to weak and strong
stimuli, [82]. It will be seen that responses to larger stimuli remain essentially localized.

These observations immediately suggest a role for inhibition in localizing such responses.
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Figure 2.8: Spikes of larger amplitude initiate standing waves of LFP in the cortex. See text for
details. Reproduced from [82].
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Correlations

The basic result for correlations is that correlations between pairs of LFP fall off with sep-
aration distance, and such a falloff is much greater for strong stimuli than for weaker ones,
see Figure 2.9. Thus strong stimuli weaken the intrinsic pair correlations that exist in spon-
taneous activity. See Lampl et al and others ([30], [67], [72], and [98]). These observations

also suggest a role for inhibition.
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Figure 2.9: Fall of with distance of cortical pair correlations. See text for details. Reproduced
from [82].

To explain all these observations we need to understand the competing roles of neural
excitation and inhibition in neural population dynamics. We therefore give a short account

of the history and development of the Wilson-Cowan neural population equations.

2.3 Neural population equations

2.8.1 Introduction

Following early work by Shimbel & Rapaport [99], Beurle focused, not on the activity of
single neurons, but on the proportion of neurons activated per unit time in a given volume
element of a slice or slab of neocortex, denoted by n(x,t), [15]. For all practical purposes

this can be taken to be equivalent to the spike-triggered LFP and VSD described earlier.
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Beurle introduced the update equation
n(x,t+71) =q(x1) fln(x1)] (2.1)

where ¢(x,t) is the density of quiescent neurons in the given volume element, and f[n(x,t)]
the proportion of neurons receiving ezactly threshold excitation. [There is an implicit as-
sumption that individual neurons are of the integrate-and-fire variety.]

There are three points to note here.

1. By assuming that n(t 4+ 7) = q(t) f[n(t)] Beurle ignored the effects of fluctuations and
correlations on the dynamics. It is not true that ¢ and f[n] are statistically independent
quantities, as was first pointed out in [102].

2. The update equation is incorrect. f[n] should be the proportion of neurons receiving
at least threshold excitation, as was first noted by Uttley [113].

This proportion can be expressed [126] as:

finl = [ Plorwydmy = [ o; On — np) Plnpg)dngy = (Onl) (22)

—00

where J[n] is the Heaviside step function and ([n]) is the average of ¥}[n] over the probability
distribution of thresholds P(nry).
This implies that the function f[n] should have the form of a probability distribution

function, not a probability density. In Cowan, [32], the logistic or sigmoid form:
-1 1 n
fln] =[1 +exp[—n]]" = 5[1 + tanh(g)] (2.3)

was introduced, as an analytic approximation to the Heaviside step function used in McCulloch-
Pitts neurons, [76]. This indicates that the required continuum equations should represent
the dynamics of a population of integrate-and-fire neurons in which there is a random dis-

tribution of thresholds.
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The corrected version of Beurle’s takes the form:

n(x,t+7) = q(x,t)f[n
) f

(x, )]
{ / too d’ / O:O dx'a(t = ) [B(x — x)n(x,¢') + h(x,1')

= q(x

where

t
g(x. 1) =1 — /t n(x, ) (2.5)

-

r =1 ms is the (absolute) refractory period or width of the action potential, and
alt—t') = aoe_(t_t,)/T, Blx —x') = be~Px—x'l/o (2.6)

are the impulse response function and spatially homogeneous weighting function of the con-
tinuum model, with membrane time constant 7 ~ 10 ms, and space constant o ~ 100 pm.

3. Beurle’s formulation does not explicitly incorporate a role for inhibitory neurons.

2.3.2  The Wilson-Cowan equations

Wilson and Cowan corrected and extended Beurle’s work and introduced equations for the
population dynamics of a spatially homogeneous population of coupled excitatory and in-
hibitory binary neurons [126], and its extension to spatially inhomogeneous populations [125].

These equations take the forms:

Tcz_f = —E{t)+ (1 -7E®) fg [wgpE —wgl + hp(t)]
r% = —I(t)+ (1 =7rIQ®)) frlwipE —wirl + hy(t)]
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for the spatially homogeneous case, and

TW = _E(x,t)+ (1 —rE(x,1) x

o | [ pmixBppt- 0B — [ prd sprtx - X)16¢,0) + hptxt)
MS; ) )+ (1= rI(x, 1)) x

i [ wix st = xOBG0 - [ prax B X160 + 1.

(2.8)

for the continuum form of the spatial case, in which pg, and pj are, respectively, the packing
densities of excitatory and inhibitory cells in the cortical slab. Note that fg[n] and fr[n]
are modified versions of the firing rate function f[n] introduced in Equation 2.3, such that
fEl0] = f7[0] = 0. Note also that the variables E(x,t) and I(x,t) are time coarse-grained,
ie.
t t
E(x,t) = / dt'a(t —tng(x,t), I(x,t)= / dt'a(t —tny(x,t) (2.9)
—00 —00
where ng(x,t) and ny(x,t) are the proportions of excitatory and inhibitory neurons acti-
vated per unit time. It follows from Equation 2.4 that «(t) acts as a low-pass filter, and
therefore that E(x,t) and I(x,t) are low-pass filtered version of ng(x,t') and ny(x,t), re-

spectively. The net effect of such a coarse-graining is to remove oscillatory components of

neural population responses greater than 100 Hz.

2.8.8 Attractor dynamics

A major feature of Equation 2.7 is that it supports different kinds of asymptotically stable
equilibria. Figure 2.10 shows two such equilibrium patterns: There is also another phase
plane portrait in which the equilibrium is a damped oscillation, i.e., a stable focus. In fact
by varying the synaptic weights wgy and wyy or a = wgpgpwyr and b = wypwgy we can
move from one portrait to another. It turns out that there is a substantial literature dealing
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Figure 2.10: The left panel shows the E-I phase plane and null clines of Equation 2.7. The
intersections of the two null clines are equilibrium or fixed points of the equations. Those labelled
+ are stable, those labelled — are unstable. Parameters: wggp = 12, wgr = 4, wig = 13, wir =
11,ng = 0. The stable fixed points are nodes. The right panel shows an equilibrium which is
periodic in time. Parameters: wggp = 16, wgr = 12, wrg = 15, wrr = 3,nyg = 1.25. In this case the
equilibrium is a limit cycle. Redrawn from [126].

with the way in which such changes occur, The mathematical technique for analyzing these
transformations is bifurcation theory, and it was first applied to neural problems 54 years ago
by Fitzhugh, [46], but first applied systematically by Ermentrout and Cowan in [42], [43],
and [44] in a series of papers on the dynamics of the mean-field Wilson-Cowan equations.
Subsequent studies by Borisyuk and Kirillov, [17], and Hoppenstaedt and Izhikevich, [58],
have greatly extended this analysis.

The left panel of Figure 2.11 shows the detailed structure around such bifurcations.
Evidently the saddle-node and Andronov-Hopf bifurcations lie near the Bogdanov-Takens
bifurcation. Thus, all the bifurcations described in the spatially homogeneous Wilson-Cowan
equations lie close to such a bifurcation in the (a, b)-plane. The Bogdanov-Takens bifurcation
depends on two control parameters a and b, and is therefore of codimension 2. In such a
bifurcation an equilibrium point can simultaneously become a marginally stable saddle and
an Andronov-Hopf point. So at the bifurcation point the eigenvalues of its stability matrix
have zero real parts. In addition the right panel of Figure 2.11 shows how the fast E-
nullcline and the slow I-nullcline intersect. The first point of contact of the two nullclines

is the Bogdanov-Takens bifurcation point. The two nullclines remain close together over
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Figure 2.11: The left panel shows bifurcations of Equation 2.7 in the spatially homogeneous case,
organized around the Bogdanov-Takens (BT) bifurcation. SN1 and SN2 are saddle-node bifurca-
tions. AH is an Andronov-Hopf bifurcation, and SHO is a saddle homoclinic-orbit bifurcation. Note
that a and b are bifurcation parameters in the canonical model for the BT bifurcation [60]. The right
panel shows the nullcline structure of a Bogdanov-Takens bifurcation. At the Bogdanov-Takens
point, a stable node (open circle) coalesces with an unstable point. Redrawn from [60].

a large part of the subsequent E-I phase space before diverging. As we will later discuss,
this property of the nullclines is closely connected with the existence of a balance between
excitatory and inhibitory currents in the network described by the Wilson-Cowan equations,

and therefore with the existence of avalanches in stochastic Wilson-Cowan equations, [11].

2.4 Stochastic neural dynamics

2.4.1 Introduction

To develop such equations we need to reformulate neural population dynamics as a Markov
process. We first consider the representation of the dynamics of a cortical sheet or slab
comprising a single spatially homogeneous network of N excitatory binary neurons. Such
neurons transition from a quiescent state ¢ to an activated state a at the rate f and back

again to the quiescent state ¢ at the rate «, as shown in Figure 2.12.
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Figure 2.12: Neural state transitions. a is the activated state of a neuron. ¢ is the quiescent state.
« is a decay constant, but f depends on the number of activated neurons connected to the neuron,
and on an external stimulus h.

2.4.2 A master equation for a network of excitatory neurons

The first step is to formulate a master equation describing the evolution of the probability
distribution of neural activity P, () in such a network. Consider first n activated neurons,
each becoming quiescent at the rate a. This produces a flow out of the state n at rate a,
proportional to pp(t), hence a term in the master equation of the form —anPy,(t). Similarly
the flow into n from the state n + 1 produces a term «(n + 1) Py, 11(t). The net effect is the
term

af(n+1)Pyi1(t) — nPa(t)]. (2.10)

Now consider the N — n quiescent neurons in state n, each prepared to spike at rate
flsg(n)], leading to the term —(N — n)f[sg(n)]Py(t), in which the total input is sg(n) =
I(n)/Itg = (wggn + hg)/ITH, and f[sg(n)] is the function shown in Figure 2.13, a low-
noise version of Equation 2.3.

The flow into the state n from the state n— 1 is therefore (N —n+1) f[sg(n—1)]P,_1(¢),

and the total contribution from excitatory spikes is then

(N =n+1)flsg(n—1)|P,—1(t) = (N = n) fsp(n)] Pu(t) (2.11)
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Figure 2.13: The firing rate function f[sg(n)], 7» = 1/a = 3 ms is the neural membrane time
constant, I is the input current, and Iryg is the rheobase or threshold current.

It follows that the probability P, (t) evolves according to the Master equation

dP,(t)
dt

= al(n+1)Pny1(t) — nPn(t)]

+ (N=n+1D)flspn —D]P1(t) = (N =n)flsp()]Pa(t)  (2.12)

It is easy to derive an evolution equation for (n(t)), the average number of active neurons in

the network, using standard methods. The equation takes the form

= —a(n(t)) + (N = (n(t))) f[(sp(n))] (2.13)

where (sgp(n)) = wgg(n) + hgg, and is the simplest form of Equation 2.7 for a single
excitatory population. Such a mean field equation can be obtained in a number of different
ways, in particular by using the van Kampen “system-size expansion” of Equation 2.12 about
a locally stable equilibrium, [116]. However, as is well known, this expansion breaks down at
a marginally stable critical point, e.g. at a Bogdanov-Takens point, and a different method
must be used to analyze such a situation.

Before proceeding we note that these equations can be extended to cover the situation
introduced in Equation 2.7 which incorporates spatial effects. The variable n(t)/N is ex-

tended to n(x,t) representing the density of active neurons at the cortical location x at time
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t, and the total input current I(n) becomes the current density
I(n(x)) = /ddx/wEE(x —x"\n(x) + hp(x) (2.14)

2.4.8 A master equation for a network of excitatory and inhibitory neurons

Since about 1/5th of all cortical neurons are inhibitory, it is important to include the effects
of such inhibition. We therefore extend Equation 2.10 to include inhibitory neurons. The

result is the Master equation:

dP(”E? nr, t)

o = agllng+1)P(ng+1,n5,t) —ngpP(ng,ny,t))

+ [(Ng —ng+1)fplspng — Lng)|P(ng — 1,np,t)
- (Ng —ng)fplsp(ng, np)|P(ng,ny,t)]

+ arlinf+1)Png,nr+ 1,t) —nrP(ng,ny,t)]

+ [(Nr—nr+ D filsi(ng,ny = 1)]P(ng,nr — 1,1)

— (Ny=np)frlsi(ng,np)|P(ng,nr,t)] (2.15)

See Benayoun et al, [11], for a derivation of this equation. It is easy to derive Equation 2.7
from this master equation. However there is much more information about stochastic neural
dynamics contained in Equation 2.15 than is contained in such an equation. We refer, of

course, to the effects of intrinsic fluctuations and of correlations.

2.5 Analyzing intrinsic fluctuations

To analyze such effects we need to look more closely at the attractor dynamics of Equa-
tion 2.7. There are two cases to consider. In case 1, the attractor is either an asymptotically
stable node or focus, or it is a limit cycle. In case 2, the attractor is only marginally stable.

In nonlinear dynamics, this is a bifurcation point, e.g. a Bogdanov-Takens point, or a Saddle
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Node or Andronov-Hopf point. In statistical mechanics this is the critical point of a phase

transition.

2.5.1 The system-size expansion

The System-Size Expansion was introduced by van Kampen, [116], to analyze the effects of
intrinsic fluctuations in case 1. The intuition behind this approach comes from the idea that
if neurons are independently activated, then the total activity in a excitatory neural network
in such a case is Gaussian distributed, with mean activity (ng(t)) proportional to N, the
total number of neurons in the network, and standard distribution proportional to v/N. So

the number of neurons activated at a given time can be represented by the variable

k= Nng+VNég (2.16)

where £ is a Gaussian random perturbation.
The deterministic term satisfies Equation 2.7, the random variable satisfies the linear

Langevin equation

dép

a et Vagng + (1 —ng)felse(np)ne (2.17)

to order N~1/ 2, where A is a constant and ng is an independent white noise variable, whose
amplitudes are calculated from Equation 2.7.

An early version of this application of the System-Size expansion can be found in Ohira
and Cowan, [88]. The extension to the excitatory and inhibitory neural network introduced
in Equation 2.7 is to be found in Benayoun et al, [11]. This paper is notable for its use of the
Gillespie algorithm, [49]. In this algorithm, the simulation time is advanced only when the
network’s state is updated, and the time intervals dt are random variables dependent upon

the network state. The simulation is carried out for a network in which certain symmetry
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conditions are introduced. These conditions are

WIp = WEE = WE; WE[ = W[] = W[; WE — W[ =W (2.18)

where wyq is kept constant. Figures 2.14-2.17 show the results.
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Figure 2.14: Raster plot of the spiking patterns in a network of N = 800 excitatory neurons. Each
black dot represents a neural spike. The mean activity (ng(t)) is represented by the blue trace.
Simulation using the Gillespie algorithm with parameter values hgp = hy = 0.001, wg = wg — wy =
0.2, and wg + wr = 0.8. Redrawn from [11].

WC phase plane

Figure 2.15: Phase plane plots of the activity shown in Figure 2.14 showing the vector field (blue)
and nullclines £ = 0 (magenta) and I = 0 (red), of Equation 2.1 and plots of a deterministic (black)
and a stochastic (green) trajectory starting from identical initial conditions. Redrawn from [11].

It should be evident from a study of these figures that the location of the fixed point of
Equation 2.7 remains unchanged as wg + wy increases from 0.8 to 13.8, but the stochastic
trajectory (green) becomes increasingly spread out as the nullclines become more parallel.

Such a feature is also evident in the right panel of Figure 2.11 in which the nullcline structure
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Figure 2.16: Raster plot of the spiking patterns in a network of N = 800 excitatory neurons. Each
black dot represents a neural spike. The mean activity (ng(t)) is represented by the blue trace.
Simulation using the Gillespie algorithm with parameter values hg = hy = 0.001, wy = wg —w; =
0.2, and wg + wy = 13.8. Redrawn from [11].

of the Bogdanov-Takens bifurcation is shown. It is also evident that a qualitative change
has taken place in the nature of the activity: it has changed from random fluctuations to

random bursts. Figures 2.18 and 2.19 make this clear.

WC phase plane

Figure 2.17: Phase plane plots of the activity shown in Figure 2.16 showing the vector field (blue)
and nullclines £ = 0 (magenta) and I = 0 (red), of Equation 2.1 and plots of a deterministic (black)
and a stochastic (green) trajectory starting from identical initial conditions. Redrawn from [11].

2.5.2  Symmetries and power laws

It will be seen that the simulations described above, in which the network symmetry rep-
resented in Equation 2.17 is present, have uncovered an important property, namely that a

stochastic version of Equation 2.7 incorporating such a symmetry can spontaneously gener-
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Figure 2.18: Network Burst Distribution in number of spikes, together with Geometric (red)
and Power Law (blue) fit; A¢, the mean inter-spike interval, is the time bin used to calculate
the distribution, and 5 = —1.62 is the slope exponent of the fit. Simulation using the Gillespie
algorithm with parameter values hg = h;y = 0.001, wy = wgp — wy = 0.2, and wg + wy = 0.8.
[Redrawn from [11].

slope = ~1.6207
107" o At=0.059167
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Figure 2.19: Network Burst Distribution in number of spikes, together with Geometric (red) and
Power Law (blue) fit; At, the mean inter-spike interval, is the time bin used to calculate the
distribution, and ( is the slope exponent of the fit. Simulation using the Gillespie algorithm with
parameter values hp = hy = 0.001, wy = wgp — wy; = 0.2, and wg + wy = 13.8. Redrawn from [11].
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ate random activity in the form of bursts, whose statistical distribution is a power law. The
other important property concerns the basic network dynamics generating such bursts.

We first note the experimental data provided by DeLisle Burns, [22], and Beggs &
Plenz, [9], described in the introduction, and then we discuss the underlying neurodynamics.
The main result of the Beggs-Plenz observations is that isolated slices generate bursting
behavior similar to that found in the simulations, with a Power Law burst distribution with
slope exponent of § = —1.5. This should be compared with the simulation data shown in
Figure 2.18 in which 8 = —1.62. Note however that the geometry of our network simulation
is not comparable with that of a cortical slice. It remains to carry out simulations of the
stochastic version of Equation 2.7 on a 2-dimensional lattice. Work on this is currently ongo-
ing. In any event, the Beggs-Plenz paper generated a great deal of interest in the possibility
of critical behavior in the sense of statistical physics existing in stochastic neural dynamics,
including the possibility that brain dynamics exhibits self-organized criticality. In the later

parts of this chapter, we briefly address this possibility.

Random bursting

We turn now to the neuro-dynamics underlying random bursting. We first note that the
fixed point of the dynamics remains unchanged as wg + wy increases from 0.8 — 13.8, and
ng = ny. We also recall Equation 2.18 that wg — wy = wg = 0.2, so that as the network
begins to fire in random bursts,

wy < wp +wy (2.19)

This inequality has a number of consequences. (see [11] and [81] for details.) Most im-

portantly, it allows a particular change of variables in Equation 2.12 extended to include
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inhibition.

HpO) o fnp(0) + (1L~ () ()]
M O) (1) + (1~ (g L) (2.20)

where (s) = wgng —wrny + h, and (ng) and (ny) are interpreted as the mean fractions of

activated neurons in the network. Now introduce the change of variables
1 1
E=g5p+ng), A=gng-ng) (2.:21)

so that Equation 2.20 transforms into the equation

=Bl — —a(mm) + (1 - (SO fl(s)]
dﬁim = —(AW®)(a+ f(s)]) (2.22)

Such a transformation was introduced into neural dynamics by Murphy and Miller, [81],
and used by Benayoun et al, [11]. But it was introduced much earlier by Janssen, [61], in
a study of the statistical mechanics of stochastic Lotka-Volterra population equations on
lattices, which are known to be closely related to stochastic neural population equations on
lattices, [31].

The important point about the transformed equations is that they are decoupled, with
the unique stable solution (3, 0), which is equivalent to ng = ny in the original variables.
This is precisely the stable fixed point used in the simulations. Note also that in the new

variables > and A, the fixed point current is

s=weX + (wg +wr)A+h (2.23)

So at the stable fixed point (3¢, 0), s = wgXy+ h. Near such a fixed point, A is only weakly
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sensitive to changes in X, and ¥ is unchanged when varying wg + wy for constant wy.
Murphy & Miller called Equation 2.20 an effective feedforward system exhibiting a balance
between excitatory and inhibitory currents, and a balanced amplification of a stimulus h.
We can now perform a system-size expansion of the associated master equations, as
in [11], to obtain a two component linear Langevin equation for small Gausssian fluctuations

about the stable fixed point (3g,0). This takes the form

d -\ w
d 3 _ 1 wg 3 L Jas, 0> (2.24)

LN 0 —x |\ e A

where the eigenvalues are A1 = (a + f[sg]) + (1 — Xo)wof'[sg] and Ao = (a + f[sg]), and

wg = (1 — o) (wg + wr) f'[sp]. The Jacobian matrix

is upper triangular and has eigenvalues —\; and —\o. It follows that when wq is small and
positive, then so are the eigenvalue magnitudes A\ and Ao. So, the eigenvalues are small and

negative and the fixed point (¢, 0) is weakly stable. Evidently A lies close to the matrix

0 weg 0 1 _
B = = wff:Bwﬁ

0 O 0 0

But, the matrix B is the signature of the normal form of the Bogdanov-Takens bifurca-
tion, [58]. Thus, the weakly stable node lies close to a Bogdanov-Takens bifurcation, as we

have suggested.
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2.5.8 Intrinsic fluctuations at a marginally stable fized point

We now turn to case 2, in which the network dynamics is at a marginally stable fixed point.
As we showed earlier, such a fixed point is a Bogdanov-Takens point. We cannot use the
system-size expansion at such a point, but we can use the methodology and formalism of
statistical field theory found in [20], [21], [33]. For the neural dynamics considered in this
chapter, case 1 applies: the resting and driven activities are all at or near a weakly stable
fixed point. Despite this, the fact that the fixed point is only weakly stable indicates that
the resting and weakly-driven states lie in what has been called the fluctuation-driven region
near the marginally stable fixed point, [26]. Thus, we need to outline some of the results of
the analysis of case 2. The reader is referred to the details in Chapter 3 and Appendix A of
this text or the article by Cowan et al, [34].

The basic result is that the stochastic equivalent of the Bogdanov-Takens bifurcation is
the critical point of a directed percolation phase transition, or DP, [56]. In DP, there are two
stable states, separated by a marginally stable critical point. One of these is an absorbing
state, corresponding to the neural population state in which all neurons are quiescent, so
that the mean number of activated states or order parameter (n) = 0. The other is one
in which many neurons are activated, so that (n) # 0 in the activated state. At a critical
point, the quiescent state becomes marginally stable and is driven by fluctuations into the
activated state.

What is important for the present study is that in the neighborhood of such a critical
point, i.e. in the fluctuation-driven regime, there are two significant features of the activity
which relate to the experimental data we have described: (a) the resting behavior shows
random burst behavior whose statistical signature is consistent with DP, i.e., the distribution
of bursts follows a power law with slope exponent —1.5, which is the slope of several forms
of random percolation, including what is called mean-field DP as in [9] and [5]; (b) intrinsic

correlations are large, and pair-correlations extend over significant cortical distances, [98].
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2.6 Modeling the experimental data

2.6.1 Resting activity

Random burst activity

Assuming that the resting state occurs in the neighborhood of a weakly stable node or focus,
to start with, we can use the results of the system-size expansion of the E-I master equation
described earlier. The conclusion we reach is that when there is a balance between excitation
and inhibition, so that the network is at a weakly stable node, or possibly a focus, then
random burst behavior with a power law slope exponent close to —1.5 is seen, [11]. This is
the result shown in Figures 2.14-2.19, and of course the result is also completely consistent
with the Beggs-Plenz data plotted in Figures 2.5-2.6. We also note that these results are
completely consistent with our recent analysis, Cowan et al, [34] and [35], and with recent
experimental data that demonstrates the sub-criticality of the resting state by Priesemann

et al, [93].

Pair correlations

With regards to pair correlations associated with resting or spontaneous activity, we refer to
Figure 2.9 in which the measured resting pair correlations fall off with separation distance
between electrodes, in both cats and monkeys. This finding can be replicated within the
theoretical framework we have established in two differing ways. (a) We first make use of
Equation 2.7, the mean-field Wilson-Cowan equations for the 1D-spatial case, and simply
add d-correlated Gaussian noise to the equations. The resulting pair correlation function
for resting activity is shown in the left panel of Figure 2.20. (b) We then use the stochastic
Wilson-Cowan master equation introduced in Equation 2.12, extended to the spatial case. In
such a case, the noise is multiplicative and intrinsic. To simulate the Markov process derived

from this model, we used the Gillespie algorithm, [49]. These simulations of the behavior of
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Wilson-Cowan equations replicate, very accurately, the pair correlation behavior shown in

Figure 2.9, reported in [82], both for resting activity, and for driven activity.

Additive noise Intrinsic noise
;
< e 08
_5 o8 Spontaneous _5 Spontaneous
: g
=
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Figure 2.20: The left panel shows the pair correlation function for resting and driven activity with
additive Gaussian noise. The right panel shows the pair correlation function for resting and driven
activity with intrinsic noise, averaged over many simulations using the Gillespie algorithm [49].

2.6.2 Driven activity

A plot of the results for varying strengths of the external stimulus is found in Figure 2.21.
Notice that we find multiple thresholds, the first of which is the bifurcation from no active
transient behavior to damped traveling activity. A simulation of this mode is seen in the
left panels of Figure 2.22. Increasing the input strength, we find another threshold where
the damped traveling waves extend to the boundary of the 1-dimensional lattice. Here, it is
likely that edge effects cause the wave to decay. Because of this uncertainty, we cannot be
positive that the wave takes the same analytic form as it does for smaller input strengths.
The final threshold appears when the strong stimulus disrupts the functional connectivity,
a point we will discuss later, and eliminates traveling behavior. The result is a localized

response as seen in the right panels of Figure 2.22.
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Figure 2.21: Plot of the distance traveled of activity as a function of input strength. It is clear that
around a stimulus strength of 1 (arbitrary units) spreading occurs. If the stimulus strength increases
further, the traveling wave eventually extends out to the end of the lattice before localization occurs.
For all values larger than =~ 2.2 the response does not spread.
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Figure 2.22: The left panel shows a damped traveling wave at four different snapshots with a
stimulus strength of 1.2 a.u. The wave propagates approximately 2 times the spatial profile of
the wave. The right panel shows localized behavior with no spreading and a stimulus strength of
2.8 a.u. Notice in the second time plot that inhibition has overtaken excitation and the activity
remains localized.
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Weak stimuli

We now investigate the results reported by Carandini et al, such as [12], [82], and [83], of
traveling, decaying waves seen in LFP, shown in Figures 2.7-2.8; and by Muller & Des-
texhe, [79], in VSD recordings, in response to brief weak current pulses. These results can
be replicated quite precisely in simulations of Equation 2.8, in which the network dynamics
is near the balanced state in which £ ~ I. Again, the left panels of Figure 2.22 and top
row of Figure 2.23 show a simulation of this behavior. These results should be compared
with those plotted in Figure 2.7. One important point to mention is that when activity
spreads, on the propagating wavefront, excitation (green in Figure 2.22) is much larger than
inhibition (red in Figure 2.22), but behind it, inhibition is large enough to cause the wave
to dampen. Without this effect, damped traveling waves cannot occur because they would
either not spread at all or would travel to infinity. From the simulations shown here, it

should be clear that we can replicate the Carandini et al data very closely.

Strong stimuli

The other result reported by Carandini et al is that for strong stimuli the resulting LFP
does not propagate very far, and remains localized. This property was actually reported in
Wilson & Cowan’s 1973 paper, [125]. The right panels of Figure 2.22 and bottom row of
Figure 2.23 show a simulation of this dynamical mode, again in which the network state is
approximately balanced. It is clear that the response does not move at all, owing to the fact

that inhibition overtakes excitation at an early time, preventing any traveling behavior.

2.6.3 FExplaining the differing effects of weak and strong stimuli

It is evident that there are big differences between the effects produced by weak and strong
stimuli. What is the cause of such differences? Given that the only parameter in the Wilson-

Cowan equations that is varied in the two cases is the stimulus intensity, this suggests that
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Figure 2.23: A. Variation in the LFP amplitude of decaying waves. The largest amplitude is the
initial response to a brief weak current pulse. B. The exponential decay of the LFP amplitude, as
a function of distance traveled. C. Time-Distance plot of the peak amplitude indicating that the
velocity of wave propagation is constant at about 0.45 m sec™!. D. Localized LFP in response to

a strong current pulse. E. Rapid decay of the amplitude which does not move F. No propagation
of the LFP.

the property which causes the different responses is the level of inhibition. It must, therefore,
be the case that the threshold for inhibitory activity is set high enough that weak stimuli do
not trigger inhibitory effects, whereas strong enough stimuli do trigger such effects. Thus,
it’s clear that inhibition is the key to explaining why propagation gets blocked in LFP and
VSD recordings. Put another way, external stimuli disrupt the functional connectivity of
a network via activation of the inhibitory neurons, which prevent the excitatory ones from
generating traveling waves. Indeed, this is one of the possibilites suggested by Carandini et
al in their papers.

This possibility is also consistent with the effects of stimuli on pair correlations. We
predict that the pair correlation function should falloff more slowly in the case of resting
or weakly driven activity, than in the case of stronger stimuli. As of now, preliminary
results from simulations do show this effect. Such a conclusion would be consistent with the

suggestions of Churchland et al, [30], that one effect of stimuli is to lower noise levels.
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2.7 Discussion

The main results described in this chapter concern the use of the the Wilson-Cowan equa-
tions to analyze the dynamics of large populations of interconnected neurons. Early workers,
including Shimbel and Rapaport, [99], and Beurle, [15], appreciated the need to use a sta-
tistical formulation of such dynamics, but lacked the techniques to go beyond mean-field
theory. The Wilson-Cowan equations, [125] and [126], were the first major attempt at a sta-
tistical theory, but still lacked a treatment of 2nd and higher moments. However, what the
equations did describe was mathematical conditions for attractor dynamics. Further work by
Ermentrout and Cowan, found in [42], [43], and [44], by Borisyuk and Kirillov, [17], and by
Hoppenstaedt and Izhikevich, in [58] and [60], used the mathematical techniques of bifurca-
tion theory to more fully analysis such dynamics. The main result was that neural population
dynamics is organized around a Bogdanov-Takens bifurcation point, in the neighborhood of
which (in a phase space of two control parameters) are Saddle-Node and Andronov-Hopf
bifurcations. Thus neural network dynamics contains locally stable equilibria in the form of
stationary and oscillatory attractors.

The problem of going beyond the mean-field regime proved to be very difficult. Some
progress was made by Ohira and Cowan, [88], formulating stochastic neural dynamics in
the neighborhood of a stable stationary equilibrium as a random Markov process and using
the Van Kampen system-size expansion, [116]. Further progress along these lines was made
by Benayoun et al, [11], who formulated Equation 2.7 as a random Markov process. But
Benayoun et al went further, by incorporating some symmetries into Equation 2.7 discovered
by Murphy and Miller, [81], which, in retrospect, located the stationary equilibrium of the
equations near a Bogdanov-Takens point. The result was that the stochastic version of
Equation 2.7 generates the random bursts of activity we now refer to as avalanches. In
addition, the avalanche distribution was that of a power law, with a slope exponent of
[ = 1.6. This value is close to that observed by Beggs and Plenz, [9], in their observations of

neural activity in an isolated cortical slab, of avalanche distributions with a slope exponent
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of g =1.5.

There remained the problem of developing a statistical theory for the fluctuations about
a marginally stable critical point, such as a Bogdanov-Takens point. This problem was
formulated by Cowan, [33], and solved by Buice & Cowan in [20] and [21]. This is a major
result since it connects the theory of stochastic neural populations at a critical point, with
many well studied examples of other populations of interconnected units. Examples include
percolation in random graphs, branching and annihilating random walks, catalytic reactions,
interacting particles, contact processes, nuclear physics, and bacterial colonies. Many of these
processes are subject to a phase transition, known as a directed percolation phase transition
(DP). and all these processes have the same statistical properties, including the appearance
of random bursts or avalanches.

However, although the statistical theory is relevant to the pair-correlation problem, it is
the mean-field Wilson-Cowan equations that proved to be necessary and sufficient to analyze

neocortical responses to brief stimuli, both weak and strong.
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CHAPTER 3
SELF-ORGANIZED CRITICALITY AND NEAR
CRITICALITY IN NEURAL NETWORKS

3.1 Introduction

Ideas about criticality in non-equilibrium dynamical systems have been around for at least
fifty years or more. Criticality refers to the fact that nonlinear dynamical systems can have
local equilibria that are stable, in which case the system remains there, or marginally stable,
so that small perturbations can drive the system away from the local equilibria towards one
of several locally stable equilibria. In physical systems such marginally stable states manifest
in several ways, in particular if the system is spatially as well as temporally organized, then
long-range correlations in both space and time can occur, the statistics of the accompanying
fluctuating activity becomes non-Gaussian, and in fact is self-similar in its structure, and
therefore follows a power law. Bak et al, [8], introduced a mechanism whereby such a
dynamical system could self-organize to a marginally stable critical point, which they called
self-organized criticality. Their paper immediately triggered an avalanche of papers on the
topic, not the least of which was a connection with 1/f or scale-free noise. However it was
not until another paper appeared, by [48], which greatly clarified the dynamical prerequisites
for achieving SOC, that a real understanding developed with the essential requirements for
SOC: (1) an order-parameter equation for a dynamical system with a time-constant 7,, with
stable states separated by a threshold, (2) a control-parameter equation with a time-constant
7. which tunes the system, and (3) a steady driving force. In Bak et al’s classic example, the
sand-pile model, the order parameter is the rate of flow of sand grains down a sand-pile, the
control parameter is the sand-pile’s slope, and the driving force is a steady flow of grains of
sand onto the top of the pile. Gil and Sornette showed that if 7, < 7. then the resulting
avalanches of sand down the pile would have a scale-free distribution, whereas if 7, > 7.

then the distribution would also exhibit one or more large avalanches.
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In this chapter, we analyze two neural network models. The first is in one-to-one corre-
spondence with the Gil-Sornette SOC-model, and therefore also exhibits SOC. The second is
more complex and instead of SOC it self-organizes to a weakly stable local equilibrium near
a marginally stable critical point. We therefore refer to this mechanism as self-organized

near-criticality, or SONC.

3.2 Neural network dynamics

Consider first the mathematical representation for the dynamics of a neocortical slab, com-
prising of N excitatory neurons in a single spatially homogeneous network. Such neurons
make transitions from a quiescent state g to an activated state a at the rate f and back

again to the quiescent state ¢ at the rate «, as shown in Figure 3.1.

Figure 3.1: Neural state transitions. a is the activated state of a neuron, ¢ is the inactivated or
quiescent state, « is a decay constant, f depends on the number of activated neurons connected to
the nth neuron, and on an external stimulus h.

From here, it is straight-forward to write down a master equation describing the evolution
of the probability distribution of neural activity Py, (¢) in such a network. We consider n active
excitatory neurons, each becoming inactive at rate a. This causes a flow of rate a out of the
state, which we call n, proportional to Py, (t), hence a term —anPp,(t). Similarly, the flow

into state n from state n 4+ 1, caused by one of n 4+ 1 active excitatory neurons becoming
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inactive at rate «, gives a term «(n + 1)P,,41(¢). The net effect is a contribution

al(n+1)Pyyi(t) — nPp(t)]. (3.1)

In state n, there are N — n quiescent excitatory neurons, each prepared to spike at the rate

f(sg(n)), leading to a term —(N —n)f (sg(n)) Py(t), where the total input is

sp(n) =1(n)/Igrn = Zi(Xjwijn; + hgi)/Irn (3.2)

and f(sg(n)) is the function shown in Figure 3.2.
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Figure 3.2: Graph of the firing rate function f[s(I)]. 7, = 1/a = 3 is the membrane time constant
(inms) and s(I) = I /Ity is the input current, where Ity = Igp is the threshold or rheobase current.

Correspondingly, the flow into the state n from n — 1 due to an excitatory spike is given
by (N—(n—1))f(sg(n—1)) P,_1(t). The total contribution to the master equation from

excitatory spikes is then

(N =n+1)f(sp(n—1)) Ba_1(t) = (N —n)f (sp(n)) Pa(?). (3-3)
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Putting all this together, the probability P, (t) evolves according to the master equation

dPn(t)
dt

= a[(n+1)Py1(t) — nPy(t)]

+ [(N=n+1)f(sp(n—1)) Pp_1(t) = (N =n)f (sp(n)) Pa(t)]  (34)

Using standard methods it is easy to derive an equation for the evolution of the average

number (n(t)) of active neurons in the network. The resulting equation takes the form

o = —an®) + (N = (@) f ({sp(n) (3.5)

where (sg(n)) = wgg(n) + hg, and Equation 3.5 is the simplest form of the Wilson-Cowan
equations, [126]. This mean-field equation can be obtained in several ways, in particular it
can be obtained using the van Kampen “system-size expansion”, mentioned in the previous
chapter, of the master equation about a locally stable equilibrium or fixed point of the
dynamics, [116]. However such an expansion breaks down at a marginally stable fixed point,
which is the situation to be analyzed in detail in this chapter, and a different method must
be used to analyze such a situation.

Before proceeding further we note that it is straightforward to extend these equations
to deal with spatial effects. In such a case the variable n(t)/N is extended to n(x,t) which
represents the density of active neurons at the location x at time ¢, and the total input sg(n)

becomes the current density
sp(n(x)) = [ ' wpp(x - x)nx) + hu(x) (3.

3.2.1 Stochastic effects near a critical point

To deal with the effects of fluctuations near criticality we use the methods of statistical

field theory. Essentially we rewrite the solution of the spatial master equation in the form
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of a Wiener path integral. We then apply the Renormalization Group method [127], to
calculate the statistical dynamics of the network at the marginally stable (or critical) points.
The details of this procedure can be found in [34]. The main result is that the random
fluctuations about such a critical point have the statistical signature of a certain kind of
percolation process on a discrete lattice, called directed percolation. Such a random process
is similar to isotropic percolation which occurs in the random formation of chemical bonds,
except that there is a direction, which in the neural network case is time, to the process. The
statistical signature of directed percolation occurs in a large class of systems, is independent
of many of their various dynamical details and therefore taken to define a universality class.
It is found in random contact processes, branching and annihilating random walks, predator-
prey interactions in population dynamics, [56], and even in bacterial colonies growing in Petri
dishes, [68]. Thus stochastic neural networks described by the simple Markov process we
depicted in Figure 3.1 exhibit a non-equilibrium phase transition whose statistical signature
is that of directed percolation, [19].

In what follows we describe how these methods and results can be used to provide insights
into the nature of fluctuating neural activity found in fMRI, EEG and local field potentials

both in cortical slices and slabs and in the intact neocortex.

3.2.2  Annihilation and creation operators

We begin by defining an N = 0 network vector to be

|Network with 0 neurons) = |0) (3.7)

We next introduce Fock space annihilation and creation operators satisfying boson commu-
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tation rules

[ai,a;f] = [qzwq;] = 0jj
lai,aj]) = [alafj] = 0

4i, 4] = [q;t , q;} (3.8)

Such operators act on a Fock space state vector |n;) representing n; activated neurons at

the ith site, and its dual, so that

%T|nz’> =|n; +1), aln;) =ngn; — 1)

(nglal = (n; —1ng,  (nila = (g + 1) (3.9)

These operate on the vacuum vector |0) to generate vectors comprising activated or quiescent

neurons. The configuration space vector |v) is thus generated as

v) =120 Li10) (3.10)
where
T o,
a; ify;,=1
b= ; (3.11)
q ify;=0

and the dual configuration space vector (v| is generated as

N
(v| = 12, (0]®,,.; (3.12)
where
ai if Vi = 1
D, = (3.13)
q; if V; = 0

Inner products in the resulting vector space are generated by (0/0) = 1 and the commutation
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relations in Equation 3.8.

3.2.8 A neural state vector and expectation values

We now define a network state vector as the weighted sum over all configurations, where the

weight is the probability distribution given in the master equation,

[6(t) =Y Pv,t)v) (3.14)

N

|p) = exp Za;r |0) (3.15)

1=1

If we apply the dual vector (p| to the state |¢(t)) we obtain

(plo(t)) = > Pty =1, and (p|dr|o(t)) = —(p| H|$(t)) = 0

which is a restatement of probability conservation.

T

We note that applying the operator a,a; to the configuration vector |v) asks the question:
is the 7th neuron activated? If the answer is positive the operator leaves the ith state
untouched, if negative the answer is 0. Thus, the operator ) a;.rai counts the number of
activated neurons in |v). Similarly, the operator ), q;rqi counts the number of quiescent
neurons in |v).

We can use the projection technique to calculate the expected number of activated neu-

rons at the ith site using the number operator a;-rai. Let p; be the probability that the ith

neuron is activated. Then

(plala;|o(t)) = 3" niP(vt) = (n;) = p; (3.16)
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In similar fashion

<p|a;[az j|§b an = (nin > Pij (3.17)

In the model considered here n; and n; are restricted to the values 0 and 1. This restriction

is achieved using the microscopic occupancy condition,
Ta;+qlq =1 3.18
a;a; +q;q; = (3.18)

All configurations in the vector space |v) are thus restricted, and are called physical states.

Finally, we note that we can use the commutation rules introduced in Equation 3.8 to
commute exp(); a;-r) all the way to the right in expectation values, so that they take the
form of a vacuum expectation value (A) = (0|A|0). It can be shown that this is equivalent

to the shift a;-[ — a;r + 1, so that a;rai — a;-[ai + a;. We will employ this shift shortly.

3.2.4 A neural master equation

We now construct a neural master equation using the operators introduced above, as
d
o) = a1 = ah)a; + (af = 1)(1 = afa;) Fls(1)]] 16(1)) (3.19)

or formally as

—|o(t)) = —H|o(t)) (3.20)

where

—H = Z (1 = al)a; + (a] = 1)(1 = afa;) f[s(1)) (3.21)

is the quasi-Hamiltonian operator.
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This operator is constructed by noting that

a(1 = af)a; + (af — 1)(1 = afa;) flala;)] |s) (3.22)
only gives a non-zero contribution from the first term when v; = 1 and a contribution from

the second term when v; = 0. Thus it correctly represents the transitions between quiescence

and activation in the neuron at the site 7, and the factor 1 —a;rai = q;-[qi eliminates the g-state
variable from the expression, by using Equation 3.18 to limit occupancy at the site ¢ to one

state. (See [117] and [109].)

3.2.5  From bosons to coherent states

Equation 3.20 is a linear operator equation with formal solution

9(0)) = exp [~ (t — to)] |6(t0))

We need to re-express this solution in terms of complex numbers rather than operators in
order to solve for the probability distribution. This can be achieved by introducing coherent
states. These were introduced by Schrodinger [97] and first used extensively in coherent
optics by Glauber [52]. We therefore introduce such states |¢;) in the form

1
i) = expl=5Tei + iall]0) (3.23)

where ; is the right eigenvalue of a;, i.e. a;|¢;) = ¢;|#;). There is also a coherent state
representation of ¢; in the form [¥;) such that the right eigenvalue of ¢; is ¥;, i.e. ¢;|¥;) =

9Yi]9;). In similar fashion <<,0i|cz;-f = (p;|p; where @;, the complex conjugate of ¢, is the left
T

eigenvalue of a;, and similarly (19Z~|q;L = (0;]9;, i.e. ¥; is the left eigenvalue of qj. It follows

that
(pilalailes) = (pilGiciles) = ivs (3.24)
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All this suggests that the operator quasi-Hamiltonian has a coherent state representation in

the form
—H= Z (1 = &i)ei + (@i = (L = Bipi) fs(Li)]] (3.25)
where
s(Li) o< Y _wijjej+ hih (3.26)
J

We note that in transforming to the coherent state representation we must again use the

f

; brecede the annihilation operators

Tt

i iy

commutation rules to ensure that all creation operators a

a;, to produce the normal ordered form. Thus the normal ordered form of a is written as

tagal = (af

: aiaiai = i

)2a; + al. It follows from this that we need to expand the function f[s(al, a)]
in powers of s(aT,a) in order to produce the normal ordered form of H. We do this in

Appendix A, but will defer including the results in the main body of the chapter until later.

3.2.6 The continuum limit of H

The final preliminary step of this formulation is to take the continuum limit of the expression

for ‘H in Equation 3.25, so that

H = / i fage — 30— Bp — o) 5@ + )] (3.27)

in which ¢; — pp(x,t) = ¢ etc., where p is the packing density of neurons in the neocortex,
and the conjugate coherent state ¢ has been shifted to ¢ + 1.

Note that in taking the continuum limit we make the assumption that the cortex is
translation symmetric on the relevant length scales of mm to cm. This requires that we
assume that w;; — w;_;, so that in the continuum limit w;; — w(x—x') and Zj wij — W,

where * is the convolution operator [ da! w(x — x').
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3.2.7 Dimensions and the density representation

Before proceeding further, in order to use Renormalization Group techniques later on, we
need to assign a dimension to each variable in Equation 3.27. To do so we use a modified
version of the convention used in particle physics so that [z] = L™, [t] = L™2, where L is the
length scale used, whence [22/t] = LY. Thus, a diffusion constant would be dimensionless;
this generates a scaling commonly found in Markov random walks and related processes
such as stochastic neural activity like we have here. Then, [a] = L2, [¢] = L%, [¢] = LO,
[po] = L%, [f[s]] = [a] = L%. This last value of [f[s]] implies that the input current function
s(@p + @) = s(I) = kI where the constant k& has the dimensions of inverse current density,
so that [s] = LY. The net effect of such a choice leads to the required result that [H] = L?.

To emphasize this choice we further transform the coherent state quasi-Hamiltonian by
introducing the density representation,

e+1 e o—ne ™ (3.28)

where n(x, t) is the local density of activated neurons. Then, Equation 3.27 transforms into
H= /ddx [a(1 — exp(—n))n — (exp(n) — 1)(p — n) f[s(wxn + h)]] (3.29)

3.2.8 From the quasi-Hamziltonian to a neural path integral

Using standard methods (see [39] and [90]), Buice and Cowan [19] incorporated the quasi-

Hamiltonian into the action of a Wiener path integral. This action takes the form

S(n, i) = //ddx dt [fz@tn Fall—e Mn— (e —1)(p—n)fls(wxn+ h)]] (3.30)

The significance of this action is that it can be used to construct a generating functional for
statistical moments of the probability density P[v,t] such as the mean spike count at the

location x at the instant t, (n(x,t)), and the correlation function (n(x,t)n(x’,t')), etc.
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This generating functional is the path integral
7\ J(x,t), J(x, t)} = //Dn Di e~ Sa)+TntJ A — <exp[j n+J- ﬁ]> (3.31)

where Dn D is the Wiener measure, and .J -n = [ d¥x.J(x,t)n(x,t), etc. Functional differ-
entiation of this and related expressions with respect to J and J, subject to the conditions
J, J = 0, generates the various moments and moment equations. In particular, we obtain

the first moment or mean-field Wilson-Cowan equations, [125],

Oy(n) = —a(n) + (p— (n)) fls(w* (n) + ()] (3.32)

Thus, the Wilson-Cowan equation is a nonlinear integro-differential equation. The derivation
given here presents one way to extend these equations to a stochastic formulation that can
be analyzed by the techniques of statistical field theory.

We further note that if the population activity is sparse, then p—n — p in Equation 3.30
T

and 1 —a;a; — 1 in Equation 3.21. These equations then become, respectively, the action
and master equation for the spiking model described in [19] and [20], except that n; is now

interpreted as the number of spikes emitted by the ith neuron.

3.3 The dynamics of synaptic plasticity

Now that we have analyzed a network of intrinsically stochastic neurons, we turn our at-
tention to the mathematical representation of synaptic plasticity and consider first a single
excitatory neuron e; embedded in a network E of excitatory neurons. Such a neuron receives
input currents from neurons in the network, and also from a population H of other neurons

outside the network as seen in Figure 3.3.
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Figure 3.3: A network consisting of a recurrent excitatory population driven by the input popula-
tion H, acting in a feedforward fashion through the synaptic weight wg.

Equation 3.2 now reads
s(I) = ki | Y whni+> wiin, (3.33)
J k

We consider a single input n;C from H, acting on e; through the synapse wg,. We can
implement this by letting wg — wgékk/, so that >, w%nk — wg,nk/. The continuum

limit of the expression for the current from H therefore takes the form

/ddx/wH(x, xNng(x') — /ddx/bH(x)(Sd(x —xX"ng(x) =bg(x)ng(x) (3.34)

The synaptic weight bg(x) is modifiable. In Appendix A, we derive its mean-field equation,

which takes the form

) _

(np(x)  (nEo(X)
ps ps

(np(x))
Ps

- @,sam(x») (3.35)

where 3 is the rate constant for weight changes, pg is the density of synapses at x, and gg

is the state-dependent function:

N k(x)F’
T 1/p — k(x)Fluyg

9B(x) (3.36)

where F' = pf/(a + f), (ngo(x)) is a constant neural activity, wq is the total synaptic
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weight per neuron (see Appendix A), and kg g = L(0) < 0 is a constant derived from the
window function L(At) of spike-time dependent plasticity (STDP) used in [118]. The ratios
(ng(x))/ps, (nEo(x))/ps, (ng(x))/ps have dimension LY, and represent the mean numbers
of spikes in the populations and the target rate. The expression for gp(x) is approximate in
the sense that for values of the rate constant o < [ it requires corrections that are nontrivial
to calculate. However, experimental data suggests this range of values is not common and
most of our simulations in the following sections reflect that.

In Equation 3.35 the synaptic weight by (x) is depressed by an anti-Hebbian mechanism
(K ES < 0), and potentiated by the input activity ng. Such an equation was first introduced
in [118] for a purely feedforward circuit with no loops, and a linear firing rate function f,
in which the synapse was inhibitory rather than excitatory, and Hebbian rather than anti-
Hebbian. The Vogels formulation has an important property: the equation can be shown
to implement gradient descent to find the minimum of an energy function, the effect of
which is to balance incoming excitatory and inhibitory currents to the output neuron. This
E — I balance in neural networks is believed to explain a wide variety of dynamics including
asynchronous network activity (see [112]). Equation 3.35 is an extension of the Vogels
equation to the case of circuits with feedback loops, and a nonlinear firing rate function f,
and incorporates modifiable synapses that are excitatory and anti-Hebbian. In fact, there is
experimental evidence to support both kinds of synapses (see [66] and [54]). It remains to

formulate an action for the master equation that generates this mean-field equation.

3.3.1 Dewveloping an action for synaptic plasticity

To derive an action for synaptic plasticity we follow the same procedure as before. We first
formulate the changes in by as a Markov process with discrete states in continuous time.
We therefore assume that by is quantized in units of synaptic weight, and similarly for bg.
(Note: we could formulate the changes in by as a Markov process with continuous states

and use duality to obtain a bosonic action for a discrete state Markov process [89]. Here we
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proceed in the opposite direction.)
We first introduce bosonic annihilation and creation operators for bg. Let such operators
be denoted by b}k and b;;. respectively, and let |b5€> be a column vector representing the

synaptic weight bg such that
bl bty = ol + 1), ooty = ol - 1) (3.37)

Such operators act on a configuration space built from a null synapse, i.e. a synapse with
weight b{l = 0. Let this be represented, again, by the vacuum vector |0). The configura-
tion space vector |() then ranges from bf,g =0 to bg = (bg)MAX = M; where M; is the
maximum synaptic weight per neuron, which is a limit imposed by the finite surface area of
any individual neuron’s membrane. Let S be the number of (effective) synapses per neuron.
Then

6y = I Ty (") 10) (3.38)

The dual vector ((| can be defined in similar fashion, and a synaptic state vector
0()) =>_ P(GDIO) (3:39)
¢

can be introduced. The rest of the development (almost) completely parallels that for neural
activity introduced earlier.

We next look at the steps necessary to construct a quasi-Hamiltonian for synaptic plas-
ticity. The first thing to do is to model the synaptic state transitions bg +1— bg and
bg — bg +1 as a Markov process. Following the formulation of the neural quasi-Hamiltonian

in Equation 3.22 we construct a provisional synaptic quasi-Hamiltonian in the form

—Hy =Y [A(l — b i + (bl — 1) (3.40)

1
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where A and p are state-dependent rate functions. Comparison with Equation 3.35 indicates

that we require

(ME0; —NE) VH

3.41
PSs Ps ( )

nH’k./
A= 59E,z‘"‘€E,S|W7 1= PB9p,;

to correctly generate the mean-field equation.

Thus, we can write the quasi-Hamiltonian in the form

(nE0: — NE) VH K (

.I.
b.,,—1 3.42
PS PsS ) ( )

: ik!

7

~ nH’k/
—Hy=) {@E,HKE,S\—p . (1- b}mbik/ + B9E.i

We note an important difference between this fIb and the neural quasi-Hamiltonian H,
apart from the fact that they work on different configuration spaces. There is no restricted
occupancy condition in ﬁb, and it is now a simple matter to introduce a coherent state
representation of H p, shift to the density representation and construct the action for synaptic
plasticity S(bg), and take the continuum limit. We refer the reader to Appendix A for the

details. The result is
S(bg) = // %z dt [gHath + 59E”€E,S\%(1 — e )by — Bgp(npo — nE)%(egH -1)| (3.43)
where by — pgby = by (x), a weight density, gp; — gp(x), etc. Using variational tech-
niques we can derive Equation 3.35 from S(bg).

3.4 Combining the actions

It follows from this formulation that the full action for the coupled system of equations for

the evolution of ng and by can be obtained simply by adding the actions S(ng) and S(bg)
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together. The combined action therefore takes the form

S(np.bi) = [ [ da e [fipoump + (- g — (7 = (o n)fls(ug)

~ n _N n
by Dby + ﬁgEmE,s%(l — e by — Bgp(npo — w)ﬁ(e‘m 1) (344)

where the current s(ng) = k(w x ng + bgyd% « ngr). Note that the time scale of the growth
and decay of neural activity is set by the constant «, whereas that of the growth and decay
of synaptic plasticity is set by Sgg, which is both state and position dependent. Thus the

ratio oo/ Bgp is an important parameter.

3.4.1 A simulation of the behavior of the combined mean-field equations

The first variation of Equation 3.44 generates the mean-field equations for np and by in the

form
HOECD) g () + (o~ (G (1))
WD — g (nlo) — (o) — npsloar) P s
where
sp((Ug)) =k (wg *(ng) + (bg)(nm)) (3.46)

These equations can be simulated. The results are shown in Figure 3.4. It will be seen
that in the ‘ground-state’ or DOWN state of low values of N* = n’%, the synaptic weight
by increases until it reaches a critical point (a saddle-node bifurcation), at which point N*
becomes unstable and the system switches to the ‘excited-state’ or UP state. But then the
anti-Hebbian term in the synaptic plasticity dynamics kicks in, and by declines until the
excited-state fixed-point becomes unstable at the upper critical point, (also a saddle-node
bifurcation), and switches back to the ground-state fixed point, following which the hysteresis

cycle starts over. This is an exact representation of the sand-pile model’s behavior. The
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Figure 3.4: Neural state transitions between a ground state and an excited state. Parameter
values: mgp = 3,ng = 3;a = 0.2. N* is the fixed-point value of ng, and W), is the magnitude of
the anti-Hebbian synapse in the input path.
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reader should compare this with the synaptic mechanisms described in [73] and in [78].

3.4.2  Fluctuations around stable and marginally stable fixed points

The mean-field behavior we have described fits the Bak et al setup for achieving SOC very
well. However, such an analysis does not account for the effects of fluctuations. We need the
stochastic formulation for such a project. There are two situations to consider: (a) when the
fixed point values N* of the neural activity are stable, and (b) when N* becomes marginally
stable. In case (a) we can use the van Kampen system-size expansion [116] to develop a
linear Fokker-Planck equation, and its associated linear Langevin equation to describe the
fluctuations about N*. The reader is referred to [11] for an example of such a treatment in

a network comprising coupled excitatory and inhibitory neurons.

3.4.3 Renormalizing the neural action

Case (b) requires a renormalization group treatment. All the details of such a treatment are
described in Appendix A. We first renormalize the neural action given in Equation 3.44 in
the case where the external stimulus ng = 0, so that the resulting spontaneous activity is
driven only by internal fluctuations.

The result is

S(SE)://dd:Edt [§E(at+ME—DEV2)$E+UE§E(SE—§E)SE (3.47)

This action is well-known: it is called Reggeon field theory, and is found in directed perco-
lation (DP) in random graphs, in contact processes, in high-energy nuclear physics, and in
bacterial colonies, all of which exhibit the characteristic properties of what is called a wuni-
versality class, a group of mathematical models in which only certain dynamical details of
the system become relevant as a specific scaling limit is reached. It also shows up in branch-

ing and annihilating random walks, catalytic reactions, and interacting particles. Thus, we
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have mapped the mathematics of large-scale neural activity in a single homogeneous neural
population into a percolation problem in random graphs, or equivalently into a branching
and annihilating random walk. A first version of this work was presented in [19]. A more
extensive paper with many applications to neuroscience was presented in [20].

Note that s and sp are scaled versions of ng and ng, where the latter is no longer
interpreted to be the density of activated neurons at a given location, but the fluctuation in
np about the mean value (ng) = ng ¢, as detailed in Appendix A.2.

It is also important to note that in DP there are essentially two stable states separated
by a marginally stable critical point. One of these states is an absorbing state, corresponding
to a neural population state in which all neurons are quiescent, (n) = 0 (e.g. they are all
subject to an inhibitory or hyperpolarizing current), or a sub-threshold excitatory current.
The other state is one in which many of the neurons are activated, so that (n) # 0, i.e.
the order parameter is close to zero in the lower stable state, and is non-zero in the upper
stable state. At a critical point (corresponding to a saddle-node bifurcation in the mean-
field analysis), the lower state with (n) = 0 becomes marginally stable, and so is driven by
fluctuations into the upper stable state.

Here, we note that there is an upper critical dimension at which directed percolation
crosses over to mean-field behavior. This upper critical dimension is d = 4. What is the
dimension of the neocortex? To answer this question we note that the neocortex can be

unfolded and flattened into a slab with the dimensions 1 m x 1 m x 3 mm = 3 x 105 mm?.

01 neurons in the neocortex, their packing density is

Since there are an estimated 1 x 1
p = 3.33x10* mm™3. It has been estimated that there are about 4 x 103 synaptic contacts
per neuron [105]. Since about 50 — 100 such contacts belong to a single axon, the number of
neighbors per neuron is about 40 — 200. Nevertheless, the essential physical property of the
neocortex is that it is two-dimensional. Thus, the critical exponents characterizing the neural

phase transition are the d = 2 exponents of directed percolation. These appear in the linear

response of the neocortical model to an impulsive stimulus, known to mathematicians as the
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Green’s function and to physicists as the propagator, and can be calculated. Following [1],

2], and [6], this takes the general form

2
Glat) I | Bt ) (3.18)

where z = x9—x1,t = to—t1, p = pg, and v, n, and z are critical exponents that depend only
on the dimension d. ® is a universal scaling function that takes on various forms depending
on whether p is greater than or less than p = 0, the critical value.

When the network is subcritical (u > 0),
/
G(:c,t) ~ g2tfd/2e(fx2/4oz t—At) (349)

1
where A ~ |p|",oz/ = [p "D and g2 ~ |p*(29E"D=1) We can also calculate the
susceptibility, given by

X = //ddx dt G(z,t) ~ |p|™7 (3.50)

where v = v(1 4 7).

When the network is supercritical (¢ < 0),
Gz, t) ~ M*0(vt — |x|) (3.51)

where M ~ |u|?, v ~ |,u|V(1_%Z), and = %V(%dz —mn). O(x) is the Heaviside step function.

When the network is critical (u = 0),
Gz, t) = =GN [D, (22 /12) + O] (3.52)

where A is another critical exponent which describes the approach to scaling [47] and &,
is a scaling function calculated using a one-loop approximation. (For more details, see

3], [27], [80], and [56].)
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3.4.4 Renormalizing the driven neural action

We now assume that ng(x,t) # 0, so that the function sg now takes the form

s(ng,ny) = /{;(LnE—i-bH?;—H) (3.53)
S

The extra term in the current s(ng,ng) adds extra terms to the neural action. However,
we show in Appendix A that all but one of the additional terms do not survive the renor-
malization group process, so that the renormalized action for this case takes the simpler

form

S(SE,SH) Z//ddx dt[gE(at—l—ME—DEV2)8E+UE§E(SE—§E)SE—|—UE§ESHmH] (3.54)

where myy is a scaled version of ng.

We see that the additional term acts as a source to drive the dynamics away from the
absorbing state np = 0. However, we assume that ny is small in our network, so that the
lowest value reached is ng ~ 0. In other words, the character of the neural activity remains

close to DP.

3.4.5 Renormalizing the synaptic plasticity action

In similar fashion the action for neural plasticity given in Equation 3.43 can be renormalized.

The result derived in Appendix A is:

S(sg) = //ddiv dt [§HatSH+uH§H$HmH+UH§H(SE—SE,O)mH} (3.55)

The result indicates that the renormalized synaptic weight fluctuation sz is driven by
my and depresses or potentiates, depending on the sign of the renormalized neural activity
term s —sp o. By itself, this behavior suggests that the fixed points of sp oscillate between

an upper and a lower state.
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3.4.6 Renormalizing the combined action

Renormalization of the combined action is now simple. We just add together the renormal-

ized actions for the driven neural action and the synaptic plasticity. The result is

S(sg,sH) = // Az dt[5p(O + pp — DEV?)sp +upip(sp — 3p)sp + vpspsgmy

+ugdgoisg +ugSgsgpmy +vpSa(sE — $g.0)MH] (3.56)

We note that the last term acts as a source or sink term for sz, depending on the sign of

sg — Sg,0- 1t is not clear how this term affects the nature of the fluctuations in sp.

3.5 Simulating the effects of fluctuations

In order to gain some insight into the behavior of the network dynamics beyond the mean-field
regime, we simulated the full system of coupled stochastic equations for a two-dimensional
network comprising 60 x 60 excitatory neurons connected with nearest neighbor connections
and toroidal boundary conditions, with each neuron receiving current pulses from all four
neighbors, and also from an external cell through a modifiable synapse with weight function
wir(x,%x') = bpd?(x — x') such that [ d% wg o by.

The simulations were run using the Gillespie algorithm for Markov processes (see [11]).
The results are shown in Figure 3.5. It will be seen that the population behavior shown in
panel (A) replicates qualitatively that shown in the phase-plane of Figure 3.4, and that the
mean synpatic weight shows the oscillation-like character of the activity. Panel (B) shows
the burst or avalanche-size distributions of the underlying spiking activity. Note that the
fluctuations in spiking activity about the lower nullcline, or 'DOWN?’ state, show a power-
law distribution with a slope of about -1.51, whereas those about the higher nullcline, or
"UP’ state, also show a power-law distribution with a slope of about -1.31. This property is
not seen in studies of the behavior of stochastic Wilson-Cowan equations for coupled £ — I

networks with fixed synpases, reported in [11], in which the 'DOWN? state shows power-law
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statistics, and the "UP’ state shows Poisson statistics. This is just the opposite of the results
reported in [73] and [78], in which the "UP’ states show power-law behavior, and "DOWN’

states show Poisson behavior.
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Figure 3.5: Neural state transitions between a ground state and an excited state in a two-
dimensional network of 60 x 60 excitatory neurons with nearest neighbor connections. (A) Popula-
tion activity and mean synaptic weight as a function of time. Activity levels display cyclic behavior,
oscillating between "UP’ and 'DOWN” states. (B) Avalanche distribution of 'DOWN’ states (black
dots) and "UP’ states (blue dots). Parameter values: kg g = —0.001, ngo = 0.2, wg =4, o = 0.2,
B =0.002, gg =1, and Iry = 1. f(z) is the function introduced in Figure 3.2.

However, we note that the results of this simulation differ in certain respects from those
obtained by Gil and Sornette [48]. In their paper, they introduced simulations performed
with a choice of time constants corresponding to the ratios oo/ = 0.01 and 100. Both sim-
ulations produced similar power-laws for small avalanche sizes, but the latter also produced
an isolated large system-size avalanche, 1.25 orders of magnitude greater than the smaller
avalanches. In the simulation considered here, the ratio used is a/(Sgg) = 100. The result
we find is that there are two branches of power-law distributed avalanches, corresponding
to the "UP” and 'DOWN’ mean-field states. The 'UP’ avalanches are approximately three

orders of magnitude greater than the 'DOWN’ ones.
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3.6 Excitatory and inhibitory neural network dynamics

Now that we have studied the case of network of excitatory neurons, we need to introduce
inhibitory neurons, given that about 20% of all neurons in the neocortex are inhibitory and
that the effect of such inhibition greatly changes the nature of neocortical dynamics. Thus,
we now investigate a coupled F — I network as seen in Figure 3.6. We need to generalize the
excitatory master equation, Equation 3.4 to include inhibitory neurons. This can be done
and the result is the master equation

dP(nEv nr, t)

dt = ag [(TLE' + 1)P<nE + lvnIat) - 7’LEP<TLE,TLI,t)]

+ [(Ng —ng+ D) felsp(ng — Lng)|P(ng —1,n7,t)
— (Ng —ng)fplsp(ng, np)lP(ng,ny, t)]

+ arlnf+1)Png,nr+1,t) —nrP(ng,ny,t)]

+ [(Nf—nr+1Dfrlsiing,nr — 1)|P(ng,ny — 1,1)

— (Np=np)frlsiing,np)P(ng,ny,t)] (3.57)

See [11] for a derivation of this equation.
From this, following the same steps that were used to derive Equation 3.5, it is easy to

find the mean-field £ — I equations, which take the form

W = —ag(np) + (Ng = (np(0) /e (sp(np))]
d<nét(t)> = —ar(ng(@®)) + (Np = (ng () f1 [(s1(np))] (3.58)

where (sp(ng)) = (Up)/Irm, (Ip) = wpp{np)—wer{nn)+wepa(nm), (s1(nr)) = () /Iru,
and (I7) = wrp(ng)—wrr(nr)+wrg(ng). These are the familiar mean-field Wilson-Cowan

equations we've seen in Chapter 2 and derived in [126] and [125].
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3.7 An E — I neural network exhibiting self-organized near

criticality

We now directly study the neural patch or module shown in in Figure 3.6. Again we note that
this module is spatially homogeneous. We model the neocortical sheet as a two-dimensional
network or array of such circuits. In such an array, note that the neighboring excitation
provides the recurrent excitatory connection. This requires ,uf = 1/4, so that the recurrent
excitatory connection shown in Figure 3.6 (not labeled) has strength wgg. The recurrent
inhibitory connection (also unlabeled) takes the value wyj. The basic equations for the array
thus take the form of Equations 3.57 and 3.58, except that the activities ng and nj are now
functions of position, as are the excitatory and inhibitory currents /g and [ ZI which are given
by the expressions
ZwEE E BT BRI B T TH
where ; runs over all nearest neighbor patches.
Note also that the density of inter-patch £ — I, I — FE, and intra-patch I — I con-

nections is very small relative to that of £ — E connections, so we have neglected them in

calculating the excitatory and inhibitory currents I ZE and [ ZI :

3.7.1 Modifiable synapses

We now introduce generalized Vogels’ equations, the derivation of which follow the same

steps as for the E network discussed earlier, for the four internal synaptic weights in each

patch, wEE ,wZIZE , W EI and w . The excitatory synapses wy;

EE 1E

and w;;~ are assumed to be

E

anti-Hebbian, and the inhibitory synapses wj; I and w I' Hebbian. Mean field equations for
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Figure 3.6: A recurrent E-I network module driven by the input H, acting through the synaptic
weight wpy and wry.

these weights take the form:

d(w®P)

a Ao — Hap <w045> (3.59)

where a and 3 run over the set {E, '}, and the coefficients A\, g and 1, g give the transitions

rates for the Markov processes governing the four weights. These take the form

n
Mo = Bpganaong: Hap = Bega (=g + |kp,sl) i (3.60)
for the excitatory anti-Hebbian weights, and
a0
Mol = Brganans a1 = Brga (—ag + K1) ni (3.61)
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for the inhibitory Hebbian weights. Note that for such weights kg ¢ < 0 and r; g > 0,

respectively. In the continuum limit these equations take the form

d<wad1«;(x)>  Bpga(x) ((na(x»p;na,o()c) N !KE,5|<waE(X)>> % (3.62)
for excitatory weights, and
or) _ g, o (<na<x>>p; raol) ) 126 5.63)

for inhibitory weights.

3.7.2 A simulation of the combined mean field E — I equations

The complete set of mean field equations for an F—1I patch with modifiable weights comprises
the Wilson-Cowan equations together with the generalized Vogels equations 3.62 and 3.63,
supplemented by the modified current equations given above, for the full two-dimensional
array. Such a system of equations can be simulated, and the results are shown in Figure 3.7.
It will be seen that a single patch self-organizes from one stable fixed point defined by the
initial conditions to another stable fixed point at which ng = ng g, n; = ny as expected.
Hence, the activity has reached its target rates. We note that in the case the initial conditions
are constrained so that wpp = wip = wgp and wgy = wyr = wy, and all the fixed parameters
of the E population equal those of the I population, then the final state is also similarly
constrained. We refer to this as a symmetry of the system. Given such a symmetry and the

target condition ng o = ny it follows that wg —wy — 0, so that

wy) =wg —wy < wg +wy

Thus the combined system is homeostatic. It self-organizes so that the strengths of all

the synaptic weights stay with a certain range. The homeostatic properties of anti-Hebbian
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L L
0.9 1

Figure 3.7: E — I phase plane and null clines of the mean-field Wilson-Cowan equations. The
intersections of the two null clines in each panel are equilibrium or fixed points of the equations.
The upper left panel shows the initial state at t = 0 s with weights wgpgp = 36, wrg = 25, wgr = 22,
and wry = 33. There is a stable fixed point at ng ~ 0.9, n;y ~ 0.7. The upper right panel
shows the state at ¢t = 1.25 x 10° s with weights wgpp = 20.05, wrp = 20.17, wgr = 24.78, and
wrr = 30.45. There is now a saddle-point at ng = 0.2, n; ~ 0.2. The lower left panel shows the
state at t = 2.5 x 10° s with weights wprp = 16.09, wrgp = 18.63, wgy = 18.72,and wy; = 24.86, and
a saddle point at ng ~ 0.6, n; ~ 0.6. The lower right panel shows the final state at t = 1 x 10° s
with weights wggp = 11.80, w;g = 15.63, wgr = 13.22, and w;; = 20.83, with a stable fixed point
at ngp = 0.3, ny = 0.3. The remaining fixed parameters are wgyg = wrg =0, Bg = 1, and 57 = 1.5.
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synapses were previously noted by [95].

3.8 Discussion

We have demonstrated the following properties of stochastic Wilson-Cowan equations: (a)
a simple two-dimensional array comprising patches of excitatory neurons driven by a weak
external stimulus acting through a modifiable anti-Hebbian synapse self-organizes into an
oscillation between two stable states, an UP state of high neural activity, and a DOWN state
of low activity, each of which loses its stability at the critical point of a non-equilibrium phase
transition in the universality class of directed percolation. Such noisy oscillations generate
bursts or avalanches of neural activity whose avalanche distributions are consistent with
such a phase transition. (b) We then analyzed the properties of a array comprising patches
of both excitatory and inhibitory neurons, with excitatory anti-Hebbian, and inhibitory
Hebbian synapses. We found that the spontaneous fluctuation driven activity of a single
patch self-organizes to a weakly stable fixed point. However such a fixed point lies close to
a marginally stable fixed point. Thus we conclude that the effect of Hebbian inhibition is to
stabilize the dynamics of the patch, but that the statistical dynamics of the patch remains
within the fluctuation driven regime surrounding the critical point of a non-equilibrium
phase transition, which again is in the universality class of directed percolation. In the
future, we would like to write a paper containing a detailed analysis of this situation using
renormalization group techniques, along the lines of Téuber’s analysis of stochastic Lotka-
Volterra equations. (c¢) We have also seen, as explained in Chapter 2, that the mean-field
dynamics of an E/I network can be analyzed around the Bogdanov-Takens bifurcation, and
that the generalized Vogel’s equations for Hebbian and anti-Hebbian plasticity drive the
patch dynamics to a weakly stable node near such a bifurcation, and in doing so reduce the
E/I dynamics to the E dynamics of a single E patch.

In summary, we conclude that an array of E-patches will self-organize around critical

points of the directed percolation phase transition, and when driven by a weak stimulus
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will oscillate between an UP state and a DOWN state each of which generates avalanches
consistent with directed percolation. The array therefore exhibits self-organized criticality
and replicates the behavior of the original sandpile model of [8]. We also can conclude
that an array of £//I patches will also self-organize to a weakly stable node located near the
critical point of a directed percolation phase transition, so that fluctuations about the weakly
stable node will also follow a power slope with a slope characteristic of directed percolation.
We refer to this as self-organized near criticality. We note that there is some experimental
evidence to support this conclusion such as [53] and [106]. Lastly, it should be said that if
the conclusions mentioned above are correct, it indicates that the approach we have outlined
in this chapter may prove to be of some value in the analysis of stochastic effects in neural

networks.
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CHAPTER 4
MODELING FOCAL EPILEPTIC ACTIVITY IN THE
WILSON-COWAN MODEL WITH DEPOLARIZATION BLOCK

4.1 Introduction

Epilepsy is a neurological disease characterized by recurrent spontaneous seizures, i.e. episodes
of unstable, abnormal excessive brain activity. Although epilepsy is one of the most preva-
lent neural diseases, affecting about 1% of the world population, the mechanisms governing
seizure activity are not well understood and consequently treatment is unsuccessful for a
significant fraction (33%) of patients [71]. According to the clinical classification, epilepsy
is a heterogeneous disease [13]. In spite of this heterogeneity in the pathology, there is also
commonality between different seizure events suggesting that a variety of mechanisms may
lead to a final common process, the seizure, [63]. For example, in studies of brain slices it
was demonstrated that seizure-like activity is characterized by spatial propagation, defined
as failure of an inhibitory veto in neocortex, [111], or failure of a dentate gate function in case
of hippocampal driven events, [107]. This shows that, in addition to a temporal evolution of
a developing seizure, its spatial component at this mesoscopic level may be critically impor-
tant. In fact, recently described microelectrode array recordings in patients with epilepsy
confirmed that propagation of neural activity occurs at a spatial scale below the size of a con-
ventional cortical or scalp electroencephalogram (EEG) electrode, [96]. At the microscopic
level, intracellular measurements in human brain slices during evoked seizure activity show
that neurons go into a depolarization block, i.e. they saturate, e.g. [75]. A recent report, [4],
describes an important role of the depolarization block in inhibitory cells in human cortical
areas where seizures propagate, leading to the failed inhibition scenario described by, [111].
In addition, it can be expected that under these high levels of activity, synaptic resources
deplete, also contributing to a saturation effect. These data indicate that during high levels

of seizure activity, hyperactive neurons may operate close to what can be described as an
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upper-threshold of its input-output relationship. Such an epileptiform state would be in
contrast to normal physiological operation of neuronal networks where the neurons operate
around a lower activation threshold.

The goal of this chapter is to examine focal seizures propagating in cortex employing a
modeling approach that includes details of the network under the EEG electrode. The tissue
under the EEG electrode can be modeled by coupled neuronal populations. (see [37], [125],
and [126].) Each population consists of an excitatory and inhibitory component. Many
previous experimental, [59], and theoretical studies, such as [45], [91], and [125], have shown
that disinhibition can lead to traveling wave activity via blocking inhibition, assuming no
synaptic inhibition or including a non-specific afferent affecting the inhibitory current. An
important component in these studies is the sigmoidal activation function that describes
the nonlinear relationship between the population’s input current reflected partially in the
local field potential (LFP) and its output firing rate. In this study, motivated by neuronal
saturation, we modified the equations to include a Gaussian firing rate function to reflect
an upper-threshold phenomenon specific to the epileptiform network state. In Section 2,
we present experimental evidence that such a function exists during seizures in the human
cortex, and we incorporate this into the existing Wilson-Cowan formalism. In Section 3, we
investigate the introduction of a new activation function from a theoretical point of view
and then discuss the network and report simulation results showing the effect of the altered
activation function on the dynamics. In Section 4, we discuss the relevance of our new

findings to our understanding of seizure propagation.

4.2 Experimental observations

4.2.1 Observations during human seizures

Both in vitro and in vivo electrophysiologic measurements suggest using an alternative to

the commonly employed sigmoidal activation function in the Wilson-Cowan equations, [126]
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and [125], in our seizure model. One experimental component supporting this alternative
function stems from single cell recordings obtained from human brain tissue resected from
patients with drug-resistant epilepsy. During evoked seizures in cortical slices prepared from
this brain tissue, single neurons show a strong paroxysmal depolarization, indicating an arrest
of neuronal firing after high-level synaptic input exceeds an (upper-)threshold. (see [75] for
details.)

A technique, recently approved for use in humans, allows application of micro-electrode
recordings, during seizure activity, [96]. Study participants consisted of adults with pharmaco-
resistant focal epilepsy who underwent chronic invasive EEG studies to help identify the
epileptogenic zone for subsequent removal. A 96, 4 mm x 4 mm, micro-electrode array (also
known as Utah array) was implanted along with subdural electrodes with the goal of record-
ing from seizure onset sites; see Figure 4.1A. The study was approved by the Institutional
Review Board of the Columbia University Medical Center, and informed consent was ob-
tained from each patient prior to implantation. Signals from the microelectrode array were
acquired continuously at 30 kHz per channel (0.3 Hz-7.5 kHz bandpass, 16-bit precision,
range + 8 mV). The reference was either subdural or epidural, chosen dynamically based
on recording quality. See also [96] for details of study enrollment, surgical procedures and
signal recording.

The signals in Figure 4.1B were recorded from a single microelectrode around seizure
onset in a patient with intractable epilepsy. This in vivo recording shows the local field
potential (LFP) that represents the weighted space-averaged electrical activity surrounding
the electrode. The broadband signal from the microelectrode can be filtered to examine its
low frequency component (L-LFP, 2-50 Hz) as well as the multi-unit spike activity (300-
3000 Hz). We have examined the relationship between L-LFP and spike activity to study
the population’s activation function. An index of the overall activity (firing rate index,
FRI) was obtained by rectifying and integrating the spike traces (Figure 4.1B, two bottom

traces), [114]. The leaky integrator’s time constant employed here is 50 ms, which was chosen
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because it is close to the time constant of a cortical pyramidal cell, [104]. We found that dur-
ing seizure activity in focal areas where seizures are initiated, a plot of the FRI versus L-LFP
is not a standard sigmoidal relationship, but rather is a mixture of sigmoid and Gaussian
with a clear maximum, see Figure 4.1C. To interpret this relationship properly, it should be
noted that by convention, the L-LFP polarity is reversed, i.e. negative, relative to intracel-
lular depolarization (positive). This relationship reflects contributions from inhibitory and
excitatory neurons. We assume the small inhibitory cells are saturated at high L-LFP levels
which would explain the maximum.

The comparison between activation function and spike activity versus L-LFP is an ap-
proximation, based on a number of assumptions. First, the L-LFP is generated by multiple
types of cellular current, [25]. However, it is reasonable to assume that during the high-
levels of activity during seizures, the synaptic component will be the principal contributor.
(see [64], [96], and [111].) In addition, a significant part of the non-synaptic sources of the
L-LFP will be proportional to synaptic activity. In this context, it should be noted that
such a relationship between synaptic activity and field potential has been the basis of many
models of the electroencephalogram (EEG) as well, e.g. [87]. Next, we use the spike signal as
a metric for network output while the multi-unit spike activity in a micro-electrode recording
contains both input as well as output spikes of the local population. This is plausible since,
due to geometry, the probability of picking up an output spike from an active neuron is
much higher than recording from a thin afferent axon. Furthermore, if we assume the input
spikes are proportional to the synaptic potentials they generate, they could only destroy the
Gaussian-like result that we obtained in Figure 4.1C. Another significant fact is that we only
found Gaussian-like functions as in Figure 4.1C within the epileptic core and not outside
that area. This suggests that (inhibitory) cells reach depolarization block only within the
core. Thus, although the relationship between L-LFP and multi-unit activity is not an exact

measure of the population’s activation function, it is a reasonable proxy for it.
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Figure 4.1: Experimental data supporting the use of a Gaussian population response function
during human seizure activity. A: Recording setup depicting the multi-electrode array situated in
between the standard electrocorticography electrodes numbered 22, 23, 30, and 31. B: Example
recordings of the low frequency component of the local field potential (2-50Hz, L-LFP, upper trace),
the rectified signal filtered for spikes (300-3000Hz, middle trace), and the integrated version thereof,
using a leaky integrator with a 50ms time constant (bottom trace) generating a firing rate index
(FRI) for the multi-unit spike activity. The relationship between L-LFP and FRI is plotted in
panel C; the error bars indicate SEM values.

4.2.2  Behauvior of single cells during seizures and in biophysically plausible

models

The activation function turns synaptic activity into a population firing rate, and is therefore
also referred to as the firing rate function. Cells within a population have a slightly different
firing threshold. In this simplified approach, we assume that the number of spikes does not
depend on the input current, i.e. each cell has a Heaviside firing function. Summing all in-
dividual contributions, the jitter in thresholds leads to a sigmoidal function, see Figure 4.2.
In this regard, neurons do not only have a minimal value for the input current to spike, but

also a maximal value where the membrane potential experiences a depolarization block. See,

72



for instance, a dynamical systems explanation in [60], where it is called excitation block.
Likewise, the precise critical value for the block will differ from cell to cell. Hence, for every
cell, there is a finite range of input currents that results in spikes. Summing over the whole
population leads to a Gaussian population activation function. This fundamental reason-
ing, based on the observation that the depolarization block occurring during evoked seizures
represents an upper-threshold for neuronal firing, also supports replacing a sigmoidal non-
linearity by a Gaussian-like activation function. There is some early work, [102], supporting
such a procedure.

The range of thresholds differs between cell types. For example, due to differences in
the size, inhibitory neurons are activated by relatively small depolarizing inputs, whereas
larger pyramidal neurons have a higher threshold. As inhibitory neurons are smaller, they
have a propensity to reach depolarization block earlier than larger excitatory neurons during

seizure activity. This is reflected in our choice of thresholds Ejy, Iy and standard deviations

Egq, I, see also Figure 4.2.
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Input Current Input Current J
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Population FRF
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Figure 4.2: Constructing sigmoidal and Gaussian firing rate functions. Left: Heterogeneity in firing
onset for individual cells leads to a sigmoidal population activation function. Middle: Including
the effect of heterogeneous thresholds for depolarization block leads to a population activation
function with a maximum. Right: The activation functions used in this chapter: Gaussian (solid)
and sigmoid (dashed) for excitatory (blue) and inhibitory (black) populations.

We noted above that there is a range of thresholds associated with both the excitatory
and inhibitory populations. In the first Wilson-Cowan paper, it was assumed that these
threshold distributions were either Poisson-like, or Gaussian. It then followed that the
integrals of such curves would lead to an expression for the firing rate curves as the fraction

of neurons receiving at least threshold excitation. In the distributions cited above, both
73



integrals give rise to sigmoidal firing rate curves. Within this approach, it follows that a
legitimate way of deriving a non-monotonic firing rate curve involves an additional threshold

mechanism to express the effects of depolarization block.

4.3 Modeling epileptiform activity

4.3.1 Theory of population activation functions

As mentioned in the Section 1, the canonical population models, the Wilson-Cowan equa-
tions, [125] and [126], were introduced as a way to describe the activity of interacting isotropic
excitatory and inhibitory neuronal populations. Ignoring space, which can easily be put back
into the formalism, their dynamical behavior is captured by the variables E(t) and I(t), the
proportion of excitatory or inhibitory cells firing per unit time at time t, where single neu-
rons are active above a threshold, #. In [126], they derive the following set of coupled

integro-differential equations:

t t

E(t")dt']Se( / alt —t") (1 BE(t') — coI (') + P('))dt) (4.1)

—00

E(t+r)—[1—/

t—r

I(t+T’):[1—/t

t—r

t

1(¢)dt')Se( / alt — ) (e E() — el () + QU)d)  (4.2)

—0oQ

where 7 is a time increment, the first term on the right represents the number of non-
refractory neurons and the second is the proportion of neurons receiving at least threshold
input (the integrands) per unit time i.e. the population response or activation function. The

second term can be written as:

#(t)
S(a(t)) = /_ DO (4.3)

where z(t) is the total input to a population (assuming all neurons receive on average the

same excitation and inhibition) and D(#) is the probability distribution function of the lone
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threshold, assumed to be Gaussian as the law of large numbers predicts. Clearly, S(z(t)) will
be a monotonically increasing function on the interval [0, 1] with an inflection point at 6 if
D(#) is unimodal (S”(0) = D'(6) = 0). In other words, S(z) is the cumulative distribution
function of D(#) i.e. S(x) = P(0 < x).

Now let us consider the situation where single neurons have two thresholds, one for
activation (1) and one for deactivation (f9) where 0y > 1. Figure 4.3 illustrates a single
neuron with this consideration. If, again, we assume that neuronal thresholds are stochastic
variables with probability distribution functions D1 (6) and Dy(f) (examples in Figure 4.4),
each threshold has an associated cumulative distribution, S1(z(t)) and So(z(t)), respectively.

See Figure 4.5.
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1.0
0.8
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Figure 4.3: An example neuron with activation and deactivation thresholds given by 67 = 10 and
Ao = 15, respectively.

However, due to the deactivation threshold, we must redefine the population response
function, S(z(t)), to be the proportion of cells which receive at least activation input but
less than deactivation input. In terms of probabilities, we have S(z(t)) = P(01 < z(t) < 03).
Thus, our redefined response function is no longer a cumulative distribution function. Also,
it is clear that S(z(t)) has a global maximum. We can see this by noting that S(—o0) =

S(oo) = 0 and S(z(t)) > 0 for some 07 < z(t) < Oy because of the nature of probability
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Figure 4.4: Example distribution functions of activation (left) and deactivation (right) thresholds,
respectively. Note that these have not been normalized.

distribution functions. This condition holds with no knowledge of the statistical dependence

of the thresholds. If we restrict the two thresholds to be independent, it follows that:

S(x) = P(91 <z< 92) = P(@l < .T)P(QQ > .CE) = P(@l < 33)(1 — P((92 < :13))

~
=

_ (/j:) Dy (0)d6) (1~ _i(o Ds(8)d0) = S (x)(1 = Ss()) > 0

S'(z) = Di(z)(1 - Sa(x)) — Si(x)Da(x)

§"(x) = Dj(a)(1 ~ Sa(x)) - S (x)Dy(x) — 2D, (x) Da(z)

Figure 4.6 shows examples of Sy (x), 1—S5(z) and S(z). If we also assume neuronal thresholds

are approximately Gaussian-distributed, which the law of large numbers predicts, with equal

variances (as in Figure 4.4), D;(0) = \/#76_(9_91')2/202,&@) = %(1 + erf(::/%l)), S(x)

has a single maximum near x = (61 + 62)/2 and inflection points near 1 and 6. Thus, it is
reasonable to model the Wilson-Cowan equations with the same integro-differential equations
where the only replacement is now that Se(z(t)) and S;(z(t)) are Gaussians (green curve in
Figure 4.6). It should be noted that this approximation breaks down if the two thresholds

are spaced far apart.
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Figure 4.5: Threshold activation (left) and deactivation (right) curves. The former is the CDF of
D1(0) and the latter is the survival function of Dy(#).
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Figure 4.6: Threshold activation (blue) and deactivation (yellow) curves and redefined population
response function (green). The first is the CDF of D;(#), the second is the survival function of

D5(#), and the third is their product.
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4.3.2  Network details

Since we have motivated the use of a Gaussian activation function, in order to understand
epileptiform wave dynamics, we consider a spatially-extended model where E(y,t) and I(y,t)
represent the activity of our excitatory and inhibitory populations, y € [0,L] and L =

1000 um. See Figure 4.7. Using the same form as in [125], we have

TEE(y,t) = —E(y,1t) + (1 - E(y.))Sp(JE(y, 1)),
1y, t) = —1(y,t) + (1 = I(y,1)S1(J1(y. 1)),

Se(p(0.0) = exp (- (ZE4E)) —onp (- (22)°).

sd
S1(Jr(y.1)) = exp | — (—Jl(yjstc)l_"@f) — exp (— (}ﬁ)Q) ’ (4.4)

Tp(y,t) = Ap Jy (wEEe‘y_ZVUEEE(ZJ) - w1E€|y_Z|/UIEI(Z>t)> dz + B(y, 1),

Jr(y.t) = Ar i <wE1€|y_ZVUEIE(ZJ) - wai'y_Z'/””f(Z,t)) dz,

where wpg = 2.0, wigp = 1.65, wgr = 1.5, wyy = 0.01, ogp = 70 ym, oyp = 90 pm,
opr = 90 pym, ory = 70 pum, Ey = 18, Egy = 6.7, Iy = 10, I3 = 3.2 and the only
replacement is that Sp and S; are non-normalized Gaussian functions. When comparing
these results to ones with a sigmoid firing function, we make the following replacements:
Eg=1241, Byg =2, Iy = 7.33 and I4y = 0.95. These parameters are similar to the neural
mass model used above, but scaled as we do not have normalized connectivity weights due to
the finite domain. In this setup, tissue near the boundary receives less input. Furthermore,
we set the densities of excitatory or inhibitory neurons in homogeneous and isotropic tissue
as \p = A\; = 1 pm™!. The input B(y,t) consists of a constant background of 1 and a 100

pm wide, 10 ms square-wave pulse with amplitude 10.

4.3.8  Simulation of network

Now, we simulate the model mentioned in the previous section. The results are found in

Figure 4.8. On the top row, the network with a sigmoid firing rate function produces transient
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Figure 4.7: Overview of the network under consideration. All excitatory and inhibitory popula-
tions are connected but the synaptic strengths are modulated by distance and a particular space
constants. Excitatory connections are solid lines and inhibitory connections are dashed lines.

behavior but no traveling pulse. With the introduction of a Gaussian activation function, we
see, in the middle and bottom rows, a propagating wave. Here, we can clearly see activity
originating in the middle, where the stimulation occurs, and propagating to the edges. The
main takeaway point from this is that the excitatory activity (blue) has provided sufficient
input to the inhibitory neurons, which have a smaller activation threshold, to drive them
into depolarization block and, thus, the inhibitory activity (red) is not strong enough to
keep the activity localized as seen by the spreading behavior. This is why, in the middle and
bottoms rows of Figure 4.8, whenever excitation is large, inhibition is small and the activity
moves outward.

Thus, we may conclude that our formalism provides a mechanism for dynamic disinhibi-
tion arising from depolarization block which the sigmoid firing rate function cannot reproduce
without including additional variables. Another thing to notice is that, while the input is
only to the excitatory neurons here, the excitatory pulse of excitation lags behind inhibi-
tion, a finding consistent with detailed recordings of epileptiform activity, [4]. It should be
mentioned as well that we have found similar behavior when both kinds of neurons receive
the same input. Lastly, in [96], the speed of the wave was estimated around 0.8 mm/s. We
varied the strength of the excitatory coupling to match the wave speed in the model with
this experimental value.

It should be mentioned that a full bifurcation analysis is possible on the space-clamped
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Figure 4.8: Propagation. Top row: Excitatory (blue) and inhibitory (red) activity with sigmoidal
population activation function. Activity is extinguished by 100 ms. No propagation is present.
Middle row: Population activities with Gaussian firing rate function. Here, a traveling wave pulse
forms and begins to propagate. Bottom row: same as middle but at later times. The traveling wave
continues to propagate until it dies at the boundary. The wavespeed is approximately 1 mm/sec.
Parameters are the same in each plot.

model, [77]. In that paper, we show from investigating the nullcline structure of the modified
Wilson-Cowan equations that the new activation function introduces, an additional stable
equilibrium with high excitatory and low inhibitory activity. An analysis of coupled local
populations reveals that this high excitatory, low inhibitory state can spread or remain
localized. Whenever a traveling wave is produced, the inhibitory wave of activity always
precedes an excitatory one, which is consistent with the spatially-extended model found

above and with experimental findings.

4.4 Discussion

In this chapter, we have investigated the dynamics of a neural network governed by the
Wilson-Cowan equations. In particular, motivated by experimental and theoretical means,
we have chosen to use a Gaussian activation function, rather than the default sigmoid.
We have mentioned the existence of an additional high excitatory steady state due to the
Gaussian and noted its consequences for network dynamics. Many of the other attractors

in this system have been discussed in earlier studies such as [16] and [17]. With multiple
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local populations connected, the high activity provided strong drive to the surrounding
populations resulting in breather-like dynamics. Beyond critical parameter values of which
there are too many to write down, the activity could spread through the whole network.

The Gaussian activation function was motivated by observations of ictal activity recorded
using a Utah array. An experimental activation function could be determined using the low-
frequency component of the LFP as a measure of synaptic input, and the high-frequency
component as spike output. For some cases this showed a nonmonotonic relationship sug-
gesting the choice of a Gaussian over a sigmoid. This relationship reflects multiple sources
and also represents inhibitory and excitatory cells. As cortical networks consist of 80% large
excitatory neurons and 20% small inhibitory interneurons, one would interpret the graph in
Figure 4.1C as predominantly originating from the excitatory population. Also, the experi-
mental curve in Figure 4.1C suggests that, beyond the maximum, a plateau is reached. One
possibility is that some of the large excitatory cells still exhibit a sigmoidal relationship at
these high L-LFP levels. Then, it is not unreasonable to assume that inhibitory cells exhibit
depolarization block even earlier. For simplicity, we have modeled the activation functions
for both populations as a Gaussian which approaches zero for high input, but the input may
not even achieve such levels. Indeed, in our simulations the external input strength never
went beyond the maximum for Sg, however the duration of the stimulus allowed the total
input to reach above this maximum. If not for this, introducing the new firing function would
have served no purpose. We then found that, for a suitable choice of model parameters, there
is an additional stable equilibrium with high excitatory and low inhibitory activity. This
steady state coexists with the typical low activity equilibrium and oscillations as discussed
in [125] and [126]. For this equilibrium to exist, the precise form of the activation function is
not important as long as the inhibitory firing rate function has a maximum and then drops
sufficiently for high input, e.g. due to depolarization block.

The network dynamics seen here are consistent with the recent proposal that an epilep-

tic focus consists of a core and penumbra, [111]. The border of the core has a lot of spike
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activity, whereas the surrounding has less spiking activity. On the other hand, LFP record-
ings representing synaptic activity, show the reverse situation with high amplitude signals
in the penumbra and low amplitudes in the core. In addition, recent experimental record-
ings of seizures showed that spikes from inhibitory cells were nearly absent, but still many
spikes from excitatory cells were observed, [4]. If the core receives high levels of input with
relatively little fluctuations, so that the LFP with the DC-offset filtered away shows little
signal, the inhibitory cells may actually experience a depolarization block. Subsequently,
the inhibitory neurons can no longer veto ongoing epileptiform activity similar to observa-
tions in experimental seizures, [111]. In our model, we find large model-EEG signals in the
penumbra (where the spreading waveforms are located) and much smaller in the core (the
region inside the traveling waves). Hence, our model supports the idea of core and penumbra
of an epileptic focus with different levels of activity corresponding to large and small LFP
amplitudes. Recent work by Jirsa, [63], argues that the DC component during a seizure is
quite different from normal conditions yet we have only shown data from within the core.
We have examined the activity of areas with less activity, but the dynamic range was so
small that we could not interpret this data. Hence, it would be interesting to determine, in
another way, the activation functions outside the areas with epileptiform activity.

In our spatially continuous model, we showed that such a seizure can spread as a traveling
front where inhibition is leading, see Figure 4.8. In contrast, the recording in Figure 4.1A
has been considered in a recent modeling paper, [122], using the same Wilson-Cowan model
and a sigmoidal firing rate function. In that study, a parameter change was needed to
decrease inhibition, whereas our use of a Gaussian firing rate function leads dynamically
to decreased inhibition. Also, their simulations suggest excitatory activity is leading at the
front. In contrast, our simulations agree with the identification of the inhibitory spikes
at the front. (see [4] and [111].) There is also an experimental seizure model where a
subset of the inhibitory cells enter depolarization block during epileptiform activity, [128].

Such experimentally well-controlled settings might allow the observation of distinct neural
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populations during propagating seizures. In our model, the activity settles to the high steady
state at the rear of the traveling front. A different dynamical mechanism for the propagation
of epileptiform activity has been considered in [101], similarly modeled as in [122]. Their
epileptiform activity invades surrounding tissue also as a traveling wave front, with multiple
pulses emitted from a spatially homogeneously oscillating core. This oscillating core expands
slower than the front. In this chapter we focus on the front, but it would be interesting to
consider the rear of the front in future work. We note that we only simulated our spatially
continous model using insights from coupled populations. By approximating the activation
function as a product of Heaviside-step functions, i.e. a blockpulse, we expect that it is
possible to find implicit equations for the various phases of the travelling wave and the speed,
using techniques as in [91]. This could elucidate the range of thresholds for depolarization
block where our traveling pulse exists.

We do not attempt to argue that our model describes transitions between normal and ictal
activity. As in many other modeling studies there can be exogeneous parameter transitions
causing these changes. (see [86], [115], and [124]). The most influential parameters are the
background input strength and duration and the local connections such as wgy. Various
other parameters also play a role but these main ones are certainly interesting to investigate

for further study.
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CHAPTER 5
CONCLUSION

5.1 Summary of findings

In this study, we analyzed a multitude of spatiotemporal properties which all shed light on
the dynamics of large-scale brain activity with a focus on how they maintain stability in
the networks under consideration. The two models used were the mean-field deterministic
population equations from Wilson and Cowan ([125], [126], and [36]) and the 2-state Markov
process of single neurons and synapses ([34] and [35]). While the two models have a com-
pletely different fundamental basis, both were able to yield results without any contradiction.

In Chapter 2, based on [11] and [120], we introduced, and investigated the underlying
principles behind both models and then studied generic population dynamics in neocortical
activity. In particular, the stochastic model was able to reproduce much of the data, specif-
ically random bursting in the form of avalanches, behind spontaneous or resting activity.
With this model, we were also able to find pair-correlations for resting activity whose ampli-
tudes decayed with distance in a manner consistent with experimental data. Additionally,
this model found that pair-correlations for stimulated activity also decayed with distance
but at a much faster rate. Again, the falloff was consistent with experimental findings. The
last piece of this study showed that the mean-field deterministic model could account for
the qualitative change in behavior when an external stimulus drives a 1-dimensional line of
neurons. We found that for weak stimuli, damped traveling waves are seen and for strong
stimuli, no spreading dynamics occur. Additionally, the damped traveling waves propagated
with a speed in the neighborhood of what data suggests. This contrast in behavior is par-
ticularly useful for the neocortex’s abillity to maintain stability with respect to an external
stimulus because neuronal activity never explodes in an unstable manner. Of course, extreme
activity patterns such as seizures do exist in animals and human beings, but the mechanism

of generation is not expected to be due just to external inputs.
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After studying the general population responses during resting and driven activity, in
Chapter 3, we analyzed the statistical properties of two simple neural networks when the
synaptic connections were plastic. The plasticity model based on [118] was first rederived
in the case of a single anti-Hebbian excitatory synapse with nonlinear neurons between
excitatory populations, one of which had a recurrent pathway. The result of this synpatic
plasticity was to introduce a control parameter into the Wilson-Cowan (order parameter)
equations, which combined with the external E-population, provided all of the necessary
ingredients for self-organized criticality. With the help of the Gillespie algorithm, we found
power-law avalanche statistics in both UP and DOWN states of the network, confirming
our hypothesis that this network has the ability to self-organize around a critical point.
Afterwards, the plasticity model was generalized to include a second anti-Hebbian excitatory
synapse and two Hebbian inhibitory synapses in a full Wilson-Cowan E — I network where
all of the connections are plastic. Interestingly, when these conditions are met, the plasticity
forces the system towards a marginally stable fixed point, which a previous study, [11],
showed was near a critical point. Thus, the & — I network combined with our plasticity
model did not exhibit self-organized criticality. Instead, it showed signs of what we coined,
self-organized near-criticality, a term of considerable theoretical interest in the neuroscience
community recently. Both properties, SOC and SONC, of dynamical systems have important
consequences, which were discussed in the chaper and will be elaborated on in the section
that follows, for the stability of neural networks.

Finally, we studied the case of an unstable neural network in the form of focal epilepsy.
This required us, based on detailed electrophysiological recordings, to modify the Wilson-
Cowan equations to include a second neuronal threshold. This upper threshold gives us a
theoretical mechanism to model saturation in neurons, which we explain is the underlying
basis for how a seizure begins i.e. the traveling wave begins when inhibitory neurons in the
core saturate. One of the outstanding results of this work was the generation of epileptiform

activity where a wave of inhibition spreads outward before an excitation one, which we mo-
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tivated earlier with experimental data. This finding cannot be reproduced with the standard
Wilson-Cowan firing functions because of the properties of monotonically increasing func-
tions; recall that the sigmoid belongs to this class of functions. However, the introduction
of a recovery variable or threshold adaption may be a way to generate results consistent
with experimental data and a monotonic activation function. Our work in Chapter 4 natu-
rally has extensions to non-seizure-like traveling waves that experiments have detected and

theoretical neuroscientists have studied for the past few decades.

5.2 Future directions

Science is a never-ending search for knowledge and, by this point, it should be clear that
more work needs to be done. Because our computational power continues to grow, it is
becoming easier and easier to simulate more realistic neural networks. However, we feel that
the immediate focus on the results mentioned in parts of this work needs to be theoretical. In
particular, a mathematical analysis showing that the spatially inhomogenous Wilson-Cowan
equations support damped traveling waves is of great importance. This is by no means a
simple task considering the complex nature of integro-differential equations. However, if we
could show a one-to-one correspondence between the Wilson-Cowan equations and another
set of differential equations which have analytic solutions in the form of damped traveling
waves, then that should be enough to prove the simulated results found in Chapter 2. Of
course, a bifurcation analysis is also needed to interpret the change in behavior between
transient responses and spreading dynamics seen in this thesis and experiments. The problem
will not be solved until both of those are completed as well as an understanding of how these
modes serve in the overall functioning of the neocortex. This last part will involve delving
into much more experimental data.

With regard to self-organized criticality and near-criticality, the obvious next step is to
build up the network until it becomes completely plastic, more realistic, and shows additional

behavior consistent with critical dynamics. Clearly, the simple £ — E and E — I networks
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studied in Chapter 3 are not true representations of actual neural networks. At the very least,
the network should ultimately carry the same complexity as the canonical Douglas-Martin
microcircuit, [41]. Making all of the connections plastic will require a lot more computational
power because the number of Markov particles will be on the order of N2, where N is the
number of neurons in the network, for all-to-all connectivity. Some of this worry, however,
could be assuaged by introducing a cutoff for the connectivity, for example, by utilizing
nearest-neighbor connections. Additionally, a significant way to strengthen the argument
for self-organized criticality would be to measure the correlation length and susceptibility
since both are measures which are infinite at a critical point. It would be very interesting
to build a realistic network, compute these for some realistic set of parameters, measure
those statistical quantities, and compare them to data. If theory matches experiment, we
would have something very significant to say about the computational power, information
transmission and processing, and stability of the neocortex.

There is also additional work that must be done for the study of epileptic waves. Not only
did we focus solely on the formation of seizure activity, but we only investigated focal epilepsy.
The natural next move would be to look at these traveling waves as they move over large
distances. The dynamics of spreading behavior here is much different than when the wave
forms because the process is different. The beginning of the seizure is characterized by local
inhibitory neurons reaching depolarization block but after the wave disperses outward, local
effects in the core no longer dominate the system. Of course, how the epileptic waves cease to
exist is also of great importance and remains an unanswered question. It is entirely possible
that the mechanism is completely different than for both the spreading and dampening
of seizure-like activity, but we believe that all three can be explained using the modified
Wilson-Cowan equations introduced in Chapter 4. Because epilepsy is a prime example
of the nervous system’s loss of stability, it is so important to understand. Other types of
epilepsy such as generalized epilepsy (where the whole brain seizes) are additional future

avenues to be studied in the field. Lastly, the redefinition of the firing function has many
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further directions. It remains to be seen if the results mentioned in Chapter 2 and Chapter 5
are congruous but initial evidence suggests they are. If supplementary, more conclusive, tests
show this too, we will have produced a biophysically-justified model that fits data ranging

from tens of neurons all the way to millions of neurons.
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APPENDIX A
APPENDIX TO CHAPTER 3
A.1 Deriving the synaptic plasticity update equation

In order to derive a mean-field update rule, we begin with the same energy function as

in [118], but include an extra nonlinear term (gg) in the potential

1 ) 1 . )

V(wy ;) = 5 < (po— np(t))” >t —5kE.SIEE N (W ; (A1)
and so
d¥(wy ;) ngp 1 IE « _ 2 _
o, = — < po—ng(t) > 5 ’j_§“E,SW}LJ_E]’”H,]’(t)wH,j_“E,SgEEj”H,j(t>wH,j

(A.2)
where the minus sign in the potential comes from the fact that kg ¢ < 0 for anti-Hebbian
synapses. If we can solve for gg, then our plasticity update equation will be given by gradient
descent just as in [118]. Now, we make the assumption that neural dynamics are much faster

than plasticity changes so that (using the notation in Equation 3.32)

8<n>_ *_ /Of([> _
T—O—)<n>—rf([)—pF[avpaﬂ (A.3)

where [ is the current to the E population. Because plasticity effects still occur, they slowly

move the fixed point. Hence,

10 <n>* 7 0 <n>* )_>(3<n>* F' (A4)
—_— = wy)—m—m88 n f— n .
p Owg 0 owg H owg 1/p— Flwg a

F’ d<n>* 99p

Thus, gg = = gpny and to leading order = g% + ... and we can

/p—Fwy * Oug dw

now use gradient descent to find the weight update equation, noting that we switch notation
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from < n >* to ng. From gradient descent, it follows that

dej d\If(ij)
) )Y A5
dt T dwy (4-5)

1 2 - P _
= Tnl<po—np(t) >t ggng; + SFE.SIEENA,j (Owi; + kEs9pXing j(Hwg ;]

Because gp is a small term, the middle term can be neglected and the result is a learning

rule given by
dw H.,j

e —ngg(ne(t) — po — KE SWH ;)N H, (A.6)

where 7 is the learning rule rate. Note that here I have neglected some of the density terms

but placed them in the update equation found in Chapter 3.

A.2 Expanding the weighting function

We can approximate the convolution operator as the truncation of an expansion in the

moments
Ui = /ddxmkw(x) (A.7)
S0
_ d,.) N 1 2 —
Wk = dxw(x—x)rvwo—kgwgv +---=1L (A.8)
where
b
w(x) = w(r) = —de_r/a, o=rg (A.9)
o
and

_ _ . dr(d) _ o dD(d+2)
wy = /ddx w(x) = bmﬁdﬂ, wo = /ddx 2% w(x) = bazmﬁd/Q

(A.10)
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A.3 Renormalizing the neural action

We expand ng about its mean value (ng) = ng 1, which satisfies Equation 3.32 in the form

ong.q = —ang . + (p — ng.a) fs(nga)] (A.11)

where

s(ng 1) = k(wxng o + by x Ny 1) (A.12)

Thus, np — ng + nga, g — ng, since g = 0. So, s(ng) — s(ng + ngq) and
fls(ng)] — fls(ng +ngq)]. If follows that s(ng +ng ) = k(wx (np+nga) +bg* (g +
NHel)) = k(w*ng g +bg xnp o) + k(wxn+ by xng)) = s(ng ) + s(ng), and therefore
fls(ng)] = fls(ngqa) + s(ng)]. We next expand f[s(ng)] in a Taylor expansion about the
mean-field value ng (1, noting that from Equation A.8, s(ng) = k(w*ng + by xny))) =
k(Lng +bg *npg)).

In what immediately follows, we assume that the external stimulus ng(x,t) = 0. It

follows that

fls(np)] = flkL(ng,q +ng) = flkLnga) + fYkLogalklng

b oSO al(kLng)? +-- (A1)

However, because of normal ordering, Equation A.13 leads to the expression

()
fls(ng)] = ng(kLnE)m, where gy, = Z fTSl,m (A.14)

l=m

Since the leading terms of g, are proportional to f (m), and given the assumed form for
f[s(n)] to be such that f(l) > 0 and f(z) < 0, then g, > 0 for m odd, and ¢, < 0 for m

even.
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In similar fashion, we expand the function ng f[s(ng)] as

()
ngfls(ng)] = gls(ng)] = th(kLnE)m, where hy, = Z gl—!shm (A.15)

l=m

But, we note that since g(l) = d(l)g/ds(l), g(l) = lf(l_l) + f(l) so that hy, = gm + gl,, where

gvln = Z (l — 1>!5l,m (A'16)

so we have

where k = (kL)™!, = p —k, and
dl(s(np)] =) g'mkLnp)™ (A.18)

We also expand the functions exp(+ng). The resulting action S(ng) takes the form

. _ L. _ ~
Sty = [ [ taa |50+ a - gikLing - S+ by + gl (L))

I
AL (A.19)

where Gim = pgm — kg’ ),

It follows that for functions ng(x,t) that vary slowly in space %w2v2n £ is small com-
pared to wong, so that in most expressions the terms proportional to V2mn7]751 can be ne-
glected. However this is not always the case for m = 1. Thus the first term can be written
approximately as ng(0 + a — grkwy + %glkaVQ)nE = g0 + pp — DEV?)ng where

wg =a— gikwg and Dp = %glkwg.
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Therefore, the expression for the action is now reduced to the form

S(ng) = //dd:cdt [ﬁE(at +up — DEVing — n%Ging + npGon +%ﬁ%G2n% e

(A.20)
where G1 = %(a + grkwg), Go = |§2|k:2w(2). We need to demonstrate that the last term
in S(ng), ie., %ﬁ%GQﬂ%, and all higher order terms, are irrelevant in the sense of the
renormalization group.

The renormalization group (RG) analysis is carried out via dimensional analysis. It
can be shown that all the terms in S(ng) are zero-dimensional when integrated over d-
dimensional space and over time, i.e., [d% dt] = L™(4%2) and (any term in the integrand)
— L92 However, as it stands [ng] = L%, but [ag] = LY, so that [agng] = LOtd = L4,

This is not suitable for the scaling analysis implemented in the RG process. We therefore

SE_H_nEa SE:“g—inE (A.Ql)

such that sgsg = ngng where [G2/G1] = L™ @ The effect of this scaling is that both SE

introduce a new scaling,

and sp have dimension L2 Let

VGG =up (A.22)

The net effect of this scaling transformation is that

S(SE)—//ddxdt [§E(at+uE—DEV2)8E+UE§E(SE—§E)SE+"'] (A.23)

The constants of all higher-order terms all have dimensions such that the dimension of their
ratio to the coupling constant u scales as L‘ﬂd, where 5 > 0, so they become irrelevant as

L — oo. It follows that
S(SE) = //ddxdt [§E(8t + UE — DEVQ)SE + uEféE(sE — gE)SE (A24)
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is the renormalized action of the large-scale neural activity of a single neural population.

A.4 Renormalizing the synaptic plasticity action

We now proceed to renormalize the action S(bg) just as we renormalized S(ng). We there-

fore expand the exponential term in Equation 3.44 and rewrite S(bg) in the form:

- - I —_—
S(by) = // d%xdt {bHath + Hibgbgng — §H1b%{anH
~ n 9 N
+Ha(ng — ”E,O)bH£ + Ha(np — nE,O)bili] (A.25)

where H1 = Byg|sg sl/psg, and Hy = Bgp.

We now introduce the scaling

2
S = EbH, S = FQbH (A.26)

such that s = byybyy, and [H1/H>s| = L~ This scaling is analogous to the scaling of n
and 1 which we carried out earlier for neural activities. As before, the effect of this scaling
is that both s and spg have dimension L2,

Let

VHHy =uy, Hp=2ry (A.27)

and recall that Equation A.21 scales ng to /G1/Gasg.
Following the procedure outlined earlier we can calculate which terms in the transformed
action S(sg) become irrelevant under scaling transformations. The resulting renormalized

synaptic plasticity action takes the form:

S(SH) = //ddl'dt [gHatSH + quHSHmH + UH(SE — SE,O)gHmH} (A28)
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where

GIHQ /Hl
d — - A.29
VH = > ps an mpg ng ( )

so that vy has the same scaling dimension as ugy.

A.5 Renormalizing the driven neural action

We now assume that ng(x,t) # 0, so that the function sg now takes the form
s(ng,ng) = k(LnE—i-bHZ—H) (A.30)
S

It follows that the function (p —n)f[s(ng, ng)] can now be expanded in the normal ordered

form

(0= m)flsnp.ng)] = 3 gm (<kLnE>m ; <kaZ—f;>m) FhakLngby "L o (A3

where hy = pf (2), The effect of this is to generate additional terms in the neural action. We
therefore expand Equation A.31 and retain only the first few terms because all the terms
which give rise to 4-vertices or higher will not survive the renormalization group procedure.

(see [109]) The extra terms we include in the action are
- 1. _ n _ n . n
(g + 57ip) (guka—H) — |g2|(kby —)% - \h2|<kLnEka—H>) (A.32)
PS Ps PS

However, only the term nggikbgng/pg survives the RG process as vgSgpsgmpy, where vg

is a constant with the same scaling dimension as vy and up.
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A.6 Renormalizing the combined action

To renormalize the combined action is now simple, we simple add together the renormalized

actions for the driven neural action, and that for synaptic plasticity. The result is

S(sg,sH) = // dxdt 550 + pp — DEV?)sp +upip(sp — 3g)sp

+vpdpsgmy +3goisy +ugSgsymy +vu(sp — spo)Sgpmy] (A.33)

where up,vp and ugr, vy are renormalized constants, all with the scaling dimension L2-d/2,
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APPENDIX B
MATLAB CODE FOR SIMULATIONS

B.1 Code used in Chapter 2 and 4

B.1.1  Simulation of traveling waves using spatial WC' equations

$Simulations of spatiotemporal Wilson-Cowan equations
clear all

%close all

$for y=1:100

$for z=1:10

$Parameter settings
Swee=2.0;wie=1.65;wei=1.5;wii=.01;

$see=70;s1e=90;s5e1=90;s11i=70;

c=1;d=1;
%$a=10;

Swee=16*c;wie=14.675+xd;wei=37+d;wii=3*c; $%$%DWPs
wee=16+c;wie=91xd;wei=27+d;wii=20xc;
see=2.5;sie=2.7;sei=2.7;s51i=2.5; $%%$sei>see
$betakE=1;betal=1;tauk=1;taul=3.22; %$%DWPs
betakE=1.1;betal=1.1;taukE=0.1;taul=0.18;
alphak=1.5;alphal=1;

akE=1.2;al=1;

thetaE=2.6;thetal=8;

inputstrength=1.2%8;%+2.5% (z-1)/9;
E_t=4.9105;E_sd=2.775182; I_t=10.77258872; I_sd=3.3302184463;

$ E_t=18;E_sd=45;1I_t=10;I_sd=10;
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%$Spatial discretization of connectivity using trapezoidal rule
L=100;N=101;dx=L/ (N-1);
WEE=nan (N) ; WEI=nan (N); WIE=nan (N) ;WII=nan (N) ;
for i=1:N
SW70(:,1) = exp(—abs (dx* ((1:N)=-1))/70) xdx;
SWI0 (:,1) = exp(—abs (dxx ((1:N)-i))/90) «dx;
SW70(:,1) = exp(—-abs(dx* ((1:N)-1))/2.100)+dx/2.100;
SWO0 (:,1) = exp(—abs (dx*((1:N)-1i))/2.5)xdx/2.5;
SWEE (:,1) = abs (dx* ((1:N)-1i)+a).*exp(—abs (dx* ((1:N)—-1i)) /see)
% *dx/ (2xaxsee+2xsee” 2xexp (-a/see));
WEE (:,1i) = exp(—abs(dxx ((1:N)-1i))/see)xdx/ (2xsee);
WEI(:,1) = exp(—abs (dx*((1:N)-1i))/sei)*dx/ (2*sei);
WIE (:,1) = exp(-abs(dx*((1:N)-1))/sie)*dx/ (2*sie);
WII(:,1) = exp(—abs (dx*((1:N)-1i))/sii)*dx/(2*sii);
end
WEE (:, [1 end])=WEE(:, [1 end])/2;
WEI(:,[1 end])=WEI(:,[1 end])/2;
WIE(:, [1 end])=WIE(:, [1 end])/2;

WII(:,[1 end])=WII(:,[1l end])/2;

%$Initialize and simulate using Forward-Euler
M=281;dt=.01;% simulation time is Mxdt;
E=zeros (N,M) ; I=zeros (N, M) ;
maxwave=zeros (1,M); maxwaveindex=zeros (1, M) ;
maxwaveintime=zeros (N, 1) ;maxwaveindexintime=zeros (N, 1) ;
%$Enoise=zeros (N,M); Inoise=zeros (N, M) ;
$for k=1:25
% E(k,1)=0;
% E(50+k,1)=0;
% I(k,1)=0;
% I(k+50,1)=0;
%end
$IL=ceil (1/dx); IR=floor (5/dx);
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for i=2:M
B=zeros (N, 1);
if (i<55)

B(45:55)=B(45:55) +inputstrength;

o

<

[al
Il

weexW70+xE (:,1-1)-wiexW90+I (:,1i-1)+B;

$JI = wel+«WO0xE (:,1-1)-widi«W70+xI(:,1-1);

$JE = wee+«WEE*E (:,1-1)-0.2+«wie+«WIE*I (:,i-1)+B+0.0;%+1.5;%+B;
$JEnoise=awgn (JE, 80) ;

$Ecurr=JE+JEnoise;

$JI = wel+«WEIE (:,i-1)-0.2+wii WIIxI(:,1i-1)+B+0.0;%+0;%+B;
%$JInoise=awgn (JI, 80);

$Icurr=JI+JInoise;

JE=weexWEE*E (:,i-1) +B;

JEnoise=awgn (JE, 80) ;

JI = -0.2+wii+«WIIxI(:,1i-1)+B;

JInoise=awgn (JI, 80);

$Gaussian
$FE = exp (- ((JEnoise-E_t)/E_sd)."2)-exp(-((-E_t)/E_sd)."2);
$FI = exp(—((JInoise-I_t)/I_sd)."2);%—exp(—((-I_t)/I_sd)."2);
$FE=max (0,FE) ; FI=max (0,FI);
$Sigmoid
$FE=1./ (1l+exp (- (JE-12.41)/2))-1./ (1+exp(12.41/2));
$FI=1./(l+exp (- (JI-7.33)/.95))-1./(1+exp(7.33/.95));
SFE=1./ (1l+exp(-1.3* (JE-4)));%-1./ (1l+exp(1.3%4)); %% Decaying wave
$parameters (DWPs)

SEFI=1./(l+exp (=1%x(JI-10)));%-1./(1l+exp(2x3.7)); %% DWPs

99



FE=1./(l+exp (-aE* (JEnoise-thetaE)))-1./ (1l+exp (aExthetak));
FI=1./(l+exp(-al* (JInoise-thetal)));%-1./(l+exp(1%8));

FE=max (0,FE) ;FI=max (0,FI);

$FEnoise=1./ (l+exp (—aE* (Ecurr—thetak)))-1./ (1l+exp (aExthetak));
$FInoise=1./(l+exp (-al* (Icurr—thetal)));%-1./(l+exp(al+rthetal));

$FEnoise=max (0, FEnoise) ;FInoise=max (0,FInoise);

E(:,1i)= E(:,1-1)+dt* (- (alphakE+E(:,1-1))+(1-E(:,1-1)) .*betaE.*FE) /tauk;

I(:,1)= I(:,1i-1)+dt*(-(alphal*I(:,i-1))+(1-I(:,1-1)).xbetal.*FI)/taul;

$E(:,1)= E(:,1i-1)+dt* (- (alphaExE(:,1-1))+betakE.«FE)/tauk; %%No 1-E

$I(:,1)= I(:,1-1)+dtx(-(alphal+I(:,i-1))+betal.*FI)/taul; %%No 1-1I

$Enoise(:,1)= Enoise(:,i-1)+dt* (- (1.5+xEnoise(:,1-1))

% +(1-Enoise(:,1-1)) .*betaE.*FEnoise) /tauk;
$Inoise(:,1)= Inoise(:,1i-1)+dtx (- (1l*Inoise(:,i-1))

% +(1-Inoise(:,1-1)) .*betal.*FInoise)/taul;

[maxwave (1,1),maxwaveindex (l,1i) ]=max(E(:,1)-I(:,1));
end
for j=1:N
[maxwaveintime (j, 1) ,maxwaveindexintime (j,1) ]=max(E(j, :)-I(J,:));

end

$figure(l); imagesc(E-I);

%$%%%FOR E AND I SIM

$figure(l);

$for i=1:3:M;pause(0.05);plot (dxx (0:N-1),E(:,1)+I(:,1),

$dx+maxwaveindex (1,1),maxwave (1,1), 'r—--o',dx* (0:N-1) ,E(:,1),dxx(0:N-1),

o\

I(:,1));ylim([-0.1 1.0]);x1im ([0 L]);drawnow;
$str=sprintf ('Time= %g',1);
$title(str)
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%$end; %pause (0.001);

$figure(2);

$for i=1:3:M;pause (0.05);plot (dx* (0:N-1),E(:,1),dx*x(0:N-1),I(:,1));
Sylim([-0.1 1.0]);x1im([0 L]);drawnow;

$str=sprintf ('Time= %g',1);

stitle(str)

%$end; %pause (0.001);

figure (3);

subplot (2,2,1)

plot (dx% (0:N-1),E(:,5));ylim([-0.1 0.5]);x1im ([0 LJ]);
subplot (2,2, 2)

plot (dx* (0:N-1),E(:,40));ylim([-0.1 0.5]);x1im ([0 LJ]);
subplot (2,2, 3)

plot (dx*(0:N-1),E(:,80));ylim([-0.1 0.5]);x1im ([0 LJ]);
subplot (2,2, 4)

plot (dxx (0:N-1),E(:,120));ylim([-0.1 0.5]);x1im ([0 L]);

figure (4);

subplot (2,2,1)

plot (dx (0:N-1),I(:,20));ylim([-0.1 0.5]);x1im ([0 L]);
subplot (2,2,2)

plot (dxx (0:N-1),I(:,40));ylim([-0.1 0.5]);x1lim ([0 LJ]);
subplot (2,2, 3)

plot (dx* (0:N-1),I(:,80));ylim([-0.1 0.5]);x1im ([0 L]);
subplot (2,2,4)

plot (dxx (0:N-1),I(:,120));ylim([-0.1 0.5]);x1im([0 L]);

$figure(3);
$for i=1:3:M;pause(0.05);plot (dx%x(0:N-1),I(:,1));ylim([-0.1 1.0]);
$x1im ([0 L]);drawnow;

$str=sprintf ('Time= %g',1);
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$title(str)

%$end; %pause (0.001);

%globalmax=max (maxwave) ;
sn=20;

$figure (2) ;plot (dx* (0:N-1),E(:,n)-I(:,n),dx+maxwaveindex(l,n),maxwave(l,n),

% 'b——0"',dx*x (0:N-1),E(:,n+5)-I(:,n+5),dx+ maxwaveindex (1, n+5),
% maxwave (1,n+5), 'g--o',dx* (0:N-1) ,E(:,n+10)-I(:,n+10),

o\

dx+*maxwaveindex (1, n+10) ,maxwave (1,n+10), 'r——o',dx* (0:N-1),

o

E(:,n+15)-I(:,n+15),dx*maxwaveindex (1, n+15), maxwave (1,n+15),

o\

'c——o0',dx* (0:N-1),E(:,n+20)-I(:,n+20),dx+ maxwaveindex (1, n+20),

% maxwave (1,n+20), 'm——o"',dx* (0:N-1),E(:,n+25)-I(:,n+25),

o\

dx*maxwaveindex (1,n+25),maxwave (1,n+25), 'y—--o',dx* (0:N-1),

o\

E(:,n+30)-I(:,n+30),dx+maxwaveindex (1,n+30),maxwave (1,n+30),

o\

'k——0',dx* (0:N-1) ,E(:,n+35)-I(:,n+35),dx+ maxwaveindex (1, n+35),

o\

maxwave (1, n+35), '"b--o',dx* (0:N-1),E (:,n+40)-I(:,n+40),

% dx*maxwaveindex (1,n+40),maxwave (1,n+40), 'g-——0o');x1lim([50 75]);

o\°

ylim ([0 0.57])

o

figure (2);plot (dx* (0:N-1), (E(:,n)+I(:,n))./maxwave,dx+maxwaveindex (1,n),

o\

maxwave (1,n), '"b——o0"',dx* (0:N-1), (E(:,n+5)+I(:,n+5)) ./maxwave,

o\

dx*maxwaveindex (1,n+5),maxwave (1,n+5), 'g-—-o',dx» (0:N-1),

o\

(E(:,n+10)+I(:,n+10)) ./maxwave,dxxmaxwaveindex (1,n+9),

o\

maxwave (1,n+10), '"r--o',dx* (0:N-1),

% (E(:,n+15)+I(:,n+15)) ./maxwave, dx*rmaxwaveindex (1,n+15),

o\

maxwave (1,n+15),'c——o"',dx* (0:N-1),

o

(E(:,n+20)+I(:,n+20)) ./maxwave, dxrmaxwaveindex (1,n+20),

o\

maxwave (1, n+20), 'm—o"',dx* (0:N-1),

o\

(E(:,n+25)+I(:,n+25)) ./maxwave, dxrmaxwaveindex (1,n+25),

o\°

maxwave (1,n+25), 'y—-—-o',dx* (0:N-1),

o

(E(:,n+30)+I(:,n+30)) ./maxwave,dx*xmaxwaveindex (1,n+30),

% maxwave (1, n+30), 'k——o"',dx* (0:N-1),

o\

(E(:,n+35)+I(:,n+35))./maxwave,dx+maxwaveindex (1,n+35),

o\

maxwave (1,n+35), 'b——0o"',dx* (0:N-1),
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% (E(:,n+40)+I(:,n+40)) ./maxwave, dxrmaxwaveindex (1,n+40),
% maxwave (1,n+40), 'g-—-0o"');
$1=100;

$figure (3) ;plot (dt*(0:M-1),E (1, :)-I(1l,:),dt* (maxwaveindexintime(l,1)),

% maxwaveintime(l,1), 'b——o',dtx (0:M-1),E (1+5, :)-I(1+5,:),
% dt*maxwaveindexintime (1+5,1),maxwaveintime (1+5,1), 'g--0o',

o\

dt*(0:M-1),E(1+10, :)-I(1+10,:),

o

dt* (maxwaveindexintime (1+10,1)-1),maxwaveintime (1+10,1),

o\

'r—-o0',dt*x(0:M-1),E (1+15, :)-I(1+15,:),

o

dt*maxwaveindexintime (1+15, 1), maxwaveintime (1+15,1), 'c——0"',

o\

dt* (0:M-1),E(1+20, :)-I(1+20, :),dtrmaxwaveindexintime (1+20,1),

% maxwaveintime (1+20,1), 'm——o',dt* (0:M-1),E (1+25, :)-I(1+25,:),

o\°

dt*maxwaveindexintime (1+25,1) ,maxwaveintime (1+25,1), 'y—-0o',

o\

dt+x(0:M-1),E(1+30, :)-I(1+30, :),dt+rmaxwaveindexintime (1+30,1),

o\

maxwaveintime (1+30,1), 'k——0o',dt* (0:M-1),E (1+35, :)-I(1+35,:),

o\

dt*maxwaveindexintime (1+35, 1), maxwaveintime (1+35,1), 'b——0"',

% dt* (0:M-1) ,E(1+40, :)-I(1+40, :),dtrmaxwaveindexintime (1+40,1),
% maxwaveintime (1+40,1), 'g--0o");x1im([15+xdt (M*dt) /2]1);
% $ylim([-0.1 0.5])

Sexpf=fit ( (dx*maxwaveindex (1,55:85))"',

% (maxwave (1,55:85) /globalmax) ', 'expl');

$figure (3) ;plot (expf, dx*maxwaveindex (1,55:2:80),

% maxwave (1,55:2:85) /globalmax, 'predobs') ;

Sexpf=fit ( (dx*maxwaveindex (1,40:185))",

% (maxwave (1,40:185) /globalmax) ', "expl")

$figure (4) ;plot (expf, dx*maxwaveindex(1,40:185),

% maxwave (1,40:185) /globalmax, '"predobs"');%$x1im([55 65])
$max (dx+rmaxwaveindex (1,40:M))

$linff=fit ( (dx*maxwaveindex (1,55:85))"',

% (maxwave (1,55:85) /globalmax) ', '"polyl');

$figure (4) ;plot (dx+maxwaveindex (1,15:2:65),maxwave (1,15:2:65) /globalmax,
% 'd', '"MarkerFaceColor', 'b', '"MarkerSize',4);x1im([45 55])
$linf=fit ( (dx*maxwaveindex(1,40:185))"', (dt*(40:185)) "', 'polyl")
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$figure (5);plot (linf,dx*maxwaveindex (1,40:185),dtx(40:185), '"predobs"');
$x1im([55 65])
$figure (5);plot (dxrmaxwaveindex (1,40:2:105),dt~ (40:2:105),'d",

% 'MarkerFaceColor', 'b', '"MarkerSize',4);x1im([45 557)

$figure (2);for i=1:3:M; pause(0.05);plot (dx* (0:N-1),E(:,i1)+I(:,1));
% ylim([-0.25 1.0]);x1im ([0 L]);drawnow;end;

$figure (2);for i=1:3:M; pause(0.02);plot (dx*(0:N-1),E(:,i),dx*(0:N-1),

% I(:,1),dx%x(0:N-1), (E(:,1)+I(:,1)));ylim([-0.25 1.01);
% x1im ([0 L]);drawnow;end;

$figure (2);for i=1:3:M; pause(0.02);plot (dx*(0:N-1),E(:,i),dx*(0:N-1),

% Enoise(:,1),dxx(0:N-1),I(:,1i),dx*(0:N-1),Inoise(:,1i),
% dx* (0:N-1), (E(:,1)+I(:,1)));ylim([-0.25 1.0]);
% x1lim ([0 L]);drawnow;end;

[

% Correlation across distance plots
$reference=(N-1)/2;

$for i=1:20

% correlations=corrcoef ( (E(reference,15:M)+I (reference,15:M)) "',
% (E (reference+3+1i,15:M)+I (reference+3+1i,15:M)) ");
% corrcoefs (i, z)=correlations(1,2); $%column needs to be z

o\

$if running many times

o\
o\

distance (i, z)=dx*1i; $column needs to be z
%$%if running many times

%end

$corrlinfit=fit (distance', corrcoefs', 'polyl');
$figure(1ll);hold;plot (corrlinfit,distance, corrcoefs);ylim([0 1]);

$x1im ([0 207)

$figure (11l);hold;plot (distance,corrcoefs, '-o', 'MarkerFaceColor', [0 O 0]);
Sylim ([0 17])

$end
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$figure(l); for i=1:3:M; pause(0.05);plot (dxx (0:N-1),E(:,1)+I(:,1),
% dxxmaxwaveindex (1l,1i),maxwave(l,1i),'r--o');ylim([-0.1 2.071);

% x1im ([0 L]);drawnow;end; %pause(0.001);

$meancorrcoefs=mean (corrcoefs, 2);

$figure (20) ;hold on;

$c={[0 0 11,'g','r','k','y','c','m", [.5 .6 .6],[.5 .6 .81,[.5 .6 11};
$for ii=l:z

S plot (distance(:,1ii),corrcoefs(:,ii), 'color',C{ii}, 'marker', 'o");
% ylim ([0 17])

send

$legend ({'0'; "'y 2.5

$plot (distance (:, z) ,meancorrcoefs, '-o', '"MarkerFaceColor', [0 0O 0])

%$averagemeancorrcoefsnoise (y,1l)=mean (meancorrcoefs);

%end

$figure (14);

$plot (1l:y,averagemeancorrcoefsnoise);

$str=sprintf ('Ensemble & distance-averaged corr coef vs signal/noise,
$stimulus= %g', inputstrength);

$title(str)

$close all;A=rand(1l,5); [maxA(l),maxAindex (1) ]=max (A(1l, :));

$for i=2:25; A(i,:)=A(i-1, :)+2+xrand(1,5)-1;

$ [maxA (i) ,maxAindex (i) ]=max (A (i, :));

%end; figure(l);

$for 1i=1:25; pause(0.05);plot(1:5,A(1,:),maxAindex (i) ,maxA (1), 'r-—0'");
$drawnow;

%end

B.1.2  Simulation of traveling waves using Gillespie algorithm
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o

This program simulates the spatially-extended Wilson-Cowan equations. It

o) [

clumps N_cells neurons into N_EI modules (80% E 20% I per module).

o\

% Neurons in a given population all receive the same input. Weights decay

o\

exponentially with distance. Rows correspond to modules in space. Columns

o\

correspond to modules in time.

o\

Jeremy Neuman 3/15

clear all;

%$close all

starttime=tic;

for z=1:1

$clearvars —except starttime z

for y=1:1

clearvars —except meancorrcoefs starttime distance corrcoefs z y
blocks=1;

block_size=500000;

[)

% Parameters and initial wvalues (all initial activity is set to 0)

N_cells=8080; % number of cells in population
L=100; N_EI=101;dx=L/(N_.EI-1); % N_EI are number of pieces on line

NE_cells_per=0.8+*N_cells/N._EI;
NI_cells_per=0.2«N_cells/N_EI;

%$NE=zeros (NE_cells_per,1l);

$NI=zeros (NI_cells_per,1l);

$for i=1:(0.3xNE_cells)

% NE (i) =1;

%end

$for j=1:(0.3%«NI_cells)

% NI (3)=1;

%end

$N=repmat ([NE;NI],N_EI,1); % Activity vector
N=zeros (N_cells, 1) ;rands=rand(N_cells,1);
i=1;
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for i=1:N_cells

if rands(i)>0.5 % Make % of neurons 1
N(i)=0; % Initial value of network
end

end

Nvec=repmat ([ones (NE_cells_per,1l);zeros(NI_cells per,1)],NEI,1);

% Vector of neuron type - 1 if neuron is E, 0 if neuron is I
$EAD (1) = 0;%sum(NE) /NE_cells;
$IAD (1) = 0;%sum(NI)/NI_cells;

$EAS=zeros (N_EI,block_size);

$IAS=zeros (N_EI,block_size);

for i=1:N_ET % Update activity matrices of E and I modules
EAS(i,1)=mean(N((i-1)« (NE_cells per+NI cells per)+1l: (i-1)~*
(NE_cells_per+NI_cells_per)+NE_cells_per));
IAS(i,1l)=mean(N((i-1)*(NE_cells per+NI cells per)+1+NE_ cells per:
(i-1) *(NE_cells_per+NI_cells_per)+NE_cells per+NI_cells_per));

end

taukE=0.1;taul=0.18; % times constants

o

alphak=1.5/tauE;alphal=1/taul; decay rate a -> g (set around 1/100 ms)

betaE=1.1/tauE;betal=1.1/taul;

o\

amplitude of firing rate functions

o\

wee=16;wie=91;wei=27;wii=20; initial feedback weight between neurons

o\

see=2.5;sie=2.7;sei=2.7;s1i=2.5; space constants, sei>see always

H=0.4;0=0.4;

o\

input

akE=1.2;al=1;

o\

slopes of firing rate functions

thetaE=2.6;thetal=8;

o\

thresholds of firing rate functions
inputstrength=2.8+(z-1)*x1.0;

xES=zeros (N_EI, 1l);xIS=zeros (N_EI,1);

f_tildeES=betaE./ (l+exp (-aE* (xES-thetakE)))-betaE./ (1+exp (aExthetakE)) ;
f_tildeIS=betal./ (l+exp(—al* (xIS-thetal)));%betal./(l+exp(al+thetal));
f_tildeS=zeros (N_cells,1l);

T=3; % Epoch (in s)

%$Spatial discretization of connectivity using trapezoidal rule
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WEE=nan (N_EI),;WEI=nan (N_EI);WIE=nan(N_EI);WII=nan (N_EI);

for i=1:N_EI

WEE (:,1) = exp(—abs (dx*((1:N_EI)-1i))/see)*dx/ (2+see);
WEI(:,1i) = exp(-abs(dxx ((1:N_EI)-i))/sei)*dx/ (2xsei);
WIE(:,1) = exp(—abs(dx*((1:N_EI)-i))/sie)*dx/ (2+sie);
WII(:,1) = exp(-abs(dx* ((1:N_ET)-1))/sii)*dx/ (2*sii);

end

WEE (:, [1 end])=WEE(:, [1 end])/2;
WETI (:, [1 end])=WEI(:, [1 end])/2;
WIE(:, [1 end])=WIE(:, [l end])/2;
WII(:,[1 end])=WII(:,[1l end])/2;

[)

% Stochastic model

o\

count=1; counter for the AS array

o

cum_t=0; initial time

o\

times (count)=cum_t; stochastic time base

while cum.t < T

o\

Main LOOP
if count==length (EAS)
EAS=[EAS zeros(N_EI,block_size)];
IAS=[IAS zeros(N_EI,block_size)];
blocks=blocks+1;
end
B=zeros (N_EI, 1);
if (cum-t<1.5)
B(48:52)=B(48:52) tinputstrength;
end
xES=wee+WEE+EAS (:,count)-0.2+wie«WIE+xIAS (:, count) +H+B;
% Define/update current
xIS=wei+WEI+«EAS (:,count)-0.2+wii«WII*xIAS(:,count)+Q+B;
% These vectors are N_EI by 1
f_tildeES=betaE./ (l+exp (-aE* (xES—-thetaE)))-betak./ (l+exp (aExthetak));

% N.EI by 1
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f_tildeIS=betal./ (l+exp(-al*(xIS-thetal)));%betal./(l+exp(al+«thetal));

$ N_EI by 1

f tildeES=max (0, f.tildeES);f tildeIS=max (0, f_tildelIS);

o

[

% but is necessary for Gillespie

% Eliminate negative firing rate values. Doesn't change dynamics

for i=1:N_ETI % vector made here will be N.cells by 1

ftildeS((i-1)*(NE_cells_per+NI_cells_per)+1:
ix(NE_cells_per+NI_cells_per),l)=
[repmat (f.tildeES (i),NE_cells_per,1l);
repmat (f_.tildeIS(i),NI_cells_per,1)];
end

[

% compute the overall rates in the variables a#

al=sum(N.*Nvec.*alphaE+N.x (-Nvec+l) .*xalphal); % sum of decay rates

az=dot (-N(:)+1,f_tildeS);

o\

o\

al0=al+a2;
% pick a two random # from uniform distribution
% (following Gillespie's algorithm)

r=rand (1, 2);

% compute timestep tau (based on exponential distribution)

tau=(1/a0)+log(1/r(1)); % Gillespie (1977) Eq (21a)

o\

Now we compute the cumulative distribution of all cells

sum of activation rates

total sum of rates

% this could be done more efficient here in the all-to-all connection

o\

case; here we only have two variables to update Q and A

o\°

% more general.

However, the following approach of updating individual cells is

P=N.*Nvec.*alphaE+N.* (-Nvec+1) .xalphal;

for i=1:length (P)
if P(i)==0;
P(i)=f_tildeS(1i);
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% by alphakE if E neuron,

)

% alphal if I neuron



o\°

end; all inactive cells become correspond f_tildeS
end;
$plot (P)

P=P./sum(P);

o\

normalize P

o

F=cumsum (P) ; cumulative function F of all

% probabilities associated with

o\

the cells in N
% pick a cell # using the cumulative distribution
pick=0;
i=0;
while pick == 0
i=i+1;
if (F(i)>=r(2));mu=i;pick=1l;end; % (Gillespie, (1977), Eg (21b)
end;
% Update time, cell and counter

if N(mu)==1;N(mu)=0;else N (mu)=1;end; % Update cell

o

count=count+1; update the counter

o\

cum_t=cum_t+tau; update the time

o\

times (count)=cum_t; and stochastic timebase
for i=1:N_EI % Update activity matrices
% of E and I modules
EAS (i, count)=mean (N ((i-1)* (NE_cells per+NI_cells per)+1l:(i-1)x*
(NE_cells_per+NI_cells_per)+NE_cells_per));
IAS(i,count)=mean(N((i-1)* (NE_cells_per+NI_cells_per)+1+
NE_cells_per: (i-1)* (NE_cells per+NI cells per)+NE_cells_per+
NI_cells_per));
end
end;
$difftimes=diff (times) ;

[)

% Deterministic model
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o\

this simulation based on kinetic rate equation

\o

s note that equilibrium is at dA=0

$ ——> A_equilibrium = f/alpha

%{

M=501;dt=.01;% simulation time is Mxdt;

E=zeros (N_EI,M); I=zeros (N_EI, M) ;

$E=zeros (N_EI, length(times));I=zeros (N_.EI, length(times));
maxwave=zeros (1,M);maxwaveindex=zeros (1, M) ;

$maxwave=zeros (1, length (times) ) ;maxwaveindex=zeros (1, length (times)) ;

maxwaveintime=zeros (N_EI, 1) ;maxwaveindexintime=zeros (N_EI,1l);

$for k=1:25

% E(k,1)=0;

% E (50+k, 1)=0;
% I(k,1)=0;

% I(k+50,1)=0;
send

$IL=ceil (1/dx); IR=floor (5/dx);
for i=2:M

B=zeros (N_EI,1);

if (i<15)

B(48:52)=B(48:52)+inputstrength;

$SIE = weexW70xE(:,1-1)-wiexW90xI(:,1-1)+B;

$JI = wel+*WO0xE (:,i-1)-widi«W70+xI(:,1i-1);

JE = weerWEE*E (:,1-1)-0.2+wie+WIE*I (:,1i-1)+B;%+1.5;%+B;
$JEnoise=awgn (JE, 1000) ;

JI = Wwel+*WEI*E (:,1-1)-0.2+xwii+«WII*I(:,1-1)+B;%+0;%+B;

$JInoise=awgn (JI,1000);

$Gaussian
$FE = exp (- ((JE-E_t)/E_sd)."2)-exp (- ((-E_t)/E_sd)."2);
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o\

FI = exp(—((JI-I_.t)/I_.sd). 2)-exp(—-((-I_t)/I_.sd)."2);
$Sigmoid
SFE=1./(l+exp (- (JE-12.41)/2))-1./(1l+exp(12.41/2));
SFI=1./(l+exp (- (JI-7.33)/.95))-1./(1+exp(7.33/.95));
SFE=1./(l+exp (-1.3%x (JE-4)));%-1./(1+exp(1.3%4)); %% Decaying wave

%parameters (DWPs)

o\
o\°

SFI=1./(1l+exp (=1 (JI-10)));%-1./(1l+exp(2%«3.7)); DWPs

FE=1./(l+exp (-aE* (JE-thetaE)))-1./ (1l+exp (aExthetaE)); %%Terry params

o\

FI=1./(l+exp(-al* (JI-thetal)));%-1./(l+exp(1x8)); $Terry params

FE=max (0,FE) ;FI=max (0,FI);

E(:,1)= E(:,1-1)+dt* (- (alphaExE(:,i-1))+(1-E(:,1-1)) .+betaE.+FE);%%1-E

I(:,i)= I(:,1i-1)+dt*(-(alphaI«I(:,1i-1))+(1-I(:,i-1)) .*betal.*FI);%%1-1I

[maxwave (1,1),maxwaveindex (l,1) ]l=max(E(:,1)+I(:,1));
end
for j=1:N
[maxwaveintime (j, 1) ,maxwaveindexintime (3, 1) ]l=max (E(j, :)+I(j,:));
end
$figure(l); imagesc(E-I);
figure (1) ;
for i=1:3:M; pause(0.05);plot (dxx (0:N_EI-1),E(:,i)+I(:,1),
% dxxmaxwaveindex (l,1i),maxwave(l,1i),'r--o');ylim([-0.1 2.0]);
% x1im ([0 L]);drawnow;end; %pause (0.001);
$for i=1:3:(count-1); plot (dxx(0:N_EI-1),E(:,1)+I(:,1),

[)

% dxxmaxwaveindex (1l,1i),maxwave(l,1i),'r--o');ylim([-0.1 2.0]);

% x1im ([0 L]);drawnow;end; %pause(0.001);

globalmax=max (maxwave) ;

5}

o\

{

% Avalanche Distributions
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difftimes = diff (times);
spikes=0;
for j=1l:length (AS)-1
if AS(j+1)>AS(J)
spikes=spikes+1;
end
end
delta_-t = times (end) /spikes;
sizeaval=0;
duraval=0;
counter=1;
spikecount=0;
duravalbegin=0;
i=1;
for i=l:length(difftimes)
if (i==1 && difftimes(i)<delta_-t)
if AS(i+1)>AS (1)
spikecount=spikecount+1;
end
end
if (i==1 && difftimes(i)>delta.t)
sizeaval=0;
end
if i>1 && difftimes(i)<delta.t
if AS(i)>AS(i-1)
spikecount = spikecount+l;
end
else
if 1i>1 && AS(i)>AS(i-1)
spikecount=spikecount+1;
end
duravalend= (times (i+1)+times (1)) /2;

sizeaval (counter) = spikecount;
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duraval (counter) = duravalend-duravalbegin;
spikecount=0;
duravalbegin=duravalend;

counter=counter+1;

end
end
sizeaval=sizeaval (2:length(sizeaval)); $eliminating the first avalanche

duraval (2)=duraval (1) +duraval (2) ;

duraval=duraval (2:1length (duraval));

[fregsize, size] = hist(sizeaval,15);
[freqdur, dur] = hist (duraval,15);
figure

subplot (2,2,1)

plot (size, log(fregsize), 'o")
title('Avalanche Size Distribution')
xlabel ('Size of Avalanche')

ylabel ('Log Frequency')

subplot (2,2,2)

plot (dur, log (fregdur), 'o")

title ('Avalanche Duration Distribution')
xlabel ('Duration of Avalanche')
ylabel ('Log Frequency')

% plot results

$figure;hold

subplot (2,2, [3 417)

5}

EAS(:,count:end)=[];

IAS(:,count:end)=[];

% Plotting total activity

$figure (15);

for i=1000:1000:50000; figure(i); plot(dxx(0:N_EI-1),EAS(:,1i)+IAS(:,1),
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dx* (0:N_EI-1),EAS(:,1i)-IAS(:,1),dx+x(0:N_EI-1),EAS(:,1),dx*(0:N_EI-1),
IAS(:,1));vlim([-0.2 1.5]);x1im ([0 L]);drawnow;end; $pause (0.05)

% Comparing determinstic with stochastic

$figure (3);hold

$for i=1:3:M; pause(0.05);plot (dx*x (0:N_EI-1),E(:,i)+I(:,1),

% dxxmaxwaveindex (l,1i),maxwave(l,i), 'r——0o'");ylim([-0.1 2.07]);

% x1im ([0 L]);drawnow;end; %pause(0.001);

$for i=1:3: (count-1); plot (dxx(0:N_EI-1),EAS(:,1i)+IAS(:,1));

% x1im ([0 L]);vyvlim([-0.1 2.0]);drawnow;end;

%$plot (timeD,EAD, 'b',timeD, IAD, 'k")
$plot (times (l:1length (EAS)),EAS, 'g',times (l:1length(IAS)),IAS,'r")
%$title ('Deterministic model (E blue I black); stochastic (E green I red)')
$xlabel ('time (ms)')
$ylabel (" # of Active Cells')
% Power spectrum
$figure (6);
$power=abs (fft (EAS+IAS))/ (count/2) ;power=power (l:count/2)."2;
$freg=[0:count/2-1]/T; semilogy (freq, power);axis ([0 40 0 17);
% Correlation across distance plots
reference=(N_EI-1)/2;
for i=1:20
correlations=corrcoef ( (EAS (reference, l:count-1) —
IAS (reference, l:count-1)) "', (EAS (reference+2+i, l:count-1)—
IAS (reference+2+i,l:count-1))");
corrcoefs(i,y,z)=correlations(1l,2);
distance (i, y)=dx* (i+2);
$corrcoefs (i)=correlations(1l,2);
$distance (i) =dx=*1i;
end

corrcoefs (isnan (corrcoefs))=0;
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$corrlinfit=fit (distance',corrcoefs’', 'polyl")

$figure(17+z);plot (corrlinfit,distance, corrcoefs, 'predobs');ylim([-0.1 17])
$str=sprintf ('Input strength = %g, Number of cells = %g, Background = %g',
% inputstrength,N_cells, H);

$title (str)

end

$meancorrcoefs=mean (corrcoefs, 2);

$meancorrcoefs=reshape (meancorrcoefs, [1 y])

$figure(z);hold on;

$for ii=l:y

% plot (distance(:,1ii), corrcoefs(:,1ii), '-o', '"MarkerFaceColor',
% [1 11/21 0]);%,'o',distance(:,2),corrcoefs(:,2),"'o"',distance(:,3),
% corrcoefs(:,3),'o',distance(:,4),corrcoefs(:,4),'o',distance(:,5),

o\

corrcoefs(:,5),"'o',distance(:,6),corrcoefs(:,6),'o',distance(:,7),

% corrcoefs(:,7),'o',distance(:,8),corrcoefs(:,8),"'.",distance(:,9),

% corrcoefs(:,9),"'."'",distance(:,10),corrcoefs(:,10),"'."',distance(:,11),
% corrcoefs(:,11),'.",distance(:,12),corrcoefs(:,12),"'.",

% distance(:,13),corrcoefs(:,13),"'."'",distance(:,14),corrcoefs(:,14),

o\

'.'",distance(:,15),corrcoefs(:,15),'+"',distance(:,16),

o\

corrcoefs(:,16),'+',distance(:,17),corrcoefs(:,17),"'+"',

o\

distance(:,18),corrcoefs(:,18),"'+',distance(:,19),corrcoefs(:,19),

o\

'+',distance(:,20),corrcoefs(:,20),"'+',distance (:,21),

% corrcoefs (:,21),"+");x1im ([0 107]);ylim ([0 17)

$end

$plot (distance (:,vy),meancorrcoefs, '-o', '"MarkerFaceColor', [0 O 0])
$str=sprintf ('E+I, Input strength = %g, Number of cells = %g,

% Background = %g',inputstrength,N_cells, H);
$title(str)

%end

end

meancorrcoefs=mean (corrcoefs,2);
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meancorrcoefs=reshape (meancorrcoefs, [1 z]);

figure (31);
plot (distance(:,1),meancorrcoefs(:,1l:z),'-0o', '"MarkerFaceColor', [0 O 01]);

$str=sprintf ('E-I, Input str. up as BI1GRCPYBk, # cells = %g,

% Background = %g, T = %g ',N_cells,H,T);
title(str)

endtimes=toc (starttime)

B.2 Code used in Chapter 3

B.2.1  Simulation of E network using space-clamped WC' equations and

Gillespie algorithm

for comp=1

o)

% Parameters model

N_cells=900+ (comp-1) « (6400-900) ; % number of cells in population
NH=0.45; % number of cells in external

% population

W=3.5; % initial feedback weight

o\

between neurons

We=W;
a=250; % slope of sigmoid curve
theta=20; % threshold of sigmoid curve
alpha=0.2; % decay rate a —> g (set
% around 1/100 ms)
g=0.002; $ £'/(Ith-Wxf'), held to be
% constant right now
k=1; % wH = k+bH
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pE0=0.2; % Vogels' target rate

PES=0.001;

o\

Window function amplitude
s=1/ (1l+exp (axtheta));

NHperc=0.0;

nearestneighbortorus=false;

nearestneighborreflex=false;

%$0=1.2;

[

% Parameters computation

dt=0.01; % Deterministic timestep for
% the deterministic
% computation(set at 1 ms)
T=500000; % Epoch (in s)

o\

steps=floor (T/dt); # of timesteps in

% deterministic case

o\

blocks=1; Counts the number of zero

o

blocks added
block_size=3000000;

perc=1;

$N=round ( (rand (1) /2+.5) *rand (1, N_cells));

o\

randomized inital state

o\°

of vector N

i=1; %0.8%N_cells;

o\

# of cells

o\

N=[ones (i,1);zeros(N_cells-1i,1)]; not randomized initial

o\

state of vector N

o\°

N=N (randperm(N_cells))'; randomized initial state

o

of vector N

$for i=1:450

o\°

make the first 8000 of

% N(:,1)=1;

o\

the 10,000 cells active

$end

%$Allocate Memory

timeD=0:dt:T;

o\°

determinsitic timebase
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AD=zeros (1, steps+l);
bHD=zeros (1, steps+1) ;
f_tildeD=zeros (1, steps+l);
Nones=ones (1, length (N)) ;
AS=zeros (l,block_size);

avgbH=zeros (1,block_size);

time_steps=zeros(l,block_size);

f_tilde=zeros(1l,N_cells);
variam=zeros (l,block_size);
variap=zeros(l,block_size);
variab=zeros (l,block_size);
P=zeros (1l,3*N_cells);

count=1;

cum_t=0;

x=zeros (1,block_size);

$ Initial values

AD (1)=sum(N) /N_cells;

bHD (1)=38.4;

bH=bHD (1) *ones (1, length (N));

avgbH (1) = sum(bH)/N_cells;

$DETERMINISTIC Case

o\°

Deterministic model

o\°

Deterministic

o\

Deterministic

o\°

Deterministic

o\

Stochastic

% Stochastic

o\

Stochatic time of events

Q

% timestep counter for
% the AS array

Q

% initial time

o\

initial value for the

o\

deterministic case

o\

initial external weight

o\

value for the deter

o\

initial modifiable

o\

weight Stochastic case

o\°

initial average weights

% this simulation based on kinetic rate equation
% note that equilibrium is at dA=0

119



o\

o\

o\

o\

o

o

o\°

-—> A_equilibrium = f/alpha

for i=1l:steps
x=AD (1) *W+NH+bHD (1) ; % current
f_tildeD (1)=1/ (1l+exp (—-a* (x—theta)))-s;
dAD = f tildeD(i)* (1-AD(1i))-alphaxAD(1);
dbHD = —gx (AD (i) —pEO+pES*k*bHD (1)) «NH;
AD (i+1)=AD (i) +dAD~*dt;
bHD (i+1)=bHD (1) +dbHD«dt;

end;

%plot (x, £_.tildeD)

o
)

%

o\°

o\

o\

o
)

exectimes=zeros (1,100);

figure (1) ;hold

plot (timeD, AD, 'k'")

title ('Deterministic model (black); stochastic (blue)')
xlabel ('"time (s) ')

ylabel (' % of Active Cells')

drawnow

Computing time help, also see marktime script

o

Calculating times between 2 marktimes

tic;

starttime=tic;

lasttime=tic;

o\°

o\°

o

o\

o\°

Starting time of the stochastic

o\

calculation

o\

Initializing lasttime

Equivalent Stochastic model
this simulation based on stochastic model
Specific parameters and initial wvalues

background of the method can be found in Gillespie (1976, 1977)

if nearestneighbortorus==true;

W=zeros (N_cells);
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for m=0: (sgqrt (N_cells)-1)
for 1l=m*sgrt(N_.cells)+1l: (m+l)=xsqgrt (N_cells)
$"lattice site index number moving from left to right
% (next row starts at left at 1->1+1)
i=m+1; $x—coord of lattice site
j=l-m*xsqgrt (N_.cells); %y-coord of lattice site
if i== %$Boundary condition on the top
x=sqrt (N_cells) » (sqrt (N_cells)-1)+7j;
W(l, x)=We;
else
top_-near_neigh = sqgrt (N_cells)« (i-2)+7;

W(l,top-near_neigh)=We;

end

if i==sqrt (N_cells) %$Boundary condition on the bottom
W(l, j)=We;

else
bottom_.near_neigh = sqgrt (N_cells) *i+7j;

W(l,bottom_near_neigh)=We;

end

if j== %$Boundary condition on the left
y=(m+1) *sgrt (N_cells);
W(l,y)=We;

else
left near neigh = sqgrt(N_cells)*(i-1)+(3-1);
W(l, left_near_neigh)=We;

end

if j==sqgrt (N_cells) $%Boundary condition on the right
z=m*sgrt (N_cells)+1;
W(l,z)=We;

else
right _ near_neigh = sqrt(N_cells)x (i-1)+(j+1);
W(l, right_near_neigh)=We;

end

121



end
end

W=sparse (W) ;

end

if nearestneighborreflex==true;
W=zeros (N_cells);
for m=0: (sgqrt (N_cells)-1) Srow#—1
for 1l=mxsqgrt(N.cells)+1l: (m+l)=xsqgrt(N_cells)
% lattice site index number moving from left to right
% (next row starts at left at 1->1+1)
i=m+1; $x—coord of lattice site

J=l-m*sqrt (N_cells);$y-coord of lattice site

if i== $Boundary condition on the top
if j== %$Reflective top left corner

W(l,1l)=2+We;
elseif j==sqgrt (N_cells) S%Reflective top right corner
W(l,1l)=2+We;
else
W(l,1)=We;
end
else
top_.near_neigh = sqgrt (N_cells)« (i-2)+7];
W(l, top-near_neigh)=We;
end
if i==sqgrt (N_cells) $%Boundary condition on the bottom
if j== %Reflective bottom left corner
W(l,1)=2xWe;
elseif j==sqgrt (N_cells) %Reflective bottom right corner
W(l,1)=2xWe;
else
W(l,1)=We;
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end

else
bottom_near_neigh = sqgrt (N_cells)*i+7j;
W(l,bottom_near_neigh)=We;

end

if J== $Boundary condition on the left
if i>j && i~=sqgrt (N_cells)

W(l,1l)=We;

end

else
left near_ neigh = sqgrt(N_cells)*(i-1)+(3-1);
W(l,left_near_neigh)=We;

end

if j==sqgrt (N_cells) $%Boundary condition on the right
if i<j && i~=1

W(l,1l)=We;

end

else
right_near_neigh = sqgrt(N_cells)* (i-1)+(j+1);
W(l, right_near_neigh)=We;

end

end
end

W=sparse (W) ;

end

o)

% W=ones (sqrt (N_cells),sgrt (N_cells));

while cum.t < T % Main LOOP
execslot=1;
if count==length (AS)
AS=[AS, zeros (1l,block_size)];

avgbH=[avgbH, zeros (1,block_size) ];
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avgf=[avgf, zeros (1,block_size)];
time_steps=[time_steps, zeros(l,block_size)];
blocks=blocks+1;

end

NHrand=rand(1l,N_cells);
indexNH=find (NHrand>NHperc) ;
NHselect=zeros (1l,N_cells);

NHselect (indexNH) =NH;

AS (count)=sum(N) /N_cells;% Stochastic value of A; # of active cells

if nearestneighborreflex==true
x=N+W+bH.*NHselect; % Define/update current
else
for i=1:N_cells
if N(i)==1
x=Wex* (AS (count)-1/N_cells)+bH.*NHselect;
else
x=Wex* (AS (count) ) +bH.*NHselect;
end
end

end

[exectimes, execslot, res]=marktime (exectimes, execslot, lasttime);

lasttime=res;

for i=1:N_cells

f_tilde (i)=1/(l+exp(-a* (x(i)-theta)))-s;
end
% Deterministic update dbH = —-g* (AD (1) -pEO+pESxk*bH (i) ) «NH;

t_plus=gx* (PEO-pESxk+*bH) . *xNHselect;
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t_minus=gxNHselect.xN;
5{
mintminus=min (t_-minus);
minftilde=min(f_tilde);
minbH=min (bH) ;
if mintminus <0
mintminus
break
end
%$1f minftilde<O
% minftilde
% break
send
if minbH<O
minbH

break

)

% compute the overall rates in the variables a#

o\

al=sum(Nxalpha); rate for the decay

az2=dot (-N+1, f_tilde); % rate for cells becoming active

o\

a3=sum(t_minus) ; rate for weights to increase

o\

ad=sum(t_plus); rate for weights to decrease

al0=al+a2+a3+a4;
% pick a two random # from uniform distribution
r=rand(1,2);

% compute timestep tau (based on exponential distribution)

tau=(1/a0)+log(1/r(1)); % Gillespie (1977) Eg (21la)

o\

Now we compute the cumulative distribution of all cells

o\

this could be done more efficient here in the all-to-all

o\°

connection case; here we only have two variables to update

o

QO and A. However, the following approach of updating individual
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o

cells is more general.

o\

Now make a PDF size 3 x N:

o\

first part has alpha's and f's

o

2nd part t+ and 3rd part t-

o\

then make a cumulative distribution for picking what to update

P=Nxalpha; % all active cells multiplied by alpha

for i=1:N_cells

if P(i)==0;
P(i)=f_tilde (i); % all inactive cells become f
end
end
P=[P t_minus t_plus]; % concatenate the vectors in one

o\°

PDF of 1x3N vector

o\°

P=P./sum(P); normalize P

F=cumsum (P) ; % cumulative function F of all
% probabilities associated with
% the cells in N
% now pick a cell # using the cumulative distribution
pick=0;
i=0;
while pick ==

i=i+1;

if (F(i)>=r(2));mu=1i;pick=1;end;
end;
% Update time, cell and counter
if mu <= length(N)

if N(mu)==1;

N (mu)=0;
else N(mu)=1;
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[)

end; % Update cell

end

if (mu > length(N) && mu <= 2xlength(N))

bH (mu-length (N)) = bH(mu-length(N))-1;

% should be t+

o
°

end
if (mu > 2xlength(N) && mu <= 3xlength(N))

bH (mu-2xlength(N)) = bH(mu-2+length(N))+1;

% should be t-

end
count=count+1; % update the counter
cum_t=cum_t+tau; % update the time

time_steps (count)=cum_-t;

$times (count)=cum_t; % stochastic timebase
avgbH (count) =sum (bH) /N_cells; % and average weight

avgf (count)=sum(f_tilde)/N_cells;

% marktime;
% if cum_t/T > percx0.1

o\

disp(cum-t) ;

o\

perc=perc+l;
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o

end

o\

if (count>1000000) ,break, end

end;

execcum=0;

o

for i=1: (execslot-1)

o\

% [i,exectimes (i) /count]
% execcum=execcum+texectimes (1) ;
% end

o

[count, execcum/count]

final=toc (starttime)

AS (count:end)=[1];

avgbH (count:end)=[1;

avgf (count:end)=[1];

time_steps (count:end)=[];

save (sprintf ('outputmodified weight%d.mat',comp),'-v7.3")

end

o

figure (2);

o\

plot (times (1l:length (AS)),AS)

o

title ('stochastic (blue)')

o\

xlabel ('"time (s)')

o\

ylabel (' # of Active Cells')

o\

function marktime
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B.2.2 Awalanche Size and Duration Distributions

Avalanche Distributions for an entire data set

difftimes = diff (times);

spikes=0;

for j=l:length(AS)-1
if AS(3j+1)>AS(J)

spikes=spikes+1;

end

end

delta_-t = times (end) /spikes;

sizeaval=0;

duraval=0;

counter=1;

spikecount=0;

duravalbegin=0;

i=1;

for i=l:length(difftimes)

if (i==1 && difftimes(i)<delta_-t)
if AS(i+1)>AS (1)
spikecount=spikecount+1;
end

end

if (i==1 && difftimes(i)>delta.t)
sizeaval=0;

end

if i>1 && difftimes(i)<delta-t
if AS(i)>AS(i-1)

spikecount = spikecount+1;

end

else
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if i>1 && AS(i)>AS(i-1)
spikecount=spikecount+1;

end

duravalend= (times (i+1)+times (i))/2;

sizeaval (counter) = spikecount;

duraval (counter) = duravalend-duravalbegin;

spikecount=0;
duravalbegin=duravalend;
counter=counter+1;
end
end
sizeaval=sizeaval (2:1length(sizeaval));
duraval (2)=duraval (1) +duraval (2) ;
duraval=duraval (2:1length (duraval));
[fregsize, size] = hist(sizeaval,23);
[freqdur, dur] = hist (duraval, 23);
logsize = log(size);
logfregsize = log(fregsize);
logdur = log(dur);
logfregdur = log(fregdur);
figure
subplot (2,1,1)
plot (logsize, logfregsize, 'o")
title('Avalanche Size Distribution')
xlabel ('Log Size of Avalanche')
ylabel ("Log Frequency')
subplot (2,1,2)

plot (logdur, logfregdur, 'o"')

title('Avalanche Duration Distribution')

xlabel ('Log Duration of Avalanche (ms)

ylabel ('Log Frequency')

")
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UP and DOWN State Avalanche Distributions

close all

index=find (time_steps>180000 & time_steps<500000);
newAS=AS (index) ;
newtimes=time_steps (index) ;
newavgbH=avgbH (index) ;

hold

plot (newtimes, newAS) ;
title('Activity versus Time')
xlabel ('Time'")

ylabel ('$ of Active Cells')

figure;

plot (newtimes, newavgbH) ;

title ('Average Weight versus Time')
xlabel ('Time'")

ylabel ('Average Weight')

figure;

plot (newavgbH, newAS) ;

title ('Phase plot')

xlabel ('Average Synaptic Weight')

ylabel ('% of Active Cells')

%avalanche_code (newtimes, newAS) ;

highindex=find (newAS>0.32);
highnewAS=newAS (highindex) ;
highnewtimes=newtimes (highindex) ;
figure;hold

plot (highnewtimes, highnewAS) ;
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title ('High activity states versus Time')

xlabel ('Time")

ylabel ('% of Active Cells'")

[highsize, highfreqgsize,highdur,highfreqgdur] =
avalanche_code (highnewtimes, highnewAS) ;

plothighsize=log (highsize);

plothighfregsize=log (highfreqgsize);

hindex0 = find(highfregsize == 0);

highsize (hindex0)=[1;

highfregsize (hindex0)=[];

loghighsize=log (highsize);

loghighfregsize=log(highfreqgsize);

hindexl = find(loghighfregsize == 0);

loghighsize (hindex1l)=[]; loghighfregsize (hindexl)=[];

hindex2 = find(loghighsize>9);

loghighsize (hindex2)=[]; loghighfregsize (hindex2)=[];

lowindex=find (newAS<0.09);

lownewAS=newAS (lowindex) ;
lownewtimes=newtimes (lowindex) ;

figure;

plot (lownewtimes, lownewAS) ;

title ('Low activity states versus Time')
xlabel ('Time'")

ylabel ('$ of Active Cells')

[lowsize, lowfregsize, lowdur, lowfreqdur] =

avalanche_code (lownewtimes, lownewAS) ;

plotlowsize=log (lowsize);
plotlowfregsize=log(lowfregsize);
figure;hold

plot (plotlowsize,plotlowfregsize, '.")

plot (plothighsize,plothighfregsize, '0'")
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lindex0 = find(lowfregsize == 0);
lowsize (lindex0)=[];lowfregsize (lindex0)=[1];

loglowsize=log(lowsize);loglowfregsize=log(lowfregsize);

lindexl = find(loglowfregsize == 0);
loglowsize (lindexl)=[1];
loglowfregsize (lindexl)=[1];

lindex2 = find(loglowsize>6);

loglowsize (lindex2)=[];

loglowfregsize (lindex2)=[1];

[lowslope, lowintercept, lowcorrcoef,highslope, highintercept, highcorrcoef]=

Regression (loghighsize, loghighfreqgsize, loglowsize, loglowfregsize)

fregsize=sum(lowfregsize)+sum(highfregsize)
a=lowfreqgsize/fregsize;b=highfreqgsize/fregsize;

loga=log(a);logb=log(b); loglsize=log(lowsize);loghsize=log(highsize);

hold;plot (loglsize,loga, 'o');plot (loghsize,logb,'.");
index0 = find(loglowfregsize == 0); loglowsize (index0)=[];
lowfregsize (index0)=[];

5}

B.2.53  Simulation of E — I network using space-clamped WC' equations

%clear all

%$close all

$EEend=82.9427;
$IIend=76.1754;
$EIend=74.4614;

$TEend=81.4749;
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$for paraml=1:25
$for param2=1:10

$for param3=1:10

clear all

%close all

% Parameters

o\°

N_cells_E=40; number of cells in E population

o\°

N_cells_I=40; number of cells in I population

N_cells=N_cells E+N_cells_I;

NH=0.1; % number of cells in external population
a,E=1.5;%.1;%/3; % slope of E sigmoid curve

theta E=2.5;%%3;%+0.1x (paraml-1); % threshold of sigmoid curve

theta I=4.3;%0.2;%x3;%+0.1% (param2-1) ;

o\°

alpha E=1;%0.1; decay rate a -> g (set around 1/100 ms)

alpha I=1;%0.1;

g_.E=0.1;5%0.

ol
~
o\
*
w
~
o\

f'/(Ith-W+«f'), held to be constant right now

o\

g-I=0.1;%0.5;%%3; Since only WEI changes, no g_I

WEI = k«*bE

o\

k=1;

o\°

PE0=0.2;%+0.05% (param3-1); Vogels' target rate

pI0=0.2;

o\

PES=0.000001; Window function amplitude

pIS=0.000001;

s E=1/(l+exp(a_-Extheta_E));
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s_I=1/(l+exp(a_-Ixtheta_I));

% Weights

WEE=16; $EEend; $22%16; %$decrease
WII=12;%IIend; %36

WEI=15;%EIend; %22

WIE=12;%IEend; $36%22; %$increase
WEH=0;

WIH=0;

dt=0.01;

o\

Deterministic timestep for the

o\

deterministic computation(set at 1 ms)

T=250000;%00;%1500000;

o\

Epoch (in s)

steps=floor (T/dt); % # of timesteps in deterministic case

o\

timeD=0:dt:T; Determinsitic timebase

EAD=zeros (1, steps+l); % Deterministic
IAD=zeros (1, steps+l); % Deterministic
bEID=zeros (1, steps+l); % Deterministic

o\

bIED=zeros (1, steps+1l); Deterministic

bEED=zeros (1, steps+1) ; % Deterministic
bIID=zeros (1, steps+l); % Deterministic
Ex=zeros (1, steps+l); % Deterministic
Ix=zeros (1, steps+l); % Deterministic
Ef_tildeD=zeros (1, steps+l); % Deterministic
If tildeD=zeros(1l,steps+l); % Deterministic
Ex=zeros (l,steps+l); % Deterministic
Ix=zeros (l,steps+l); % Deterministic

o\

delta=zeros (1, steps+l); Deterministic

[

% Initial values

o\

EAD(1)=0.5;%0.3; initial value for E-pop
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IAD(1)=0.5;%0.3; % initial value for I-pop

bEID (1)=WEI/k; % initial external weight value for the deter
bIED (1)=WIE/k;

bEED (1) =WEE/k;

bIID(1)=WII/k;

$delta (l)=1+g_.Exg_I*bIED (1) *bEID (1) ;

tic

for i=l:steps
$Ex (1)=((EAD (i) *bEED (1) * (N_cells_E-1)—-IAD (i) *bEID (1)
% *N_cells_I)+1.25)/40; $+NH*WEH) ; % E current
$Ix(1)=((EAD (i) *bIED (1) *N_cells_E-IAD (i) *bIID (1) *
% (N_cells_I-1))-0)/40;%$+NH*WIH) ; % I current
Ex (1)=((EAD (1) +bEED (i) -IAD (i) *bEID (i) )+0.3)/1;
Ix(i)=((EAD (i) *bIED (i) -IAD (i) *bIID(i))-0)/1;
Ef_ tildeD(i)=1/(l+exp(-a-Ex (Ex(i)-thetaE))); %$-s.E;

If tildeD(i)=1/(l+exp(-a_I* (Ix(i)-theta_I))); %-s_.I;

dEAD = Ef tildeD (i) (1-EAD(i))-alpha E«EAD(1i);

dIAD

IftildeD (i) * (1-IAD(i))-alpha I«IAD(i);
dbEID = g_Ex (EAD (i) ~pEO-pES+k+bEID (i))«IAD (i);

dbIED

—g_I% (IAD (i) -pIO0+pISxk+«bIED(i))+EAD(1i);
dbEED =-g_E« (EAD (i) ~-pEO+pES+k+bEED (1) ) «EAD (1) ;

dbIID = g_I* (IAD(i)-pI0-pIS+k+bIID (i))*IAD (i);

EAD (i+1)=EAD (i) +dEAD«dt ;

IAD (i+1)=IAD (i) +dIAD«dt;

BEID (i+1)=bEID (i) +dbEID*dt;

bIED (i+1)=bIED (i) +dbIED*dt;

BEED (i+1) =bEED (i) +dbEED*dt ;

bIID (i+1)=bIID (i)+dbIID+dt;

%delta (i)=1+g_E*g_I+bIED (i) «bEID (i) ;
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$if bEID(1)<0 || bIED(i)<0 || DLEED(1)<0 || bIID(i)<0

% break
$end

end;

toc

%1f paraml==10

figure; subplot (3,2, [5 61)

hold

plot (timeD, EAD, 'k', "Linewidth', 2)

plot (timeD, IAD, "r—-")

%title ('Deterministic model E-pop(black),
xlabel ('time (s)')

ylabel (" % of Active Cells')

subplot (3,2,1)

plot (timeD, bEID, 'k'")
title('Deterministic weight I->E')
xlabel ('time (s) ")

ylabel ("WEI")

subplot (3,2, 2)

plot (timeD, bIED, 'k'")
title('Deterministic weight E->I"')
xlabel ('time (s)')

ylabel ('WIE")

subplot (3, 2, 3)

plot (timeD, bEED, 'k')
title('Deterministic weight E->E')
xlabel ('time (s)')

ylabel ("WEE")
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subplot (3,2, 4)

plot (timeD, bIID, 'k'")
title('Deterministic weight I->I"'")
xlabel ('time (s)')

ylabel ("WITI")

%$figure;hold

$plot (timeD, Ex, 'k")

$plot (timeD, Ix, 'r'")

%end

EAD (end)

IAD (end)

EEend=bEED (end)

IIend=bIID (end)

EIend=bEID (end)

IEend=bIED (end)

%$1f EAD (end)<0.15 && IAD(end)<0.15
$save (sprintf ('outputmodified weight%d.mat', comp), '-v7.3")

$end

$end
%end

%end

B.2.4  Simulation of E — I network using Gillespie algorithm

o\

This simulation is designed to simulate an EI network with all weights

o\

plastic.

o\

J Neuman 8/2013

clear all



close all

for comp=7

% Parameters

N_cells_E=56+8x (comp-7); % number of cells in E population
N_cells_ I=64+8% (comp-7); % number of cells in I population

N_cells=N_cells_E+N_cells_I;

%N will now be a 2xN_cells matrix. The first row will be activity

$vector. The second row will be E/I marker

5{

1=0.25*N_cells; %

o\

N=[ones (i,1);zeros(N_cells-i,1)1];

N=N (randperm(N_cells))'; %

j=1;

for j=1:N_cells_E
EI(1,3)=1;

end

for j=N_cells_E+1:N_cells
EI(1,3)=0;

end

EIrand=EI (randperm(N_cells))';

N=[N' EIrand];

1_E=0.125%N_cells_E;
E=[ones(i_.E,1);zeros (N_cells E-i_E,1)];
E=E (randperm(N_cells_E))"';

E(2,:)=1;
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1i_I=0.5xN_cells_I;
I=[ones(i_.I,1l);zeros(N_cells_I-i_.I,1)];
I=I(randperm(N_cells_I))"';

I1(2,:)=0;

N=[E I];

NE=N(1,:) .xN(2,:);

NI=N(1,:).*(-N(2,:)+1);

NH=0.1;

o

number of cells in external population

a.E=0.3;%1.3%/3;

o\

slope of E sigmoid curve

a_.I=0.3;%1.3%2.0;%/3;

theta E=0.5;%3.5;

o\

threshold of sigmoid curve

theta I=0.5;%3.5;

o\

alpha E=0.1; decay rate a -> g (set around 1/100 ms)

alpha_I=0.1;

g-E=0.005;%0.5;%*3;

o\

£f'/(Ith-W+«f'), held to be constant

g-I=0.005;%0.5;%3;

o\

right now

k=1;

o\

PE0=0.25; Vogels' target rate
pI0=0.25;

pPES=0.000001;

o\

Window function amplitude

pIS=0.000001;

s_E=1/(l+exp(a_Extheta.E));

s_I=1/(l+exp(a_I*xtheta_I));

% Weights
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WEE=80; %16
WII=60;%33;
WIE=3010; %25%17;
WEI=60;%22;
WEH=0;

WIH=0;

$nearestneighbor=false;

Q

% Parameters computation

dt=0.05; % Deterministic timestep for the
% deterministic computation(set at 1 ms)
T=1000000; % Epoch (in s)

steps=floor (T/dt);

o\

# of timesteps in deterministic case
blocks=1; % Counts the number of zero blocks added
block_size=8000000;

perc=1;

$Allocate Memory
timeD=0:dt:T; % Determinsitic
EAD=zeros (1, steps+l);
IAD=zeros (1, steps+l);
bEID=zeros (1, steps+l);
bIED=zeros (1, steps+1);
bEED=zeros (1, steps+1) ;
bIID=zeros (1l,steps+l);
Ef_tildeD=zeros(l,steps+l);
If tildeD=zeros(l,steps+l);
Ex=zeros (1, steps+l);
Ix=zeros (l,steps+l);

%deltaD=zeros (1, steps+l);

time_steps=zeros(l,block.size); % Stochastic

141



EAS=zeros (l,block_size);
IAS=zeros (l,block_size);
$avgbEI=zeros (l,block_size);
avgbIE=zeros (l,block_size);
%$avgbEE=zeros (1,block_size);
$avgbII=zeros(l,block_size);
listmu=zeros (l,block_size);
deltaS=zeros(l,block_size);

f_tilde=zeros(1l,N_cells);

$NEVE=zeros (1,N_cells_ExN_cells_E);
$NIVE=zeros (1l,N_cells_ExN_cells_I);
NEVI=zeros (l,N_cells ExN_cells_TI);

$NIVI=zeros (l,N_cells_IxN_cells_I);

NIrepmatIE=zeros (N_.cells_E,N_cells_I);
NI_tminus_-IE=zeros(l,N_cells_ExN_cells_I);
$NErepmatEI=zeros (N_.cells_I,N._cells_E);
SNE_tplus_EI=zeros(l,N_cells_I*«N_cells_E);
$NErepmatEE=zeros (N_.cells E-1,N_cells_E);
SNE_tminus_EE=zeros(l,N_cells_Ex (N_cells_E-1));
$NIrepmatII=zeros (N_.cells_ I-1,N_cells_TI);

SNI_tplus_II=zeros(l,N_.cells_I%(N_cells_I-1));

%t _pluskEI= zeros(l,N_cells_ ExN_cells_TI);
$t_minusEI=zeros (l,N_cells_ExN_cells_TI);

t_ plusIE= zeros(l,N_cells_IxN_cells_E);
t_minusIE=zeros(1l,N_cells_IxN_cells_E);

%t _pluskEE= zeros(l,N_cells Ex(N_cells E-1));
$t_minusEE=zeros (1,N._.cells_Ex (N_.cells_E-1));
$t_plusII= zeros(l,N_.cells_I%x(N_cells_I-1));
$t_minusII=zeros(l,N_cells_I*(N_cells_I-1));
LN=length(N(1,:));
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$LbEI=length (t_.minusEI) ;
LbIE=length (t_plusIE);

$LbEE=length (t_plusEE) ;
%$LbII=length(t_minusII);
$DO NOT INITIALIZE THIS

P=zeros (1, LN+2+LDLIE) ; $+2+LbEI+2+LbIE+2+LbEE+2+LbIT) ;

o

count=1; timestep counter for the EAS/IAS array

o\°

cum_t=0; initial time

o

% Initial values

EAD (1)=sum(NE) /N_cells_E;

o\

initial excitatory wvalue for the

o\

deterministic case

IAD (1)=sum(NI)/N_cells_I;

o\°

initial inhibitory wvalue for the

% deterministic case

o\

EAS(1)=sum(NE) /N_cells_E; Stochastic value of EAD; Proportion

oe

of active excitatory cells

IAS(1)=sum(NI)/N_cells_I;

o\

Stochastic value of IAD; Proportion

o

of active inhibitory cells

bEID (1) =WEI/k;

o\

initial I->E weight for the deter
PIED (1)=WIE/k;
PEED (1) =WEE/Kk;
PIID(1)=WII/k;

LbEI=bEID (1) .*ones(1l,N_cells_E*N_cells_I); % initial modifiable weight

o\

for stochastic case
bIE=bIED (1) .*ones(1l,N_cells_I*N_cells_E);

DLEE=DbEED (1) .*xones (1, N_cells_Ex (N_cells_E-1));

bII=bIID(1l) .*ones(l,N_cells_I%(N_cells_.I-1));

%$avgbEI (1) =sum (bEI) /length (bEI) ;

o\°

initial average weights

o\

avgblIE (1) =sum(bIE)/length (bIE) ; initial average weights

o

%$avgbEE (1) =sum (bEE) /length (bEE) ; initial average weights

%$avgbII (1)=sum(bII)/length(bII);

o\

initial average weights

SEAD (1)=0.2;

o

initial value for E-pop

143



o\°

$IAD(1)=0.25; initial value for I-pop
%deltaD=1+g_Exg_I+bIED (1) «bEID (1) ;
$deltaS(l)=1+g_.Exg_I*xavgbIE (1) *avgbEI (1) ;

5{

tic;

$DETERMINISTIC Case

o\

Deterministic model

o\

this simulation based on kinetic rate equation

for i=l:steps

Ex=((EAD (1) *bEED (1) » (N_cells_E-1)-IAD (i) *bEID (1) *N_cells_I+NH+WEH)) /100;
Ix=((EAD (1) *bIED (1) *N_cells_E—-IAD (i) *bIID (i) * (N_cells_I—-1)+NH*xWIH))/100;
Ef_tildeD(1)=0.5/(l+exp(-a_Ex (Ex—-theta E))); %-s_E;
IftildeD(i)=0.5/(l+exp(-a_I*x (Ix-theta.I))); %-s_I;

%deltaD (1)=1+g_Exg_I+«bIED (i) *bEID (1) ;

$deltaD (1)=1;

dEAD = Ef tildeD (i)« (1-EAD(i))-alpha E+«EAD(i);

dIAD = If_tildeD(i)*(1-IAD(i))-alpha_I+xIAD(1i);

$dbEID = (g_.E/deltaD (1)) * (EAD (i) -pEO0O-pES*k* (bEID (i) /deltaD(1)))*«IAD(1);
$dbIED =-(g_.I/deltaD (1)) * (IAD(i)-pI0+pIS+k* (LIED (i) /deltaD(1)))*«EAD(1i);
$dbEED =-(g_E/deltaD (1)) * (EAD (i) -pEO+pES*k+bEED (1)) *EAD (i) ;

$dbIID = (g.I/deltaD(1l))* (IAD (i) -pIO-pIS+k+bIID(i))+IAD (i);

$dbEID = g_Ex (EAD (i) -pEO-pESxk+bEID (i))«IAD (i) ;

dbIED =-g_Ix (IAD(i)-pIO+pISxk+bIED (i))+EAD (1i);

$dbEED =-g_Ex (EAD (i) -pEO+pES*k+«bEED (i) ) *EAD (i) ;
$dbIID = g_I% (IAD(1i)-pIO0-pISxk*bIID(i))=*IAD(1);
EAD (1i+1)=EAD (i) +dEAD~*dt;

IAD (i+1)=IAD (i) +dIAD*dt;

SPEID (i+1)=bEID (i) +dbEIDx*dt;

PIED (i+1)=bIED (i) +dbIEDxdt;

SPEED (i+1)=bEED (1) +dbEED=*dt;
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$bIID (i+1)=bIID(i)+dbIID*dt;

SdeltaD (i+1)=1+g_E+g_I+bIED (i) +bEID (i);

$if BEID(i)<0 || bIED(1)<O0 || bEED(1i)<0 || bIID(i)<0
% break

%end

end;

finalD=toc

5}

% Computing time help, also see marktime script

\o

exectimes=zeros (1,100); t Calculating times between 2 marktimes

tic;

o\

starttime=tic;

o\

lasttime=tic; Initializing lasttime

o\

Equivalent Stochastic model

o

This simulation based on stochastic model

o\°

Specific parameters and initial values

o

while cum-t < T
execslot=1;
if count==length (EAS)
EAS=[EAS, zeros (1l,block_size)];
IAS=[IAS, zeros(l,block_size)];
$avgbEE=[avgbEE, zeros (1, block_size) ];
$avgbEI=[avgbEI, zeros (1,block_size) ];

avgbIE=[avgblE, zeros (l,block_size) ];
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%$avgbII=[avgbII, zeros (l,block_size)];
avgx=[avgx, zeros(l,block_size)];

avgf=[avgf, zeros(l,block_size)];
time_steps=[time_steps,zeros(l,block_size)];
listmu=[listmu, zeros (1l,block_size)];
$deltaS=[deltaS, zeros (1l,block_size) ];

blocks=blocks+1;

end
NE=N (1, :) .*N (2, :); % 1 in entry means active excitatory neuron
NI=N(1l,:).*(-N(2,:)+1) $ 1 in entry means active inhibitory neuron

NEmatrix=N(1l:2,1:N_cells_E);

NImatrix=N(1:2,N_cells_E+1:N_cells);

SNEVE=repmat (NEmatrix (1, :),1,N_cells.E);
NEVI=repmat (NEmatrix(l,:),1,N_.cells_I);
$NIVE=repmat (NImatrix(1l,:),1,N_cells.E);

SNIVI=repmat (NImatrix(l,:),1,N_cells_TI);

$NEVEE=reshape (NEVE,N_cells_E,N_cells._E);

SNEVEE (1:N_cells E+1:N_cells_ ExN_cells_ E)=[];

$NIVII=reshape (NIVI,N_cells_I,N_cells_T);

SNIVII(1:N_cells I+1:N.cells_IxN_cells_ I)=[];

NIrepmatIE=repmat (NImatrix(l,:),N_cells E,1);

NI_tminus_IE=reshape (NIrepmatIE,N_cells_ E*xN_cells_I,1)"';

$NErepmatEI=repmat (NEmatrix (l,:),N_cells_I,1);

SNE_tplus_EI=reshape (NErepmatEI,N_cells_I*xN_cells E,1)"';

$NErepmatEE=repmat (NEmatrix (1, :),N_cells_E-1,1);
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SNE_tminus_EE=reshape (NErepmatEE, N_cells_Ex (N_cells_ E-1),1)"';

SNIrepmatII=repmat (NImatrix(l,:),N_cells_I-1,1);

$NI_tplus_II=reshape (NIrepmatII,N_cells_ I*x(N_cells_ I-1),1)";

%$1f nearestneighbor==true

% xE=N (1, :) *WE+bEH*NH.*ones (1, N_cells_E)+WIExAS (count) ;

o\

xI=N (1, :)*WI+bIH.*NH+WEI.*AS (count);
%else

$x=zeros (1,N_cells);

m=1; %$Counter for excitatory cells
n=1; %$Counter for inhibitory cells

for i=l:length (N)
if N(2,1i)==1
NES=NEmatrix;
NES(:,n)=[];
x(1)=(dot (bEE((n—-1)* (N_cells_E-1)+1l:nx (N_.cells_E-1)),
NES (1, :))-dot (bEI ((n-1)*N_cells_I+1l:n*N_cells_I),
NImatrix (1, :))+NH«WEH) /200;
f_tilde (i)=0.5/(l+exp(-a_E* (x(i)+theta E))); %$-10+s_E;
n=n+1;
else
NIS=NImatrix;
NIS(:,m)=[];
x(1)=(dot (bIE((m-1)*N_cells_E+l:mxN_cells_E),
NEmatrix (1, :))-dot (bII((m—-1)* (N_.cells_I-1)+
l:m*(N_cells_.I-1)),NIS(1,:))+NHxWIH)/200;
ftilde (i)=0.5/(1l+exp(-a_-I* (x(1)+theta-I))); $—10%s_I;
m=m+1;
end
end

$end
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[exectimes,execslot, res]=marktime (exectimes, execslot, lasttime);

lasttime=res;

$dbEI = (g_E/deltaD) = (E (1) -pEO0-pES*k+bETI (i) /deltaD) I (i) ;
$t_plusEI=g_E*xNE_tplus_EI.*NIVE;

$tminusEI=g_Ex* (pEO+pES*xk*bEI) . xNIVE;

$dbIE =-(g_-I/deltaD) (I (1)-pIl0+pIS+k+bIE (i)/deltaD)+E (1i);
t_plusIE =g_IxpI0.*NEVI;

tminusIE=g_Ix (NI_tminus_IE.«bIE." (=-1)+pIS) .*NEVI;

$dbEE =—-(g_E/deltaD) * (E (1) -pEO+pES+k+bEE (1)) *E (i) ;
$t_plusEE=g_ExpEQO.*NEVEE;

$t_minusEE=g_Ex (NE_tminus_EE+pESxk+bEE) . *xNEVEE;

$dbII = (g_I/deltaD)* (I (1)-pI0-pIS+k+bITI (1))=*I(i);
St plusII=g_I*NI_tplus_-II.*«NIVII;

St minusII=g_Ix (pIO0OxbII.” (-1)+pIS).*«NIVII;

5{

minbEI=min (bEI) ;

minbIE=min (bIE) ;

minbEE=min (bEE) ;

minbII=min (bII);

if minbEI<O || minbIE<O0 || minbEE<O || minbII<O
minbET
minbIE
minbEE
minbIT
break
end
5}

% compute the overall rates in the variables a#

al=sum (NExalpha_E) +sum(NIxalpha-I);% rate for the E decay
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az2=dot (-N (1, :)+1,f_tilde); % rate for cells becoming active
%$a3=sum (t_minuskEI) ;

%$ad=sum(t_plusEI);

ab=sum(t_minusIE) ;

ab=sum(t_plusIE);

%$a7=sum (t_minusEE) ;

%a8=sum(t_plusEE) ;

%$a9=sum(t_minusII);

%alO0=sum(t_plusII);

%al0=al+a2+a3+ad+ab+tac+a’+a8+a9+all;

al0=al+a2+ab5+ab6;

% pick a two random # from uniform distribution

% (following Gillespie's algorithm)

r=rand (1,2);

% compute timestep tau (based on exponential distribution)
tau=(1/a0)*log(1/r(1)); % Gillespie (1977) Egq (21la)
% Now we compute the cumulative distribution of all cells

% this could be done more efficient here in the all-to-all

o\

connection case; here we only have two variables to update Q

o\

and A. However, the following approach of updating individual

o\

cells is more general.

o\

Now make a PDF size 3 x N:

o\

first part has alpha's and f's

o\

2nd part t+ and 3rd part t-

o\

then make a cumulative distribution for picking what to update

o

{

P=zeros (1,N_cells);

for i=1:N_cells % THIS WORKS FOR ALL CONFIGS. METHOD
if N(2,1i)==1 % BELOW DOESN'T WORK FOR NEAREST

if N(1,i)==1 % NEIGHBOR BECAUSE N(2,:) WILL BE RANDOM.
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P(i)=alpha_ E;
else
P(i)=f_tilde(i);
end
else
if N(1,1)==1
P(i)=alpha_I;
else
P(i)=f_tilde(1);
end
end
end
2

PNE=alpha E*NEmatrix (1, :)+f_tilde(1:N_cells_E) .* (-NEmatrix(1l,:)+1);

PNI=alpha I*«NImatrix(l,:)+f_tilde(N_cells_ E+1:N_cells).* (-NImatrix(1l,:)+1);

$P=[P t.minusEI t_plusEI t_.minusIE t_plusIE

o

tminusEE t_plusEE t.minusII t_plusII];
% concatenate the vectors in one PDF of 1x3N vector

P=[PNE PNI t_minusIE t_plusIE];

normP=P./sum(P) ;

F=cumsum (normP) ; $Cumulative function F of all trans rates

$Now pick a reaction using the cumulative distribution
pick=0;
aq=0;
while pick ==

a=q+1;

if (F(g)>=r(2));mu=qg;pick=1l;end; % (Gillespie, (1977), Egq (21b)
end;
if (mu>length(F))
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break

end;

% Update cell
if mu <= LN
if N(1,mu)==1;
N(1,mu)=0;
else

N(1l,mu)=1;

end;
NE=N(1l,:).*N(2,:); % 1 in entry means active excitatory neuron
NI=N(1l,:).*(-N(2,:)+1);% 1 in entry means active inhibitory neuron
end
+{

if (mu > LN && mu <= LN+LbEI)
PETI (mu—-LN) = bEI (mu-LN)-1;

end

if (mu > LN+LbEI && mu <= LN+2+xLbEI)

PEI (mu-LN-LbEI) = DbEI (mu-LN-LDbEI)+1;

Fif (mu > LN+2+LbEI && mu <= LN+2xLbEI+LbIE)
if (mu > LN && mu <= LN+LDbIE)

bIE (mu—-LN)=bIE (mu-LN)-1;

$bIE (mu—-LN-2+«LbEI) = bIE (mu-LN-2+LbEI)-1;

end

$if (mu > LN+2xLBEI+LDbIE && mu <= LN+2xLbEI+2*LbIE)
if (mu > LN+LDbIE && mu <= LN+2xLDbIE)
PIE (mu-LN-LbIE)=bIE (mu-LN-LbIE)+1;
SPIE (mu-LN-2+LbEI-LbIE) = DbIE (mu-LN-2xLbEI-LbIE)+1;

end
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54

if (mu > LN+2xLBEI+2+LbIE && mu <= LN+2+xLbEI+2xLbIE+LbEE)

bEE (mu—LN-2+LbEI-2+LbIE) = bEE (mu-LN-2*«LbEI-2xLbIE)-1;

end

if (mu > LN+2xLDbEI+2+«LDbIE+LbEE && mu <= LN+2*xLbEI+2xLbIE+2%LbEE)

PEE (mu-LN-2+LbEI-2+LbIE-LbEE) =
PEE (mu-LN-2+LbEI-2%LbIE-LbEE) +1;

end

$if (mu > LN+2+LbEI+2+xLbIE+2+LbEE &&

% mu <= LN+2*+LbEI+2+LbIE+2+LbEE+LbIT)

if (mu > LN && mu <= LN+LDbII)
SbITI (Mu-LN-2+«LbEI-2xLbIE-2xLbEE) =
SPIT (Mu-LN-2+LbEI-2+xLbIE-2+«LbEE) -1;
PII (mu-LN) = bII (mu-LN)-1;

end

if (mu > LN+LbITI && mu <= LN+2xLbIT)

$if (mu > LN+2+LbEI+2+xLbIE+2+LbEE+LbII &&

% mu <= LN+2+LbEI+2+LbIE+2+LbEE+2+LbITI)
SPII (MU-LN-2+LbEI-2+xLbIE-2+xLbEE-LbII) =

SPIT (MU-LN-2+LbEI-2+LbIE-2+LbEE-LbITI)+1;

bITI (mu—-LN-LbII) = bII (mu-LN-LbII)+1;
end
%}
listmu (count)=mu;
count=count+1; % update the counter
cum-t=cum-t+tau; % update the time
time_steps (count)=cum_t; % stochastic timebase

EAS (count)=sum(NE) /N_cells_E;$% Stochastic value of
%$Proportion of active
IAS (count)=sum(NI)/N_cells_I;% Stochastic value of

%$Proportion of active
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%$avgbEI (count)=sum (bEI) /length (bEI) ; % and average weight
avgbIE (count)=sum (bIE) /length (bIE);

%$avgbEE (count) =sum (bEE) /length (bEE) ;

%$avgbII (count)=sum(bII)/length (bII);

avgx (count)=sum(x) /N_cells;

avgf (count)=sum(f_tilde)/N_cells;

%$deltaS (count)=1+g_E*xg_IxavgblE (count) xavgbEI (count) ;

% marktime;
% if cum_t/T > percx0.1

o

disp (cum-t) ;

o\

perc=perc+l;

o\

end

if (count>1l) ,break, end

o\

end;

execcum=0;

finalS=toc (starttime)

listmu (count:end)=[];
EAS (count:end)=[1];

IAS (count:end)=[1];
%avgbEI (count:end)=[];
avgbIE (count:end)=[];
%avgbEE (count:end)=[];

%$avgbII (count:end)=[1];

avgx (count:end)=[1;
avgf (count:end)=[];
time_steps (count:end)=[];

save (sprintf ('outputonlybIE%d.mat',comp),'-v7.3")

end
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