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Abstract
Background  Herein, we report results from a genome-wide study conducted to identify protein quantitative trait 
loci (pQTL) for circulating angiogenic and inflammatory protein markers in patients with metastatic colorectal cancer 
(mCRC). The study was conducted using genotype, protein marker, and baseline clinical and demographic data 
from CALGB/SWOG 80405 (Alliance), a randomized phase III study designed to assess outcomes of adding VEGF or 
EGFR inhibitors to systemic chemotherapy in mCRC patients. Germline DNA derived from blood was genotyped on 
whole-genome array platforms. The abundance of protein markers was quantified using a multiplex enzyme-linked 
immunosorbent assay from plasma derived from peripheral venous blood collected at baseline. A robust rank-based 
method was used to assess the statistical significance of each variant and protein pair against a strict genome-wide 
level. A given pQTL was tested for validation in two external datasets of prostate (CALGB 90401) and pancreatic 
cancer (CALGB 80303) patients. Bioinformatics analyses were conducted to further establish biological bases for these 
findings.

Results  The final analysis was carried out based on data from 540,021 common typed genetic variants and 23 
protein markers from 869 genetically estimated European patients with mCRC. Correcting for multiple testing, 
the analysis discovered a novel cis-pQTL in LINC02869, a long non-coding RNA gene, for circulating TGF-β2 levels 
(rs11118119; AAF = 0.11; P-value < 1.4e-14). This finding was validated in a cohort of 538 prostate cancer patients from 
CALGB 90401 (AAF = 0.10, P-value < 3.3e-25). The analysis also validated a cis-pQTL we had previously reported for 
VEGF-A in advanced pancreatic cancer, and additionally identified trans-pQTLs for VEGF-R3, and cis-pQTLs for CD73.
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Background
The heritability of circulating protein abundance and 
evidence showing the influence of germline genetic vari-
ants in circulating protein levels have raised the interest 
in protein quantitative trait loci (pQTL) studies. pQTL 
studies have the objective of determining the impact of 
germline genetic variants on circulating protein levels. 
Circulating protein levels are involved in diverse bio-
logical processes, including disease development and 
response to medications. pQTL analyses can contribute 
notably to the discovery of new clinically relevant bio-
markers and to better understanding the factors that 
regulate circulating proteins and the pathways involved 
in these biological processes [1, 2].

Colorectal cancer (CRC) is the third most common 
type of cancer and the second leading cancer-related 
death worldwide [3]. Many studies have attempted 
to identify circulating proteins as biomarkers in CRC 
patients, including biomarkers for the early detection 
of CRC [4, 5], prognosis [6, 7], treatment response [7], 
regional tumor localization [6], and disease dissemina-
tion [6]. Thus, the assessment of the impact of germline 
genetic variants on circulating protein levels through 
pQTL analyses in CRC patients can potentially lead to 
insights into the mechanisms involved in CRC develop-
ment and treatment outcome.

Herein, we report results from a study of common 
genetic variation with respect to variation in circulating 
proteins with putative inflammatory or angiogenic func-
tion in patients with metastatic (m) CRC. Specifically, 
we sought to identify functional cis- and trans-pQTL 
variants using genome-wide germline genotyping data 
and circulating protein levels measured using a custom 
panel of putative cancer-related angiogenic and inflam-
matory markers. To this end, we used clinical, genotyp-
ing, and pre-treatment candidate protein marker data 
obtained from patients with mCRC randomized to the 
Cancer and Leukemia Group B (CALGB, now part of the 
Alliance for Clinical Trials in Oncology (Alliance)) and 
the Southwest Oncology Group, CALGB/SWOG 80405. 
This was a phase III study randomizing mCRC patients to 
receive cetuximab, an epidermal growth factor receptor 
(EGFR) inhibiting monoclonal antibody, or bevacizumab, 
a vascular endothelial growth factor (VEGF) inhibiting 
monoclonal antibody, or the combination of the two in 
addition to systemic chemotherapy [8].

After accounting for multiple testing, our analysis 
discovered a novel cis-pQTL in the intronic region of 
LINC02869 (alias C1orf143) for circulating TGF-β2 at 
the two-sided genome-wide level of 0.05. The novel cis-
pQTL for TGF-β2 was then tested for validation in inde-
pendent external cohorts of castration-resistant prostate 
cancer (CALGB 90401) and advanced pancreatic cancer 
patients (CALGB 80303) [9–13].

This analysis also validated a cis-pQTL for VEGF-A 
that we had previously identified in a cohort of patients 
with locally advanced or metastatic pancreatic cancer 
[13]. Finally, our study identified trans-pQTLs for VEGF-
R3 and cis-pQTLs for CD73.

While the scope of our analysis was genome-wide, 
this paper is primarily focused on the presentation of its 
novel findings. In addition, we have provided a high-level 
summary of the other significant results from our analy-
sis which reproduce our own previous findings and those 
of others for the sake of completeness, and to further 
establish the reliability of our data and approach.

Methods
Clinical data
Patients registered to CALGB/SWOG 80405 were ran-
domized to receive bevacizumab, cetuximab, or the com-
bination of these two monoclonal antibodies, in addition 
to systemic chemotherapy. For the latter, the choice of 
a FOLFOX- or FOLFIRI-based regimen was at the dis-
cretion of the treating physician. The study was later 
amended by restricting participation to patients with 
wild-type KRAS tumors and by terminating the combi-
nation arm. Additional details on the design of the study, 
its amendments, and clinical baseline characteristics and 
outcomes for its patients have been reported in a primary 
clinical publication and its supplementary material [8]. 
Baseline demographic and clinical data used in the pres-
ent analyses were obtained from the database used to 
generate the analyses reported in that publication.

Genotyping data
Germline DNA was extracted from peripheral blood. 
The genotyping was conducted in two separate batches 
using the Illumina Human OmniExpress (12v1) and the 
Illumina Human OmniExpressExome (8v1) platforms, 
respectively, by the Core of Genomic Medicine of the 
RIKEN institute in Yokohama, Japan. The genotyp-
ing design included the use of HapMap controls as well 
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as inter- and intra-plate replicates. The analysis data set 
was constructed on the basis of the intersection of the 
variants across these two platforms identified by their 
respective dbSNP Reference SNP ID (rsID). A number of 
quality control (QC) metrics, including genotype calling 
rate, AAF, Hardy-Weinberg P-values, were used to filter 
out variants. Additional technical details on the genotyp-
ing and QC processes have been previously reported [14].

Circulating protein markers
Levels of 23 soluble proteins (angiopoietin-2, HGF, 
ICAM-1, IL-6, OPN, PDGF-AA, PDGF-BB, PlGF, SDF-
1, TGF-β1, TGF-β2, TIMP-1, TSP-2, VCAM-1, VEGF-
A, VEGF-D, VEGF-R1, VEGF-R2, VEGF-R3, BMP-9, 
CD73, HER-3, TGFβ-R3) were measured in plasma from 
peripheral venous blood collected at baseline using mul-
tiplex enzyme-linked immunosorbent assay (ELISA). The 
plasma was double-spun, aliquoted, and frozen in liq-
uid nitrogen. Additional technical details on this panel, 
including CVs, lower limits of quantitation, and limits 
of detection, have been previously reported [13, 15–17]. 
The analyses reported herein are based on measurements 
taken at baseline prior to any CALGB/SWOG 80405 pro-
tocol-directed treatment.

Statistical considerations
To ensure robustness against outliers and influential data 
points and deviations from normality assumptions, the 
Jonckheere-Terpstra statistic [18, 19] was used for the 
discovery of pQTLs. Then variance approximation pro-
vided in expression 6.19 in Hollander et al. [20], imple-
mented by the fastJT package [21], was used to derive a 
standardized statistic whose null sampling distribution 
was approximated using a standard normal distribution.

To properly account for multiple testing in the discov-
ery process, a conservative two-sided genome-wide sig-
nificance level of 0.05/K, where K denotes the number 
of single nucleotide polymorphisms  (SNPs) and protein 
marker pairs tested in the final analysis, was used. The 
potential confounding effects of baseline covariates, 
including age at time of registration (log base 10 trans-
formed), self-reported gender, and global ancestry, were 
assessed using a robust linear regression rank-based 
approach implemented by the Rfit [22] package. The gen-
otype effect was quantified on the additive scale as the 
number of copies of the alternate allele (additive genetic 
model), and global ancestry was inferred for pateints pre-
viously identified as genetic Europeans [14] using the first 
three principal components estimated using the SNPRel-
ate R package [23]. The Hodges-Lehmann-Sen estima-
tor was used to estimate the location parameter for the 
distribution of the abundance of a protein conditional 
on the genotype. The per allele effect size was estimated 
as the ratio of the location parameter estimates. A 95% 

exact confidence interval was calculated for each loca-
tion parameter. These estimates were meant to serve as 
descriptive measures, and accordingly, the corresponding 
confidence levels were not adjusted for multiple testing. 
For each protein marker, the distribution of the unad-
justed P-values was examined using Manhattan and QQ 
plots.

All statistical analyses were conducted using the R 
statistical environment [24] and its extension pack-
ages, including those from the tidyverse [25] ecosys-
tem, foreach [26], SeqArray [27], kableExtra [28], knitr 
[29] and rmarkdown [30]. SNP and gene positions are 
reported per GRCh37.

Replication analysis
For a given pQTL pair, the Jonckheere-Terpstra statis-
tic [18, 19] with the genotype effect quantified on the 
additive scale as the number of copies of the alternate 
allele (additive genetic model) was used to estimate the 
pQTL association in two independent external datasets, 
CALGB 90401 [9] and CALGB 80303 [11, 13]. CALGB 
90401 included metastatic castration-resistant prostate 
cancer randomized to receive docetaxel in combination 
with prednisone on day 1 plus either placebo or bevaci-
zumab every 21 days. CALGB 80303 included patients 
with advanced pancreatic cancer randomized to receive 
gemcitabine on days 1, 8, and 15 plus either placebo or 
bevacizumab on days 1 and 15. Additional details on the 
design of both studies, and clinical baseline characteris-
tics and outcomes for its patients have been reported in 
primary clinical publications [9, 11].

Bioinformatics considerations
For a given pQTL pair, the extent of the signal, quantified 
by unadjusted P-values, relative to the positions of vari-
ants and their linkage disequilibrium (LD) within regions 
of annotated genes, was assessed visually using Locus 
Zoom ([31]; version 1.4) plots. The June 2010 release 
of The 1000 Genomes Pilot 1 EUR panel (November 
2014; hg19 coordinates using GENCODE gene annota-
tion [32]) was used as the reference. Putative functional 
effects were investigated using RegulomeDB [33], USCS 
Genome Browser [34], Haploreg [35], and SNPNexus 
[36]. AtSNP was used to quantify the impact of SNPs on 
transcription factor binding [37].

Results
The final analysis was conducted on the basis of a data set 
comprised of 540,021 SNPs, 23 baseline protein mark-
ers, and baseline demographic and clinical data from 
869 genetically estimated European mCRC patients from 
CALGB/SWOG 80405 for whom protein marker data 
was available. The Consolidated Standards of Reporting 
Trials (CONSORT [38]) chart displayed in Innocenti, 
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et al. [14] provides additional details on the sample and 
variant selection process leading to the final analysis data 
set. Table 1 provides summaries of baseline demographic 
and clinical data for the analysis cohort of this study. 
The two-sided genome-wide level significance threshold 
was set to be 4.03e-09. At this level, 37 candidate pQTLs 
across four proteins, TGF-β2, VEGF-A, VEGF-R3, and 
CD73, were identified based on our pre-specified statisti-
cal decision rule. Overview and details for these candi-
dates are illustrated in the Circos [39] plot in Fig. 1, and 
summarized in Supplementary Tables 1 and 2, Additional 
File 1. The Manhattan and quantile-quantile (QQ)-plots 
for TGF-β2, VEGF-A, VEGF-R3, and CD73 are shown in 
Supplementary Figs. 1–4, Additional File 1, respectively. 
Finally, for each of the 23 proteins, the top 100 pQTLs, 
ranked according to the corresponding unadjusted P-val-
ues are shown in Additional File 2.

Our analysis identified a novel pQTL for TGF-β2: 
rs11118119 (chr1:218693872; A > G; alternate allele fre-
quency (AAF) = 0.11; P-value < 1.4e-14) is in the intronic 
region of LINC02869 (alias C1orf143). This variant is 
located 75,911 bases downstream from TGFB2. The 
genotypic Hodges-Lehmann-Sen estimates are 95.8 

(n = 692; 95% CI = 91.6, 100), 141 (n = 164; 95% CI = 128, 
155) and 207 (n = 12; 95% CI = 140, 295) for genotypes 
AA, AG and GG respectively, while the median observed 
values were 87.2, 130.2, and 206.9, respectively. The esti-
mated effect size in the rank-based linear model was 1.68 
(CI = 1.51, 1.88). This variant is in moderate LD (R2 = 0.67 
in the analysis data set) with rs725033 (chr1:218643940; 
G > A; AAF = 0.12; P-value < 1.6e-10) an intergenic variant 
25,979 bases upstream from TGFB2. See Table 2; Fig. 2, 
and Supplementary Figs.  5 and 6, Additional File 1 for 
box and locus zoom plots of rs11118119 and rs725033, 
respectively.

Our analysis provided strong confirmatory evidence 
for a cis-pQTL we have previously reported for circulat-
ing VEGF-A in patients with locally advanced or meta-
static pancreatic cancer: rs7767396 (chr6:43927050; 
A > G; AAF = 0.48; P-value < 2.6e-12), an intergenic vari-
ant 172,826 bases downstream from VEGFA and 41,272 
bases upstream from C6orf223. See Table 2, and box and 
locus zoom plots in Supplementary Fig. 7, Additional File 
1.

Our analysis identified trans-pQTLs for VEGF-R3 
on chromosomes 3 and 9. These include rs10935473 
(chr3:98416900; C > A; AAF = 0.45; P-value < 6.4e-39), an 
intergenic variant 16,277 bases upstream from ST3GAL6-
AS1, intronic variants in CPOX (e.g., rs3804622; 
chr3:98303182; G > A; AAF = 0.51; P-value < 5.7e-23), 
intronic variants in ST3GAL6-AS1 (e.g., rs844159; 
chr3:98443648; A > G; AAF = 0.46; P-value < 1.1e-19) and 
an intronic variant in ABO blood group gene (rs507666; 
chr9:136149399; G > A; AAF = 0.20; P-value < 9.1e-12). See 
Table 2, and Supplementary Figs. 8, 9, 10, and 11, Addi-
tional File 1 for box and locus zoom plots of rs10935473, 
rs3804622, rs844159, and rs507666, respectively.

Finally, we identified cis-pQTLs for CD73: rs2229523 
(chr6:86199233; G > A; AAF = 0.34; P-value < 2.3e-
15), a non-synonymous variant in NT5E, the gene 
that codes CD73, and an intergenic variant, rs494688 
(chr6:86100089; G > A; AAF = 0.11; P-value < 1.9e-09), 
59,712 bases upstream from NT5E. The estimated R2 
between rs2229523 and rs494688 was 0.04 in the analy-
sis data set. See Table 2, and Supplementary Figs. 12 and 
13, Additional File 1 for box and locus zoom plots of 
rs2229523, and rs494688, respectively.

Validation of the association between rs11118119 and 
TGF-β2 levels
In order to validate the novel cis-pQTL for TGF-β2 
identified in our analysis (rs11118119, chr1:218693872; 
A > G), we tested the association between rs11118119 and 
TGF-β2 levels in 538 castration-resistant prostate cancer 
patients from CALGB 90401 and 216 advanced pancre-
atic cancer patients from CALGB 80303 [13]. Selected 

Table 1  Demographics and clinical characteristics of patients 
of genetically determined European ancestry included in the 
genome-wide pQTL analysis of CALGB/SWOG 80405

Patients
n = 869

Age (years) – median (range) 59.7 (21.8–85.3)
Gender – n (%)
  Male 506 (58.2%)
  Female 363 (41.8%)
Treatment arm – n (%)
  Chemotherapy/Bevacizumab 340 (39.1%)
  Chemotherapy/Cetuximab 312 (35.9%)
  Chemotherapy/Bevacizumab/Cetuximab 217 (25.0%)
Chemotherapy – n (%)
  FOLFOX 666 (76.6%)
  FOLFIRI 203 (23.4%)
Prior adjuvant chemotherapy – n (%)
  No 744 (85.6%)
  Yes 125 (14.4%)
Prior pelvic radiation – n (%)
  No 785 (90.3%)
  Yes 84 (9.7%)
ECOG PS – n (%)
  0 545 (62.7%)
  1 324 (37.3%)
Tumor location – n (%)
  Left 497 (57.2%)
  Right 230 (26.5%)
  Transverse 62 (7.1%)
  Multiple 4 (0.5%)
  Unknown 76 (8.7%)
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baseline characteristics for these two cohorts are summa-
rized in Supplementary Table 3, Additional File 1.

The association was validated independently in CALGB 
90401, where the G allele of rs11118119 (A > G) was 
associated with higher TGF-β2 levels (P-value < 3.3e-25, 
AAF = 0.10), similar to CALGB/SWOG 80405 (Fig.  2). 
We could not validate this association in CALGB 80303 
(P-value = 0.500, AAF = 0.12, Fig. 2).

Bioinformatic analysis of rs11118119
Our bioinformatic analysis showed that rs1015275 
(G > C), in high LD (R2 = 0.91) with rs11118119 (A > G) 
and located 50  kb downstream from TGFB2, is located 
in the binding motif for the HAND1 transcription factor. 
Additional data from the JASPAR database [40] (using 
atSNP [37]) predicts preferential binding of HAND1 
to the C allele of rs1015275 compared to the G allele 
(p = 0.0038, log-likelihood=-4.46 for the C allele, and 
p = 5.93 × 10− 6, log-likelihood=-27.45, p = 0.321 for the G 
allele) (Supplementary Fig.  14, Additional File 1). This 

Fig. 1  Chromosome-based Circos plot for pQTL that passed the genome-wide threshold. The colors indicate if a gene contains one of the top SNPs 
(green) or is a flanking gene (red). Links with less curvature indicate smaller P-values
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evidence is derived from small-scale in vitro experiments 
for HAND1 in complex with TCF3 and TCF4. Moreover, 
the non-coding scores provided by SNPnexus [36] show 
that rs1015275 has a high predicted functionality accord-
ing to EIGEN PC [41] (PC score = 1.33) and DeepSEA 
[42] scores (functional significance score = 0.010). High 
EIGEN PC scores and low DeepSEA scores indicate that 

the SNP is predicted to be located in regions of open 
chromatin, accessible to transcription factors.

Discussion
The present study investigated the association between 
genetic markers and circulatory protein levels in mCRC 
patients and discovered a novel cis-pQTL for TGF-β2, 
rs11118119 (A > G) located in LINC02869. This finding 

Table 2  Results and annotation for pQTLs that passed the genome-wide threshold
Protein/rsID Chr Base Gene N AAF HWE Pvalue Est P.c Est.c
CD73
rs2229523 chr6 G > A NT5E 869 0.34 0.82 2.3E-15 0.52 9.8E-17 0.52
rs494688 chr6 G > A DUTP5/ RP11-30P6.6 869 0.11 0.73 1.9E-09 0.61 8.1E-10 0.60
TGF-β2
rs11118119 chr1 A > G C1orf143 868 0.11 0.48 1.4E-14 0.52 3.6E-18 0.51
rs725033 chr1 G > A C1orf143/ TGFB2 869 0.12 0.74 1.6E-10 0.41 2.1E-12 0.40
VEGF-A
rs7767396 chr6 A > G RP5-1120P11.1/ RP11-344J7.2 868 0.48 0.95 2.6E-12 0.51 9.3E-12 -0.51
VEGF-R3
rs10935473 chr3 C > A ST3GAL6-AS1/ WWP1P1 869 0.45 0.49 6.4E-39 0.29 1.4E-43 0.29
rs3804622 chr3 G > A CPOX 869 0.51 0.46 5.7E-23 0.21 2.0E-24 0.22
rs844159 chr3 A > G ST3GAL6-AS1 869 0.46 0.58 1.1E-19 0.20 5.9E-20 0.20
rs507666 chr9 G > A ABO 869 0.20 0.17 9.1E-12 0.19 2.3E-12 0.19
rs579459 chr9 A > G Y_RNA/ ABO 869 0.23 0.08 9.2E-12 0.18 1.3E-11 0.18
Protein/rsID: protein marker/RefSNP ID of variant; Chr: chromosome of the variant according to hg19; Base: Illumina TOP reference > alternate alleles; Gene: gene 
symbol for intragenic variants or nearest downstream/upstream gene symbols for intergenic variants; N: number of samples for whom the variant was called; AAF: 
relative allelic frequency for the alternate allele; HWE: Hardy-Weinberg P-value; Pvalue: P-value for pQTL analysis; Est: parameter estimate for the variant effect 
from the rank-based linear regression; P.c: P-value for the variant effect from the rank-based linear regression adjusting for covariates; Est.c: parameter estimate for 
the variant effect from the rank-based linear regression adjusting for covariates. Variants are sorted by rsID within Protein and Chr. Note that C1orf143 is an alias for 
LINC02869, and that the genotyping data included rs3812138, but this ID has been merged with rs2229523

Fig. 2  Associations between rs11118119 (A > G) and TGF-β2 levels in CALGB/SWOG 80405, CALGB 90401, and CALGB 80303
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was supported by further confirmation in an indepen-
dent external cohort of patients with castration-resistant 
prostate cancer. Moreover, this study also validated pre-
viously discovered cis-pQTLs for VEGF-A and CD73, as 
well as a trans-pQTL for VEGF-R3.

The TGF-β signaling pathway participates in different 
biological processes, including cell proliferation, differen-
tiation, adhesion, migration, and apoptosis [43]. TGF-β 
acts as a tumor suppressor in normal epithelium cells and 
in the early stages of different types of cancer, including 
CRC [44, 45], prostate [46], and pancreatic [47]. How-
ever, in advanced cancers, TGF-β is abundantly expressed 
and acts as a tumor promoter. The TGF-β family consists 
of three members, TGF-β1, TGF-β2, and TGF-β3. Both 
TGF-β1 and TGF-β2 control the activity of stromal cells 
and tumor cells, affecting cancer progression [48, 49]. 
Higher TGF-β2 expression is correlated with the prog-
nosis of different types of cancer, mainly CRC. Higher 
TGF-β2 expression has also been associated with lymph 
node metastasis in CRC patients and with the expression 
of several markers of immune cell subspecies in tumors. 
Thus, TGF-β2 expression is related to the magnitude of 
the tumor infiltration by immune cells, with the potential 
to serve as a prognostic biomarker in CRC [50].

We provided evidence of replication of the associa-
tion between rs11118119 and TGF-β2 levels in meta-
static castration-resistant prostate cancer patients from 
the CALGB 90401 study. Similar to mCRC patients in 
CALGB/SWOG 80405, the G allele of rs11118119 (A > G) 
was associated with higher levels of TGF-β2 (Fig. 2). The 
association was not replicated for advanced pancreatic 
cancer patients from CALGB 80303 (Fig. 2).

The empirical relative allelic frequencies for the risk 
allele of rs11118119 in the genetically estimated Euro-
pean cohort of CRC, prostate cancer, and pancreatic 
cancer patients in our study are 0.11, 0.09, and 0.12, 
respectively. The corresponding reported putative rela-
tive frequency in the European (EUR) cohort from the 
1000 Genomes database is 0.14 compared to a putative 
relative frequency of 0.56 in the African (AFR) cohort 
[51]. Effectively, the putative risk allele for this variant is 
the major allele in the latter population, and this finding 
might impact a significant proportion of patients with 
advanced tumors.

Bioinformatic analyses showed that rs1015275 (G > C), 
a SNP in high LD with rs11118119 (A > G) located 
around 50  kb downstream from TGFB2, has a high 
EIGEN PC score and a low DeepSEA score, which indi-
cated that the SNP is predicted to be located in regions 
of open chromatin that are accessible to many tran-
scription factors. Moreover, data from JASPAR database 
shows that rs1015275 (G > C) is predicted to alter the 
HAND1 binding motif, with the C allele increasing the 
likelihood of HAND1 binding compared to the G allele. 

In addition, JASPAR database also shows that HAND1 
can complex with TCF3 and TCF4. HAND1, TCF3, and 
TCF4 are transcription factors of the basic helix-loop-
helix protein (bHLH) family, which bind to a consensus 
sequence, CAnnTG, that resides in cis-regulatory ele-
ments of downstream target genes [52]. Transcription 
factor interplay is intrinsically related to enhancer func-
tion [53], which might indicate higher TGFB2 expression 
in patients with the C allele of rs1015275 (corresponding 
to the G allele of rs11118119), leading to higher circulat-
ing levels of TGF-β2.

The results of the present investigation validate one of 
our previous findings that identified rs7767396 as a cis-
pQTL for circulating VEGF-A in patients with locally 
advanced pancreatic cancer from CALGB 80303 and in 
CRC patients in CALGB 80303 [13]. From the previous 
study, it is already known that the binding of NF-AT1 
and ZBRK1 transcription factors may be altered by the 
presence of the G allele of rs7767396 (A > G), which can 
regulate VEGF-A plasma levels. Moreover, rs7767396, 
and SNPs in high LD with it (R2 > 0.95, rs78355601, 
rs4513773, rs11757903), have been previously associated 
with VEGF-A plasma levels in several studies reported 
in the NHGRI-EBI genome-wide association studies 
(GWAS) catalog [54–60].

The results of this study also validated previously 
reported trans-pQTLs for VEGF-R3 on chromosomes 
3 and 9. On chromosome 3, rs10935473 (C > A) has 
already been associated with plasma levels of VEGF-R3 
in previous studies in patients with pre-diabetes or dia-
betes reported in the pGWAS database [61] and other 
studies reported in the NHGRI-EBI GWAS catalog [54]. 
Similar to our study, the A allele of rs10935473 (C > A) 
was associated with decreased levels of VEGF-R3. On 
chromosome 9, rs507666 (G > A) has also been associ-
ated with plasma levels of VEGF-R3 in a previous study 
in patients with pre-diabetes or diabetes reported in the 
pGWAS database [61]. Similar to our study, the A allele 
of rs507666 (G > A) was associated with lower levels of 
VEGF-R3.

Lastly, our analysis identified rs2229523 (G > A) as 
a cis-pQTL for CD73, with the A allele of rs2229523 in 
NT5E associated with higher plasma levels of CD73. The 
G allele of rs2229523 (G > A) was already reported as 
an eQTL decreasing the mRNA expression of NT5E in 
whole blood (p = 1.1 × 10− 5, normalized effect size NES = 
-0.16) and many other tissues [62]. However, this is the 
first study reporting rs2229523 as a pQTL for the circula-
tory protein levels of CD73 in plasma.

This study has some limitations. The discovery pro-
cess was limited to genetically estimated Europeans. The 
reported association between rs11118119 and TGF-β2 
observed in CALGB/SWOG 80405 (advanced mCRC) 
and validated in CALGB 90401 (advanced prostate 



Page 8 of 10Quintanilha et al. BMC Genomics          (2024) 25:473 

cancer) failed to validate in CALGB 80303 (advanced 
pancreatic cancer). We note that the TGF-β2 assay used 
in CALGB/SWOG 80405 and CALGB  90401 was an 
improved version of the assay initially used in CALGB 
80303. The first-generation TGF-β2 assay did not have as 
wide a dynamic range or level of sensitivity as the cur-
rent TGF-β2 assay. Further, the TGF-β2 assay used in 
CALGB 80303 had much lower precision, exhibiting a 
coefficient of variation (CV) of 15.2% compared to 6.0% 
and 3.8% observed in CALGB/SWOG 80405 and CALGB 
90401, respectively. The present analysis has been 
restricted to high quality typed variants at the genotype 
level. Imputation- and haplotype-based analyses may 
identify additional relevant sources of genetic variation. 
The mechanism proposed of how rs11118119 regulates 
the levels of TGF-β2 by bioinformatic analysis needs to 
be further validated in experimental models. Finally, the 
study results do not establish the link between this vari-
ant, the circulating markers, and clinically relevant out-
comes, and do not consider potential for co-localization 
with other disease-trait loci.

Conclusions
In summary, this study has provided evidence of a novel 
cis germline genetic variant that regulates circulat-
ing TGF-β2 levels in plasma of patients with advanced 
CRC and prostate cancer. The putative reference relative 
allelic frequency for this variant ranges from 0.14 in the 
European population to over 0.5 in the African popula-
tion. The discovery of a genetic variant that regulates the 
levels of TGF-β2 in circulation might have important 
implications for identification of prognostic biomark-
ers and mechanisms that shape disease heterogeneity in 
advanced tumors.
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