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Efficient multimode Wigner tomography

Kevin He 1,2 , Ming Yuan 3, Yat Wong 3, Srivatsan Chakram4, Alireza Seif3,
Liang Jiang 3 & David I. Schuster 1,2,3

Advancements in quantum system lifetimes and control have enabled the
creation of increasingly complex quantum states, such as those on multiple
bosonic cavity modes. When characterizing these states, traditional tomo-
graphy scales exponentially with the number of modes in both computational
and experimental measurement requirement, which becomes prohibitive as
the system size increases. Here, we implement a state reconstruction method
whose sampling requirement instead scales polynomiallywith systemsize, and
thus mode number, for states that can be represented within such a poly-
nomial subspace. We demonstrate this improved scaling with Wigner tomo-
graphy of multimode entangled W states of up to 4 modes on a 3D circuit
quantum electrodynamics (cQED) system. This approach performs similarly in
efficiency to existingmatrix inversionmethods for 2modes, anddemonstrates
a noticeable improvement for 3 and 4 modes, with even greater theoretical
gains at higher mode numbers.

Quantum state tomography (QST) is the process of determining the
quantum state of a system, and is a crucial part of certifying operations
and characterizing processes in quantum information science. In its
conventional formulation, obtaining full state information has a pro-
cessing and measurement requirement that scales exponentially with
the size of the system1,2. However, physical states of interest typically
have some structure that we can exploit to simplify the measurement
complexity. Direct fidelity estimation (DFE) is a technique that utilizes
this, and has been applied to matrix product states or stabilizer states
in many-qubit systems2–5 to efficiently produce partial information
about the system state. In the remainder of this work, we refer to such
states as DFE-efficient.

Efficient QST is especially relevant in continuous variable systems
with bosonic cavity modes, whose Hilbert spaces are arbitrarily large.
These systems have applications in error correction codes6–8, quantum
optics9, quantum simulation10, and quantum information processing11.
For a single mode, full state information is obtained by measuring
operators like theWigner operator12 orQ functionoperator at different
mode displacements13. Efficient QST in the multimode case is much
more challenging. Even with techniques like compressed sensing14–16,
the sampling and number of measurements required can still
scale exponentially with the number of modes. Several efforts use
multiple cavities to propose or produce increasingly complex states

like multimode cat states17, W states18, multimode GKP states19, GHZ
states20, and othermultimode Fock state superpositions21,22 that have a
variety of applications in quantum error correction and logical
encodings, as well as quantum simulation. In particular, W states have
unique multipartite entanglement—demonstrated with entanglement
witnesses23,24—and protection against photon loss that gives them
applications in quantum communication. Some proposed theoretical
methods are able to extract multimode state information while cir-
cumventing the exponential scaling of observation number with the
number of modes. These include techniques that apply additional
unitaries betweenmodes aspart of themeasurement process, perform
targeted measurements with polynomial post-processing25, make use
of ancillary modes and a known excitation number26, or apply opera-
tors based on excitation counting13. In our case, to obtain full state
information, we instead use a technique that in principle only requires
local operations to directly measure and reconstruct the density
matrices of potentially mixed states confined in a subspace of interest.

In this work, we use the Direct Extraction of (Density) Matrix
Elements from Subspace Sampling Tomography (DEMESST) method
to reconstruct quantum state density matrices, and compare its per-
formance with an optimized QST method18,27. DEMESST applies when
an unknown state lies in a polynomial dimensional subspace. When
this subspace is spanned by a set of states obtained by acting finite
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local operations on a DFE-efficient state, the operations required to
implement DEMESST are local as well28. Under these conditions,
DEMESST has a polynomially scaling sampling requirement. For cer-
tain multimode cavity states, the total measurement number will
therefore depend polynomially on the number of modes, rather than
exponentially. With DEMESST, we individually sample measurements
for each basis operator in a polynomial subspace, and subsequently
reconstruct a density matrix by combining them. Additionally, we
implement this method with Wigner operators and Wigner tomo-
graphy, thus performing the measurements with local operations on
the modes and eliminating errors that may be associated with multi-
mode unitaries or beamsplitters. With this approach, and without
making prior assumptions about the populations or phases of the state
components, wemeasure the density matrices ofW states prepared in
up to 4 bosonic modes on a superconducting cQED system, which is
beyond existing demonstrations and advances the state of the art.

Results
The DEMESST method
DEMESST scales polynomially with mode number for states that have
support in a polynomial subspace of DFE-efficient basis operators3 (for
example, states with a knownmaximumexcitation number in the Fock
basis). This is accomplished by leveraging that prior information, and
rather than sampling all basis operators of the Hilbert space, only
sampling those that are expected to support the state. This is espe-
cially advantageous when the subspace that an expected state lives in
is much smaller than the full space. DEMESST allows us to individually
sample density matrix elements in a subspace of interest, and applies
to bothdiscrete qubit and continuous cavity systems.This is illustrated
schematically in Fig. 1a. We reconstruct a density matrix ρ in a poly-
nomial subspace by independently measuring basis operators and the
corresponding matrix elements for each projection of ρ within the
subspace, through methods similar to DFE3,4, without introducing
statistical bias, thus ensuring convergence to the true values (see
Supplementary Notes 3 and 4). The reconstructed state is given by
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With this approach, we avoid extracting irrelevant information about
states outside the subspace of interest, thereby lowering the number
of measurements required for an accurate result. For example, if we
know a 3-mode state has amaximum of 2 photons (M = 3, d = 3 for 0, 1,
or 2 photon population), we reconstruct it with DEMESST by
measuring the matrix elements associated with that subspace, namely
the one formed by ∣000i,∣001i,∣011i,∣002i, and permutations. We
eliminate unnecessary sampling of higher photon number states like
∣111i or ∣012i and beyond. Additionally, we build upon existing work2,3

by developing and applying this approach to QST of bosonic modes
and arbitrarymixed states rather than qubits and pure states. Here, we
implement DEMESST on a multimode cavity system with Wigner
tomography.

Optimized Wigner tomography (OLI)
Wigner tomography uses measurements of the Wigner operator
Wðα!Þ=Dðα!ÞΠDð� α

!Þ acting on a bosonic state ρ to reconstruct it.
Here, Dðα!Þ= N

iDðαiÞ is the displacement operator and Π is a parity
measurement. Existing inversion-based Wigner tomography methods
operate by taking the Wigner functions of a set of displacements f α!g
to construct a measurement matrix M that maps to states as
x!=M ρ

�� ��
, where ρ

�� ��
is the vectorized form of ρ. Inverting M to

minimizeρjjM ρ
�� ��� x!jj allows us to determine the physical (unit

trace and positive semidefinite) ρ that was most likely to have pro-
duced x!. The set fα!g is optimized by minimizing the condition
number (the ratio of largest to smallest eigenvalue) ofM and thus the
error magnification, using the techniques presented in refs. 18,27. We
refer to this method as Optimized Linear Inversion (OLI). In this
approach, to make the problem tractable, we choose a cutoff dimen-
siond to truncate theHilbert space. Reconstructingρ for a singlemode
therefore requires at least d2 measurements to determine each density
matrix parameter. For multiple modes, the size of the Hilbert space
and thus the number of required measurements will scale exponen-
tially, requiring at least d2M observations forMmodes.We compareOLI
with DEMESST by testing their performance on experimentally pre-
pared W states.

Testing tomography sampling with W states
W states are excellent candidates for testing our Wigner tomography
sampling methods. For 2 modes, an ideal W state is given by
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Fig. 1 | Theoretical comparison and schematic representation of tomography
methods. a Schematic representing the DEMESST method. Rather than sampling
an entire multimode operator space (3D space), if a state lives in some number of
polynomial subspaces (blue 2D plane), we restrict the sampling to each of those

instead. The {O} basis operators are of the formO
n!, n!

0 = ∣ n!
E

n!0D
∣ for generic basis

states ∣ n!
E
,∣ n!0E

(see Supplementary Note 4). Assuming an orthonormal basis, the

state ρ is given by ρ=
P

n!1 , n
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Tr ½ρO
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. This improves the overall

efficiency of the sampling, especially for states with support across large numbers
ofmodes. In practice,we useHermitian {O} that are accessible through experiment.
b Number of measurements required for the DEMESST (purple, circles) and OLI
(orange, squares) methods to reach a 90% state reconstruction fidelity onW states
of up to 7 modes, assuming perfect state preparation. Dashed lines indicate fits to
exponential and polynomial functions y= expða+bxÞ with a =0.1, b = 3.6 and

y= expða+ b logðxÞÞ with a = 7.9, b = 2.8, respectively. OLI scales exponentially with
the number of modes M, while DEMESST scales only polynomially.

Article https://doi.org/10.1038/s41467-024-48573-x

Nature Communications |         (2024) 15:4138 2



∣W2

�
= ð∣10i+ eiϕ∣01iÞ=

ffiffiffi
2

p
. For 3 modes, ∣W3

�
= ð∣100i+ eiϕ1 ∣010i+

eiϕ2 ∣001iÞ=
ffiffiffi
3

p
, and similarly for 4 modes, ∣W4

�
= ð∣1000i+ eiϕ1

∣0100i+ eiϕ2 ∣0010i+ eiϕ3 ∣0001iÞ=
ffiffiffi
4

p
. Here, the ϕj’s are a priori

unknownphases on eachof the state components, and are determined
through measurement. Additionally, due to imperfect state prepara-
tion, we make no assumptions about the component populations and
precisely measure each one separately. We further generalize this:
rather than restricting ourselves to the pure states Wj = ∣Wj

E
Wj

D
∣, we

measure the full, possiblymixed densitymatrices.W states are suitable
representative states because they are irreducible multimode states
that generalize straightforwardly to arbitrary numbers of modes, and
have a well-defined photon number. We prepare them easily using
photon blockade18,29–31.

Simulated performance of OLI and DEMESST
We first investigate the simulated theoretical performance of
DEMESST and OLI on M-mode W states. Assuming perfect state pre-
paration, we compare the number of observations required to accu-
rately reconstruct theW statewith 90% fidelity. This is shown in Fig. 1b.
Inversion-based methods like OLI have a sampling requirement that
scales exponentially with mode number M. In contrast, the DEMESST
method scales polynomially with the subspace dimension and thus M
when we have a fixed maximum photon number, demonstrating an
advantage that increases with M. For two modes, OLI performs better
due tomeasurement sampling overhead associatedwith the DEMESST
approach (see Supplementary Notes 4 and 7). However, for larger M,
DEMESST requires fewer measurements to converge to the same level
of fidelity, and scales much more efficiently than OLI. We proceed to
demonstrating this expected behavior in experiment.

Pulse sequences and cQED hardware
We generate W states and implement DEMESST and OLI on a super-
conducting 3D cQED platform. The system consists of a transmon
qubit coupled to a 3D readout cavity and a 3D multimode storage

cavity, like the one presented in ref. 32. A schematic of this hardware
setup is shown in Fig. 2a. The single storage cavity supports many
bosonic cavity modes at roughly equally spaced microwave fre-
quencies. The transmon allows for universal control of the cavity
modes and also mediates interactions like photon blockade29,31

between the storage modes. We use four of the modes to prepare our
multimodeWstates.We also use the transmon to implement theparity
measurements necessary for the multimode Wigner tomography.

The tomography sampling methods use the same generalized
Wigner tomography sequence, where each cavity mode is displaced
before performing a generalized parity measurement on the
transmon18. This procedure allows us to perform multimode tomo-
graphy measurements despite having unequal dispersive shifts χm for
different modes, without requiring χ engineering techniques33,34 or
additional control pulses. This pulse sequence is shown in Fig. 2b. For
the DEMESSTmethod, wemay also include a πge pulse conditioned on
certain cavity populations followed by an πef pulse on the transmon.
These pulses transfer the transmon portion of the joint transmon-
cavity state of one or more of the cavity modes to the ∣f

�
(second

excited) level and outside the ∣g
�� ∣ei qubit space used for theWigner

tomography. This effectively removes those modes from the mea-
surement and reduces the sampling requirement. We apply this tech-
nique when the basis operator beingmeasured has one or more cavity
modes in vacuum. For example, to sample the 3-mode matrix element
∣001i 010h ∣, we take the transmon state of thefirstmode from ∣g

�
to ∣f

�
and reduce the sampling to the 2-mode ∣01i 10h ∣ operator. This
operation allows us to reduce the size of the sampling problem for that
element to that of a lower number of modes (see Supplemen-
tary Note 5).

OLI and DEMESST fidelities and matrix distances
We first compare the state reconstructed in experiment using the OLI
method to simulation, which we use as a baseline for later comparison
to DEMESST. With OLI, we find experimentally prepared W state
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Fig. 2 | Experimental systemand scheme. aAdaptedwith permission from ref. 32.
Copyrighted by the American Physical Society. a Schematic of the multimode 3D
cQED system with rectangular flute-style storage and readout cavities that both
couple to a transmon circuit. Experimental drives are input through a drive pin on
the readout cavity, or through a drive pin directly on the storage cavity. b Wigner
tomography pulse sequence. Initial cavity displacements and a final generalized
multimode parity measurement implement the tomography, while optional con-
ditionalπpulses are used to target specificmodes and take the transmonportionof

their joint transmon-cavity states to ∣f
�
and out of the qubit subspace in the

DEMESST approach (see Supplementary Note 5). An additional angle ϕ is applied
between theπ/2 pulses of the paritymeasurement to rotate the generalizedWigner
function onto the real axis. c Cavity displacement plots for the OLI (orange, above)
and DEMESST (purple, below) sampling methods. The OLI has ring features cor-
responding to measurement of all Fock states up to a cutoff, while DEMESST has
points more densely located in the phase space based on the basis state being
measured.
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fidelities that are in good agreement with the simulated fidelities, as
shown in Table 1. The simulations include decoherence and state
preparation errors, such as leakage outside of the blockaded subspace.
We now continue to the DEMESST performance.

For the DEMESST approach, we reconstruct the 2–4mode density
matrices bymeasuringWigner operators corresponding tomultimode
Fock basis states with up to 2 photons. Even though W states have at
most one photon, we measure two-photon operators to capture
imperfect state preparation errors. These observations directly pro-
vide the values of each density matrix element. From the density
matrix, we obtain the component populations and phase angles ϕj of
our prepared W states by calculating the phase angle value that best
matches the resulting data. These angles are then verified to match
with the ones obtained from the OLI approach.

We quantify the performance of the DEMESST and OLI sampling
methods versus total measurement number with two metrics: recon-
structed state fidelity and Frobenius norm matrix distance. The fide-
lities are computed with respect to an ideal W state, while the matrix
distances are calculated with respect to the experimentally prepared

state reconstructed at the maximum measurement number. These
results are shown in Fig. 3. The final fidelities obtained from the
DEMESST approach are presented in Table 1, and are consistent with
the OLI results. For the 2-mode W state, the two methods perform
similarly, while for 3 and 4 modes, DEMESST performs better than OLI
with faster convergence to the final state.

This improvement is most evident in the matrix distance com-
parisons. The distances are computed using the Frobenius norm. The
behavior of both sampling methods is nearly identical for the 2-mode
W state. However, for the 3-mode case, DEMESST has noticeably faster
convergence versus total measurement number x, as the matrix dis-
tance d to the final state is smaller, as seen by the fit coefficient to
d = axb (a = 1.1 ± 0.1 for DEMESST versus 1.71 ± 0.02 for OLI). This effect
is further enhanced in the 4-mode case. The ratio of these fit values
scales roughly geometrically, as shown in Table 1, reflecting the fact
that OLI scales exponentially while DEMESST only scales polynomially
versus total measurement number. In all cases, the distances fall off
roughly as x−1/2, as expected.

Self-consistency of DEMESST
An advantage of theDEMESST samplingmethod compared toOLI is its
self-consistency. Individual densitymatrix elements for anymultimode
state aremeasured independently, without needing to choose a cutoff
maximum photon number or Hilbert space size that could subject the
reconstructed state to inversion errors. This eliminates the risk of
obtaining an inaccurate tomography result if, for example, the pre-
pared state contains population beyond the space spanned by our
chosen basis during OLI sampling.

We verify that the DEMESST tomography sampling method leads
to self-consistent measurement results. We check the traces of our
prepared W states and compare them with unity. This allows us to

Table 1 | OLI and DEMESST tomography results

Simulated
Fidelity

OLI
Fidelity

DEMESST
Fidelity

OLI:DEMESST
Distance

2-mode 0.971 0.966(5) 0.96(1) 0.96(2)

3-mode 0.956 0.949(4) 0.955(4) 1.55(10)

4-mode 0.912 0.912(7) 0.911(7) 2.3(2)

Simulated andmeasuredWigner tomography fidelities forM-modeW states of varying size. The
simulated fidelities are obtained by comparing ideal W states to the states obtained from
Lindblad master equation simulations with the experimental control drives. The fidelities are in
good agreement, and the Frobenius norm matrix distance ratio is compatible with exponential
improvement for DEMESST vs. OLI as M increases.
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Fig. 3 | Tomography fidelity and matrix distances for DEMESST and OLI sam-
plingmethods.Samplingwas performed on approximate entangledW states of 2--
4 modes. The top (a)–(c) show fidelities to an ideal (exactly equal population
coefficients)Wstate for 2–4modes,with dashedhorizontal lines indicating thefinal
converged fidelity obtained from the OLI method. These final fidelities are, for 2–4
modes, 0.966 ± 0.005, 0.949± 0.004, and 0.912 ± 0.007 for OLI and
0.96 ± 0.01, 0.954 ± 0.004, and 0.911 ± 0.007 for DEMESST and are in good

agreement. The bottom (d)–(f) show Frobenius normmatrix distances between the
state at a given measurement number versus the final measured state. Error bars
indicate the standard error. The rates of convergence are close to 1/

ffiffiffi
x

p
or a power

of −0.5, as expected. As the mode number increases, the DEMESST method per-
forms increasingly more efficiently by requiring fewer measurements to reach a
given level of convergence or error threshold.
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confirm that our prepared state indeed lives in our chosen, measured
Hilbert space. The results are shown in Fig. 4 as average trace versus
observation number. Like before, the averages are taken over 10
independent sets of 10 measurement repetitions for each sampled
displacement.Wefind that in all cases ((a)–(c)), the observed traces are
nearone.We attribute large deviations fromunity at lowmeasurement
numbers to noise and statistics, and attribute the final traces being
slightly less than one to imperfect state preparation that produces
population outside the measured subspace. We perform a further
check by considering only a 2-mode subspace of a prepared 4-modeW
state. This is shown in Fig. 4d. As expected, the measured trace con-
verges to a value near 0.5, as we are effectively only observing half of
the total state population. This demonstrates that the DEMESST
method provides accurate results for each basis operator indepen-
dently. In particular, we can identify when we have measured insuffi-
cient basis elements to fully characterize a state, such aswhen the state
lives partially (or entirely) outside the corresponding space, which is a
useful capability in itself.

Discussion
In summary, we have applied the DEMESST sampling method to
characterize multimode cavity states with Wigner tomography.
DEMESST is most appropriate for multimode states that have popu-
lation contained in a subspace of DFE-efficient elements of an overall
Hilbert space, and outperforms traditional optimized inversion-based
methods by scaling polynomially rather than exponentially with mode
number.We observe this improvement forW states on 3 and 4modes.
Here, we have presented comparisons using themultimode Fock basis
on multimode W states, but DEMESST also applies to different bases
that more readily support other states; this tomography method can
even be used for DFE by choosing as a basis the intended target state.
WhileWigner tomographywaspresented in thiswork, themethod also
operates beyond the bosonic Wigner function, and works for both
continuous and discrete systems. This approach can in principle
operate without coupling gates between modes, such as when each
mode has its own transmon for performing parity measurements,
whichwouldbe useful for calibrating entangled states over distributed
quantum networks. Ultimately, the DEMESST sampling method
enables efficient reconstruction of certain large multiqubit or multi-
mode states, which will be advantageous as the size of quantum
hardware increases and more complicated states are generated and

applied for quantum simulation, bosonic logical state encoding, and
error correction.

Methods
Measurement statistics
Error bars shown in Figs. 3 and 4 are obtained from the results of 10
independent sets of 10 repetitions of tomography measurements for
each sampled displacement, and indicate the standard error. The
number of distinct displacements for the OLI method therefore equals
the Total Measurement Number shown on the x-axis in Fig. 3 divided
by 10. For theDEMESSTmethod, the number of distinct displacements
for each separate basis element is further divided by the number of
such basis or density matrix elements.

In the matrix distance plots in Fig. 3, the final state density matrix
against which the distances are computed is obtained by considering
all 100 measurement repetitions, rather than sets of 10, which is why
the final distances do not completely vanish.

Data availability
The data used in this study is available in the Figshare database at
https://doi.org/10.6084/m9.figshare.24158481.

Code availability
The code used in this study is available in the Figshare database at
https://doi.org/10.6084/m9.figshare.24158481.
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