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Bosonic encoding is an approach for quantum information processing, promising lower hardware
overhead by encoding in the many levels of a harmonic-oscillator mode. Scaling to multiple modes requires
weak interaction for independent control, yet strong interaction for fast control. Applying fast and efficient
universal control on multiple modes remains an open problem. Surprisingly, we find that displacements
conditioned on the state of a single-qubit ancilla coupled to multiple harmonic oscillators are sufficient for
universal control. We present the conditional-NO operation concept, which can be used to reduce the
duration of entangling gates. Within this guiding concept, we develop the conditional-NOT displacement
control method which enables fast generation and control of bosonic states in multimode systems weakly
coupled to a single-ancilla qubit. Our method is fast despite the weak ancilla coupling. The weak coupling
in turn allows for excellent separability and thus independent control. We demonstrate our control on a
superconducting transmon qubit weakly coupled to a multimode superconducting cavity. We create both
entangled and separable cat states in different modes of the multimode cavity, showing entangling
operations at low crosstalk while maintaining independent control of the different modes. We show that the
operation time is not limited by the inverse of the coupling rate, which is the typical timescale, and we
exceed it by almost 2 orders of magnitude. We verify our results with an efficient method for measurement
of the multimode characteristic function which employs our conditional-NOT displacement. Our results
inspire a new approach toward general entangling operations and allow for fast and efficient multimode
bosonic encoding and measurement.
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I. INTRODUCTION

Bosonic codes are an approach in which quantum
information is redundantly encoded in the many levels
of a quantum harmonic oscillator. Unlike the conventional
approach to quantum error correction, which relays on
multiple two-level systems, bosonic codes are hardware
efficient as they allow for errors to be corrected already at
the level of a single quantum element [1–3]. Concatenating
these bosonic qubits into a larger error-correcting code may
provide a path to robust quantum computation with reduced
hardware overhead [4–6]. Significant progress has been
made in two leading platforms, circuit QED and trapped
ions, where small error-correction protocols for stabilizing
a bosonic qubit have been demonstrated [7–9]. Photonic
systems are also finding new and improved schemes for
generating such states [10–12].

To achieve control over a single harmonic oscillator it
must be coupled to an ancilla. Universal control can be
obtained by a combination of unconditional and condi-
tional operations [13–17] or numerical pulse optimization
[18,19]. Extending to multiple oscillators, universal control
means any state in the joint Hilbert space of the oscillators
can be prepared and any unitary can be implemented.
Hence, one must find ways to control each harmonic mode
and also couple them. How to achieve universal control of
multiple harmonic oscillators in a fast and efficient manner
while minimizing hardware overhead and crosstalk remains
a gap to be filled.
Typically, separate ancillary systems are used for entan-

gling operations between different modes and additional
ancillas for control andmeasurement of the different modes.
This complicates matters by introducing additional sources
of decoherence and increasing the hardware overhead.
While coupling a single ancilla to all modes would be
simpler, conditional operations with a single ancilla do not
trivially extend to multiple modes as frequency crowding
becomes prohibitive [20,21]. Furthermore, conditional
operations are slow due to the need for frequency selectivity,
which limits their speed to the inverse of the interaction rate.
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While faster operations are preferred to reduce decoherence
effects, increasing interaction strength to speedup the
process is not ideal as it causes unwanted interactions.
Therefore, strong ancilla interactions are beneficial for faster
entangling operations, but for independent and crosstalk
suppressed control, a weak ancilla interaction is preferable.
We show the counterintuitive result that we can perform

multimode universal control through displacements con-
ditioned on the state of a single-ancilla qubit coupled to
multiple harmonic oscillators, as illustrated in Fig. 1(a).
We use our conditional-NO concept to construct the

conditional-NOt displacement (CNOD) gate for an oscillator
dispersively coupled to a qubit. The conditional-NOt con-
cept is general and can be understood as follows. Rather
than applying a narrow-band pulse at a selected frequency
to realize a controlled operation, nodes are introduced to
select where the operation does not occur. The NO operation
is achieved by designing a zero amplitude at the selected
frequencies in the Fourier spectrum of the control pulse.
This approach alleviates the requirement for a narrow pulse
bandwidth and is extendable to multiple frequencies.
Consequently, the CNOD duration is not limited by the
typical timescale 1=χ, where χ is the cross-Kerr coupling
strength associated with the frequency shift of the oscillator
dependent on the ancilla state.

While such a speedup was recently demonstrated for a
single oscillator through the echoed conditional displace-
ment (ECD) gate [17], the CNOD displays different dynamics,
as detailed in the Appendices C and K, and is derived from
ourmore general concept of conditional-NO operation. Being
a general concept, it can be transferred to other control
systems by replacing frequency selectivity by frequency
antiselectivity, which may alleviate control constraints.
Insensitive to both frequency crowding and to the

different values of the dispersive coupling strength, the
CNOD naturally extends to the multimode setup. So far,
entanglement between modes has been demonstrated in the
relatively large coupling regime, at a slow rate, and with a
few ancillary systems [22–24] or in the weak-coupling
regime using a single ancilla, but at a slow rate using the
Zeno effect [21]. By combining the single-ancilla, multiple-
oscillator approach with the CNOD gate, we obtain an
efficient method for multimode universal control which can
avoid crosstalk by operating at the weak-coupling regime.
Furthermore, in systems where displacements are the only
conditional operation available, our single-ancilla approach
enables control of multiple modes [25].
In our proof-of-concept experiment, we use an ancilla

superconducting qubit weakly coupled to a multimode
superconducting microwave cavity. We demonstrate that

Ancilla

Multiple harmonic oscillators coupled to ancilla(a) (b) (c)CNOD control Entangled modes

Exp Thy

Exp Thy

FIG. 1. CNOD multimode control (a) Illustration of a single-qubit ancilla coupled to multiple bosonic modes. (b) Top: schematic
illustration of the Fourier decomposition of the antisymmetric pulse; these pulses are used to compose the CNOD. The antisymmetric
pulse is the sum of two Gaussians (green), which have the same amplitude but opposite phases, and their center frequencies are equally
detuned from either side of ωðeÞ

c ≡ ωc − χ (frequency of the EM mode when the ancilla is excited). The Fourier transform of the sum of

the two Gaussians (qualitatively represented by the black line) is antisymmetric with respect to ωðeÞ
c , resulting in a node at that frequency.

The result is a NO-displacement conditioned on the excited state of the ancilla. Bottom: two simulated trajectories of the EMmode phase
space show the dynamics of the pulse. The initial state is cavity vacuum, where the ancilla is in the exited (red) and ground (blue) state
with the time evolution portrayed by the color gradient. The dynamics show that initially, as the antisymmetric pulse is applied, the
oscillator is largely displaced independently of the state of the ancilla. The node present at the oscillator frequency corresponding to the
excited state of the ancilla leads to a fully destructive interference. When the ancilla is at the ground state the interference is not fully
destructive and a finite displacement occurs. (c) Joint characteristic tomography of Bell cats (left) compared with the ideal state (right).
2D cuts of the 4D joint-characteristic functions ½CJðγA; γBÞ� of the Bell cats jψþi. The cuts are along the planes ReðγAÞ-ReðγBÞ and
ImðγAÞ-ImðγBÞ, for αA ≃ αB ≃ 1.7.
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the CNOD operation speed is not limited by 1=χ, and we
exceed it in practice by almost 2 orders of magnitude.
Through the generation of both entangled and separable cat
states, we demonstrate multimode control at low crosstalk.
We also show how the CNOD can be employed to inde-
pendently map both local and nonlocal properties onto a
single-ancilla qubit, which is advantageous for multimode
tomography.
In typical tomography schemes, the expectation values

of nonlocal operators are obtained by measurements of
separate ancillas for each mode. The results are compared
for correlations [22–24]; hence, multiple ancilla and high-
fidelity single-shot ancilla measurements are required. The
multimode CNOD simplifies tomography. Using the CNOD,
we map nonlocal properties onto the ancilla. Since corre-
lations in the direct measurement of the nonlocal operators
are preserved during averaging, both requirements are
removed in our method.

II. THE CNOD METHOD

We can now construct the specific conditional displace-
ment on a single mode for our circuit QED system. We
consider a two-level system of frequency ωq dispersively
coupled to an electromagnetic (EM) mode of frequency ωc.
Working in the frame rotating with the ground state of the
ancilla and the EM mode, such a system is described by a
dispersive Hamiltonian:

Hs=ℏ ¼ −χjeiheja†a; ð1Þ
where χ is the coupling strength, jei is the ancilla excited
state, and a is the EM mode lowering operator. We start
with a pulse whose Fourier amplitude at the frequency of

the EM mode when the ancilla is excited (ωðeÞ
c ) is zero.

While any such drive would suffice, we implement the
CNOD with antisymmetric pulses, as shown in Fig. 1(b). We
choose the antisymmetric shape, as it should provide
robustness to imperfections in pulse delivery, for example,
an amplitude-dependent transfer matrix. These pulses will
induce a displacement of the memory mode only if the
ancilla is in the ground state and not in the excited state.
However, as the pulse is applied, an additional conditional
rotation of the phase space of the EM mode is induced by
the static Hamiltonian. Illustration of the process in phase
space is shown in Fig. 2. Therefore, the overall system
evolution during such a drive is given by the unitary

ASðα; τÞ≡ jgihgjDðα=2Þ þ jeihej expðiχτa†aÞ; ð2Þ

where τ is the duration of the antisymmetric pulse, DðβÞ ¼
eβa

†−β�a is the displacement operator, and α=2 is the
amplitude of the conditioned on-ground displacement
induced by the antisymmetric pulse. The conditioned
phase-space rotation angle −χτ should be very small due
to the pulse being much faster than 1=χ. However, the

operation becomes highly conditional when α is set to a
large value. This conditional-NO operation, as discussed in
the Appendix C, has various applications. For bosonic
codes, the natural development is an operation equivalent to
the standard conditional displacement; thus we want to
cancel the conditional rotation.
To cancel the state-dependent rotation of the EM mode,

we apply an unconditional π rotation on the qubit ancilla
and perform a digital frame rotation of −χτ to the EM
mode. The two operations are then followed by a second
antisymmetric pulse, identical to the first up to a minus
sign. All together, up to a local Z rotation, this procedure
results in a displacement of the cavity mode conditioned on
the ancilla state,

CNODðαÞ≡ jeihgjDðα=2Þ − jgihejDð−α=2Þ: ð3Þ
The magnitude jαj of the conditional displacement

induced by a CNOD gate depends on the specific character-
istics of the antisymmetric pulse. Regardless of the exact
temporal shape, the antisymmetric pulses ensure that the
linear dependence on τ will be canceled by the first and
second halves of the evolution, which leaves the leading
contribution to the next quadratic order τ2. The displace-
ment also scales linearly with driving amplitude; thus, it is
proportional to Aχτ2, where A is a scaling factor for the

FIG. 2. CNOD scheme. Steps in phase-space evolution during
the CNOD scheme shown in the frame rotating at ωg

c, as described
in the main text. We start with an initial state (top left) as a
squeezed vacuum to make phase-space rotations for an arbitrary
initial state visible through the change in orientation of the
squeezing axis. The oscillator state corresponding to the excited
ancilla state jei is represented by the full red ellipse, while the one
corresponding to the ancilla ground state jgi is represented by the
dashed blue ellipse. Second, third, and final steps are after the first
antisymmetric pulse (top right), unconditional π pulse (bottom
right), and a second antisymmetric pulse followed by a digital
axis rotation (bottom left), respectively.
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amplitude of the drive. For example, to half the pulse
duration, a factor 4 increase in amplitude is required, which
can impose a technical power limitation on the gate speed.
It is also important to note that as the accumulated power of
the drive increases, the intermediate photon number also
increases, which may further constrain the gate speed. The
CNOD method naturally generalizes to a setting with a
single ancilla coupled to multiple modes by applying
multiple resonant pulses (each resonant to the correspond-
ing cavity mode). The operation, which is a displacement
conditioned on the ancilla, exclusively influences the state
of the mode (or modes) to which it is applied. Importantly,
it operates independently and is not reliant on the states of
any other modes. In a dispersive Hamiltonian, the ancilla
does affect other modes; however, the effect is echoed by
the π pulse in the CNOD. As a result, CNOD-based multi-
mode control does not require fine-tuning of the different χ
values or compensating by involving additional modes of
the transmon [21,22,26]. Furthermore, as the CNOD oper-
ates in the small-χ regime, the cross-Kerr between modes is
negligible, and the CNOD is achieved by applying the
antisymmetric pulse to more modes.

III. SETUP AND PROTOCOL

Our experimental setup uses a circuit QED architecture.
A transmon-type superconducting ancilla is introduced
into to a 3D flute-style superconducting cavity [27], as
illustrated in Fig. 3(a). We use the TE102-Alice and
TE202-Bob as memory modes for encoding the cat states,
and the TE101 for dispersively reading out the transmon
ancilla state. In our design, a single-pin antenna sets the
lifetime (T1) of our modes (see Table I). The pin is located
at the nodes of the Alice and Bob memory modes and at the
antinode of the TE101 readout mode. This placement
strongly suppresses the coupling of the memory modes
to the transmission line while retaining a strong coupling to
the readout mode for faster ancilla readout. We achieve
almost 2 orders of magnitude difference in the coupling
strength, which allows for a simplified setup with a single
port, while still providing a sufficiently long memory mode
lifetime for our experiment [28].
To second order, our system can be described by the

following Hamiltonian [30]:

H=ℏ ¼ ωAa†aþ ωBb†bþ ωqjeihej
−
�
χAa†aþ χBb†b

�jeihej; ð4Þ

where ωA, a† and ωB, b† are the Alice and Bob mode
frequencies and raising operators, respectively, ωq is the
transmon transition frequency, and χA and χB are the
dispersive shifts (cross-Kerr) of each mode with the trans-
mon ancilla. Higher-order Kerr coefficients are neglected.
To generate the cat states, we use CNODSs and un-

conditional transmon rotations. In our experiment, the

unconditional rotations are implemented in a standard
way by applying microwave pulses with Gaussian enve-
lopes. For the CNOD gate, each antisymmetric pulse is
realized using an envelope composed of a multiplication of

FIG. 3. Device illustration and protocol for generating cat states
(a) Schematic of the 3D aluminum flute cavity with a single
transmon qubit ancilla inside. The cavity is made of a single slab
of high-purity aluminum. Holes (white circles) are drilled from
opposite sides, creating a seamless cavity in the center of the
aluminum block (blue shaded columns). The cavity has a single-
pin antenna (golden connector), which serves as a port for both
input and output. The pin antenna is located at the nodes of the
memory modes TE102-Alice (red) and TE202-Bob (green), and
at the antinode of the readout mode TE101 (not shown in
illustration). The pin antenna is used for control of all elements
as well as for readout. (b) Microwave control sequence for
generating the different cat states and tomographically recon-
structing the characteristic functions, with parameters depending
on the target state. The first ancilla rotation Rn̂ðθÞ determines
phase of the cat state. The first CNODS generate cats entangled to
the ancilla, and the following CNODS with eβi’s set to satisfyP

i¼1;2 α̃iβ̃i ¼ π=2 disentangle the ancilla from the EMmodes. In
the final rotation in the tomography: (1) the choice of ŷ or x̂
determines if we measure the real or imaginary part of the
characteristic function, respectively, and (2) the � are interleaved
to remove biasing error in the ancilla measurement. Generation
times for the Alice, Bob, and Bell cats are 476, 620, and 1312 ns,
respectively. These include the qubit rotations π pulses and π=2
pulses, which are 22 and 16 ns, respectively. These generation
times give a speedup of 14, 75, and 36 respectively, as compared
with 3π=χ. 3π=χ is the typical time in the standard method and
also does not include the qubit rotation times [22].
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a Gaussian with a sinusoidal function to achieve antisym-
metry with respect to the carrier frequency ωðeÞ

c . Typically,
Gaussian envelopes have several standard deviation widths
to make them smooth. We deviate from this and choose a
duration that is only twice the standard deviation, resulting
in a highly nonsmooth drive. This unconventional choice is
motivated by the goal of maximizing the accumulated
power applied to the harmonic oscillator. As the speed of
these gates is limited solely by the maximal driving
amplitude, this helps to reduce the duration of our CNOD

gates. For the same reason, we select the period of the
sinusoidal function to be much larger than the pulse
duration, which means that the sine function can be
approximated by a linear function. The total duration of
a single CNOD operation is determined by the time needed
for the unconditional ancilla rotation and the two antisym-
metric pulses. The duration of the ancilla rotation remains
constant at 24 ns. However, the duration of the antisym-
metric pulses is limited by the available driving amplitude
for each mode. During state preparation, the duration of
these pulses ranges from 2σ ¼ 60 ns for the smallest
displacements to 2σ ¼ 288 ns for the largest.
To reconstruct each of the single modes, we measure the

complex characteristic function Tr½ρDðγÞ� [31]. For each
state, the single-mode characteristic functions of both
modes are measured independently, as made possible by
the echoing effect of the CNOD. Both real and imaginary
parts of the characteristic function are analyzed and used to
reconstruct the density matrices through maximum-like-
lihood estimation (MLE). This procedure allows us to
estimate the fidelities of our states. See the Appendices E
and F for exact details, calibrations, and procedures.
To quantify the entanglement between the modes, we

introduce a two-mode joint-characteristic tomography by
measuring the function

CJ ¼ Tr½ρDγADγB �; ð5Þ
where CJ is the joint-characteristic function [32] in the
4D phase space. By applying the CNODs simultaneously
on the two modes, as illustrated in Fig. 3, our sequence
extends the single-mode scheme of Ref. [31]. The
scheme generalizes to multiple modes by introducing N
simultaneous or sequential conditional displacements,
which allows us to measure the N-mode characteristic
function [33]. Therefore, nonlocal correlations can be
directly measured using a single-qubit ancilla.

IV. STATE GENERATION

We start by generating independent cats. We create cat
states in each mode while keeping the other mode in
vacuum, which we refer to as single cat. We compare these
single-mode cat states to a two-mode product state, where a
cat state resides in each mode, which we refer to as product
cats. In the ideal setting, we expect them to be identical.
Our constructed CNODs implement conditional displace-

ments on each mode which do not depend on the state
of the other. The π pulse in the middle of the CNOD gate
creates an echoing effect. This ensures that while we
manipulate one of the modes, the other mode does not
evolve except for an unconditional phase-space rotation,
which we negate by a digital rotation. We apply the
sequences shown in Fig. 3(b). Specifically, we generate
the single-cat states in either Alice jψ sAi¼N ðjαiAþ
j−αiAÞ⊗ j0iB or Bob jψ sBi ¼ N j0iA ⊗ ðjαiB þ j − αiBÞ
separately, where N is a normalization factor. For this we
apply the CNODs on the relevant mode only. To generate the
product-cats state jψpi¼N ðjαiAþj−αiAÞ⊗ðjαiBþj−αiBÞ,
we apply the same operations sequentially, first on Bob and
then on Alice.
The real parts of the characteristic functions are displayed

in Fig. 4; the imaginary part is not shown as it is very close to
zero everywhere (an example is shown in Fig. 12 in
Appendix F). The results for the single-cat states and the
corresponding parts of the product-cats state look almost
identical, as we would expect (and desire) for individual
mode control. This is in contrast to previous work where the
inherited cross-Kerr is substantial (large χ’s) [22]. One
visible discrepancy in our data is the positivity of the single
cat vs the product cats of Bob. The smaller positivity in the
product cats is due to the sequential creation of the cats
which leads to longer operation time. The result is additional
decoherence due to photon loss. The second visible dis-
crepancy is a small rotation of a couple of degrees due to the
cross-Kerr interaction during the CNOD. Importantly, this
rotation is independent of the state in either mode, it depends
only on the CNOD being applied, and it can be digitally
corrected. This correction is applied experimentally in the
other datasets shown and is discussed in the Appendix F.
We now proceed to the entangled cats demonstrating

the two-mode control required for universality. When
applied to multiple modes conditioned on the same ancilla,
the CNOD gate allows us to entangle different modes.
Combined with unconditional ancilla rotations, the set

TABLE I. Parameters and coherence times of the EM modes and the transmon ancilla.

Mode ω=2π Mode T1 T2 (echo) χ=2π

Alice 6.56 GHz TE102 60–62 μs � � � 216–224 kHz
Bob 8.02 GHz TE202 36–38 μs � � � 31–36 kHz
Ancilla 5.37 GHz � � � 12–15 μs 12–14 μs � � �
Readout 4.02 GHz TE101 ∼600 ns � � � ∼80 kHz
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fCNODðα⃗iÞ; Rðϕ; θÞg, where i is the mode index, is uni-
versal in the control of the Hilbert space comprised of
multiple bosonic modes and a single-ancilla qubit (see the
Appendix H). We demonstrate the entangling properties of
our gate set by generating the Bell-cats state jψbi≡
N ðjαA; αBi þ j−αA;−αBiÞ using the sequence illustrated
in Fig. 3(b) with αA ≃ αB ≃ 1.7.
Specifically, we implement a two-mode CNOD gate

CNODð2αA; 2αBÞ realizing the three-way entangling
operation 1=

ffiffiffi
2

p ðjgi þ jeiÞj0iAj0iB → N ðjeijαiAjαiB −
jgij − αiAj − αiBÞ between the Alice and Bob modes
and the ancilla. Then an unconditional ancilla rotation
followed by a second small CNOD at the perpendicular axis
CNODðiβA; iβBÞ with

P
i¼1;2 αiβi ¼ ðπ=2Þ is used to disen-

tangle the ancilla. To apply the first two-mode CNOD a
single-mode CNOD is applied on Bob and then on Alice.
Simultaneous application of the CNOD to both modes is
possible and faster, yet we find that it induces undesired
effects for large displacements (see theAppendixG 2). These

are attributed to coherent transitions at high photon numbers.
It should be possible to circumvent this restriction, yet we
postpone such an analyses for future work. We do use a
simultaneous application of the two-mode CNOD for the
second disentangling CNOD gate, which implements small
displacements only.
We start with the characteristic functions of each

individual mode separately for the Bell-cats state CiðγiÞ ¼
Tr½DðγiÞρ� (i ¼ A, B), which are shown in the right column
of Fig. 4. We see in the measured single-mode character-
istic functions CA and CB that on their own the state of each
mode is in a statistical mixture of two different coherent
states, as expected. In the figure, we can see the absence of
blobs, indicating the expected mixture.
The core features of the Bell-cat state jψbi in the 4D

characteristic function are found in 2D cuts along the
ReðγAÞ-ReðγBÞ and ImðγAÞ-ImðγBÞ planes. We plot the cuts
for an ideal state and for measured data from dataset 1
[Fig. 1(c)]. We also plot for comparison the 2D cuts for the
product cats and adjacent to it measured data from dataset 2
(Fig. 5). There are a few prominent features of the Bell cats
in the 2D cuts, as compared with theory and the product
cats. The ReðγAÞ-ReðγBÞ cut of jψbi contains three posi-
tively valued Gaussian spheres (aka blobs). The phase is
conveyed by the two blobs centered at ð�2αA;�2αBÞ, and
would be absent for coherent states. For a pure Bell-cats
state, the maximum of these blobs should be 0.5, and is
≃0.36 in dataset 2. The effect is mostly attributed to photon
loss which changes the parity of the state.
The fringes in the ImðγAÞ-ImðγBÞ cut indicate the corre-

lation between the coherent states in each of the different
modes. The maximum is 0.96 compared with an ideal state,
which exponentially approaches unity with cat size. For
disentangled cats, we observe the checkerboard pattern,

FIG. 5. Joint characteristic tomography of Bell cats compared
with product-cats 2D cuts of the 4D joint-characteristic functions
½CJðγA; γBÞ� for the Bell cats (a) and (b), and for product cats (c)
and (d). Cuts are along the planes ReðγAÞ-ReðγBÞ [(a) and (c)] and
ImðγAÞ-ImðγBÞ [(b) and (d)]. 1D cuts from the 2D planes
corresponding to the dashed lines [(e) and (f)].

(a) (b) (c)

(d)

(g) (h)

(e) (f)

FIG. 4. Single-mode characteristic function tomography. Mea-
sured real part of the single-mode characteristic functions of
Alice ½CAðγAÞ� (top row) and Bob ½CBðγBÞ� (middle row), and
calculated for an ideal state ½CthyðγthyÞ� (bottom row). These are
shown for the different cat states labeled on top. Note that panels
(a) and (d) are different states, a single cat generated in Alice and
a single cat generated in Bob, respectively, whereas (b) and (e) are
the same generated state, the product-cats state measured only on
Alice and Bob separately. Similarly, (c) and (f) are the same state,
the Bell-cats state measured only on Alice and Bob separately.
Single cat and product cats are expected to be identical in an ideal
systemwhere Alice and Bob have completely independent control.
The single-mode characteristic functions for the ideal single cat and
entangled cat states are shown in (g) and (h) respectively.
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which is a result of the product of orthogonal fringes from
the two separate cats in the product state, Fig. 5(d).
Using two-mode CNOD operations, we can map

onto the ancilla correlations between the Alice and
Bob modes and measure them directly. Specifically,
we regard each mode as a logical cat qubit in the
standard cat codes j0L=1Li≡ jα= − αi, such that
jψbi ¼ N ðj0L0Li þ j1L; 1LiÞ. We directly measure
expectation values of both single-cat-qubits and two-cat-
qubit logical operators (see the Appendix D for the
exact mapping protocol). This mapping allows us to extract
the entanglement witness of our Bell cats by measuring
four points only of CJ to obtain the direct fidelity estimation
[34] (two are sufficient, yet we use four for symmetry). We
use dataset 2 shown in Fig. 5 and obtain 1

4
ðhÎ ÎiþhẐ Ẑiþ

hX̂ X̂i− hŶ ŶiÞ≈84% against the ideal Bell cat, surpassing
the classical correlation bound of 50%.

V. OUTLOOK

We employ our CNOD operations in a multimode cavity
to create single-, product-, and Bell-cat states. Our CNOD
method allowed fast operation in the weak-coupling
regime in a multimode cavity. The times for generating
the different cats (Fig. 3) give speedups of almost 2 orders
of magnitude as compared with 3π=χ from previous work
[22]. In practice, we are limited by the available ampli-
fiers; further optimization may yield faster operations,
while the antisymmetric shape should make the CNOD

rather robust. We can also make a comparison between the
CNOD method and the ECD gate, which was demonstrated
on a single mode [17] (see the Appendix K). In the ECD

method, fast conditional displacements are achieved using
short oscillator drives approximated as delta functions,
with a wait time separating them. In contrast, our CNOD

method utilizes antisymmetric pulses that require less
peak power. Additionally, we observe the absence of
increased transmon decoherence at large intermediate
photon numbers, which is typically expected from
higher-order transitions as observed in the ECD experiment
[35–37]. While the underlying cause for this discrepancy
is uncertain and may be attributed to differences in
experimental setups and specific details, it is possible that
the diabatic nature of Landau-Zener transitions in the
CNOD scheme helps suppress this effect [29]. A detailed
analysis, comprehensive comparisons, and further inves-
tigation of the speed limit will be the focus of future work.
The combination of weak coupling and fast operation

enabled by the CNOD method is the key to the high-
quality state generation in a multimode setting, despite
the rather pedestrian cavity photon lifetimes. The
photon lifetimes are the main contributor to the infidelity
and can be improved by a lot; these are set by the pin-
antenna coupling. Using a single-pin antenna for both
memory (input) and readout (output) modes serves as a

double-sided sword. It simplifies the setup; however, in
practice, there is a limit on the coupling ratio of readout
to memory modes. Increasing the ratio far beyond the
current 2 orders of magnitude may prove rather chal-
lenging in this setup. Sacrificing the setup simplicity and
separating the readout and memory can give more than an
order of magnitude lifetime improvement [21].
Our findings serve as a proof-of-principle demonstration

that a single ancilla weakly coupled to a multimode system
is sufficient for achieving universal control, offering an
efficient method for controlling modules with few modes.
Additionally, we show that the crosstalk between these
modes can be significantly reduced without compromising
the gate speed, thanks to the implementation of our CNOD

method. This creates a path to efficient multimode con-
tinuous variable encoding [38]. Extending beyond a few
modes could be achieved by coupling such modules
through a control bus and additional coupling elements
[39]. Overall, our approach can help reduce hardware
overhead for bosonic encoding.

This research was supported by the Israeli Science
Foundation, Pazi Foundation, and the Technion’s
Helen Diller Quantum Center. The work made use of
the Micro Nano Fabrication Unit at the Technion. L. J.
acknowledges support from the ARO MURI (Grant
No. W911NF-21-1-0325), AFOSR MURI (Grants
No. FA9550-19-1-0399 and No. FA9550-21-1-0209),
NSF (Grants No. OMA-1936118, No. ERC-1941583,
and No. OMA-2137642), NTT Research, and the
Packard Foundation (Grant No. 2020-71479). We thank
A. Eickbush, A. Turner, B. Katzir, I. Kaminer, G. Moshel,
and D. Oren Caspi for useful discussions.

APPENDIX A: EXPERIMENTAL SETUP

The experimental system wiring is schematically
represented in Fig. 6. The readout and the Alice and
Bob storage oscillators are modes of the microwave
flute cavity [40] machined out of a single slab of high-
purity N5 aluminum. Following Ref. [41], the seamless
cavity is then etched in transene A aluminum etchant for
four hours.
As a two-level ancilla, we use the two lowest levels of a

transmon, which is fabricated by aluminum deposition on
resist patterns formed by electron-beam lithography, with a
layer of ZEON ZEP 520A resist on a layer of
MICROCHEM8.5 MMA EL11 resist on top of a silicon
substrate. Development of the resist is done at room
temperature for MMA and at 0 °C for ZEP. The
Al=AlOx=Al Josephson junction is fabricated using a
bridge-free process [42].
To couple the ancilla to the oscillators, the edge of the

silicone chip opposite to the transmon is clamped as the
superconducting circuit is inserted through a 12-mm tunnel
of 4 mm diameter into the cavity.
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APPENDIX B: FULL HAMILTONIAN AND
PARAMETERS

During the application the CNOD gate, our system reaches
large photon numbers. Therefore, theHamiltonian providing

an effective description of our undriven system should
include higher-order terms and is given by

H=ℏ ¼ ωAa†aþ ωBb†bþ ωqjeihej þ ωRr†r

−
�
χAa†aþ χBb†b − χRr†r

�
jeihej

þ KA

2
a†a†aa −

KB

2
b†b†bb − KABa†ab†b

−
�KR

2
r†rþ KARa†aþ KBRb†b

�
r†r; ðB1Þ

wherea,b, and r are the bosonic annihilation operators of the
oscillator like Alice, Bob, and readout mode, respectively,
and jeihej is the excited state of the transmon ancillawhich is
treated as a two-level system. The values of the higher-order
terms are given in Table II.

APPENDIX C: A SINGLE ANTI-SYMMETRIC
PULSE

For realizing a conditional displacement, the full CNOD
scheme is required. However, the strong conditionality is
present already at the level of a single antisymmetric pulse.
In contrast to the full scheme, a single antisymmetric pulse
displaces the oscillator only if the ancilla is in one state,
while it rotates if the ancilla is in the other. Therefore, for
the single pulse, the average photon number, and thus the
energy of the oscillator changes or not depending on the
state of the ancilla; this is in contrast to the ECD

method [17].
One way to exploit this behavior is by utilizing schemes

that involve a single antisymmetric pulse as the sole drive
applied to an EM mode. For such schemes, the oscillator
should initially be in the rotation-symmetric vacuum or
thermal states. This simplified state configuration facilitates
the analysis by rendering the conditional phase-space
rotation inconsequential; thus, it can be ignored. Further
simplification is achieved by constraining the ancilla initial
state to its eigenstates. When the antisymmetric pulse is
applied to this initial state, the memory mode either remains
in the vacuum state if the pulse node aligns with the
frequency of the EM mode corresponding to the ancilla
state or undergoes displacement otherwise. Thus, we can
investigate attributes of the antisymmetric pulse, as well as
aspects of the experimental setup, by effectively mapping
the EM mode’s vacuum state to the ancilla’s state through a
conditional (slow) π rotation.
One example of such a scheme is the sequence presented

in Fig. 7(a), whose experimental results are displayed in
Figs. 7(c) and 7(d). (We note that the data displayed here
are taken on a different, yet similar setup than the one in the
main text.) The sequence is utilized, either with two
unconditional π pulses [Fig. 7(c)] or without [Fig. 7(d)].
When applying the π pulses, we find a constant value,
indicating that the memory mode returns to the vacuum

FIG. 6. Schematic illustration of the experimental setup. The flute
cavity and the coupled transmon ancilla are placed at the bottom
stage of a dilution refrigerator and shielded by a Cryoperm-
copper-tin shield. We use an Operator-X by Quantum Machines
to generate low-frequency pulses with arbitrary shapes. Wemix the
low-frequency signals with high-frequency signals from our gen-
erators. We send all the control signals for the transmon and the
memorymodes and the readout signals for the readoutmode downa
single attenuated line. The readout signal is reflected through the
flute cavity, amplified, and digitized at room temperature.

TABLE II. Estimated self- (Ki) and cross- (Kij Kerr coefficients
of the EM mode calculated as Kij ¼ ðχiχj=2KtÞ where Kt ≈
194 MHz is the transmon anharmonicity, and χi ≡ Kti is the
dispersive coupling between the transmon and the mode i [29].

KAi=2π KBi=2π KRi=2π

Alice 125 Hz 19 Hz 45 Hz
Bob 19 Hz 3 Hz 7 Hz
Readout 45 Hz 7 Hz 16 Hz
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state if the transmon is excited during the antisymmetric
drive. However, when the transmon remains in the ground
state during the drive, the quadrature displays dynamics. For
short wait times (Δt) there is a displacement which decays
and eventually reaches values corresponding to vacuum.
This procedure highlights that the evolution of the memory
mode induced by the antisymmetric pulse is highly distin-
guishable for each transmon state. One way to take advan-
tage of this behavior, which is inherently different from that
of the CNOD, is by probing the experimental system through
a π no-π spectroscopy procedure, Fig. 7(b).
The π no-π spectroscopy applies the previously men-

tioned procedure with a zero wait time (Δt), varying the
detunings of the frequency of the node of the antisym-
metric pulse.
Intuitively, following the antisymmetric pulse, the

memory mode is not displaced if its frequency corresponds
to that of the pulse node. Therefore, by fitting each of the
results, we can find the corresponding cavity frequency
expected at the maximal vacuum occupation. By compar-
ing the π and no-π results, we can evaluate χ.
The advantage of the π no-π spectroscopy over

other memory mode characterization schemes lies in the

intermediate conditional operation being fast enough to
avoid the typically short transmon coherence times.
Furthermore, as the displacement of the memory mode
by the conditional displacement can be rather large, the
selectivity of the final conditional π rotation can be relaxed.
Another possible application of the π no-π spectroscopic

method is for measuring the higher-order terms of the
setup. Such terms as the self-Kerr Kca†2a2, which are
absent from the dispersive Hamiltonian, become increas-
ingly important at large photon numbers. Therefore, while
the effects of these terms are usually negligible, they can
have a significant impact as, during the application of the
antisymmetric pulse, the trajectory of the EM mode
occupies large photon states. For example, in the presence
of the antisymmetric drive, the effective frequency of the
memory mode can shift by an amount proportional to the
self-Kerr coefficient Kc and the intermediate photon
numbers, whose average value is dominated by the anti-
symmetric pulse itself.
Furthermore, as previously noted, the magnitude of the

final displacement by an antisymmetric pulse is linear in the
driving amplitude but squared in the pulse duration.
Therefore, we can use such a scaling to reach similar final

(a)

(c)

(d)

(b)

(e)

FIG. 7. Single antisymmetric pulse. A modified version of the protocol from Ref. [43] (a) is used here to demonstrate the
conditionality of the antisymmetric pulse. Cavity displacement as function of the wait time Δt is shown for when the transmon is either
in an in-ground state (d) or excited state (c) during the antisymmetric pulse. Transmon state is determined by an unconditional π rotation
(teal). The blue horizontal line in both panels marks the time-averaged value of the results displayed in panel (c). In either case, the
transmon is returned to the ground state prior to the application of the narrow-band conditional π rotation. The cross-Kerr between the
readout and memory modes is accounted for through a control experiment differing from the original by the absence of the final
conditional rotation performed at each stage. Protocol for π no-π spectroscopy (b), which is similar to (a) yet with a zero wait time (Δt)
and varying the detunings (Δfc) of the frequency of the node of the antisymmetric pulse. Spectroscopic measurements (e) show voltage
of the readout mode as function of Δf for no-π,π (purple, orange) and for the cross-Kerr control experiment (brown, green). Subtracting
the control data gives values proportional to the occupation probability of the transmon excited state (red, blue). The minima of each plot
indicate the maximal excitation of the transmon corresponding to the minimal (vacuum or thermal state) of the memory mode after the
antisymmetric pulse. As each minima corresponds to the appropriate state-dependent frequency of the memory mode, the coupling
strength χ can be deduced by subtracting the two.
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states by traversing different trajectories of the memory
modes’ phase space. Studying such trajectories by sweep-
ing not only frequency but also driving amplitude and/or
pulse duration can be useful for evaluating the higher-order
terms, studying qubit ionization, and even optimizing the
CNOD gate.

APPENDIX D: ANCILLA-TO-CAT MAPPING

We show the mapping of an ancilla state onto the Bloch
sphere of single-mode cat code, which is generalized to
multiple modes. For an initial state,

jψ ii ¼
�
cos

�
θ

2

	
jgi − i sin

�
θ

2

	
eiϕjei



⊗
����0⃗
�
; ðD1Þ

where 0⃗ is the vacuum of all modes. Applying the CNODðα⃗Þ
gate followed by an Rŷðπ=2Þ rotation, up to global phase,
we get

cosðθ
2
Þffiffiffi

2
p

�����e; α⃗2
�
−
����g; α⃗2

�	
þ i

sinðθ
2
Þffiffiffi

2
p eiϕ

�����g;− α⃗

2

�
þ
����e;− α⃗

2

�	
:

ðD2Þ

To disentangle the modes from the ancilla, we perform a
second CNOD gate with iβ⃗,

cosðθ
2
Þffiffiffi

2
p

�����g; α⃗2 − i
β⃗

2

�
e−iα⃗·β⃗=2þ

����e; α⃗2 þ i
β⃗

2

�	

þ i
sinðθ

2
Þffiffiffi

2
p eiϕ

�����g;− α⃗

2
− i

β⃗

2

�
−
����e;− α⃗

2
þ i

β⃗

2

�
e−iα⃗·β⃗=2

	
;

ðD3Þ

where we once again omit a global phase.
For jβ⃗j ≪ 1, the state can be approximated as

≈
cosðθ

2
Þffiffiffi

2
p

�����g; α⃗2
�
e−3iα⃗·β⃗=4þ

����e; α⃗2
�
eiα⃗·β⃗=4

	

þ i
sinðθ

2
Þffiffiffi

2
p eiϕ

�����g;− α⃗

2

�
eiα⃗·β⃗=4−

����e;− α⃗

2

�
e−i3α⃗·β⃗=4

	
; ðD4Þ

where we use hδjηi ¼ eiImðδ�ηÞe−1
2
jδ−ηj2 ≈ eiImðδη�Þ. For

β⃗ · α⃗ ¼ ðπ=2Þ, up to a global phase we get

j þ ii ⊗
�
cos

�
θ

2

	���� α⃗2
�
− sin

�
θ

2

	
eiϕ

���� − α⃗

2

�

; ðD5Þ

where j þ ii ¼ ðjgi þ ijei= ffiffiffi
2

p Þ.

APPENDIX E: CALIBRATIONS OF
PULSES AND CAT PHASE

In this section, we describe the different methods that we
use to calibrate the CNOD amplitude and acquired geometric
phase, and to measure the parameters of the system.
We calibrate the CNOD amplitude by measuring a single

axis (1D sweep) of the characteristic function of a vacuum
state [example shown in Fig. 9(a)]. We fit the data to the
expected Gaussian shape, and thus we directly get the
amplitude scale.
A finite thermal population inside each mode would

result in an inaccurate calibration, as the Gaussian at the

FIG. 8. Mapping fidelity as a function of the cat size. To assess
the fidelity of our mapping, taking into account the potential
limitations of the approximation in Eq. (D4), we calculate the
fidelity between the final state generated by the ideal unitary
operations on vacuum Uþj0i and the target state jψ targi ∝ j þ
ii ⊗ ½jα⃗=2i þ j−ðα⃗=2Þi� as a function of the cat size α. As the cat
size increases, the fidelity also increases, indicating improved
qubit-cavity disentanglement. The marked point on the graph
represents the fidelity corresponding to the cat sizes generated in
our experiment. We observe that a 99% fidelity is achieved at a
cat size twice as large.

(a) (b)

FIG. 9. Calibration of CNOD amplitude and acquired geometric
phase. (a) The characteristic function of a vacuum state along an
arbitrary axis of length 2γmax. By fitting the data to the expected
Gaussian of variance 2, we calibrate the maximal displacement
amplitude γmax. (b) The acquired geometric phase as function of
the displacement amplitude γ. We scale the displacement ampli-
tude only by scaling the antisymmetric pulse amplitude while
keeping the pulse time fixed. We use a spline fit to extrapolate the
phase for any magnitude of γ.
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origin of the characteristic function of a thermal state is
narrower than that of a vacuum state. When we perform
the procedure MLE and reconstruct the density matrix of
the different prepared states, we find the inaccuracy in
pulse amplitude to be small. If we were to take a finite
thermal state, the calculated fidelities would be a bit
higher due to the narrowing effect of finite temperature.
Our results are obtained by assuming a vacuum state; thus,
the fidelities that we show here are a lower bound of the
true fidelities.
We calibrate the geometric phase that is acquired due to a

CNOD by performing the following sequence: Rŷðπ=2Þ,
CNODðγÞ, CNODð−γÞ, and either Rŷðπ=2Þ or Rx̂ðπ=2Þ
followed by a projective measurement of σz of the transmon
ancilla. The two CNODs of opposite directions cancel each
other out, and leave the memory mode in the vacuum state,
but still impart a geometric phase on the transmon ancilla.
By measuring both σx and σy, we are able to extract the
acquired phase, as shown in Fig. 9(b).
To calibrate the disentangling pulse amplitude, as shown

in Fig. 10, we sweep over β, the amplitude of the
disentangling CNODðiβÞ, and measure the purity of the
transmon ancilla. For this procedure, we measure σz, σx,
and σy, but in practice the information about the purity lies
in the x axis alone. At first, we pick the amplitude that
corresponds to the highest purity. Then we use it to create a
cat state and measure its characteristic function along the
displaced axis. We fine-tune β to minimize asymmetry
around 0, thus maximizing disentanglement.
We accurately measure both the frequency and the

lifetime of each mode using a sequence that is similar to
Ramsey interferometry. The sequence is composed of
Dðα0Þ, wait a time of t, Rŷðπ=2Þ, CNOD½−ExpðiδωtÞγ�,

andRŷð−π=2Þ followed by a projective measurement of σz
of the transmon ancilla (similar to what that was done by
Ref. [8]). We introduce δω to add artificial detuning and
allow for more precise measurement of the frequency. The
results of one such measurement are shown in Fig. 11. As
the coherent state jαðtÞi rotates and decays (assuming
negligible dephasing), the measurement data are expected
to behave according to

Re½CjαðtÞi; ðeiΔωtβÞ� ¼ A cos
�
Be−t=T

c
1 sin ½ðωd þ ΔωÞt��;

ðE1Þ

where A ¼ e−jγ=2j2 and B ¼ α0γ=2 are treated as constant
scaling coefficients, Tc

1 is the mode’s single-photon life-
time, and Δω is the detuning between the rotating frame
and the mode’s resonant frequency. In addition, this
procedure enables precise measurements of the cross-
Kerr between the memory modes, and between each mode
and the transmon ancilla. For example, performing this
procedure with the transmon at the excited state would
decrease ΔΩ by χ.

APPENDIX F: CHARACTERISTIC FUNCTION
TOMOGRAPHY

To reconstruct the prepared state in Alice and Bob, we
perform characteristic function tomography. We measure
both the single-mode characteristic function for each mode
and 2D cuts of the 4D joint-characteristic function.
The measurement procedure that we use is composed of

a sequence of Rŷðπ=2Þ, CNODðAÞðγAÞ, CNODðBÞðγBÞ, and
either Rŷðπ=2Þ or Rx̂ðπ=2Þ followed by a projective
measurement of σz of the transmon ancilla. This sequence

FIG. 10. Calibration of CNOD amplitude used for disentangle-
ment of the cat. The expectation value of σx of the transmon
ancilla that is proportional to the readout amplitude after creation
of a cat. The maximal value of jhσxij indicates a maximum of
purity and therefore corresponds to the ideal disentangling
displacement amplitude.

� )(

FIG. 11. Characteristic function of a decaying coherent state.
CðeiδωtγÞ versus the evolution time, starting with coherent state
jγi. The oscillations are induced by both artificial detuning and
detuning between the rotating frame and the resonance frequency
of the mode. The decay is dominated by the single-photon
lifetime of the mode. We fit the data to Eq. (E1).
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allows us to measure the real part or the imaginary part,
respectively, of CðγA; γBÞ. We use CNODs for the measure-
ment procedure longer than for the state preparation in
order to reduce the effect of higher-order terms such as self-
and cross-Kerr on the measurement outcome. We include
rotations in two directions that map CðγA; γBÞ to −σz, and
sum the results with the appropriate sign. The expectation
value for each point is averaged out of 4000 experi-
ment runs.
We apply a couple of required actions in our postpro-

cessing procedure. One, the acquired geometric phase due
to the CNOD, which is calibrated prior to running the
experiment (see Appendix E), and two, the characteristic
function is digitally rotated accordingly. In addition, we
shift both γA and γB by a real constant; this is to account for
the imperfect disentanglement (see Appendix F 1). An
example of this postprocessing procedure is shown
in Fig. 12.

1. Characterstic function with imperfect
disentanglement

The disentanglement procedure is imperfect and
improves exponentially in cat size. In this work, we use
relatively smaller cats, and so we calculate the error due to
the imperfect disentanglement. The prominent effect is a
shift in the characteristic function expected from the
experiment, which is accounted for in the postprocessing.
The exact state of the system after the disentangling pulse is
[(Eq. (D3) in Appendix D]

1ffiffiffi
2

p
�
cos

�
θ

2

	�����g;α2− i
β

2

�
e−iαβ=2þ

����e;α2þ i
β

2

�	

þ isin

�
θ

2

	
eiϕ

�����g;−α

2
− i

β

2

�
−
����e;−α

2
þ i

β

2

�
e−iαβ=2

		
:

ðF1Þ

If the disentanglement is perfect, then after a π=2 rotation
around the x axis we end up in the product state of a cat
with the qubit in the ground state. Then to measure the
characteristic function, we apply the regular procedure,
starting with a π=2 rotation around the y axis. Since the
disentanglement operation is not perfect, after this pro-
cedure we remain with small residual entanglement. Thus,
following the ancilla rotations, the state is

ðj − ii ⊗ jψ−ii − j þ ii ⊗ jψþiiÞ; ðF2Þ

where

jψ−ii ¼
1ffiffiffi
2

p
�
cos

�
θ

2

	
e−iαβ=2

���� α2 − i
β

2

�

þ i sin

�
θ

2

	
eiϕ

���� − α

2
− i

β

2

�

; ðF3Þ

jψþii ¼
1ffiffiffi
2

p
�
cos

�
θ

2

	���� α2 þ i
β

2

�

− i sin

�
θ

2

	
eiϕe−iαβ=2

���� − α

2
þ i

β

2

�

; ðF4Þ

and αβ ¼ π=2. We then apply a CNODðγÞ, followed by
tomography of the ancilla represented by a partial trace
over the EM mode,

TrEM

�
D

�
γ

2
σz

	
ðj − ii ⊗ jψ−ii − j þ ii ⊗ jψþiiÞ

ðh−ij ⊗ hψ−ij − hþij ⊗ hψþijÞD†
�
γ

2
σz

	


¼ 1

2
½I þ hzðγÞiσz þ hyðγÞiσy þ hxðγÞiσx�: ðF5Þ

For ϕ ¼ 0 and θ ¼ −π=2, we get hzðγÞi ¼ hyðγÞi ¼ 0,
as expected for the characteristic function of the corre-
sponding cat. hxðγÞi is given by

e−
1
2
jγj2ð− cos½ImðαγÞ� sin½ImðiβγÞ�
þ e−

1
2
jαj2 sinh½ReðαγÞ� cos½ImðiβγÞ�Þ

þ e−
1
2
ðjβj2þjγj2Þ cosh½ReðiβγÞ�

×

cos½ImðαγÞ� þ e−

1
2
jαj2 cosh½Reðαγ þ iβγÞ��: ðF6Þ

As α gets larger, hxðγÞi gets exponentially closer to the
real part of the exact characteristic function,

FIG. 12. Postprocessing of a joint-characteristic function
tomography. The shift in γA and γB due to the imperfect
disentanglement is corrected as indicated by the dashed lines
in the real part of CðγÞ. The two symmetric blobs in the imaginary
part are corrected by accounting for the geometric phase that is
acquired by the CNOD. As a result, the imaginary part of the
processed data almost vanishes.
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e−
1
2
jγj2

1þ e−
1
2
jαj2


cos ðIm½γαÞ� þ e−

1
2
jαj2 cosh ½ReðγαÞ��: ðF7Þ

The main difference is a small shift in the real axis.

2. Density matrix reconstruction

We reconstruct the density matrix using an MLE method
[44]. For measured expectation values hDðλÞimeas of a set of
λ’s, the likelihood function to be minimized is given by

LðρMLEÞ ¼
X
λ

jTr½DðλÞρMLE� − hDðλÞimeasj
δhDðλÞimeas

; ðF8Þ

where ρMLE is the reconstructed density matrix, and
δhDðλÞimeas is the standard error of the measured expect-
ation value.
Once the density matrix ρ is reconstructed, we are able to

calculate its fidelity with respect to a target state σ,
according to

F ðρ; σÞ ¼
�
Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pq 
	
2

: ðF9Þ

APPENDIX G: MULTIMODE DISPLACEMENTS

1. Displaced frame

It is instructive to analyze the relations of the CNOD gate
in the frame of the semiclassical phase-space trajectories as
defined in Ref. [17]. Specifically, for a single mode, a
transformation by a time-dependent unitaryU¼D(αðtÞ)¼
exp½αðtÞa†−α�ðtÞa� is applied. As with the ECD gate of
Ref. [17], the CNOD gate includes both the phase-space
echo α → −α and qubit echo jgi ↔ jei at time T.
Therefore, many of their conclusions for a single mode,
such as the significant reduction of the effect of terms
proportional to signðαÞ, can be extended to the CNOD.
We expand the discussion to a multimode setup and

consider the effects of higher-order terms which include
operators of multiple modes, specifically the cross-Kerr
term. In the two-mode displaced frame corresponding to a
simultaneous application of the CNOD gate on both modes,
the cross-Kerr term is given by

a†ab†b → ða† þ α�Þðaþ αÞðb† þ β�Þðbþ βÞ
¼ a†ab†bþ jαj2b†bþ jβj2a†a
þ jαj2βb† þ αjβj2a† þ H:c:

As with the single-mode higher-order terms, we notice that
some of the elements in the transformed cross-Kerr term
should be greatly reduced by the phase-space echoing. The
remaining non-negligible terms jαj2b†b and jβj2a†a cor-
respond in the former (latter) to a shift in the frequency of
the Bob (Alice) mode which depends only on the displaced

frame of Alice (Bob). For the application of CNOD gate to
only one of the modes, we notice that this term effects the
other mode just by an unconditional rotation of its
phase space.

2. Simultaneous multimode CNOD

Even with the addition of higher-order terms, our
effective description of the system with an almost dis-
persive Hamiltonian is expected to eventually break down
as the implementations of the CNODs populate oscillator
states with increasing photon numbers [45–47]. The
expected behavior is that at large photon numbers,
higher-order transitions, where the transmon ancilla is
excited beyond the jgi; jei manifold, are induced. Such
higher-order nonlinear transitions are expected to limit the
Hilbert space accessible to the CNOD, thus reducing the
speedup by which it implements conditional displacements.
To estimate the speed and displacement amplitudes of the

various implementations of the CNOD gate at which such
additional decoherence is induced, we measure the depo-
larization of the ancilla during the CNOD gates. We start by
preparing the transmon in the ðjgi þ jeiÞ state and apply the
conditional displacements CNODðγA; γBÞ, CNODð−γA;−γBÞ,
with a fast ancilla π rotation in between. Finally, a tomo-
graphic measurement of the transmon qubit is performed,
similar to the measurement of the characteristic function.
The normalized purity of the qubit subspace hPsi ¼ hσzi2 þ
hσxi2 þ hσyi2 is displayed in Fig. 13 as a function of the two-
mode displacement amplitudes γA and γB.
We find that by applying the CNOD to both modes

simultaneously, the ancilla exhibits a significant depolari-
zation at certain displacement amplitudes. The abruptness
of these disappearance lines and the reemergence of the
ancilla at larger displacement amplitudes may indicate that
this phenomenon is related to resonant transitions to higher
levels or residual entanglement with the cavity modes.
Indeed, one could use the available sweet spots in the large
simulations displacements for multimode state manipula-
tion. However, in this work we choose to implement the
large multimode CNODs, such as the first CNOD in the
generation of the Bell cat described in Fig. 3(b) by a pair of
consecutive, single-mode CNODs separated by an ancilla π
pulse. We postpone to future work an analysis of the
physical mechanisms leading to such transitions and if they
could be avoided by temporal shaping of the antisymmetric
pulses from which the CNOD is composed.
On the other hand, we notice that simultaneous appli-

cation of small conditional displacements does not lead to
additional ancila decoherence. Therefore, small, two-mode
CNOD displacements, such as the second disentangling
CNOD in Fig. 3(b) required for the generation of the Bell
cat, are applied simultaneously to both modes.
Furthermore, in the cuts of Fig. 13 dedicated to a single-

mode application of a CNOD, we find that additional
decoherence might occur for the larger displacement.

CONDITIONAL-NOT DISPLACEMENT: FAST MULTI… PHYS. REV. X 14, 011055 (2024)

011055-13



However, the effect is very small, and the continuous
increase in the decoherence indicates that they are most
likely related to qubit dephasing induced by photon loss
which increases with the size of the overall conditional
displacement. A similar mechanism combined with the
absence of the correction of the unconditional phase-space
rotation discussed in the previous subsection, could explain
continuous increase in dephasing observed for very large
simultaneous CNODs.
Finally, it is interesting to note that for our current setup

and at the range of the single-mode CNOD implementations
we use, we do not observe these effects. Something that
should be looked into in the future.

APPENDIX H: MULTIMODE UNIVERSALITY

One way to implement universal control of a single
Harmonic oscillator is by producing any unitary evolution
generated byHamiltonians polynomial inX¼ð1= ffiffiffi

2
p Þða†þ

aÞ and P ¼ ði= ffiffiffi
2

p Þða† − aÞ [48,49]. By including unitaries
generated by Hamiltonians of the form XjPkσi, Ref. [17]
extends the definition of universal control to include an
oscillator and a qubit. In the samework, it was shown that the
set of operations equivalent to fCNODðα⃗iÞ; Rðϕ; θÞg are
sufficient to obtain such universal control.
Extending the universal control from a single harmonic

oscillator to a Hilbert space comprised of multiple oscil-
lators, universal control requires unitaries generated by
Hamiltonians compose of arbitrary polynomials of the

oscillators Xi, Pi. However, when universal control can
be implemented separately on each oscillator, it is sufficient
to include the ability to apply a beam-splitter interaction of
the form Bij ¼ PmXn − XmPn.
Working with the generators of the universal control

for each single mode, i.e. Xj
mPk

mσi, we expand our set by
using the commutators ½X2

mσx; Pnσy� ∝ X2
mPnσz for m ≠ n.

To generate the required beam-splitter term, which
does not include the Pauli operator, we next commute
½X2

mPnσz; Xmσz� ∝ XmPn. As discussed in the main text,
application of the CNOD on a single mode allows for
universal control of each single oscillator, independent
of and without effecting the other mode. Thus, with the
addition of the single-ancilla unconditional rotation RϕðθÞ,
the combination of the single-mode CNODðγiÞ enables
universal control of Hilbert space comprised of multiple
oscillators coupled to a single qubit.

APPENDIX I: MEASUREMENT OF
NONLOCAL OPERATORS

To quantify the entanglement and fidelity of our state to
the Bell cat, it is sufficient to measure the expectation value
of the logical cat-code operator F ¼ 1

4
ðhIIi þ hZZiþ

hXXi − hYYiÞ, which for a general form of the two-mode
cat-code state jψGi¼ajαA;αBiþbjαA;−αBiþcj−αA;αBiþ
dj−αA;−αBi is given by 1

4
ðjaj2 þ jdj2 þ ad� þ a�dÞ.

We proceed to show that by multimode CNODs we are
able to map the expectation values of the two-mode
operators of the cat qubits onto the single ancilla.
Starting with the ancilla at the ground state, we apply
two π=2 pulses around the y axis, which are separated by
CNOD½iðπ=4αAÞ;−iðπ=4αBÞ� and obtain

UIIþZZjgi ⊗ jψGi ≈ jgi ⊗ ðajαA; αBi þ dj−αA;−αBiÞ
þ j − ii ⊗ ðbjαA;−αBiÞ
þ j þ ii ⊗ ðcj−αA; αBiÞ; ðI1Þ

where UIIþZZ ¼ Rπ
2
;ŷ × CNOD½iðπ=4αAÞ;−iðπ=4αBÞ� × Rπ

2
;ŷ

and we assume ðπ=4αAÞ; ðπ=4αAÞ ≪ 1. We conclude by
measurement in the Z basis of the ancilla, resulting in the
expectation value hU†

IIþZZσzUIIþZZi ¼ jaj2 þ jdj2, which
is equal to the expectation value hIIi þ hZZi of the cat
qubits. Next, a similar procedure where the CNOD gate is
replaced by CNODð2αA:2αBÞ is used to obtain

UXX−YY jψGi

¼−
1ffiffiffi
2

p j−i⊗ ðaj2αA;2αBiþbj2αA;0iþcj0;2αBiÞ

−
1ffiffiffi
2

p jþi⊗ ðbj0;−2αBiþcj−2αA;0iþdj−2αA;−2αBiÞ

−
1

2
½ðaþdÞjgiþða−dÞjei�⊗ j0;0i; ðI2Þ

FIG. 13. Measured normalized purity hPsi as a function of γA
and γB, the final displacement amplitude and the Alice and Bob
mode, respectively. The antisymmetric pulses of which comprise
the CNOD are applied simultaneously to the two modes by two
pulses with a carrier frequency corresponding to each of the
modes when the ancilla is excited. The two pulses have the same
envelope which is composed of a Gaussian of standard deviation
σ ¼ 144 ns and total length 2σ ¼ 288, which is multiplied by
sin ðΔðt − t0ÞÞ with Δ ≈ 10 Hz, and t0 ¼ 144 ns is half the pulse
duration, making antisymmetric in both time and frequency
domain. The results are averaged 2000 times for each of the
tomographic measurements. The results are normalized by the
purity at zero displacements to account for the decoherence of
the ancilla which is not related to the memory modes.
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where UXX−YY¼Rπ
2
;ŷ×CNODð2αA:2αBÞ×Rπ

2
;ŷ, and we assume

αA, αB are large so we may neglect the cross terms. By
concluding with a final measurement of the ancilla in the Z
basis, we obtain the expectationvalue hU†

XX−YYσzUXX−YYi ¼
ða�dþad�=2Þ¼1

2
ðhXX−YYiÞ.

Thus, combining and rescaling results measured follow-
ing these two sets of operations, we are able to estimate the
entanglement of the two-cat qubits by

F ¼
D
U†

IIþZZσzUIIþZZ

E
þ 2

D
U†

XX−YYσzUXX−YY

E
: ðI3Þ

APPENDIX J: STATE FIDELITY

Table III summarizes the estimated fidelity of all
generated states. Each of the Bell cats are compared to
the density matrix of the fully mixed logical cat state
1
2
DðδÞðjeiθphαiheiθphαjþj−eiθphαiheiθphαjÞD†ðδÞ, while the
product and single-mode states are compared to
N (DðδÞjeiθphαi þ eiϕrot j − eiθphαi). We do a basic step of
optimization, where we allow the cat states being compared
to have small deviations in the parameters α, δ, and ϕ. Such
deviations in the aforementioned parameters can be cor-
rected experimentally with relative ease.
A full simulation could yield a transfer matrix for the

process and separate out the contribution of the different
errors. However, separating and giving an exact quantitative
analysis and comparing an error budget is challenging at this
point. Ideally, one would simulate the full system including
measurements to extract the contributions; however, the large
Hilbert space makes it prohibitive, and we are looking into
numerical methods to do this. We can get a qualitative
understanding of the error budget and separate the contri-
butions of some sources of infidelity from the data and from
simple simulations assuming perfect unitaries. There are four
major sources: qubit decoherence, photon loss, finite-size χ
effects, such as self-Kerr, and imperfections of the scheme,
mostly the imperfect disentanglement from the qubit.
We perform a gate-based simulation by applying the

calculated unitaries, therefore neglecting the effects of
SPAM errors, qubit decoherence, photon loss, and finite-
size χ. Without all of these errors, the primary source of
infidelity is imperfect disentanglement, which improves
with cat size. Figure 8 shows simulation results for creating
a single-cat state as function of the cat size, which sets an
upper bound on the created cat states. For the cat size in our
experiment, the simulation shows a fidelity of 0.95. At a cat
size of four photons, the upper bound on fidelity exceeds
0.99. Employing additional operations that better approxi-
mate the state could further enhance fidelity.
We can gain qualitative insight into the dominant sources

of infidelity by comparing the fidelities obtained for single-
mode states and product-cat states in the two modes. This
comparison reveals that the infidelity is primarily influ-
enced by single-photon loss and transmon decoherence. To

generate the product-cat states, we first create a cat state in
the Bob mode, followed by generating a cat state in the
Alice mode. Then, we perform characteristic tomography,
specifically measuring the desired mode. The preparation
of the Alice mode is affected by transmon decoherence
during the preparation of the Bob mode, resulting in
increased initialization errors. This likely contributes to
the reduction in fidelity from 0.87 to 0.83 when comparing
the product-cat state to the single-cat state. Since the Bob
mode is prepared first, single-photon loss in the Bob mode
during the preparation of the Alice cat state leads to a
decrease in measured fidelity. This is due to the additional
time spent waiting for tomography to be performed when
comparing the product-cat state to the single-cat state.
Furthermore, transmon decoherence also contributes to a
further decrease in fidelity. This analysis is supported by
the more significant decrease in fidelity observed between
the single- and product-cat states of the Bob mode
compared to the Alice mode.

APPENDIX K: COMPARING THE
CNOD AND ECD METHODS

A qualitative comparison between our CNOD method and
the recently demonstrated ECD method [17] would be
instructive, as both approaches employ a large photon
number to reduce the gate duration and essentially yield the
same unitary transformation (with a minor variation in the
axis of the intermediate π pulse). Since the gate speed in our
experiment is constrained by the maximum driving ampli-
tude, we compare the peak power requirements of the two
methods. As an illustrative example, in Fig. 14, we use the
first pulse applied to the Bob mode to create the cat state
and plot the ECD gate with the same duration needed to
achieve the same target state in the setup used in this work,
employing pulse parameters similar to those used in
Ref. [17] (displacement with a Gaussian profile having
σ ¼ 11 ns and pulse duration of 44 ns). We find a differ-
ence of 9.44 dB in the required peak power.
In Ref. [17], the scaling of the displacement amplitude

given in the manuscript is ∝ Aχτ, where A is the typical
amplitude of the delta functions of the ECD. The ECD is
analyzed in terms of the delta functions composing it, and τ
is the wait time between the delta functions. In the CNOD,
the scaling of the displacement amplitude is ∝ Aχτ2. This
would suggest favorable scaling of the CNOD vs the ECD.

TABLE III. Fidelity of prepared states.

Mode State type Fidelity α δ θ ϕrot

Alice Bell cats 0.89 1.69 −0.02–0.01i � � � 0.00
Product cats 0.83 1.67 0.01þ 0.06i 0.21 0.00
Single cat 0.87 1.68 −0.04þ0.05i 0.336 0.00

Bob Bell cats 0.92 1.75 −0.16þ0.05i � � � 0.00
Product cats 0.77 1.71 −0.1þ 0.05i −0.06 0.25
Single cat 0.86 1.75 −0.1þ0.02i 0.02 0.12
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However, in practice, the delta functions are Gaussians.
If we consider their duration to also scale, then the ECD

displacements amplitude will also scale in time with τ2.
This suggests that the precise pulse shape makes a differ-
ence for both methods, and the ECD analysis using delta
functions may suffer from the accuracy of the approxima-
tion. In this sense, we believe that the CNOD concept, which
requires only antisymmetry, is simpler to work with and
apply in practice.
When optimizing, an additional particularly intriguing

aspect to consider is the limitation on gate speed imposed
by higher-order transitions and the breakdown of the
dispersive approximation at very high photon numbers,
such as cavity-qubit ionization, sometimes referred to as
bright stating [37,50]. As both approaches employ inter-
mediate states with a significant number of photons to
achieve shorter gate durations, a maximum photon number
could potentially restrict the gate speed. While an estimate
of the speed limit can be derived from the critical photon
number at which the dispersive approximation breaks down
due to higher-order effects [51], it should be regarded as a
guideline rather than an exact threshold. In fact, we do not
observe any evidence of such transitions in the single-mode
CNODs (see Fig. 13); this is contrast to the observations
reported in Ref. [17]. The reason for this discrepancy is
currently unknown and could potentially be attributed to
differences in the experimental setups, including system
parameters. Another possible explanation may be found in
the description of this phenomenon in terms of Landau-
Zener transitions [37]. Unlike the ECD gate, the continuous
driving during the CNOD gate could aid in suppressing such
transitions by rendering them primarily diabatic. However,
a definitive conclusion would necessitate a more rigorous
comparison of the two methods.
There exist additional distinctions between the two

methods, such as the ECD gate not being perfectly anti-
symmetric, leading to more subtle differences. A compre-
hensive comparison of the two methods, such as studying

the limitations imposed by large photon numbers and
potentially offering a unified framework for the two
methods, is left for future work. This analysis will go
beyond peak power comparisons and provide a more
thorough understanding of the similarities and differences
between the ECD and CNOD methods.
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