
PHYSICAL REVIEW RESEARCH 3, 013061 (2021)

Fluctuation distributions of energy minima in complex landscapes
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We discuss the properties of the distributions of energies of minima obtained by gradient descent in complex
energy landscapes. We find strikingly similar phenomenology across several prototypical models. We partic-
ularly focus on the distribution of energies of minima in the analytically well-understood p-spin-interaction
spin-glass model. We numerically find non-Gaussian distributions that resemble the Tracy-Widom distributions
often found in problems of random correlated variables, and nontrivial finite-size scaling. Based on this, we
propose a picture of gradient-descent dynamics that highlights the importance of a first-passage process in
the eigenvalues of the Hessian. This picture provides a concrete link to problems in which the Tracy-Widom
distribution is established. Aspects of this first-passage view of gradient-descent dynamics are generic for
nonconvex complex landscapes, rationalizing the commonality that we find across models.
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I. INTRODUCTION

The notion of an underlying complex energy landscape in
glassy, disordered systems is useful [1–8] to the extent that
the landscape can be reduced to relatively few properties that
are relevant to observed phenomena. The complexity, which
counts stationary points in the landscape (minima, saddles,
maxima) is an example of such a property. An energy land-
scape is complex if the number of stationary points depends
exponentially on the system size.

An intuitive approach to probing complexity is to do a
naive search for minima using gradient descent [9]. One
follows the (negative) gradient flow of the energy from an
initial configuration until a stationary point corresponding to
a vanishing gradient is reached. Because a numerical descent
almost certainly ends in a minimum, gradient descent does not
only constitute the simplest form of physical dynamics in a
complex landscape, a quench to zero temperature, but also the
most intuitive and simplest form of optimization. If one starts
with flatly sampled random initial positions (corresponding to
infinite-temperature T = ∞ configurations), gradient descent
has the added advantage of sampling local minima with a
probability that can be calculated because it is proportional to
the volumes of their basins of attraction [10,11]. Finally, in ad-
dition to being a local optimization strategy, gradient descent
is also the archetypal greedy algorithm, particularly if one
considers a discretized version as one does with any numerical
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implementation: in every time step the displacement with the
largest expected loss in energy is chosen. Within the field of
glassy systems, gradient descent is used to obtain “inherent
structures” [12–15], i.e., the minima at the bottom of the
local basin of attraction around which the system thermally
fluctuates, while in machine learning, gradient descent is the
original go-to learning strategy [16]. Gradient descent is also
used to obtain jammed packings of repulsive soft spheres,
which are the least stable packings that are mechanically rigid
[17,18].

Here we look at the shape of the distribution of minima
obtained by gradient descent for several different models,
with particular focus on the spherical p-spin-interaction spin
glass. Such distributions, for example, for jamming, have been
assumed to be Gaussian [17]. Our central finding is that for
all of these models, the distributions are non-Gaussian with
nontrivial tail exponents on one side that are consistent with
the Tracy-Widom distribution, a distribution mostly known
for describing the edge fluctuations of the eigenvalues of
Gaussian random matrices. We rationalize this finding with
a perspective that might be the starting point for an eventual
analytical approach.

In Sec. II we introduce the models studied. We then present
our numerical results in Sec. III and use established results for
the p-spin model in Sec. IV to formulate a toy process that
allows us to understand these numerical results. We close in
Sec. V with some final remarks on the applicability of these
ideas to other contexts.

II. MODELS AND COMPLEXITY

We study various models with complex landscapes. A uni-
fying perspective is provided by all of them being random
constraint-satisfaction problems, i.e., assemblies of equations
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or inequalities. The typical question of interest is whether a
specific realization allows for an assignment of the variables
that satisfies all constraints or whether there are frustrations
(which are easily introduced in randomized problems) that
prevent satisfaction of all of the constraints. Generically, there
is a (SAT/UNSAT) transition between a phase where a sat-
isfying assignment is possible (SAT) and a phase where this
is not possible (UNSAT) upon tweaking the hardness of the
satisfaction problem, e.g., by changing a control parameter
such as the ratio of (in-)equalities and variables. Versions with
discrete (particularly Boolean) variables are of fundamental
importance to computer science [19], whereas SAT/UNSAT
transitions in continuous constraint-satisfaction problems are
conjectured to form an important universality class [20] in
statistical physics. The focus of our attention is the spherical
p-spin model which we therefore introduce first, before the
k-SAT, perceptron, and jamming models.

A. The p-spin model

Specifically, we consider the spherical p-spin model
[21,22]: i.e., we have N spins Si whose combined length is
constrained to

∑
S2

i = N (leaving effectively N − 1 degrees
of freedom) with an energy functional

H =
∑

i1<i2<...<ip

Ji1,i2,...,ipSi1 Si2 . . . Sip (1)

containing random Gaussian couplings J with mean zero and
variance 〈J2〉c = N/#J . Here, #J ∼ N p is the number of terms
appearing in the energy functional (while adhering to the
constraint of ascending indices). We use this convention to
account for finite-size effects from lower-order terms, but
ultimately only the scaling with N is important. Note that
particularly in the older physics literature a different conven-
tion is used that introduces an additional factor of 2 here.
This energy is an extensive quantity scaling with system size,
and we therefore also introduce the corresponding intensive
quantity ε = E/N . As the qualitative nature of the energy
landscape defined by this functional is independent of p for
p > 2 (p = 2 corresponds to a convex eigenvalue problem
and therefore only has a single, trivially global minimum), we
choose to limit ourselves to the numerically most accessible
case of p = 3. Still, the cost of a simple evaluation of the
energy inevitably scales as N p.

The energy scale εth = −2
√

(p − 1)/p = −√
8/3 is called

the threshold energy as it constitutes the upper energy bound-
ary below which an exponentially large number of stationary
points exist. This is quantified by looking at the (cumulative)
complexities. If we define Nk (ε) to be the number of station-
ary points of index k with an (intensive) energy not larger than
ε, the corresponding complexity �(ε) is given by

�(ε) = 1

N
logNk (ε). (2)

The complexity was studied earlier within the TAP approach
[23] and has been the subject of rigorous mathematical anal-
ysis in the limit of large N [24]. Remarkably, a qualitatively
similar structure has been found for rather small system sizes
by numerical enumeration of the critical points [25].

In this paper we focus on the shape of the distribution of
energies of minima, as obtained by gradient descent for finite
systems. This corresponds to the shape of the normalized dis-
tribution corresponding to Nk≡0(ε). The distribution of final
energies found as a result of gradient descent for the p-spin
model is shown in Fig. 1(a).

For a suitable choice of couplings, the p-spin model pro-
vides a natural energy landscape for the optimization problem
corresponding to a k-SAT decision problem [26]. The model
also provides insight into structural glasses [27]. It is also a
valuable model in its own right. The overall gestalt of the
energy landscape, as captured by the complexities, is the
relevant property that drives interest in the p-spin model as
a prototypical complex energy landscape. Physical systems
usually have a well-defined notion of a ground-state energy
which sets a lower bound to an extensive number of minima.
Additionally, the existence of an upper bound reflects that
“overfrustration” of a complex system—it is exponentially
hard to construct a state with an energy less favorable than
some native scale.

B. The k-SAT model

The prototypical satisfiability problem is that of Boolean
(or propositional) satisfaction; see, for example, Ref. [28]
for an introduction. Given a number N of literals [Boolean
variables si with si ∈ {TRUE, FALSE}] and a number M of
clauses [combinations of the literals and the fundamental
logical operators OR (∨), AND (∧), and NOT (¬)] which can
always be brought into conjunctive normal form, which means
that we consider conjunctions [AND-connected subclauses]
of disjunctions [OR-connected (possibly negated) literals], the
goal is to find a choice of the literals that satisfies the clauses
[evaluates to a true statement]. Particularly, we focus on the
k-SAT version of this problem, consisting only of random
clauses that are disjunctions of exactly k (possibly negated)
literals. Interestingly, it turns out that there is a sharp change
in the difficulty of the problem with k. For k � 2, the solu-
tion (or the existence of a solution) can be found easily in
a time that depends polynomially on the problem size (see,
for example, [29]), whereas the problem is NP-hard [30] for
larger values of k (for efficiency reasons we limit ourselves to
k = 3), meaning that the question of the existence of such an
algorithm with polynomial runtime is an important outstand-
ing problem [31]. Here we are not interested in designing a
particularly good algorithm. Instead we use, in analogy to a
gradient descent, a local greedy optimization strategy: pick
an unsatisfied clause and an undetermined literal and set the
literal to the value satisfying the clause. If at some point
there are no undetermined literals left to satisfy an unsatisfied
clause, the system is considered unsatisfied; if every clause
is satisfied, the system is considered satisfied. The variable
controlling the fraction of unsatisfied systems is M/N , the
ratio of the number of clauses to the number of literals (the
solution is obviously trivial if every literal appears in at most
one clause). Because the literals are Boolean, the distribution
of results is not continuous, but the relevant combination M/N
becomes continuous in the thermodynamical limit, and we
will thus treat the data as if they were binned continuous data.
We perform runs of the greedy algorithm for k = 3 (ensuring
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FIG. 1. Fluctuation distributions for the models discussed in the main text as found from numerical descents. Each panel also contains
the curve corresponding to data from the Tracy-Widom distribution W (analogously normalized) and the Gaussian normal distribution.
(a) Derivative of the fraction of satisfied systems in the k-Sat model as a function of the number of clauses M. Here, normalization was
performed as if the satisfaction curve were a cumulative distribution. (b, d) Energy distributions for the perceptron (α = 5; curves in b) labeled
with σ = . . .), isobaric jamming of soft spheres (curves in b) labeled with p = . . .), and the p-spin (d). (c) Distribution of jamming thresholds
ϕc found in the jamming of soft spheres according to Ref. [37]. The binning size is determined following Ref. [39].

that every literal is used in any clause at most once) with
N = 128 literals for M = 1 . . . 103 and measure the fraction
of unsatisfied systems. This data is shown in Fig. 1(a).

Reduction from k-SAT is usually used to prove that other
Boolean satisfaction or decision problems are NP hard; for
example, there is a direct connection between the 3-Sat and
the three-coloring of a graph (by means of factor graphs). The
optimization problem associated with the k-SAT problem is
the p-spin model discussed above.

C. The perceptron model

Generalizing from Boolean to continuous variables, there
are two types of constraints: equality constraints [ f (S) =
0] and inequality constraints [ f (S) � 0]. Every independent
equality constraint reduces the dimension of the solution
space by 1, meaning that the set solutions to problems with
equality constraints is always one of zero measure geo-
metrically, i.e., the solutions are isolated in the space of
possible solutions. This is not only peculiar, but it is also
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inappropriate for many, if not most actual systems one might
want to model: a very simplified description of neurons, for
example, is that they give an output if the input is exceeding
some threshold (see jamming below for another example).
This model [32] of neurons is the origin of the perceptron
model [33]. Following the notation of Ref. [34], we con-
sider continuous variables Si (i = 1 . . . N) subject to linear
inequality constraints hμ (μ = 1 . . . M) such that hμ = ξμ ·
S − σμ

!
> 0. We limit the variable space to a sphere, S2 = N ,

use normally distributed ξ, and set σμ ≡ σ . For a given ratio
α = M/N there is a critical value σc(α) < 0 that marks the
satisfiability transition (lower σ corresponding to the phase
in which all constraints are satisfied). Tuning σ allows for
further control of the topology (convex/nonconvex) of the
energy landscape that is constructed by considering E (S) =∑

μ h2
μ�(−hμ), transforming the decision into an optimiza-

tion problem. At low values of σ the system is convex, and at
sufficiently high values (but for σ > σc) the system is noncon-
vex. We perform gradient descents on that energy landscape
to obtain the distributions of the final energies in both the
nonconvex [Fig. 1(c)] and convex regimes [Fig. 1(d)].

D. Jamming

We consider the packing [17,35] of spheres with harmonic
repulsions in low (d = 2, 3) dimensions. The specifics of the
interaction potentials (e.g., using anharmonic spheres) affect
the nature of the transition as captured by critical exponents
[17] but do not change the underlying SAT-UNSAT motif.
To see this, one simply scales the energy by an effective
spring constant that depends on the interaction potential and
on pressure or average coordination number; once this is
done, the results for different potentials collapse. We therefore
study only the case of harmonic repulsions for simplicity.
Starting from randomly placed spheres, the energy is lowered
by reducing the overlap of the spheres; the constraints to be
satisfied are thus of the form |ri j | � σi j , where ri j denote the
pairwise displacement vectors between particles and σi j are
the added particle radii. As a result of the inequality structure
of these constraints, the perceptron model provides the ap-
propriate mean-field framework [34,36]. The relevant control
parameter that sets whether or not an unjammed configuration
(which we choose to have E = 0) is found is the packing
fraction, i.e., the ratio of combined volume of the spheres to
volume available in the simulation box. For finite dimensions
and particle sizes, there is not a sharp satisfiability thresh-
old, but as one increases the packing fraction the fraction of
systems for which the descent ends in a jammed configura-
tion increases. The derivative of the satisfaction curve can be
interpreted as the distribution of jamming thresholds ϕc and
is shown (as inferred via numerical derivation from the data
of Ref. [37]) in Fig. 1(f). Previously, these distributions were
used to infer finite-size scaling properties [17,37] such as the
scaling of the width of the distribution and of the jamming
threshold value in the thermodynamic (large system size)
limit. In contrast, we focus on the shape of these satisfiability
distributions.

Additionally, we consider the distribution of energies of
packings (using the same model as, e.g., Ref. [17] with α = 2)

prepared [38] at a fixed pressure above the jamming transition,
where not all of the constraints are satisfied. These curves are
shown in Fig. 1(e).

III. NUMERICAL RESULTS

We present the results of gradient-descent simulations for
all the models studied in Fig. 1. Because shifting and global
rescaling of the energy landscape do not qualitatively affect
gradient descent, we only present histograms of normalized
variables (mean zero, unit variance). The bulk of these simu-
lations was done employing the FIRE algorithm [40] instead
of a naive, direct integration of the equation of motion. This
algorithm converges significantly faster, allowing for better
statistics and analysis of large deviations. The additional in-
ertial degree of freedom within the FIRE scheme can in some
individual cases change the basin of attraction such that the
relaxation from a specific initial condition with it leads to a
different final minimum than would application of a direct
gradient descent (this is also true for gradient descents with
different time steps). However, in smaller runs we find no
indication that this changes the statistics significantly, hinting
that the effect of the additional inertial movement within FIRE
mostly changes the time axis. This is in line with previous
applications of FIRE in similar quenches to zero temperature
in jamming. While FIRE has seen greater usage within the
jamming model, we are using it for all the continuous prob-
lems.

As a visual aid and for comparison, we show the respective
numerical probability functions alongside two distributions:
(1) the Gaussian (normal) distribution, which is the least bi-
ased estimator for the distribution having fixed the mean and
variance, and (2) the (normalized) Tracy-Widom distribution,
which is characterized by tails that decay more slowly than
a Gaussian on one side (x � 0) and more rapidly than a
Gaussian on the other side (x � 0):

logW (x) ∼
{

x3/2 x � 0
−x3 x � 0

. (3)

There is a striking qualitative similarity across models and
system sizes. The distribution functions are trivially similar
to the Gaussian around zero, but the large deviations are
asymmetric with a soft tail (in our presentation for x < 0)
that decays more slowly than the Gaussian and a hard tail (for
x > 0) that decay more rapidly than the Gaussian. The soft tail
seems to be well described by the Tracy-Widom distribution.
The strong commonality across systems and the Tracy-Widom
form of the soft tail constitute the main results of this paper.
There is some additional N dependence not eliminated by nor-
malizing, which partially is to be expected for small systems
due to corrections to scaling (see Ref. [41] for a discussion in
the specific context of jamming; we note that corrections to
scaling are expected for all of the systems studied). Neverthe-
less, the soft tail appears robust in the thermodynamic limit, as
we will elaborate below. Interestingly, the notable exception
to this is the perceptron in the convex regime that has a
trivial basin of attraction. This indicates that the important
similarity between the analogous systems is indeed the quench
from a flat measure in a complex energy landscape and the
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(a)

(b)

FIG. 2. (a) Mean and variance of the final energies as found via
steepest descent in the p spin as a function of system size N (double
logarithmic plot). We find that the energy clearly descents towards
the threshold energy from above with a very clear power-law depen-
dence (see inset). (b) Collapsed distributions for N = 32, 64, 128.
Here we perform collapsing using a tentative non-normalized scaling
form that is inspired by the Tracy-Widom distribution. The labels I,
II, and III indicate the three regions used for the spectral densities in
Fig. 4. Inset: Large deviations, power laws are found at the far tails
of the energy distribution.

exploration of at least partially concave (some eigenvalues of
the energy landscape are negative) regions.

We now look carefully at finite-size effects to see whether
the soft tail survives in the limit N → ∞. We present results
for the spherical p-spin model, for which we have the best
statistics (4 × 107 samples for N � 64, 7 × 106 for N = 128,
and still 80 000 for N = 256) and which is also expected to
have very small corrections to scaling due to its structure. This
is highlighted by the extremely clear power laws found for the
first two moments of the final energies [see Fig. 2(a)]. Using
overlines to denote averages over gradient-descent samples
(so as not be confused with unbiased averaging over disorder
for which we use angular brackets), we find that the finite-size
deviations to the energy can be characterized via

ε − εth ∼ N−2/3, (4a)

ε2
c ∼ N−4/3. (4b)

We denote cumulants with a subscript, such that x2
c =

x2 − x2.
Studying the large deviation tails, we find that the “soft”

tail (corresponding to low energies) has the same asymp-
totics as in the Tracy-Widom law, but the “hard” tail decays
more like a Gaussian and therefore decays considerably more
slowly than the Tracy-Widom law,

log Pempirical(x) ∼
{

x≈3/2 x � 0
−x≈2 x � 0

, (5)

with again the rescaled variable x = [ε − με(N )]/σε(N ). This
is shown for the p-spin model in Fig. 2(b). From Fig. 1(a) it is
hard to tell whether this holds for large N , as the shape of the
distribution appears to cross over from something close to the
Tracy-Widom distribution towards the Gaussian distribution.
To address this question, we construct an estimate for the
converged shape for very large N using the following proce-
dure. We sample the inverse function QN (c) = C−1

N (c) to the
empirical cumulative distribution functions (CDFs) CN (x) for
every N (using the N-specific normalization) at a number of
selected values c = 10−5, . . . , 1. At any given value of c, this
gives a set of pairs [1/N, xc = QN (c)] which we use to extrap-
olate to xc(0). We find that the finite-size effects in the shape
are well described by x(N ) − xc(0) ∝ N−1/3 (corresponding
to 1/N corrections in non-normalized variables). As the ex-
trapolation is done at each value independently, this method
does not constrain the moments of the final distribution and
we therefore normalize it as a final step. The result of this
procedure is shown in Fig. 3, which suggests that although
the final distribution is extremely close to a Gaussian, the soft
tail does prevail for large N .

IV. RATIONALIZATION OF RESULTS

To gain insight into the finding that the distribution of
minima energies is non-Gaussian, we shall construct a sim-
plified metamodel which, we shall argue, seems to capture
the essential elements of the dynamics. It is a first-passage
problem for the lowest eigenvalue of a random matrix that
with fluctuating elements that are being gradually shifted by
an identity. We focus on the p-spin model. This is our start-
ing model of choice because of its simple structure; we will
show that we can learn something from the spectral dynamics
here more clearly than in other models. In particular, we will
relate the spectral dynamics to Dyson Brownian motion. Such
Dysonian dynamics are not general, as we discuss in the final
section, but reflect key elements that are true for the evolution
of any dynamical matrix (noise, noncrossing of eigenvalues,
and entropical confinement). In this model, gradient descent
is given by integration of [42]

Ṡi = −(Ji jk + Jjik + Jjki )S jSk − zSi , (6)

where z is a Lagrange parameter ensuring the spherical con-
straint, SiSi = N , and is fixed to be

z = −3ε (7)

by demanding SiṠi = 0 or, equivalently, SiSi = const. The
descent terminates once Ṡi = 0, and this will be not only a
stationary point but a stable minimum.
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FIG. 3. Large: Cumulative distribution of final (normalized, intensive) energies in the p-spin model for N = 24,..8 together with the
extrapolated (refer to the main text for details) distribution for large N . Left: The convergence in the marked regions of the large plot is
shown in insets. Right: The derivative of the extrapolated cumulative distribution, i.e., the extrapolated probability density function. The inset
shows the tail behavior (relative to a Gaussian y2-behavior) with a guide to the eye ∝ y−1/2 which corresponds to a y3/2 soft tail for small
energies.

To understand the implications of this, it is helpful to also
consider the dynamical matrix M associated with the descent,
which is given by the Hessian of the energy function (techni-
cally the Lagrange function, but we refrain from reflecting the
special nature of the spherical constraint in our wording in the
following):

Mi j = (Ji jk + · · · )Sk + zδi j , (8)

where the omitted terms correspond to all index permutations
of i, j, k. We can identify two contributions to the matrix M: a
Gaussian random part (J and S are practically independent)
and a deterministic shift that only depends on the energy.
From this observation, it is straightforward to infer that the
spectral density of eigenvalues in the limit of large system
sizes is given by a shifted Wigner semicircle law [43]:

ρ(λ) dλ = 1

2πσ 2

√
(2σ )2 − (λ − μ)2 dλ, (9)

with σ = −3εth and μ = −6ε, see left panel of Fig. 4.
If we ignore the shift [the second term of the Hessian in

Eq. (8)] for now, then we know that finite system size causes
the edges of the Wigner semicircle to develop fluctuations.
It is rather intuitive that these fluctuations have to be asym-
metric: finding a lowest eigenvalue that is smaller than the
lower boundary of the support of the semicircle should (for

sufficiently large system sizes) be entropically less costly than
finding a fluctuation where the lowest eigenvalue is located
somewhere within the bulk of the semicircle; this implies
that an extensive number of eigenvalues must lie at atypically

spectral
density

energy eigenvalue

spectral
density

FIG. 4. Left panel: Schematic sketch of the Wigner semicircle
expected in a unbiased sampling from the Hessian. The location
of the mean is set by the state’s energy, the width corresponds
to the threshold energy. The deviations from this average picture
at finite system sizes are for the extremal eigenvalues given by a
Tracy-Widom distribution with a characteristic finite-size scaling,
σλmin ∼ N−2/3. Right: Eigenvalue distributions in different regimes
[atypically low (I), typical (II), atypically high energy (II)], cp. Fig. 2.
We show the marginal semicircle law (thin red line) as a visual guide.
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large values. This intuition has been made rigorous—the edge
fluctuations are described by the acclaimed Tracy-Widom
distribution introduced earlier in Eq. (3) [44–46]. The Tracy-
Widom distribution has gathered considerable interest in
recent years, as it has been found to appear in many systems of
correlated variables that are beyond its original scope within
random-matrix theory. Interestingly, the chargelike repulsion
between the eigenvalues that is at the core of the Tracy-Widom
distribution is of purely topological origin and can be under-
stood solely from imposing a noncrossing bias onto random
walkers [47]. As of now, there is no simple closed form repre-
sentation of the Tracy-Widom distribution, but the distribution
of the lowest eigenvalue has a characteristic system-size de-
pendence [48],

P(λmin = λ) ∼ W (−(λ + 2σ − μ)σ−1N2/3), (10)

with W (x) being the Tracy-Widom distribution with tails de-
scribed by Eq. (3) [49].

Note that this eigenvalue spectrum has two tails with differ-
ent N scalings: in the soft tail the argument of the exponential
scales like N whereas it scales like N2 in the hard tail. This
corresponds to the fact that deviations of the lowest eigenvalue
to smaller values are entropically suppressed by the definition
of the matrix ensemble, but fluctuations to higher values re-
quire a displacement of extensively many eigenvalues.

The termination of the descent is subject to the gradient and
thus cannot be understood by the dynamics of the eigenvalues
alone, but we can identify a necessary contribution that will
get us close to understanding the full dynamics. Once the
lowest eigenvalue crosses zero to become positive, the descent
is in its final valley and the energy will only change slightly.
Neglecting this final part, gradient descent becomes a first-
passage problem in the lowest eigenvalue. As time progresses
and the system lowers its energy, the eigenvalues will move
(with fluctuations) towards higher values while never crossing
each other, until the lowest eigenvalue crosses zero so that all
eigenvalues are positive. A direct empirical corroboration of
the importance of eigenvalue fluctuations from the data, and
a connection to problems usually connected to Tracy-Widom
laws, is that the power laws seen in the finite-size effects,
see Eq. (4), are consistent with the scaling seen in the Tracy-
Widom law, cp. Eq. (10).

To start examining the descent from this spectral perspec-
tive, we calculate the spectrum of eigenvalues of the Hessian
in three different ranges of energies of the minima in Fig. 2(b).
In each of these ranges, the distribution is close to the semi-
circle expected at the threshold energy in unbiased sampling
independent of the energy, with a shift that increases with
energy. This is somewhat consistent with the finding that
all the states found are close to threshold. However, they
are always above the large-N threshold, εth = −√

8/3, which
means that the naively expected value for the lowest eigen-
value is negative, and a large deviation is needed to constitute
a mechanically stable state. Intuitively, the entropically least
expensive way to do this is to aggregate all these eigenvalues
closely above zero. This intuition has been made rigorous by
an analysis by Dean and Majumdar (DM) [50]. An important
physical consequence of this aggregation around zero (form-
ing an integrable singularity in the spectrum) would be an
excess of very soft modes, which is not only unphysical, but

also completely contrary to the empirical findings in physical
realizations of disordered systems in general or our data for
the p spin in particular. An immediate explanation for why
such an aggregation of soft modes is not observed can be given
by the sampling bias due to the gradient descent. The measure
with which the minima are sampled is the relative size � of
their basins of attraction. Both numerically (employing the
Einstein method explained in [10]) and analytically (from
a naive reading of the Kac-Rice formula, see, for example,
[24]), we find that � ∼ det M, i.e., minima with an abundance
of very soft modes would very likely have very small basins of
attraction and thus not contribute significantly to the empirical
distributions.

This observation highlights an important and well-known
aspect of the gradient descent: it is an inherently out-of-
equilibrium process that should be looked at dynamically.
Thus we are not to consider the DM ensemble with a perma-
nently non-negative spectrum but a transition from the initial
equilibrium spectrum to a non-negative spectrum under the
descent dynamics. Given that the average of the spectrum
is set by the Lagrange multiplier z, i.e., by the energy, the
constantly decreasing energy corresponds to an overall drift
in the eigenvalues, shifting them towards higher values. We
quantify this by expanding Si = Si + dSi and z = z + dz in the
Hessian (8) to first order, which results in

dMi j = (Ji jk + · · · ) dS + dzδi j . (11)

Our strategy to make gainful progress from this spectral
perspective is to simplify the matrix dynamics of Eq. (11) by
only considering two important factors that must be there: a
source of noise and an entropic confinement establishing a
well-defined ensemble. The conceptual background of this
approach is the seminal insight by Dyson [51] that for the
Gaussian ensemble, equilibrium sampling in random-matrix
theory [52] can be accomplished by deriving the associated
Langevin equation,

dMeq
i j = dW − σ−2

M Meq
i j dt . (12)

Here, the first term is a Gaussian noise term (with dW ∼√
β−1dt being a Wiener process) and the second term is an

entropic spring that ensures that the matrix stays in the correct
ensemble. This overall structure corresponds to the effective
form that the actual p-spin eigenvalue dynamics must have,
aside from the energy-dependent drift (z term) of Eq. (11).
The rationale for this is to note that the dynamics of the Hes-
sian without the energy shift are effectively uncorrelated with
the change in energy (omitting index permutations) dE =
Ji jk (SiS jdSk + · · · ). Thus we can reduce the first term in
Eq. (11) to a centered Gaussian increment. The second term in
Eq. (12) reflects the unavoidable correlations in these updates:
there is a well-defined entropic ensemble (the spectrum is a
semicircle at all energies in distribution) and thus a restoring
drift to this ensemble. Using these increments of the matrix el-
ements, it is straightforward to use matrix perturbation theory
to determine the resulting dynamics of the eigenvalues,

dλn = dW + dt

[
− λn

σ 2
J

+
∑
n �=m

1

λn − λm

]
. (13)
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This is Dyson Brownian motion. Here, σ 2
J denotes the O(N−2)

variance of the couplings. The repulsive third term with
its divergence is the technical equivalent of the statement
that two eigenvalues do not cross. Thus the eigenvalues
stay in one representation of the permutation group for all
times.

Comparing the two expressions of Eqs. (11) and (12), it is
tempting on first glance to regard them as qualitatively identi-
cal, since the descent dynamics will also lead to some random
noise (which ultimately will be Gaussian due to the Gaussian
distribution of J), but with a Hessian that remains in the
same well-defined ensemble. The influence of the additional
drift term zδi j on the eigenvalues might at first seem trivial.
However, there is an important difference related to time-
translational invariance. In the Dysonian case, everything is
in equilibrium and thus invariant in statistics under time
translation and time reversal. For descent dynamics, these
symmetries are trivially broken by the drift. This can easily
be handled, but the symmetries are also broken in the noise
term. This can be seen if one goes back to earlier analytical
approaches [27] to the dynamics of the p-spin model, where
the correlation function C(t + �t, t ) = 〈Si(t + �t )Si(t )〉 de-
cays exponentially for t � �t with a rate that is inversely
proportional to t , i.e., we expect

Si(t + �t )Si(t ) = 1 − const �t/t + O[(�t/t )2]. (14)

Thus even a temporally coarse-grained version of Eq. (11)
that would get rid of correlations in time without drift would
not be Markovian, because the strength of noise would be
time dependent. Since we are only interested in first-passage
statistics, this is easily mitigated as we can switch to dynamics
in a reparametrized time [27] τ with dτ ∝ dt/t . This logarith-
mic reparametrization makes the process time-translational
invariant. This freedom to reparametrize time with an arbi-
trary bijection is very important here. For general systems,
we might not possess a specific procedure to achieve a time-
translationally invariant descent, but on a conceptual level this
reparametrization vastly constrains the types of essentially
different spectral motions, making the Dyson equation of mo-
tion as important as it is. One important class of alterations
is arising sum rules in the system, as we discuss below in the
final section.

The final missing piece is the energy, which decreases with
time during gradient descent. We had to separate this drift
from the matrix dynamics to bring the latter into a treatable
form, so the relevant process is no longer a first crossing of
zero but the first crossing of a curve given by the energy
ε(τ ). As the fluctuations of the energy [given by the gradient,
the first derivative of a Gaussian field] are independent from
the fluctuations in eigenvalues [aside from the mean they
are given by the random part of the Hessian (8), the second
derivative of a Gaussian field] and of lower order [O(N−2/3) in
the eigenvalues, but O(N−1) in the intensive energy], we can
replace the actual energy by the asymptotic trajectory ε∞(τ )
for large N . This, of course, not only neglects the dynamical
fluctuations along the trajectory but also the deterministic
noise in trajectories from the initial conditions. However, we
are interested in the behavior at large times τ , where the effect
of the initial configurations is negligible.

We can deduce from the structure of the analytical equa-
tions [27,53] that the intensive energy in real time ε∞(t ) ∼
εth + constt−γ asymptotically is a power law, and thus in
rescaled time the energy decays exponentially ε∞(τ ) ∼ εth +
conste−τ/τc . A more pedestrian way to look at this is by di-
rectly writing down an equation of motion for the energy

∂t E = [∂t Si]
[
∂Si E

]
= (Ji jkJilm + · · · )S jSkSlSm + 3zJi jkSiS jSk . (15)

Again, changing variables to establish time-translation invari-
ance and performing an average over the disorder we see
that 〈∂τ ε〉 = const + ε2, from which one gathers (using the
known asymptotic value) that ε∞ ≈ εth tanh(const τ ) with the
aforementioned asymptotically exponential decay.

We note that this picture is very general and should apply to
all of the systems we have studied, not just the p-spin model.
Putting everything together, we get a model version of the
gradient descent as a first-passage process of the lowest eigen-
value of the Hessian given by standard Dyson dynamics with
a time-dependent boundary εmodel = εth tanh(τ ). From this
model definition, one can (somewhat a posteriori admittedly)
rationalize the following numerical findings described earlier:
(1) It is inherently plausible for the finite-size scaling to be of
the same form as the Tracy-Widom distribution because the
effective process is indeed one dominated by edge eigenvalue
fluctuations. (2) The shape of the distribution (Gaussian on
one side and Tracy-Widom on the other) is plausible. The
fluctuations of the lowest eigenvalue are of order N−2/3 with
a hard border to the right, and thus there is some time τ0

where the typical distance is of the same order, so that there
is a very high probability for the boundary to not have been
crossed. Thus we know that at τ0 the fluctuation distribution
of the lowest eigenvalue is given by the Tracy-Widom law.
However, τ0 will be close to the actual final time, and at small
times [up to eigenvalue distances of O(N−1/2)] the diffusive
part dominates. Thus it seems within reason that we would
see a distribution that effectively looks like a convolution of
a Gaussian (the propagator on short times) and the Tracy-
Widom law (the fictitious initial condition at τ0), which would
bear the hallmarks we find in the original numerics.

Numerical exploration of this effective description is
straightforward with various options for sampling this pro-
cess. One way would be to go back to the initial idea of
the Dyson Brownian motion and diagonalize a matrix subject
to small noise in time. The noncrossing is manifest in this
approach, but diagonalization is a rather costly operation.
Alternatively, one might consider an event-based Monte Carlo
of the thermal ensemble whose Langevin equation is given by
the Dyson Brownian motion. Finally, there is the option to
do straightforward integration of the equation of motion with
adaptive time steps that ensure that the trajectories of eigen-
values never cross. Opting for the latter, we find that we can
indeed get to satisfying agreement of the numerics by tuning
the strength of the white noise inflicted upon the eigenvalues
which one can characterize by an effective temperature T . A
first-principles determination of the specific value of T to be
used is beyond the scope of our arguments. A numerical de-
termination is possible, but simulations of spectral trajectories
are slow for two reasons: the cost of the diagonalization itself
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FIG. 5. Fluctuation distribution as inferred from the first-passage
process discussed in the main text for N = 64 and various values
of T , together with the actual distribution measured for the p-spin
model (orange dashed curve). For comparison, we show the Tracy-
Widom (blue solid) and Gaussian (red solid) distributions.

and the need to switch from FIRE to the direct integration
to see the dynamics in physical time. We opt for a more
pragmatic procedure and simulate the process for a few values
(large values of T are slow as increasing the noise induces
more collisions); see Fig. 5 for N = 64. We see that indeed
there is a satisfying agreement between the distributions found
from this simple first-passage problem and the real ones for
the p-spin model in Fig. 1.

We close with a final remark on the contributions to the
final energies that we ignored. Once the lowest eigenvalue has
crossed the boundary, one still has descend further to reach
the bottom of the minimum. This leads to corrections to the
energies of the minima. All evidence seems to corroborate
that these corrections are of higher order in 1/N and almost
Gaussian distributed. In this case they do not contribute to
the finite-size scaling and also not to the fluctuation distri-
bution of normalized variables as they would only change
the first two cumulants. The eigenvalue process outlined here
therefore captures the essential mechanism underlying the
distribution for the p-spin model as well as the distribu-
tions for the other constraint-satisfaction problems considered
here.

V. CONCLUSIONS

We performed gradient-descent simulations in several
prototypical constraint-satisfaction problems with complex
landscapes and found similar asymmetric distributions in the
normalized distributions of final energies (Fig. 1). These
feature a soft tail corresponding to better-than-typical so-

lutions and a hard tail for worse-than-typical solutions.
Inspecting in more detail for the spherical p-spin spin-glass
model, we found that both the finite-size scaling as well as the
functional form of the soft tail (Fig. 2) are reminiscent of the
Tracy-Widom distribution, which is usually associated with
the fluctuations of extremal eigenvalues in random-matrix
problems.

We made this connection manifest by proposing an in-
terpretation of gradient-descent problems as first-passage
processes into mechanical stability, i.e., we argue that the en-
ergy at which the lowest eigenvalue becomes non-negative is
a good proxy for the actual final energy at which the gradient
descent terminates with respect to the fluctuation distribution.
This is a purely dynamical picture of the out-of-equilibrium
gradient-descent process in which typical landscape features
such as the basins of attraction are emergent from the random-
matrix ensemble associated with the dynamical matrix. The
very simple nature of the ersatz process found by reducing the
spectral dynamics to their core ingredients could allow for an
exact analytical treatment in the future.

An open question remains concerning the extent to which
the observed phenomenology survives with increasing sys-
tem size. At least for the p-spin model, extrapolation to the
large-N limit does lead to a non-Gaussian distribution with
the same tail behavior as seen in finite systems. However,
this is less clear for the other models studied here, for which
it was difficult to obtain comparable statistics. Neverthe-
less, the perspective of gradient descent as a first-passage
process suggests that the highly similar non-Gaussian fea-
tures seen in the distributions for the other models are not
a finite-size effect and should persist in the thermodynamic
limit.

The view of the gradient-descent process as a first-passage
problem could be a rather broadly fruitful one. Most aspects of
the (matrix) dynamics of the p-spin model are believed to be
somewhat general for many complex systems. Additionally,
the topological feature that fluctuations towards lower ener-
gies (corresponding to minima with atypically soft modes) are
substantially easier to find than those towards higher energies
(hard modes) should prevail in a vast variety of systems with
complex landscapes. This way of thinking should be helpful
in understanding phenomenology in experiments such as Ref.
[54] that prominently feature asymmetrical distributions of the
fluctuations within the inherent structure landscape. Our rea-
soning should be applicable to results from finite temperature
quenches as long as the initial temperature is sufficiently high
that the system is ergodic and the final temperature sufficiently
low that the system is confined to a single basin after the
quench. Finally, we note that a good understanding of the first
passage into mechanical stability might inspire new ways of
tweaking interactions to convert complex landscapes into less
rough ones (similar to the methods proposed in Ref. [55]) in
order to find better (lower energy) solutions.

We end with a caveat: In finite-dimensional models and
data, a simple Dysonian random-matrix view as proposed here
will necessarily face some issues, one very important one
being the existence of sum rules constraining the Hessian, par-
ticularly the ones corresponding to mechanical equilibrium.
The details of the coordination structure have been argued
[56–58] to be crucial in understanding essential features of
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low-dimensional jammed packings such as the scaling of the
vibrational density of states. As this is directly linked to the
statistics of the extremal eigenvalues, it is very intriguing for
future work to study the effect of these constraints (which
develop as the system descends in the landscape) on the
distributions studied here. Even when such constraints exist,
however, the notion is still valid that there is one contributing
process to the statistics of descents in disordered landscapes,
related to the passage into mechanical stability that we have
isolated for the p-spin model.
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complexity of spin glasses, Commun. Pure Appl. Math. 66, 165
(2013).

[25] D. Mehta, D. A. Stariolo, and M. Kastner, Energy landscape of
the finite-size spherical three-spin glass model, Phys. Rev. E 87,
052143 (2013).

[26] M. Mézard and R. Zecchina, Random k-satisfiability problem:
From an analytic solution to an efficient algorithm, Phys. Rev.
E 66, 056126 (2002).

[27] L. F. Cugliandolo and J. Kurchan, Analytical Solution of the
Off-Equilibrium Dynamics of a Long-Range Spin-Glass Model,
Phys. Rev. Lett. 71, 173 (1993).

[28] S. Gogioso, Aspects of statistical physics in computational
complexity, arXiv:1405.3558.

[29] M. R. Krom, The decision problem for a class of first-order
formulas in which all disjunctions are binary, Math. Logic Q.
13, 15 (1967).

[30] R. M. Karp, Reducibility among combinatorial problems, in
Complexity of Computer Computations (Springer, New York,
1972), pp. 85–103.

[31] L. Fortnow, The status of the p versus np problem, Commun.
ACM 52, 78 (2009).

[32] W. S. McCulloch and W. Pitts, A logical calculus of the ideas
immanent in nervous activity, Bull. Math. Biol. 52, 99 (1990).

[33] E. Gardner, The space of interactions in neural network models,
J. Phys. A 21, 257 (1988).

013061-10

https://doi.org/10.1063/1.1672587
https://doi.org/10.1126/science.267.5206.1935
https://doi.org/10.1146/annurev.physchem.48.1.545
https://doi.org/10.1103/PhysRevLett.78.4051
https://doi.org/10.1088/0953-8984/20/37/373101
https://doi.org/10.1103/PhysRevE.76.021122
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1103/PhysRevLett.106.245502
https://doi.org/10.1073/pnas.1620497114
https://doi.org/10.1126/science.225.4666.983
https://doi.org/10.1103/PhysRevB.31.5262
https://doi.org/10.1103/PhysRevLett.83.3214
https://doi.org/10.1038/35051524
https://doi.org/10.1038/35065704
https://doi.org/10.1038/nature14539
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1038/nphys3006
https://doi.org/10.21468/SciPostPhys.2.3.019
https://doi.org/10.1007/BF01309287
https://doi.org/10.1088/0305-4470/29/9/009
https://doi.org/10.1140/epjb/e2003-00325-x
https://doi.org/10.1002/cpa.21422
https://doi.org/10.1103/PhysRevE.87.052143
https://doi.org/10.1103/PhysRevE.66.056126
https://doi.org/10.1103/PhysRevLett.71.173
http://arxiv.org/abs/arXiv:1405.3558
https://doi.org/10.1002/malq.19670130104
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1016/S0092-8240(05)80006-0
https://doi.org/10.1088/0305-4470/21/1/030


FLUCTUATION DISTRIBUTIONS OF ENERGY MINIMA IN … PHYSICAL REVIEW RESEARCH 3, 013061 (2021)

[34] S. Franz, G. Parisi, P. Urbani, and F. Zamponi, Universal spec-
trum of normal modes in low-temperature glasses, Proc. Natl.
Acad. Sci. U.S.A. 112, 14539 (2015).

[35] A. J. Liu and S. R. Nagel, The jamming transition and the
marginally jammed solid, Annu. Rev. Condens. Matter Phys.
1, 347 (2010).

[36] S. Franz and G. Parisi, The simplest model of jamming, J. Phys.
A 49, 145001 (2016).

[37] D. Vågberg, D. Valdez-Balderas, M. A. Moore, P. Olsson, and S.
Teitel, Finite-size scaling at the jamming transition: Corrections
to scaling and the correlation-length critical exponent, Phys.
Rev. E 83, 030303(R) (2011).

[38] S. A. Ridout (private communication, 2018).
[39] H. Shimazaki and S. Shinomoto, A method for selecting

the bin size of a time histogram, Neural Comput. 19, 1503
(2007).

[40] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,
Structural Relaxation Made Simple, Phys. Rev. Lett. 97, 170201
(2006).

[41] C. P. Goodrich, A. J. Liu, and J. P. Sethna, Scaling ansatz for
the jamming transition, Proc. Natl. Acad. Sci. U.S.A. 113, 9745
(2016).

[42] From here on out, we use a summation convention where
repeated indices are to be summed over. In the spirit of sim-
plification, we also set Ji jk = 0 unless i < j < k, wherever it is
relevant.

[43] E. P. Wigner, Characteristic vectors of bordered matrices with
infinite dimensions, Ann. Math. 62, 548 (1955).

[44] C. A. Tracy and H. Widom, Level-spacing distributions and
the airy kernel, Phys. Lett. B 305, 115 (1993); Level-spacing
distributions and the airy kernel, Commun. Math. Phys. 159,
151 (1994).

[45] D. S. Dean and S. N. Majumdar, Large Deviations of Extreme
Eigenvalues of Random Matrices, Phys. Rev. Lett. 97, 160201
(2006).

[46] C. Nadal and S. N. Majumdar, A simple derivation of the Tracy–
Widom distribution of the maximal eigenvalue of a Gaussian
unitary random matrix, J. Stat. Mech. (2011) P04001; S. N.
Majumdar and G. Schehr, Top eigenvalue of a random matrix:
Large deviations and third order phase transition, ibid. (2014)
P01012.

[47] D. J. Grabiner, Brownian motion in a Weyl chamber, non-
colliding particles, and random matrices, in Annales de lI H.
Poincare B (Elsevier, New York, 1999), pp. 177–204, Vol. 35.

[48] Note that our conventions are such that the spectrum is inten-
sive. This results in different scalings than the also commonly
used extensive spectrum where the width of the semicircle is of
order

√
N .

[49] The Tracy-Widom distribution is usually defined by the fluctu-
ations of the largest eigenvalue, thus W (x) = F1(−x).

[50] D. S. Dean and S. N. Majumdar, Extreme value statistics of
eigenvalues of Gaussian random matrices, Phys. Rev. E 77,
041108 (2008).

[51] F. J. Dyson, A Brownian-motion model for the eigenvalues of a
random matrix, J. Math. Phys. 3, 1191 (1962).

[52] M. L. Mehta, Random Matrices (Elsevier, New York, 2004).
[53] S. Franz and G. Parisi, Recipes for metastable states in spin

glasses, J. Phys. I France 5, 1401 (1995).
[54] N. Nakagawa and M. Peyrard, The inherent structure landscape

of a protein, Proc. Natl. Acad. Sci. U.S.A. 103, 5279 (2006).
[55] M. Ruiz-García, A. J. Liu, and E. Katifori, Tuning and jamming

reduced to their minima, Phys. Rev. E 100, 052608 (2019).
[56] M. L. Manning and A. J. Liu, A random matrix definition of the

boson peak, Europhys. Lett. 109, 36002 (2015).
[57] E. Stanifer, P. K. Morse, A. A. Middleton, and M. L. Manning,

Simple random matrix model for the vibrational spectrum of
structural glasses, Phys. Rev. E 98, 042908 (2018).

[58] F. P. C. Benetti, G. Parisi, F. Pietracaprina, and G. Sicuro, Mean-
field model for the density of states of jammed soft spheres,
Phys. Rev. E 97, 062157 (2018).

013061-11

https://doi.org/10.1073/pnas.1511134112
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1088/1751-8113/49/14/145001
https://doi.org/10.1103/PhysRevE.83.030303
https://doi.org/10.1162/neco.2007.19.6.1503
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1073/pnas.1601858113
https://doi.org/10.2307/1970079
https://doi.org/10.1016/0370-2693(93)91114-3
https://doi.org/10.1007/BF02100489
https://doi.org/10.1103/PhysRevLett.97.160201
https://doi.org/10.1088/1742-5468/2011/04/P04001
https://doi.org/10.1088/1742-5468/2014/01/P01012
https://doi.org/10.1103/PhysRevE.77.041108
https://doi.org/10.1063/1.1703862
https://doi.org/10.1051/jp1:1995201
https://doi.org/10.1073/pnas.0600102103
https://doi.org/10.1103/PhysRevE.100.052608
https://doi.org/10.1209/0295-5075/109/36002
https://doi.org/10.1103/PhysRevE.98.042908
https://doi.org/10.1103/PhysRevE.97.062157

