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Anomalous Hall effect in single-band chiral superconductors from impurity superlattices
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Unlike anomalous quantum Hall insulators, clean single-band chiral superconductors do not exhibit intrinsic
Hall effect at the one-loop approximation. Finite ac Hall conductance was found to emerge beyond one loop, such
as with vertex corrections associated with extrinsic random impurity scatterings. In this paper, we investigate
the effect of impurities embedded in single-band chiral superconductors in a superlattice pattern, instead of in
random distributions. The impurity-induced Bogoliubov quasiparticle bound states hybridize to form subgap
bands, constituting an emergent low-energy effective theory whose Hall effect can be studied with ease. We
demonstrate that the occurrence of the Hall effect depends on the superlattice geometry and on the parity of the
chiral pairing. In particular, due to the mixed particle-hole character of the subgap states, the Hall conductance
may arise at the one-loop level of the current-current correlator in our effective model. Our theory provides an
insight into the impurity-induced anomalous Hall effect in chiral superconductors.
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Introduction. Topological chiral superconductors are clas-
sified by a topological invariant—the Chern number, and they
exhibit protected chiral edge modes. Odd-parity chiral super-
conductors (e.g., chiral p, f wave, etc.) may further support
half-quantum vortices that host Majorana zero modes [1,2].
These excitations obey non-Abelian braiding statistics and
could therefore be utilized for topological quantum compu-
tation [3–5].

The time-reversal symmetry breaking of the chiral pairings
can be detected in polar Kerr effect measurements, where a
linearly polarized light normally incident on the superconduc-
tor is reflected with a rotated polarization. Signatures of Kerr
rotation have been reported in several unconventional super-
conductors, including Sr2RuO4 [6], UPt3 [7], and URu2Si2

[8]. Such an effect is closely related to the anomalous quantum
Hall effect. However, unlike in an anomalous Hall insulator,
the effect is not expected in a clean and uniform single-band
chiral superconductor [2,9]. This could be understood in the
following simple terms. The pairing potential �k, whose k
dependence describes the relative motion between the paired
electrons, does not generate center-of-mass motion for the
Cooper pair. Thus the current operator of a superconductor
contains no contribution originating from �k. Consequently,
the Hall conductance is not directly related to the Berry cur-
vature of the Bogoliubov quasiparticles and it in fact vanishes
at the one-loop approximation.
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Nonetheless, vertex corrections, such as those arising from
extrinsic impurity scatterings [9–14] and certain intrinsic
superconducting collective modes [15–17], have both been
shown to induce finite Hall conductance. Separate intrinsic
mechanisms exist for multiband superconductors, but those
involve interband Cooper pairing [18–22]. Thus far, whether
these effects could quantitatively explain the observed Kerr
rotation is still debated [23,24].

In previous studies, the leading order impurity effects are
captured by the so-called skew-scattering diagrams [9,11–13].
However, these studies only capture the continuum state con-
tribution, and some important microscopic details are absent
in the diagrammatic treatment. In particular, individual impu-
rities are known to induce subgap quasiparticle bound states
[25,26]. How such low-energy states influence the electro-
magnetic response of the system remains largely unexplored
and is the focus of the present study. In so doing, we uncover
a different perspective on the impurity-induced Hall effect in
chiral superconductors.

To facilitate our discussions, we imagine depositing impu-
rities on the underlying chiral superconductors in a superlat-
tice pattern (see Fig. 1). Due to the chiral nature of the pairing,
the bound states from different impurity sites hybridize in
a peculiar fashion that depends on their relative position.
We construct a low-energy effective theory of the emergent
subgap bands on the superlattice and study the resultant Hall
response. Despite having similar appearance, the new effec-
tive Hamiltonian differs from the original BdG Hamiltonian
in a fundamental way, that the components of the new spinor
basis are no longer purely electron or hole, but rather a linear
superposition of both. This mixed particle-hole character has
profound consequences on transport properties, and we shall
demonstrate finite Hall conductance at the one-loop level.
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FIG. 1. (a) Square and (b) honeycomb impurity superlattices em-
bedded in a chiral superconductor.

We consider several representative impurity superlattice
geometries, and show that the resultant physics is model
dependent. For example, while the Hall conductance is gener-
ically nonvanishing on a honeycomb superlattice in any
underlying chiral pairing, it vanishes for square and triangular
superlattices embedded in even-parity chiral superconductors,
such as d- and g-wave states.

Impurity states and impurity superlattice. In the Nambu
spinor basis ϕ̂(r) = (cr↑, c†

r↓)T, the underlying single-band
chiral superconducting state is described by the contin-
uum Bogoliubov–de Gennes (BdG) Hamiltonian H (bulk)

BdG =∫
dr dr′ϕ̂†(r)Ĥ (bulk)

BdG (r, r′)ϕ̂(r′) + H.c., in which

Ĥ (bulk)
BdG (r, r′) =

(
δr,r′

( − ∇2
r′

2me
− μ

)
�(r, r′)

�∗(r, r′) δr,r′
( ∇2

r′
2me

+ μ
)
)

, (1)

where cr (c†
r ) stands for the electron annihilation (creation)

operators, and me and μ are the electron mass and the chemi-
cal potential, respectively. The off-diagonal term �(r, r′) =
g(|r − r′|)eilθr−r′ is the chiral pairing potential, where θr is
the azimuthal angle of r, and g(|r − r′|), assumed to be a
certain (unimportant) decaying function of |r − r′|, describes
the spatial profile of the Cooper pair wave function. Here l
denotes the order of the chiral pairing, i.e., the Cooper pair
angular momentum, which takes the values 1, 2, . . . for px +
ipy, dx2−y2 + idxy pairings, etc. Notice that we have assumed
a uniform order parameter independent of the Cooper pair
center-of-mass position, (r + r′)/2. Consideration of spatial
variations around impurities does not qualitatively alter our
conclusion.

Impurities in chiral superconductors are known to induce
bound states. Consider first a single impurity at R = 0, de-
scribed by a delta-function-like potential Uδ(r − R)τ3, where
U is the impurity strength and τ3 is the third component of
the Pauli matrices operating in the Nambu space. The bound
state wave functions take the forms ψ+(r) = [u(r), υ(r)]T =
(ur, e−ilθrυr )T and ψ−(r) = [−υ∗(r), u∗(r)]T [27]. Here the
“+” and “−” designate, respectively, the state with subgap
energy +E0 and the other with −E0, where E0 < �0 and
�0 denotes the superconducting gap. These two states are
related by particle-hole symmetry, but the detailed forms of
ur and vr are model dependent and are not constrained by
any other symmetry, except that they shall in general decay
as e−r/ξ /

√
kFr sufficiently far away from the impurity center.

Here kF is the Fermi momentum and ξ the superconducting
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FIG. 2. (a),(b) Tight-binding construction of a square impurity
superlattice immersed in a chiral p-wave superconductor. Note the
relation λ = λ� + λe + λh and η = η� + ηe + ηh. (c),(d) The cur-
rent operator on the superlattice. The “+” and “−” symbols on the
sites label the impurity bound states and arrows indicate the reference
direction of hopping or current flow.

healing length. In the following, we shall assume a sizable
impurity strength such that E0 � �0 [28,29], under which cir-
cumstance the low-energy theory associated with these bound
states are well separated from the continuum spectrum.

On an impurity lattice where the interlattice spacing
R0 is larger than ξ , the above-stated bound state wave
functions on each single site still constitute a good approx-
imation. States from neighboring impurity sites “hybridize”
via the microscopic kinetic hopping and pairing in the orig-
inal Hamiltonian Eq. (1). Written in the second quantized
form where c†

i,± (ci,±) denote the creation (annihilation) of
the respective bound states on each site, an emergent low-
energy tight-binding model on the superlattice reads H eff =∑

i, j �̂
†
i [E0δi jσ3 + ĥi j (1 − δi j )]�̂ j + H.c., with the Pauli σ

matrices operating in the space spanned by �̂i = (ci,+, ci,−)T,
and

ĥi j =
(

t++
i j t+−

i j

t−+
i j t−−

i j

)
, (2)

in which

tμν
i j =

∫
dr dr′ψ†

μ(r − Ri )ĤBdG(r, r′)ψν (r′ − R j ). (3)

It is obvious that the hopping of the bound states could arise
from both the kinetic and pairing terms in the underlying
microscopic Hamiltonian. A detailed analysis of the hop-
ping integrals can be found in the Supplemental Material
[27], which we summarize below and in Figs. 2(a) and 2(b).
The hybridization between the + (−) states satisfy t++

i j =
−t−−

i j = λi j , where λi j is a real constant determined by the
separation |R j − Ri|. On the other hand, the integral between
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the + and − states has the relation t+−
i j = (t−+

i j )∗ = ηi j , where

ηi j = |ηi j |eilθR j −Ri [30]. It thus depends on both the relative po-
sition between the two sites and the order of the chiral pairing.

Our later analyses of the current operators require distin-
guishing in Eq. (3) contributions originating from the pairing,

and the electron and hole kinetic hopping processes, i.e., λi j =
λ�

i j + λe
i j + λh

i j and ηi j = η�
i j + ηe

i j + ηh
i j . The kinetic part of

ηi j , ηe
i j + ηh

i j , deserves special attention. Written explicitly,

ηe
i j + ηh

i j =
∫

dr dr′[ − u|r−Ri|δr,r′
( − ∇2

r′/2me − μ
)
eilθr′−R j υ|r′−R j | + eilθr−Ri υ|r−Ri|δr′,r

(∇2
r′/2me + μ

)
u|r′−R j |

]
= (1 + eilπ )

∫
d r̃ d r̃′ur̃δr̃,r̃′−(Ri−R j )

(∇2
r̃′/2me + μ

)
eilθr̃′ υr̃′ , (4)

where we have performed partial integration and substitution
of variables to obtain the second line, and the two terms
in 1 + eilπ are associated with ηe

i j and ηh
i j , respectively. The

relation |ηe
i j | = |ηh

i j | is a consequence of the particle-hole
symmetry between the + and − states. For l odd, ηe

i j = −ηh
i j ;

hence the kinetic contribution vanishes if the underlying chiral
pairing has odd parity; for l even, by contrast, ηe

i j = ηh
i j . We

shall later see that the corresponding current operators have
the opposite even and odd l dependence. Finally, it is easy
to check that the relation ηi j = |ηi j |eilθR j −Ri also holds for the
individual constituents of ηi j .

As a concrete example, in a chiral p-wave superconductor,
a square impurity superlattice with up to nearest-neighbor
hopping has the following effective Hamiltonian:

Ĥ eff
k = E3kσ3 + E1kσ1 − E2kσ2, (5)

where we have set R0 = 1 for brevity, E3k = 2λ(cos kx +
cos ky) + E0, E1k = 2η sin kx, and E2k = 2η sin ky. Here, λ

denotes the nearest-neighbor hopping integrals of λi j and η the
corresponding counterpart of |ηi j |. Notice the implicit decom-
position such as η = η� + ηe + ηh (although ηe + ηh = 0 for
chiral p wave). Due to the angle dependence of the complex
off-diagonal hopping ηi j , Eq. (5) resembles the form of the
underlying chiral p wave Hamiltonian. The band topology
could be engineered by controlling parameters such as the
impurity potential and the superlattice constant [29,31]. These
hold for higher order chiral superconductors, although fur-
ther neighbor hybridizations must be considered to make the
band topology transparent. In like manner, impurity chains
immersed in odd-parity chiral states support an emergent 1D
p-wave model and may give rise to isolated Majorana zero
modes at the ends of the chains.

Current operators. The mixed particle-hole nature of each
of the spinor component in �̂ (i.e., each impurity bound state)
has a profound consequence on the particle current operators.
Foremost, the portion of the hopping integrals originating
from the underlying Cooper pairing, i.e., λ� and η�, shall
have no contribution, as in the case of clean superconductors.
The only contribution stems from the mutually “canceling”
electron hopping (λe and ηe) and hole hopping (λh and ηh).
Understandably, if the + state is purely electronlike and the −
state purely holelike, ηe = ηh = 0, and the resultant current
operators resemble those of a clean superconductor.

For the model given in (5), the current operators J++
i j

and J+−
i j defined on the superlattice bonds are sketched in

Figs. 2(c) and 2(d). The properties of the tμν
i j ’s imply the fol-

lowing general relation: J++
i j = −(J−−

i j )∗ and J+−
i j = (J−+

i j )∗.
Specific to the model in (5), the x component of the current
operator reads

Ĵeff
xk = J3xkσ3 + J1xkσ1 + J2xkσ2, (6)

where J3xk = −2(λe − λh) sin kx, J1xk = 2(ηe − ηh) cos kx,
and J2xk = 0. Note that J2x could be nonzero if further
neighbor hoppings are considered. The y component follows
similarly and can be found in the Supplemental Material [27].
The cancellation between the electron and hole contributions
is evident in these expressions. Notably, although ηe + ηh = 0
for odd-parity pairing, the corresponding kinetic contribution
to the particle current is finite and scales as ηe − ηh = 2ηe,
such as in J1xk. In the case of underlying even-parity pairing,
however, since ηe = ηh, J+−

i j ∝ ηe − ηh = 0—suggesting a
perfect cancellation between the electron and hole transport.
Hence J1x(y) and J2x(y) must both vanish in this case.

Anomalous Hall conductivity. We are now in position to
study the anomalous Hall conductance of our low-energy
theory. Within linear response theory, it is given by the an-
tisymmetric part of the Ĵx − Ĵy correlation function πxy(q, ω),

σH(ω) = i

2ω
lim
q→0

[πxy(q, ω) − πyx(q, ω)], (7)

where, at the one-loop approximation,

πxy(q = 0, iνm) = T
∑
k,iωn

Tr
[
Ĵeff

xk Ĝ(k, iωn+iνm)Ĵeff
yk Ĝ(k, iωn)

]
,

(8)

where T is the temperature, ωn = (2n + 1)πT and
νm = 2mπT are, respectively, the fermionic and bosonic
Matsubara frequencies, and Ĝ(k, iωn) = (iωn − Ĥ eff

k )−1

stands for the impurity-band Green’s function. For the square
lattice model introduced above, we arrive at the following:

σH(ω + iδ) =
∑

k

fk

Ek
[
(ω + iδ)2 − 4E2

k

] , (9)

where Ek =
√
E2

1k + E2
2k + E2

3k is the dispersion of the
impurity subgap band, and

fk =
∑
m,n,s

εmns

2
[JmxkJnyk − JmykJnxk]Esk, (10)
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TABLE I. Anomalous Hall effect in representative continuum
chiral superconductors generated by impurity subgap bands emerg-
ing from various embedding impurity configurations. In comparison,
the last row presents the prediction of the diagrammatic skew-
scattering approach, which only considers the continuum state
contribution [9,11].

Superlattice p wave d wave f wave g wave
structure (l = 1) (l = 2) (l = 3) (l = 4)

Square � × � ×
Triangular � × � ×
Honeycomb � � � �
Random (continuum) � × × ×

where εmns denotes the Levi-Civita tensor with indices
m, n, s = 1, 2, 3. Obviously, σH vanishes for any underlying
even-parity chiral pairing, as their current operators contain
only J3x(y), even when further neighbor hoppings are
included. In contrast, odd-parity pairings shall in general
see a finite Hall conductance. This distinction applies to any
superlattice configuration with no sublattice degree of free-
dom, including triangular lattices (see Table I and Ref. [27]).

There are several features worth remarking. First, the
magnitude of σH is determined by the above-defined hop-
ping integrals which describe the hybridization between the
impurity-bound states. Since these parameters overall grow
exponentially with decreasing impurity spacing, one expects
the conductivity to enhance exponentially with increasing im-
purity concentration. This contrasts with the skew-scattering
diagrammatic analysis which captures only the continuum
state contributions [9,11]. Secondly, the cutoff frequency at
which the imaginary part of σH becomes nonzero (where a
sharp peak appears) is set by the gap between the impurity
bands. By contrast, continuum state contributions cut off at
w = 2�0 [9,11]. Finally, unlike the proposals which require
particle-hole asymmetric normal state electron dispersion to
obtain finite σH [9,18], our low-energy theory has no such
restriction.

Honeycomb superlattice. The mixed particle-hole nature
of the impurity subgap bands implies that there exists no
fundamental symmetry constraints to prohibit the Hall effect
in our effective theory. In other words, the vanishing of σH

in some of the models above must be accidental. Given that
those models are characterized by single-sigma-matrix current
operators, looking for systems that exhibit more structured
current operators may be a promising route to obtain finite σH.
One possibility is to introduce sublattice degrees of freedom.
We verify this conjecture through a honeycomb lattice model
[Fig. 1(b)].

Consider up to nearest-neighbor terms, in the basis �i =
(ci,+, c′

i,+, ci,−, c′
i,−)T, where c and c′ represent the two sub-

lattices, the emergent tight-binding Hamiltonian has the form
[27],

Ĥ eff
k =

⎡
⎢⎢⎢⎣

E0 λk 0 ηk

λ∗
k E0 (−1)lη−k 0

0 (−1)lη∗
−k −E0 −λk

η∗
k 0 −λ∗

k −E0

⎤
⎥⎥⎥⎦, (11)

where λk = ∑
δ eik·R̄δ λ and ηk = ∑

δ eik·R̄δ eilθR̄δ η, and
R̄δ (δ = 1, 2, 3) designate the three shortest vectors
connecting sublattice c to c′. Interestingly, at E0 = 0, the
model resembles a low-energy theory proposed for the Moiré
superlattice in twisted bilayer graphene [32].

As we have seen, in the case of even-parity pairing, the
hopping between the + and − states on different sites does not
generate particle current. However, the intersublattice hopping
between the + (or −) states introduces two off-diagonal com-
ponents in the current operators. For example, in the present
model,

Ĵeff
xk = J1xk�1 ⊗ σ3 + J2xk�2 ⊗ σ3, (12)

in which �i (i = 1, 2, 3) are the Pauli matrices operat-
ing in the sublattice manifold, and J1xk = −3(λe − λh)

sin( 3kx
2 ) cos(

√
3ky

2 ) and J2xk = 3(λe − λh) cos( 3kx
2 ) cos(

√
3ky

2 ).
A lengthy calculation for σH(w) presented in the Supple-
mental Material [27] leads to an integral form involving
[J1xkJ2yk − J2xkJ1yk](|ηk|2 − |η−k|2)E0 in the numerator of
the integrand. The integral is generically finite, in contrast
to the square and triangular superlattice scenarios. For odd-
parity pairings, an additional contribution to the current
operators arises from the intersublattice hopping between the
+ and − states, and the Hall conductance is again finite.

Concluding remarks. Table I summarizes our main results
and makes a comparison to the conclusion obtained from
the skew-scattering diagrammatic calculations [11]. Since the
latter approach had only accounted for contributions from the
continuum states, our theory suggests that random impurities
still have the potential to induce a finite Hall response in
higher-order chiral superconducting states if the impurity-
induced subgap states are considered.

Current scanning tunneling microscopy techniques have
enabled atomically controlled defect engineering [33], paving
the way for studying the Hall effect in chiral superconduc-
tors with any desired impurity configuration. Our theory also
suggests a viable means to probe charge-neutral chiral super-
fluids in liquid helium-3 [34,35] and in trapped cold Fermi
gases [36–38]. In these systems, ordered defects could be
prepared using a periodically modulated holder potential or by
shining patterned laser beams. In the case of quantum gases,
for example, the resultant conductivity may be obtained by
measuring the response of the system to a time-dependent
trapping potential [39–42].

In summary, we have provided an alternative perspective
on the impurity-induced anomalous Hall response in chiral
superconductors. Previous studies of this kind had relied ex-
clusively on a diagrammatic approach involving extensive
vertex correction analyses, and they had only accounted for
the contribution from the quasiparticle continuum. By lay-
ing our eyes on the effect of impurity induced bound states,
we constructed an emergent low energy theory for when the
impurities are deposited in superlattice patterns. Owing to
the mixed particle-hole character of the bound states, the
resultant theory generates finite Hall conductivity at the one-
loop level of the approximation—without the need for vertex
corrections.
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