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Intrinsic mechanisms for drive-dependent Purcell decay in superconducting quantum circuits
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We develop an approach to understanding intrinsic mechanisms that cause the T1-decay rate of a multilevel
superconducting qubit to depend on the photonic population of a coupled, detuned cavity. Our method yields
simple analytic expressions for both the coherently driven or thermally excited cases, which are in good
agreement with full master equation numerics, and also facilitates direct physical intuition. It also predicts several
interesting phenomena. In particular, we find that in a wide range of settings, the cavity-qubit detuning controls
whether a nonzero photonic population increases or decreases qubit Purcell decay. Our method combines insights
from a Keldysh treatment of the system, and Lindblad perturbation theory.

DOI: 10.1103/PhysRevResearch.3.043228

I. INTRODUCTION

Circuit quantum electrodynamics (cQED) systems based
on superconducting circuits [1,2] are a leading platform for
quantum information processing [3], and for explorations of
basic quantum-optical and many-body phenomena [4,5]. The
study of quantum dissipation in these systems is also of crucial
interest (see, e.g., [6–12]). In many respects, the physics of
cQED systems parallel that of atomic cavity QED systems.
cQED systems incorporate nonlinear Josephson junction cir-
cuits that mimic artificial atoms, and linear microwave cavities
that mimic photonic cavities. A paradigmatic dissipative ef-
fect in cavity QED is Purcell decay [13], the modification of
atomic decay by a cavity. cQED systems motivate studying a
modified version of this effect: What happens to Purcell decay
when the cavity is now populated with photons (either by
coherent driving or thermal noise)? This is of crucial relevance
to understanding the experimentally-observed excess qubit
decay during dispersive measurement [14,15] as well as the
effect of background thermal radiation on qubit coherence.

Surprisingly, a full understanding of how a photonic pop-
ulation impacts Purcell decay (in a form relevant to cQED)
is currently lacking. Reference [9] analyzed a driven Jaynes-
Cumming (JC) model (i.e., a two-level qubit), finding that
populating a cavity increases the qubit T1-decay time (see
also [6]). A similar trend was found in [16], which used
a closely related Golden-Rule calculation to study a mul-
tilevel transmon qubit. However, in a more recent work in
Refs. [11,12] that extended blackbox quantization theory [17]
to describe transmon-cavity systems, an opposite-signed ef-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

fect, i.e., decreasing T1 with increasing cavity photon number,
was numerically suggested. Unfortunately, the complexity of
the method did not lend itself to simple analytic expressions
nor to an intuitive picture of the underlying physics.

In this paper, we introduce a theoretical approach to un-
derstanding Purcell decay in transmon-cavity systems in the
presence of driving that complements and extends previous
studies. Our approach combines insights from Keldysh the-
ory with Lindblad perturbation theory (see, e.g., [18,19]). It
provides compact analytic expressions that could be easily
compared against experiment, and also facilitates simple in-
tuitive explanations. It also reveals several surprising effects
not previously discussed. In particular, we show that whether
or not T1 increases or decreases with cavity drive is crucially
dependent on the sign of the cavity-qubit frequency detun-
ing (Figs. 1 and 2). We also analyze the impact of thermal
cavity photons, and show that the basic physics in this case
is strikingly different from the coherent-drive case. In the
thermal case, the unexpected interplay between a nonresonant
dissipative process and a nonresonant Hamiltonian process
yields the dominant contribution. We discuss how this process
would be completely missed if one resorted to standard sec-
ular approximations or considered a JC model instead of the
transmon-cavity model analyzed here. Our paper reveals new
understanding into the basic quantum dissipative mechanisms
of driven circuit QED systems. It also outlines an analytic
approach that could be useful in studying a host of driven-
dissipative systems.

II. TRANSMON MODEL AND THEORETICAL
FRAMEWORK

We consider a standard setup where a multilevel transmon-
style superconducting qubit is coupled to a linear microwave
resonator, with each system subject to dissipation. We first
consider the case with no coherent driving; this will be ana-
lyzed later. The total Hamiltonian is Ĥ = Ĥs + Ĥdiss, with Ĥs
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FIG. 1. Inset: Schematic of a cavity coupled to a weakly an-
harmonic qubit. Main: Qubit T1-decay rate �rel as a function of
drive-induced cavity photon number n̄c = |αc|2. Orange indicates
results for a positive qubit-cavity detuning � = ωa − ωc > 0, blue
for a negative detuning. Solid symbols are master equation numerics,
solid lines correspond to our analytic result [Eq. (20)]. One sees
a striking dependence on the sign of �. Parameters correspond to
a qubit cavity coupling g = 0.1|�|, qubit nonlinearity U = 0.1|�|,
cavity damping rate κc = 0.01|�|, and drive frequency ωD = ωc −
0.1|�|. Setting |�|/(2π ) = 1GHz, the above parameters correspond
to U/(2π ) = g/(2π ) = 100MHz and κc/(2π ) = 10MHz. All baths
are at zero temperature, and we assume that qubit decay is only due
to Purcell effects (i.e., κa = 0).

describing the isolated qubit and cavity, and Ĥdiss the dissipa-
tive environment and its coupling to the system. We will focus
on regimes where the qubit can be treated as an anharmonic
(Kerr) oscillator, hence

Ĥs = ωaâ†
0â0 + g(â†

0ĉ0 + H.c.) + ωcĉ†
0ĉ0 − U

2
â†

0â†
0â0â0. (1)

Here, â0 and ĉ0 are bosonic annihilation operators describing
(bare) qubit and cavity excitations, with ωa and ωc their res-

FIG. 2. Qubit T1-decay rate �rel as a function of cavity thermal
population n̄0

c . The parameters are g = 0.1|�|,U = 0.01|�|, κc =
0.01|�|, n̄a = 0, with the bare qubit decay rate (a) κa = 0( < κP ≡
(g2/�2)(κc − κa)) and (b) κa = 0.1κc(> κP ). The lines and points
are our analytical [Eq. (14)] and numerical results, respectively. One
sees that the sign of the temperature dependence depends both on
detuning � and on the ratio of the intrinsic qubit decay rate and the
Purcell decay rate κa/κP.

onant frequencies. The qubit-cavity coupling is denoted by g,
while U > 0 is the Kerr nonlinearity of the qubit (obtained by
expanding the full Josephson junction cosine potential [20]).
We will be interested throughout in the typical regime where
the cavity-qubit detuning � = ωa − ωc may be comparable
in magnitude to U , but where U � ωa, ωc. We also focus
on modest drives and temperatures; together, this implies that
additional nonlinear terms play no significant role [21].

We will further focus on the standard dispersive regime
of cQED, where |g/�| is small, but not so small that lead-
ing (g/�)2 corrections can be ignored. We will work in
the so-called “blackbox” basis [17], and thus first diagonal-
ize the quadratic part of Ĥs: Ĥ0 = ωcĉ†

0ĉ0 + g(â†
0ĉ0 + H.c.) +

ωaâ†
0â0 = ω̃cĉ†ĉ + ω̃aâ†â. Here, dressed cavity and qubit

“polariton” operators are given by ĉ � [1 − g2/(2�2)]ĉ0 −
(g/�)â0 and â � [1 − g2/(2�2)]â0 + (g/�)ĉ0, respectively.
The corresponding renormalized frequencies are ω̃a �
ωa + g2/� and ω̃c � ωc − g2/�. The Kerr nonlinear-
ity takes the form Ĥint = −(U/2)â†

0â†
0â0â0 � Ĥ slf

int + Ĥ crs
int +

Ĥnc
int + V̂int. Here, the first two terms are usual self and cross-

Kerr nonlinearities

Ĥ slf
int = χaaâ†â†ââ, Ĥ crs

int = χcaĉ†ĉâ†â (2)

with χaa = −(U/2)[1 − g2/(2�2)] and χca = −2g2U/�2. In
contrast

Ĥnc
int = χ̃ (â†â†âĉ + ĉ†â†ââ) (3)

(with χ̃ = gU/�) describes a nonlinear process in which a
cavity photon is converted into a qubit excitation (or vice
versa) with an amplitude that depends on qubit excitation
number. While this process is nonresonant, it will play a cru-
cial role in mediating photon-number dependent dissipative
effects. Finally, the last interaction term V̂int contains nonres-
onant terms of order (g/�)3 or higher, and will play no role
in what follows; we thus set it to zero. We will often refer
to the cavity/qubit polariton modes ĉ and â as simply the
“cavity/qubit modes”, while ĉ0 and â0 will be called the “bare
modes”.

We now turn to the modeling of dissipation. As is standard,
we take the bare qubit and cavity to each be coupled linearly to
independent, Markovian bosonic reservoirs [1,2] (though cer-
tain extensions to non-Markovian cavity baths are discussed
below). Using a Keldysh approach, one can integrate out
these reservoirs and derive a formally exact dissipative action
describing the system. As shown in the Appendix A, in the
small dissipation limit of interest, this action is equivalent to
the following Lindblad master equation:

∂t ρ̂ = −i[Ĥs, ρ̂]

+
∑

μ=a,c

κμ

[(
1 + n̄0

μ

)
D

[
d̂0

μ

]
ρ̂ + n̄0

μD
[
d̂0†

μ

]
ρ̂
] ≡ Lρ̂, (4)

where d̂0
c = ĉ0, d̂0

a = â0, and κμ (n̄0
μ) are the decay rates (ther-

mal occupancies) of the bare cavity and qubit environments.
We also take D[L̂]ρ = L̂ρL̂† − 1

2 {L̂†L̂, ρ̂} as the usual Lind-
blad dissipator. In what follows, we will focus attention on the
experimentally relevant regime where the cavity damping rate
is much larger than the intrinsic qubit decay rate, κa � κc. As
our focus is on describing Purcell decay, we do not include an
intrinsic qubit dephasing dissipator [22].
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Note that Eq. (4) describes a dissipative coupling between
polariton modes. To see this explicitly, we transform it to the
blackbox basis, where it takes the form

∂t ρ̂ = Lρ̂ = Lindρ̂ + Lcdρ̂. (5)

The Liouvillian Lind describes a model where each polariton
is coupled to independent effective reservoirs; letting d̂c = ĉ
and d̂a = â, we have

Lindρ̂ = −i[Ĥs, ρ̂]

+
∑

μ=a,c

κ̃μ[(1 + ñμ)D[d̂μ]ρ̂ + ñμD[d̂†
μ]ρ̂]. (6)

The damping rates and thermal occupancies corresponding to
the effective qubit-polariton bath are given by

κ̃a = κa + g2

�2
(κc − κa) ≡ κa + κP, (7)

ña = 1

κ̃a

[
κan̄0

a + g2

�2

(
κcn̄0

c − κan̄0
a

)]
. (8)

The cavity-polariton bath parameters κ̃c and ñc are given by
analogous expressions (one simply exchanges c and a). Note
that the qubit-polariton decay rate in Eq. (7) is simply the
sum of the intrinsic qubit decay rate κa and standard (zero
temperature) Purcell decay rate κP.

Equation (6) also has a term Lcd describing correlated
dissipation that provides a dissipative coupling of qubit and
cavity polaritons:

Lcdρ̂ = − 1
2 (γ̃↑ + γ̃↓){â†ĉ + ĉ†â, ρ̂}

+γ̃↓(âρ̂ĉ† + ĉρ̂â†) + γ̃↑(â†ρ̂ĉ + ĉ†ρ̂â), (9)

where

γ̃↓ = (g/�)
[
κc

(
1 + n̄0

c

) − κa
(
1 + n̄0

a

)]
(10)

γ̃↑ = (g/�)
[
κcn̄0

c − κan̄0
a

]
. (11)

The first line in Eq. (9) describes an effective non-Hermitian
beam-splitter coupling between polaritons, whereas the last
line describes correlated noise.

We stress again that the correlated polariton dissipation
described by Eq. (9) follows from our exact treatment.
Nonetheless, it is common at this point to simply omit Lcd.
This corresponds to a standard secular approximation: as
Lcd describes nonresonant processes (detuning ∼�), and as
|�| � γ̃↑, γ̃↑, Lcd is expected to have a marginal effect.
We will not make this approximation in what follows [23].
Surprisingly, we show that in the case of a thermal cavity pop-
ulation, the correlated dissipation described by Lcd provides
the dominant temperature-dependent correction to the qubit
Purcell decay rate.

III. QUBIT DECAY RATE IN THE PRESENCE
OF TEMPERATURE

We can now examine how qubit dissipation is modified by
populating the cavity. The general picture is that nonresonant
coupling processes (both Hamiltonian and dissipative) will
alter the Purcell contribution to the qubit T1 population decay

rate �rel. Our approach will be to treat these processes system-
atically using Lindblad perturbation theory (see Appendix B
for a short review). To this end, we write our full Liouvillian as
L = L0 + L1, where L0 describes all processes which do not
couple qubit and cavity polaritons. In contrast, L1 describes
both nonlinear and dissipative polariton-polariton coupling
terms:

L1ρ̂ = −i
[
εcrsĤ

crs
int + εnsĤ

nc
int, ρ̂

] + εncLcdρ̂, (12)

L1 will be treated perturbatively, as it scales as the small
parameter g/�. To make the physical origin of different
contributions clear in what follows, we have introduced book-
keeping constants εcrs = εns = εcd = 1. We stress that the
qubit self-Kerr interaction Ĥ slf

int in Eq. (2) is included in L0.
The first step is to identify the qubit T1-decay mode to

zeroth order in perturbation theory. This can be done unam-
biguously, as L0 has a set of eigenmodes, which only describe
qubit population decay (in the Fock basis). We identify the
eigenvalue of the slowest of these eigenmodes as the qubit
T1-decay rate �rel; it dominates the relaxation of an initial
qubit excited state. We find [24–26] (see Appendix C)

�
(0)
rel = κ̃a = κa + g2

�2
(κc − κa). (13)

Note that this leading-order decay rate is independent of both
the temperature n̄0

μ and the self-Kerr nonlinearity χaa, as has
been noted in other contexts (see, e.g., [27]).

We next calculate the leading-order correction to �rel aris-
ing from L1. This amounts to perturbatively calculating the
eigenvalue shift of the relevant Liouvilian eigenmode, which
emerges at second order. Focusing on the experimentally rele-
vant regime of weak intrinsic qubit loss (|χaa| ∼ U � κ̃a) and
low temperature (n̄0

c, n̄0
a � 1), a straightforward but tedious

calculation yields (see Appendix C for derivation),

�rel � κ̃a + g2

�2

εcdεncU

� − U

[
8(κc − κa)ña − 4

(
κcn̄0

c − κan̄0
a

)]
+ g2

�2

ε2
ncU

2

(� − U )2
(κ̃a + κ̃c)(4ña − 2ñc), (14)

where all neglected terms are O[(g/�)4] or higher. This is
the first main result of this paper. The second and third terms
here describe temperature-dependent contributions to Purcell
decay. We find a surprising dependence both on bath tempera-
tures, and on the sign of the qubit cavity detuning �. The third
term in Eq. (14) ∝ ε2

nc is solely due to the nonlinear conversion
process in Eq. (3), and can be linked to Fermi’s Golden rule
rates involving the qubit n = 2 state (see Appendix C). More
interesting is the second term (∝ εcdεnc), which dominates
the third term in the usual limit where � � U . This pro-
cess results from a subtle interplay between the Hamiltonian
nonlinear conversion interaction, and the dissipative polariton
coupling described by Lcd. Note that both correction terms
vanish at zero temperature.

The surprising interplay of coherent and dissipative con-
version processes in determining qubit relaxation can be
understood intuitively. Consider a model of two linear clas-
sical oscillators whose amplitudes βa, βc obey:

i∂t

(
βc

βa

)
=

(
ω̃c − iκ̃c/2 r − iγ

r − iγ ω̃a − iκ̃a/2

)(
βc

βa

)
. (15)
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This describes two modes with resonant frequencies ω̃c, ω̃a,
decay rates κ̃c, κ̃a that are coupled both coherently (rate r)
and dissipatively (rate γ ), which roughly mimics the nonlinear
conversion and correlated dissipation, respectively. For weak
couplings, the eigenmodes of the above dynamical matrix
remain localized. A simple diagonalization shows that the
decay rate for the a-like mode is modified by the couplings
as κ̃a → κ̃a + 2γ r/(ω̃a − ω̃c) + O(r2). We see that the dom-
inant shift in the lifetime involves the product of dissipative
and coherent couplings, in direct analogy to Eq. (14). Of
course, in our system nonlinearity modifies the form of the
correction. Still, the basic mechanism involving coherent and
dissipative couplings working in consort is the same (as is the
striking dependence on the sign of the detuning, reflecting an
avoided crossing).

Another striking prediction of Eq. (14) is that the sign of
the dominant temperature-dependent term is sensitive to the
relative importance of Purcell decay to intrinsic qubit decay.
For κP � κa, Eq. (8) tells us that ña ≈ ñc ≈ n̄0

c , whereas for
κP � κa we have ña � n̄0

c . It follows that in these two limiting
cases, Eq. (14) can be approximated as

�rel � κ̃a ± 4g2

�2

U

� − U
κcn̄0

c, (16)

where + (−) corresponds to κP � κa (κP � κa). We see that
the impact of a cavity thermal population is opposite in these
two regimes.

The results of Eq. (14) are numerically confirmed in Fig. 2,
where we compare against a direct master equation simulation
of Eq. (5) [28,29] using experimentally-relevant parameters
[3]. The numerical T1-decay rate corresponds to the time-
dependent decay of an initial state where an excitation is
added to the qubit (see Appendix E for details). Our analytic,
perturbative expressions quantitatively agree the numerical
results at low temperatures and small-to-modest nonlinearity.
The qualitative agreement at larger nonlinearity U = 0.1|�|
is also reasonable (see Fig. 3), though here, higher order
contributions become important, especially if κa < κP. (See
Appendix C for a detailed discussion on this point.)

IV. QUBIT DECAY RATE IN THE PRESENCE OF
COHERENT DRIVE

Consider now a coherent linear driving of the cavity, as
described by the additional system Hamiltonian term ĤD =
fce−iωDt ĉ0 + H.c. We move to a rotating frame at the drive
frequency ωD, which effectively shifts ωμ → ωμ − ωD. We
further make a standard displacement transformation of both
modes: L′ = D̂†[αc, αa]LD̂[αc, αa], where D̂[αc, αa] is a dis-
placement operator that displaces the bare cavity (qubit)
operator ĉ0(â0) by the time-independent amplitude αc(αa). By
choosing displacements to cancel linear terms, the displaced
Lindbladian L′ has the same dissipative terms as L in Eq. (4),
but a modified system Hamiltonian Ĥ ′

s = Ĥ0 + Ĥ ′
int = Ĥ0 +

D̂†[αc, αa]ĤintD̂[αc, αa]. For weak drives with small induced
amplitudes |αa|2 � 1, it is sufficient to only keep terms in Ĥ ′

int
that are at most O[α2

a]:

Ĥ ′
int � Ĥint − U (αaâ†

0â†
0â0 + H.c.) + Ĥquad (17)

FIG. 3. (a) Thermal cavity drive dependence on the qubit T1-
decay rate �rel for a larger nonlinearity U = 0.1|�|. Lines (points)
correspond to analytical (numerical) results. Higher-order correc-
tions are more important here, but the analytic results still give
good qualitative agreement. (b) The ratio of the numerically (snum)
to analytically (sth) evaluated slope parameter s = d�rel/dn̄0

c (eval-
uated at zero temperature). For both the panels, we set g =
0.1|�|, κc = 0.01|�| and � < 0. For large U and κP > κa, higher-
order corrections become important (as discussed in Appendix C),
but our analytical expression still provides a reasonable qualitative
agreement.

The second term here describes an effective nonlinear single
photon drive, whereas

Ĥquad = −2U |αa|2â†
0â0 − U

2

(
α2

a â†
0â†

0 + H.c.
)

(18)

describes a mean-field frequency shift and weak squeezing
drive. As these terms are quadratic, they can be accounted for
exactly by defining our blackbox polaritons to be the eigen-
modes of Ĥ0 + Ĥquad. The squeezing terms will play no role in
what follows, so we drop them. The remaining frequency shift
terms then lead to a modification of the qubit-cavity detuning
�: � → � − 2U |αa|2 ≡ �′[αa].

The modification of the qubit polariton by the drive directly
leads to a modification of κ̃a, the intrinsic (linear-theory) qubit
polariton damping rate:

κ̃ ′
a[αa] = κa + g2

(�′[αa])2
(κc − κa)

� κa + κP + g2

�2

4U

�
(κc − κa)|αa|2, (19)

where in the last line we have expanded to leading order in
|αa|2. We see that the simple mean-field shift of the cavity
frequency directly yields a change in the linear-theory po-
lariton decay rate, one that is odd in �. This term simply
reflects the modified qubit-cavity hybridization resulting from
the drive-induced cavity frequency shift. The fact that driving
a nonlinear system gives rise to a notion of drive dependent
polaritons has been discussed in many different contexts (see,
e.g., [30]).

To calculate the full modification of the qubit T1 decay, we
must also include the perturbative contribution of the O[αa]
nonlinear drive term in Eq. (17). Again using Lindblad pertur-
bation theory, as derived in Appendix D, we finally obtain (for
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zero temperature, and to order O[|αa|2]):

�rel � κ̃ ′
a[αa] − 2U 2

(ω̃a − ωD − U )2
κ̃a|αa|2. (20)

This is the second main result of this paper. Note this result
is contingent on a perturbative treatment of Eq. (17) being
valid, which requires drive detuning |ω̃a − ωD − U | � κ̃a.
For the typical experimental scenario where the bare cavity
decay rate dominates that of the qubit (i.e., κa � κc), the
drive-dependence of the qubit T1-decay rate is dominated by
that of κ̃ ′

a[αa]. The sign of the drive dependence thus exhibits
a striking dependence on the sign of �. Our results are in
excellent agreement with full master equation numerics, see
Fig. 1. The fact that driving the cavity can either increase or
decrease qubit T1 depending on � was not noted in previous
work. Note that this result is easily extended to the case where
the intrinsic cavity bath has a different density of states at
ω = ωc and ω = ωa, see Eq. (A34) in Appendix A.

V. COMPARISON TO JAYNES-CUMMINGS MODEL

In this section, we compare our main results for the trans-
mon model against the more commonly used JC model. As we
have shown in the previous sections, in the transmon model,
the presence of the qubit n = 2 Fock state played a crucial role
in determining the dissipative properties [see the discussions
below Eq. (14)]. Therefore, we expect the JC model, which
treats the qubit as a two-level system, to give very different
results from our transmon model results. Here, we show that
the dissipative properties of the JC model is indeed very
different from the transmon model for both the thermal and
coherent drive cases.

The equation of motion of the JC model is given by

∂t ρ̂ = −i[ĤJC, ρ̂] + κc
[(

1 + n̄0
c

)
D[ĉ0]ρ̂ + n̄0

cD[ĉ†
0]ρ̂

]
(21)

where ĤJC = Ĥ JC
0 + V̂JC + ĤD with

Ĥ JC
0 = ωaσ̂z + ωcĉ†

0ĉ0, (22)

V̂JC = g(σ̂+ĉ0 + σ̂−ĉ†
0). (23)

Here, σ̂z and σ̂± = (σ̂x ± iσ̂y)/2 are Pauli matrices and have
assumed a vanishing bare qubit dissipation rate κa = 0.

We first consider the case where the thermal bare cavity oc-
cupancy is present but has no coherent drive. Treating the Rabi
coupling term L1• = −i[V̂JC, •] as the perturbation within the
Lindblad perturbation theory, the qubit T1-decay rate at low
temperature n̄0

c � 1 in the dispersive limit g/|�| � 1 can be
computed within the second-order perturbation as,

�JC
rel ≈ g2

�2
κc

(
1 + 2n̄0

c

)
. (24)

In stark contrast to the rich behavior seen in our Figs. 2 and
3(a), we find that the JC model always gives an increase
of the qubit T1-decay rate. This result can be understood by
regarding the dissipative cavity as a bath for the qubit that
has a Lorentzian spectrum Sc(ω) = (κc/(2π ))/[(ω − ωc)2 +
κ2

c /4]. The second-order process of the qubit-cavity coupling
g gives rise to an effective dissipation rate to the qubit given
by γ = 2πg2Sc(ω = ωa) ≈ g2κc/�

2 [31]. Since the cavity at

a finite temperature gives both the absorption and emission,
the qubit T1-decay rate can be estimated as �JC

rel ≈ γ (1 + 2n̄0
c ),

which coincides with Eq. (24).
Although our scheme can be applied to the coherently

driven JC model, we do not provide it here since the coherent
drive case is analyzed in detail in Ref. [9]. It is found that
the drive always decreases the qubit T1-decay rate. This is,
again, in stark contrast to our result [Eqs. (19) and (20)] for the
weakly-nonlinear oscillator that can give positive or negative
contribution dependent on the sign of the detuning �. This is
not surprising, as the mean-field shift to the frequency, which
was responsible for the sign change in the transmon model, is
absent in the JC model.

VI. CONCLUSION

We have presented a systematic formalism for analyzing
dissipation in driven cQED systems, deriving simple expres-
sions that describe the modification of qubit Purcell decay
due to thermal or coherent photons. Our results highlight
the importance of the sign of the cavity-qubit detuning, and
the interplay between nonresonant coherent and dissipative
processes.

We note that, in most experiments, it is likely that there
are other extrinsic effects (e.g., drive-induced heating) that
can also affect the photon-number dependence of qubit T1-
decay rate, causing them to vary experiment to experiment.
Our contribution here is to set the “fundamental limit” to
such photon-number dependent dissipation; the discovered
intrinsic mechanisms are unavoidable, even if the extrinsic
dissipation channels are terminated. More generally, our paper
provides a set of tools that can also be applied to other rele-
vant problems, e.g., dissipation in multicavity systems with
transmon-mediated interactions as outlined in Appendix F.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
BES Quantum Information Science Program under Award No.
DE-SC0020152.

APPENDIX A: KELDYSH FORMALISM FOR
MULTI-LEVEL SUPERCONDUCING QUBIT

1. Derivation of master equation (4) via the Keldysh formalism

We derive here the master equation Eq. (4) by using the
Keldysh formalism [32], which treats the effects of the dissi-
pative baths exactly. Our starting point is a Hamiltonian Ĥ ,
which describes the qubit and cavity coupled to two inde-
pendent Markovian baths. By integrating out these baths, we
obtain a Keldysh action that is identical to the one correspond-
ing to the master equation Eq. (4) and thus the two theories are
equivalent.

As in the main text, the Hamiltonian, which describes the
qubit, cavity, and their environments takes the form

Ĥ = Ĥs + Ĥdiss. (A1)

Here, Ĥs is the system Hamiltonian [Eq. (1) in the main text]
and

Ĥdiss = Ĥa,A + Ĥc,C + ĤA + ĤC (A2)
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describes the environment and its coupling to the system, with
A and C labeling the independent baths coupled to the qubit
and cavity respectively. The coupling between the environ-
ments and the system of interest take the standard form

Ĥa,A = −i
√

κa(â†ξ̂A − âξ̂
†
A ), (A3)

Ĥc,C = −i
√

κc(ĉ†ξ̂C − ĉξ̂ †
C ). (A4)

We assume that the baths are a collection of independent
harmonic oscillators in a Gaussian state, which is captured
by the terms ĤA and ĤC . The operators ξ̂A and ξ̂C are linear
combination of bath annihilation operators.

Due to the Gaussian nature of the baths and the linear
coupling, all the information on how they affect the system
is captured by the relevant two-point correlation functions
(which can be frequency-dependent). As with any theory
where the path integral plays the central role, we must first
identify the action. The Keldysh action corresponding to the
Hamiltonian of Eq. (A1) can be written as [32]

S = Ss + Sa,A + Sc,C + SA + SC . (A5)

The first term describes the coherent dynamics between the
qubit and the cavity, while the last two terms SA and Sc

describe the dynamics of a set of independent harmonic
oscillators. The terms Sa,A and Sc,C describe the system-
environment coupling. By defining the complex vectors

a†(t ) = (a∗
cl(t ) a∗

q(t )), c†(t ) = (c∗
cl(t ) c∗

q(t )), (A6)

ξ†
A(t ) = (ξ ∗

A,cl(t ) ξ ∗
A,q(t )), ξ†

C (t ) = (ξ ∗
C,cl(t ) ξ ∗

C,q(t )),

(A7)

where cl and q label the classical and quantum fields, respec-
tively, we can write the system-environment coupling terms in
the action as

Sa,A = i
√

κa

∫ ∞

−∞
dt (a†(t )σxξA(t ) − ξ†

A(t )σxa(t )) (A8)

Sc,C = i
√

κc

∫ ∞

−∞
dt (c†(t )σxξC (t ) − ξ†

C (t )σxc(t )) (A9)

where σx is a Pauli matrix. Similarly, the system term Ss

can be written as a function of complex vectors a(t ) and
c(t ), with its form reflecting the system Hamiltonian Ĥs.
The environment terms SA, SC are quadratic functions of ξA
and ξC .

We now want a description of our system, which only
involves the qubit and cavity modes. When working directly
with the density matrix, this means tracing over the bath
degrees of freedom. In the context of the path integral, the
analogous step is to integrate over all bath fields. To do so, we
first make a linear transformation to each bath field

ξA(t ) → ξA(t ) + i
√

κa

∫ ∞

−∞
dt ′GA(t − t ′)σxa(t ′) (A10)

ξC (t ) → ξC (t ) + i
√

κc

∫ ∞

−∞
dt ′GC (t − t ′)σxc(t ′) (A11)

where GA(t ) and GC (t ) are the matrix Green’s function of the
baths

GA(t ) =
( −i〈{ξ̂A(t ), ξ̂ †

A (0)}〉 −i�(t )〈[ξ̂A(t ), ξ̂ †
A (0)]〉

i�(−t )〈[ξ̂A(0), ξ̂ †
A (t )]〉 0

)
(A12)

GC (t ) =
( −i〈{ξ̂C (t ), ξ̂ †

C (0)}〉 −i�(t )〈[ξ̂C (t ), ξ̂ †
C (0)]〉

i�(−t )〈[ξ̂C (0), ξ̂ †
C (t )]〉 0

)
(A13)

with �(t ) the Heaviside step function, {·, ·} the anticommu-
tator and [·, ·] the commutator respectively. Here, the bath
operators are in the Heisenberg picture generated by their free
evolution, and the expectation values are taken with respect
a stationary-state of each bath, which is what allowed us to
assume that GA and GC only depend on the difference between
t and t ′. This transformation does not change the functional
measure of the baths fields and, more importantly, leads to
an action in which the baths are uncoupled from the system
of interest. The oscillator degrees of freedom can then be
integrated out exactly, leaving us with an action that describes
only the qubit and cavity. Due to the linear transformations
Eqs. (A10) and (A11) and the coupling term Eqs. (A8) and
(A9), however, the system action acquires an additional term
that is nonlocal in time and take the form

−
∫ ∞

−∞
dt

∫ ∞

−∞
dt ′(a†(t )�a(t − t ′)a(t ) + c†(t )�c(t − t ′)c(t ))

(A14)

where the qubit and cavity self energy are directly related to
the bath’s Green’s functions:

�a(t ) = κaσxGA(t )σx ≡
(

0 �A
a (t )

�R
a (t ) �K

a (t )

)
(A15)

�c(t ) = κcσxGC (t )σx ≡
(

0 �A
c (t )

�R
c (t ) �K

c (t )

)
(A16)

where �A
a/c(t ), �R

a/c(t ) and �K
a/c(t ) are the advanced, retarded

and Keldysh component of the self-energy respectively. The
first two capture the response properties of the baths. For the
linear, Gaussian baths under consideration, these quantities
are independent of the state of the baths. Only the Keldysh
component of the self-energy carries this information.

To obtain a Markovian description of the dynamics, we
assume that the bath density of states of the qubit and cav-
ity are flat. Within this approximation, both ξ̂A(t ) and ξ̂C (t )
become the operator equivalent of Gaussian white noise.
In particular, the commutator between the bath operators at
different times is simply a delta function [ξ̂A(t ), ξ̂A(t ′)] =
[ξ̂C (t ), ξ̂C (t ′)] = δ(t − t ′). Physically, since the the commuta-
tor [ξ̂A/C (t ), ξ̂ †

A/C (t ′)] is directly linked to the linear response
properties of the bath via the Kubo formula, this implies that
the bath auto-correlation time is vanishingly small. We further
assume that the baths are in thermal equilibrium. Since dissi-
pation is weak, we would only be probing frequencies near the
resonance frequency of the qubit or cavity. In the spirit of the
Markov approximation, we may then set 〈ξ̂ †

A/C (t )ξ̂A/C (t ′)〉 =
δ(t − t ′)n̄0

a/c, where n̄0
a/c is the thermal occupation number

evaluated at the qubit/cavity frequency. We stress that this
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is a standard approximation, and is necessary if we want
Markovian dynamics.

Using both of these results, the self-energies can then be
written as

�a(t ) = −iκaδ(t )

(
0 −�(−t )

�(t ) (2n̄0
a + 1)

)
(A17)

�c(t ) − iκcδ(t )

(
0 −�(−t )

�(t ) (2n̄0
c + 1)

)
. (A18)

Using the identity ∫ t

−∞
dt ′δ(t − t ′) = 1

2
(A19)

we thus arrive at the final system action

S =
∫ ∞

−∞
dt

(
a∗

q

(
i∂t − ωa + i

κa

2
)
)

acl + a∗
cl

(
i∂t − ωa − i

κa

2

)
aq + iκa

(
2n̄0

a + 1
)
a∗

qaq

+ U

2
(a∗

qacl + a∗
claq )(a∗

qaq + a∗
clacl ) + g(a∗

qccl + c∗
qccl + a∗

clcq + c∗
clcq )

+ c∗
q

(
i∂t − ωc + i

κc

2

)
ccl + c∗

cl

(
i∂t − ωc − i

κc

2

)
cq + iκc

(
2n̄0

c + 1
)
c∗

qcc

)
(A20)

where, for notational compactness, we have suppressed the
temporal arguments of the fields.

We now wish to compare this action to the one we would
obtain if we started with the master equation Eq. (4) in the
main text, which we rewrite here for convenience

∂t ρ̂ = − i[Ĥs, ρ̂] + κa
(
n̄0

a + 1
)
D[â0]ρ̂ + κan̄0

aD[â†
0]ρ̂

+ κc
(
n̄0

c + 1
)
D[ĉ0]ρ̂ + κcn̄0

cD[ĉ†
0]ρ̂. (A21)

One can readily obtain a Keldysh action from a master
equation using a standard procedure (see Ref. [33] for a
pedagogical review). In short, assuming the operators are
normal-ordered, creation or annihilation operators acting on
the left or right of the density matrix are associated with a
field on forward or backward branch of the contour. After
rotating to the classical and quantum basis, the contribution
to the action from the dissipation is

Sa,diss =
∫ ∞

−∞
dta†(t )

(
0 −i κa

2
i κa

2 iκa(2n̄0
a + 1)

)
a(t ) (A22)

Sc,diss =
∫ ∞

−∞
dtc†(t )

(
0 −i κc

2
i κc

2 iκc(2n̄0
c + 1)

)
c(t ). (A23)

In addition to the contribution to the action from the coherent
Hamiltonian, the total Keldysh action is in fact Eq. (A5).
The upshot is then that the two theories are equivalent,
as promised. The only approximations we have made are
standard ones, namely that the cavity and qubit baths are
independent and Markovian.

We briefly note that the same equation (4) can be repro-
duced from an alternative approach, namely, by constructing
Heisenberg-Langevin equations for the system operators â
and ĉ [31] by writing down the equation of motion of those
operators. By moving to the Heisenberg picture, one can then
derive, in a standard manner, the starting master equation
Eq. (4) [34]. We note, however, that the advantage of the above
Keldysh approach is that we can readily extend our theory
to systems, which do not have Markovian baths. This will be
briefly addressed in the next subsection.

2. Beyond the Markovian approximation — Coherent drive case

Here, we will extend the result presented in the last section
of the main text by relaxing the assumption that the bath
density of states of the cavity is completely flat. This, in
turn, implies that the self-energies are no longer frequency
independent. For clarity of presentation, we will assume that
the qubit is not explicitly coupled to a thermal bath: the only
loss it experiences is through its interaction with the cavity.
We note that we can easily extend this result to the case where
the intrinsic qubit decay rate is large.

Without the Markovian assumption, it is convenient to
express the action in frequency space. The quadratic part of
the action then takes the form

∫ ∞

−∞

dω

2π
(a∗

cl c∗
cl a∗

q c∗
q )G−1

0 [ω]

⎛
⎜⎝

acl

ccl

aq

cq

⎞
⎟⎠ (A24)

where the free Green’s function is given by

G−1
0 [ω] =

(
0

(
G−1

0 [ω]
)A(

G−1
0 [ω]

)R (
G−1

0 [ω]
)K

)
(A25)

with(
G−1

0 [ω]
)R = (

G−1
0 [ω]

)A
)† =

(
ω − ωA −g

−g ω − ωc − �R
c [ω]

)

(A26)

(
G−1

0 [ω]
)K =

(
0 0
0 −�K

c [ω]

)
. (A27)

Here, we have suppressed the frequency dependence of the
fields for notational simplicity. The retarded and Keldysh part
of the self-energy is

�R
c [ω] = − i

2
κc[ω] (A28)

�K
c [ω] = −iκc[ω](2n̄c[ω] + 1). (A29)

Without a flat density of states, the self-energies are
frequency-dependent and, consequently, we obtain a theory
that is nonlocal in time.
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We can however still make progress by assuming that κc[ω]
is smooth and a slow-varying function of frequency. In this
case, it is best to diagonalize the quadratic coherent problem

by moving to a basis polaritons. After this transformation, the
(inverse) Green’s function in this basis take the form

(
G−1

0 [ω]
)R =

(
ω − ω̃a − �R

c [ω] g2

�2 −�R
c [ω] g

�

−�R
c [ω] g

�
ω − ω̃c − �R

c [ω]
(
1 − g2

�2

)) (A30)

(
G−1

0 [ω]
)K = −�K

c [ω]

( g2

�2
g
�

g
�

1 − g2

�2

)
(A31)

where, as in the main text, we have ignored terms of order g3/�3. The off-diagonal elements of these matrices correspond to
dissipation induced coupling between the polaritons (because they are proportional to the self energies).

In the penultimate section of the main text, we considered how the presence of coherent photons modified the T1-decay rate
of the qubit. We found that the largest contribution to the change in the decay rate does not come from these off-diagonal terms:
we can thus safely ignore them. Within this approximation, the quadratic part of the action is thus diagonal in the polariton basis.
We may then apply the Markovian approximation to each polariton separately: since dissipation is weak and �R

c [ω] and �K
c [ω]

are slowly varying functions of ω, the largest contribution to the frequency integral will be near ω̃a or ω̃c depending on which
polariton we are concerned with. Under this approximation, the Green’s function now take the form

(
G−1

0 [ω]
)R =

(
ω − ω̃a + i κc[ω̃a]

2
g2

�2 0

0 ω − ω̃c + i κc[ω̃c]
2

(
1 − g2

�2

)) (A32)

(
G−1

0 [ω]
)K =

(
iκc[ω̃a](2n̄c[ω̃a]) g2

�2 0

0 iκc[ω̃c](2n̄c[ω̃c] + 1)
(
1 − g2

�2

)). (A33)

Once this replacement has been made, the analysis of the
coherently driven circuit is nearly identical. The upshot is
then that the second main result, Eq. (20) still holds with the
replacement

κ̃a → g2

�2
κc[ω̃a]. (A34)

We briefly note that, for the thermal case, the non-
Markovian bath extension does not seem straightforward, as
the off-diagonal term corresponding to the correlated dissipa-
tion plays crucial role there. This issue is left as our future
work.

APPENDIX B: LINDBLAD PERTURBATION THEORY

As its use is not widespread, we briefly outline here the
basics of the Lindblad perturbation theory used in the main
text, following Refs. [18,19]. Within this framework, the
original Lindbladian L is split into nonperturbative (L0) and
perturbative (L1) parts, L = L0 + εL1; ε = 1 is introduced
as a book-keeping constant. The eigenvalues λα and right
eigenvectors r̂α of L are defined via

Lr̂α = λα r̂α. (B1)

As is done in standard Rayleigh-Schrödinger perturbation the-
ory [35], we write these quantities as a formal power series in
ε: λα = ∑∞

j=0 ε jλ
( j)
α and r̂α = ∑∞

j=0 ε j r̂ ( j)
α . Comparing order

by order, we obtain the recursive relation

(
L0 − λ(0)

α

)
r̂ ( j)
α = −L1r̂ ( j−1)

α +
j∑

k=1

λ(k)
α r̂ ( j−k)

α . (B2)

From this relation at j = 1,(
L0 − λ(0)

α

)
r̂ (1)
α = −L1r̂ (0)

α + λ(1)
α r̂ (0)

α , (B3)

we get the first-order correction to the eigenvalue,

λ(1)
α = 〈

l̂ (0)
α ,L1r̂ (0)

α

〉
. (B4)

Here, we have introduced the left eigenstate of the nonper-
turbative part L0 defined as L†

0 l̂ (0)
α = λ(0)∗

α l̂ (0)
α where L†

0 is the
adjoint of the Liouvillian superoperator [18]. We have also
used 〈l̂ (0)

α , r̂ (0)
β 〉 = δα,β with 〈Â, B̂〉 = tr[Â†B̂].

The first-order correction to the right eigenstate is given by(
L0 − λ(0)

α

)
r̂ (1)
α = −

∑
β �=α

r̂ (0)
β

〈
l̂ (0)
β ,L1r̂ (0)

α

〉
. (B5)

Projection to the state β �= α gives(
λ

(0)
β − λ(0)

α

)〈
l̂ (0)
β , r̂ (1)

α

〉 = −〈
l̂ (0)
β ,L1r̂ (0)

α

〉
. (B6)

Assuming that the spectrum of the unperturbed Lindbladian is
non-degenerate, we have

〈
l̂ (0)
β , r̂ (1)

α

〉 = −
〈
l̂ (0)
β ,L1r̂ (0)

α

〉
λ

(0)
β − λ

(0)
α

. (β �= α) (B7)

Assuming further that {r̂ (0)
α } gives a complete set, which is

equivalent to assuming that the Lindbladian L(0) is diago-
nalizable (which is always true in our problem), we get the
first-order correction to the eigenstates,

r̂ (1)
α = −

∑
β �=α

r̂ (0)
β

〈
l̂ (0)
β ,L1r̂ (0)

α

〉
λ

(0)
β − λ

(0)
α

. (B8)

Without loss of generality, we have chosen to set 〈l̂ (0)
α , r̂ (1)

α 〉
= 0.

Then, using Eq. (B2) for j = 2,(
L0 − λ(0)

α

)
r̂ (2)
α = −L1r̂ (1)

α + λ(1)
α r̂ (1)

α + λ(2)
α r̂ (0)

α (B9)
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the second-order correction to the eigenvalue is given by

λ(2)
α = 〈

l̂ (0)
α ,L1r̂ (1)

α

〉 = −
∑
β �=α

〈
l̂ (0)
α ,L1r̂ (0)

β

〉〈
l̂ (0)
β ,L1r̂ (0)

α

〉
λ

(0)
β − λ

(0)
α

(B10)
which is our central relation we will use in the following. We
note in passing the similarity to usual second-order perturba-
tion theory with the left and right eigenstates replacing the
usual orthogonal eigenvectors of a Hermitian Hamiltonian.

APPENDIX C: THERMAL OCCUPATION

We show here how Lindblad perturbation theory leads to
Eq. (14) in the main text for the qubit T1 decay in the presence
of thermal excitations; this perturbative expression is valid for
small thermal occupancy in the dispersive limit g/|�| � 1.
We will give more quantitative constraints on the validity of
our perturbative expansion in what follows.

As done in the main text, we regard the decoupled system

L0ρ̂ ≡ −i
[
Ĥ (0)

s , ρ̂
] + κ̃c((1 + ñc)D[ĉ]ρ̂ + ñcD[ĉ†]ρ̂)

+ κ̃a((1 + ña)D[â]ρ̂ + ñaD[â†]ρ̂) (C1)

as the nonperturbative part, where

Ĥ (0)
s = Ĥ0 + Ĥ slf

int = ω̃cĉ†ĉ + ω̃aâ†â + χaaâ†â†ââ. (C2)

We treat the remaining part,

L1ρ̂ ≡ [L − L0]ρ̂ = −i
[
εcrsĤ

crs
int + εnsĤ

nc
int, ρ̂

] + εcdLcdρ̂,

(C3)

as a perturbation that is at most O(g/�).

1. Characterization of the non-perturbative part L0

As is clear from Eq. (B10), the first step in our approach
is to characterize the spectral properties of the unperturbed
Linbladian L0 (which includes the qubit self-Kerr interaction).
Since the cavity and qubit photons are completely decoupled
in L0 = Lc

0 ⊗ 1̂ + 1̂ ⊗ La
0, the unperturbed eigenstates have a

direct product structure: r̂ (0)
αc,αa

= r̂c(0)
αc

⊗ r̂a(0)
αa

, l̂ (0)
αc,αa

= l̂ c(0)
αc

⊗
l̂ a(0)
αa

. Here, the cavity-photon part of the right eigenstates are
right eigenstates of a thermal harmonic oscillator Lindbladian,

Lc
0r̂c(0)

αc
= −i

[
ω̃cĉ†ĉ, r̂c(0)

αc

]
+ κ̃c

(
(1 + ñc)D[ĉ]r̂c(0)

αc
+ ñcD[ĉ†]r̂c(0)

αc

)
= λc(0)

αc
r̂c(0)
αc

, (C4)

and similarly, the right eigenvectors of the qubit satisfy

La
0r̂a(0)

αa
= −i

[
ω̃aâ†â + χaaâ†â†ââ, r̂a(0)

αa

]
+ κ̃a

(
(1 + ña)D[â]r̂a(0)

a + ñaD[â†]r̂a(0)
αa

)
= λa(0)

αa
r̂a(0)
αa

. (C5)

The eigenvalue of L0 corresponding to r̂ (0)
αc,αa

is given by
λ(0)

αc,αa
= λc(0)

αc
+ λa(0)

αa
.

It is instructive to point out that Lc
0 and La

0 commutes
with the superoperator Mc• = [ĉ†ĉ, •] and Ma• = [â†â, •],
respectively. One can readily verify that the spectrum of Ma

and Mc consist of the integers ma, mc ∈ Z, and each of

these eigenvalues are infinitely degenerate: any outer product
of Fock states constitutes an eigenvector. The corresponding
eigenvalue is simply the photon number in the ket state minus
the photon number in the bra state. Using the familiar result
from linear algebra that any two commuting operators share
a set of eigenvectors, we conclude that the cavity (qubit) part
of the Linbladian L0 takes on a block-diagonal form Lc(a)

0 =
⊗∞

m=−∞Lc(a)
0m [27], where Lc(a)

0m only acts on the eigensubspace
of Mc(a) characterized by the integer eigenvalue m. In other
words, m is a good quantum number we may use to label
our eigenstates. Although this block-diagonal decomposition
greatly simplifies our problem, it is worth pointing out that
each block is still infinite in size.

Our task now reduces to diagonalizing each superoperator
Lμ

0m. We may write down the eigenvalue problem as

Lμ
0mr̂μ(0)

k,m = λ
μ(0)
k,m r̂μ(0)

k,m . (C6)

with the constraint that r̂μ(0)
k,m must be an eigenvector of Mμ

with eigenvalue m. It must then necessarily take the form

r̂μ(0)
k,m =

{∑∞
n=0 rμ(0)

k,m,n|(n + m)μ〉〈nμ| m � 0∑∞
n=0 rμ(0)

k,m,n|nμ〉〈(n − m)μ| m < 0
(C7)

where |nc(a)〉 is the Fock state for the cavity (qubit). A similar
relation holds for the left eigenstates,

Lμ†
0ml̂μ(0)

k,m = λ
μ(0)∗
k,m l̂μ(0)

k,m (C8)

with

l̂μ(0)
k,m =

{∑∞
n=0 lμ(0)

k,m,n|(n + m)μ〉〈nμ| m � 0∑∞
n=0 lμ(0)

k,m,n|nμ〉〈(n − m)μ| m < 0
(C9)

We may now, in a very precise way, identity the unperturbed
T1 modes we discussed in the main text: they correspond to
eigenmodes labeled by m = 0. The right and left eigenvectors
of these modes only involve Fock-state projectors, and hence
only describe the decay of Fock-state populations. In contrast,
we refer to states labeled by m �= 0 as T2 modes: these nec-
essarily involve decay of off-diagonal elements of the density
matrix in the Fock basis. We also point out that the (unique)
unperturbed steady-state is necessarily a T1 mode, i.e., there
are no steady-state Fock-state coherences.

We now look into the specific form of the eigenstates. We
first consider the m = 0 sector of each respective species, i.e.,
the steady states and the T1-decay modes for the cavity and
qubit. Substituting Eq. (C7) at m = 0 into Eqs. (C4) and (C5)
(and similarly for the left eigenstates), one finds that the two
equations can be collectively described as (μ = c, a),

λ
μ(0)
k,m=0rμ(0)

k,m=0,n = κ̃μ

[
(1 + ñμ)(n + 1)rμ(0)

k,m=0,n+1

−(n + 2nñμ+ñμ)rμ(0)
k,m=0,n + nñμrμ(0)

k,m=0,n−1

]
,

(C10)
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or

Mrμ(0)
k,m=0 = λ

μ(0)
k,m=0rμ(0)

k,m=0, rμ(0)
k,m=0 =

⎛
⎜⎜⎜⎜⎜⎝

rμ(0)
k,m=0,n=0

rμ(0)
k,m=0,n=1

rμ(0)
k,m=0,n=2

rμ(0)
k,m=0,n=3

...

⎞
⎟⎟⎟⎟⎟⎠, (C11)

(
lμ(0)

k,m=0

)T
M = λ

μ(0)
k,m=0

(
lμ(0)

k,m=0

)T
, lμ(0)

k,m=0 =

⎛
⎜⎜⎜⎜⎜⎝

lμ(0)
k,m=0,n=0

lμ(0)
k,m=0,n=1

lμ(0)
k,m=0,n=2

lμ(0)
k,m=0,n=3

...

⎞
⎟⎟⎟⎟⎟⎠, (C12)

with

M = κ̃μ

⎛
⎜⎜⎜⎜⎝

−ñμ 1 + ñμ 0 0 0 · · ·
ñμ −1 − 3ñμ 2(1 + ñμ) 0 0 · · ·
0 2ñμ −(2 + 5ñμ) 3(1 + ñμ) 0 · · ·
0 0 3ñμ −(3 + 7ñμ) 4(1 + ñμ) · · ·
...

...
...

...
. . .

...

⎞
⎟⎟⎟⎟⎠. (C13)

Note that by definition, the m = 0 modes consist of a lin-
ear combination of Fock state projectors. Since the coherent
Hamiltonian is diagonal in the Fock basis, it follows that it
does not affect these modes at all.

This eigenvalue problem is known to be exactly solvable
[26,36], where the eigenvalues are given by

λ
μ(0)
k,m=0 = −kκ̃μ. (k = 0, 1, 2, ...) (C14)

k = 0 corresponds to the steady state solution, while k � 1
are the T1-decay modes. Remarkably, the eigenvalues are in-
dependent of thermal occupancy ñμ.

While there are many T1-decay modes, we are especially
interested in the slowest mode that describes qubit population
decay (k = 1 for qubit) without cavity decay (k = 0 for cav-
ity). This eigenvectors of this mode have the form

r̂ (0)
rel ≡ r̂ (0)

αc=(k=0,m=0),αa=(k=1,m=0)

= r̂c(0)
k=0,m=0 ⊗ r̂a(0)

k=1,m=0 ≡ ρ̂c(0)
ss ⊗ r̂a(0)

rel , (C15)

l̂ (0)
rel ≡ l̂ (0)

αc=(k=0,m=0),αa=(k=1,m=0)

= l̂ c(0)
k=0,m=0 ⊗ l̂ a(0)

k=1,m=0 ≡ l̂ c(0)
ss ⊗ l̂ a(0)

rel , (C16)

where l̂ c(0)
ss = 1̂ is the left eigenstate of the steady state. We

will refer to this mode as the “qubit T1-decay mode” and its
eigenvalue

�
(0)
rel = −λ

a(0)
k=1,m=0 = κ̃a (C17)

as the “qubit T1-decay rate” [Eq. (13) in the main text]. The
other T1 modes (labelled by k � 2) will be referred to as
“higher-order qubit T1 modes”.

The explicit form of the qubit T1-decay mode [Eq. (C15)]
is listed below for the latter use. For the cavity part, the steady
state ρ̂c(0)

ss ≡ ∑∞
n=0 pc(0)

ss,n |nc〉〈nc| is given by

pc(0)
ss,n = 1

1 + ñc

( ñc

1 + ñc

)n
, (C18)

with the corresponding left eigenstate l̂ c(0)
ss = 1̂, and the qubit

part is given by

ra(0)
rel,n ≡ ra(0)

k=1,m=0,n = −n − ña

1 + ña

( ña

1 + ña

)n−1
(C19)

and

la(0)
rel,n ≡ la(0)

k=1,m=0,n = −n + ña

(1 + ña)2
. (C20)

In contrast to the T1-decay modes, the T2-decay modes
are affected by the coherent dynamics. Therefore, the Kerr
nonlinearity χaa ∼ −U/2 of the qubit does play a role, and
describing the eigenstates and eigenvalues of these modes
requires some care.

Let us start with the cavity part where such nonlinearities
are absent. These can be computed exactly using the formal-
ism of third quantization [36,37], where the T2-decay rates are
given by [24,26],

λ
c(0)
k,m = −imω̃c − κ̃c

2
(|m| + 2k). (C21)

The corresponding right and left eigenstate for k = 0 and m =
±1 (which will be used in later sections) has the form [26]

r̂c(0)
↑ ≡ r̂c(0)

k=0,m=1

=
∞∑

n=1

( ñc

1 + ñc

)n−1√
n|nc〉〈(n − 1)c|, (C22)

r̂c(0)
↓ ≡ r̂c(0)

k=0,m=−1

=
∞∑

n=1

( ñc

1 + ñc

)n−1√
n|(n − 1)c〉〈nc|, (C23)

and

l̂ c(0)
↑ ≡ l̂ c(0)

k=0,m=1 =
∞∑

n=1

√
n

1 + ñc
|nc〉〈(n − 1)c|, (C24)
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l̂ c(0)
↓ ≡ l̂ c(0)

k,m=−1 =
∞∑

n=1

√
n

1 + ñc
|(n − 1)c〉〈nc|, (C25)

respectively.
We now turn to the qubit part. As stressed earlier, the

nonlinearity plays a role for the T2-decay modes and rates,
but surprisingly, this problem is known to be exactly solvable
[24,25]. We will however not make use of the known exact
solution and instead take advantage of the fact that most of
the experiments are done in the regime U � κ̃a; this leads
to a massive simplification. In this regime, the dissipation
can be treated perturbatively: the right and left eigenvectors
are simply outer products of Fock states [27]. Note crucially
that this is only true of the T2-decay modes. The T1-decay
modes are completely insensitive to the coherent dynamics
and thus dissipation completely determines the structure of
the eigenvectors, as seen above. Keeping this in mind, after
a straightforward calculation, we arrive at the perturbative
eigenvalue of the T2 m = ±1 modes [27]

λ
a(0)
(k+m,m) ≡ λ

a(0)
k,m=±1 = −im(ω̃a − Uk)

− κ̃a

2
[ña(2k + 3) + (1 + ña)(2k + 1)], (C26)

where we have used the relation χaa � −U/2.

2. Derivation of Eq. (14)

We are now in the position to derive the photon dependence
to the qubit T1-decay rate �rel [Eq. (14) in the main text] in
the full problem characterized by the Lindladian L [Eq. (5)].
This is defined, within the second-order perturbation, as the
sum of the contribution from the unperturbed �

(0)
rel [defined in

Eq. (C17)] and the perturbative correction to this mode:

�rel = �
(0)
rel + �

(1)
rel + �

(2)
rel , (C27)

where �
(1)
rel = −λ

(1)
rel = −〈l̂ (0)

rel ,L1r̂ (0)
rel 〉 and

�
(2)
rel = −λ

(2)
rel =

∑
β �=rel

〈
l̂ (0)
rel ,L1r̂ (0)

β

〉〈
l̂ (0)
β ,L1r̂ (0)

rel

〉
λ

(0)
β − λ

(0)
rel

. (C28)

The perturbative part L1 = εcrsLcrs + εncLnc + εcdLcd

[Eq. (C3)] is composed of three parts (where εcrn = εnc =
εcd = 1 are book-keeping constants): cross-Kerr nonlinearity

Lcrs• = −i[Ĥcrs, •] = −iχca[ĉ†ĉâ†â, •], (C29)

nonlinear conversion

Lnc• = −i[Ĥnc, •] = −iχ̃[â†â†âĉ + ĉ†â†ââ, •], (C30)

and correlated dissipation

Lcdρ̂ = − 1
2 (γ̃↑ + γ̃↓){â†ĉ + ĉ†â, ρ̂}

+ γ̃↓(âρ̂ĉ† + ĉρ̂â†) + γ̃↑(â†ρ̂ĉ + ĉ†ρ̂â). (C31)

Let us start by pointing out that the cross-Kerr nonlinearity
gives no correction to the qubit T1-decay rate �rel to the order
of our interest. This is due to the relation

Lcrsr̂
(0)
rel = L†

crs l̂
(0)
rel = 0, (C32)

which follows from the property that the cross-Kerr non-
linearity does not change the number of excitation of each
respective species. Therefore, in what follows, we only
consider the correction from the nonlinear conversion Lnc

[Eq. (C30)] and correlated dissipation Lcd [Eq. (C31)].
Both of these perturbations Lnc,Lcd involve changes in

the number of cavity/qubit excitations, and thus necessarily
causes transitions between different eigensubspaces of Mc

and Ma. More prosaically, they couple T1 modes to T2 modes
and vice versa. From this property, we can immediately con-
clude that the first-order correction is absent,

�
(1)
rel = −〈

l̂ (0)
rel ,L1r̂ (0)

rel

〉 = 0, (C33)

because l̂ (0)
rel and L1r̂ (0)

rel are in different eigensubspaces.

Therefore, the leading contribution is from the second-order correction, which is composed of three terms,

�
(2)
rel =

∑
β �=rel

[
ε2

nc

〈
l̂ (0)
rel ,Lncr̂ (0)

β

〉〈
l̂ (0)
β ,Lncr̂ (0)

rel

〉
λ

(0)
β − λ

(0)
rel

+ ε2
cd

〈
l̂ (0)
rel ,Lcd r̂ (0)

β

〉〈
l̂ (0)
β ,Lcd r̂ (0)

rel

〉
λ

(0)
β − λ

(0)
rel

+ εncεcd

[〈
l̂ (0)
rel ,Lncr̂ (0)

β

〉〈
l̂ (0)
β ,Lcd r̂ (0)

rel

〉
λ

(0)
β − λ

(0)
rel

+
〈
l̂ (0)
rel ,Lcd r̂ (0)

β

〉〈
l̂ (0)
β ,Lncr̂ (0)

rel

〉
λ

(0)
β − λ

(0)
rel

]]

≡ ε2
nc�

nc−nc(2)
rel + ε2

cd�
cd−cd(2)
rel + εncεcd�

nc−cd(2)
rel . (C34)

The second term �
cd−cd(2)
rel can be safely neglected in the regime of our interest κc, κa � U, |�| since they would only give

contributions ∝ κ2
μ.

We first consider the first term ∝ ε2
nc, that arises from the second-order process involving nonlinear conversion

Ĥnc
int . This is composed of two processes Ĥnc

int = Ĥnc
c→a + Ĥnc

a→c; Ĥnc
c→a = χcaâ†â†âĉ that converts the cavity excitation

to the qubit excitation and Ĥnc
a→c = χcaĉ†â†ââ is its inverse process. When these two processes act on the qubit T1-

decay mode r̂ (0)
rel , the resulting states Ĥnc

c→ar̂ (0)
rel (and r̂ (0)

rel Hnc
c→a), Ĥnc

a→cr̂ (0)
rel (and ˆ̂r (0)

rel Hnc
a→c) will overlap with the T2-decay

modes,

r̂ (0)
↓c,(na+1,na ) ≡ r̂c(0)

↓ ⊗ r̂a(0)
(na+1,na ) and r̂ (0)

↑c,(na−1,na ) ≡ r̂c(0)
↑ ⊗ r̂a(0)

(na−1,na ), (C35)
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respectively. These have the corresponding eigenvalues

λ
(0)
↓c,(na+1,na ) = −

[ κ̃c

2
+ κ̃a

2
[ña(2na + 3) + (1 + ña)(2na + 1)]

]
+ i[ω̃c − (ω̃a − Una)], (C36)

λ
(0)
↑c,(na,na+1) = −

[ κ̃c

2
+ κ̃a

2
[ña(2na + 3) + (1 + ña)(2na + 1)]

]
− i[ω̃c − (ω̃a − Una)], (C37)

As a result, �
nc−nc(2)
rel is composed of two parts (where we introduce a short-hand notation |nc, na〉 ≡ |nc〉 ⊗ |na〉 ),

�
nc−nc(2)
rel = −

∞∑
nc,na=0

pc(0)
ss,nc

ra(0)
rel,na

×
[

2Re

[
1

κ̃a + λ
(0)
↓c,(na+1,na )

]
tr
[
l̂ (0)†
rel Ĥns

a→cr̂ (0)
↓c,(na+1,na ) − l̂ (0)†

rel r̂ (0)
↓c,(na+1,na )Ĥ

ns
a→c

]
tr
[
l̂ (0)†
↓c,(na+1,na )Ĥ

ns
c→a|nc, na〉〈nc, na|

]

+2Re

[
1

κ̃a + λ
(0)
↑c,(na−1,na )

]
tr
[
l̂ (0)†
rel Ĥns

c→ar̂ (0)
↑c,(na−1,na ) − l̂ (0)†

rel r̂ (0)
↑c,(na−1,na )Ĥ

ns
c→a

]
tr
[
l̂ (0)†
↑c,(na−1,na )Ĥ

ns
a→c|nc, na〉〈nc, na|

]]
,

= −2χ̃2
∞∑

nc,na=0

pc(0)
ss,nc

ra(0)
rel,na

[
Re

[
1

κ̃a + λ
(0)
↓c,(na+1,na )

]
naC

c,ss↓
nc

Ca,rel↑
na

+ Re

[
1

κ̃a + λ
(0)
↑c,(na−1,na )

]
(na − 1)Cc,ss↑

nc
Ca,rel↓

na

]
,

(C38)

where

Cc,ss↓
nc

= tr
[
l̂ c(0)†
ss ĉ†r̂c(0)

↓ − l̂ c(0)†
ss r̂c(0)

↓ ĉ†]tr[l̂ c(0)†
↓ ĉ|nc〉〈nc|] = nc

1 + ñc

∞∑
n′

c=1

[( ñc

1 + ñc

)n′
c−1 n′

c

1 + ñc

]
(C39)

Cc,ss↑
nc

= tr
[
l̂ c(0)†
ss ĉr̂ (0)

↑c
− l̂ c(0)†

ss r̂c(0)
↑ ĉ

]
tr[l̂ c(0)†

↑ ĉ†|nc〉〈nc|] = 1 + nc

1 + ñc

∞∑
n′

c=0

[( ñc

1 + ñc

)n′
c 1 + n′

c

1 + ñc

]
(C40)

Ca,rel↓
na

= tr
[
l̂ a(0)†
rel â†r̂a(0)

(na−1,na ) − l̂ a(0)†
rel r̂a(0)

(na−1,na )â
†
]
tr
[
l̂ a(0)†
(na−1,na )â|na〉〈na|

] = tr
[
l̂ a(0)
rel D[â](|na〉〈na|)

]
(C41)

Ca,rel↑
na

= tr
[
l̂ a(0)†
rel âr̂a(0)

(na+1,na ) − l̂ a(0)†
rel r̂a(0)

(na+1,na )â
]
tr
[
l̂ a(0)†
(na+1,na )â

†|na〉〈na|
] = tr

[
l̂ a(0)
rel D[â†](|na〉〈na|)

]
. (C42)

At the low temperature regime n̄0
c , n̄0

a � 1, it is sufficient to sum up the first several Fock states,

�
nc−nc(2)
rel ≈ −χ̃2 κ̃a + κ̃c

(� − U )2

[
pc(0)

ss,nc=1ra(0)
rel,na=1C

c,ss↓
nc=1Ca,rel↑

na=1 + pc(0)
ss,nc=0ra(0)

rel,na=2C
c,ss↑
nc=0Ca,rel↓

na=2

]

≈ −g2U 2

�2

κ̃a + κ̃c

(� − U )2
(2ñc − 4ña) (C43)

giving the third term of Eq. (14) in the main text.

Equation (C43) tells us that, for the contribution solely
from nonlinear conversion, increasing the qubit thermal pop-
ulation ña increases the qubit T1-decay rate. In contrast,
increasing cavity thermal population ñc decreases this rate.
Note that the former can be important even when the bare
qubit population is absent (n̄0

a = 0, n̄0
c > 0) in the regime

κa � κP, as the qubit population can be comparable to the
cavity population ña � ñc, see Eq. (8) in the main text. This in-
triguing property can be understood by using Fermi’s Golden
rule: There is an effective incoherent pumping or decay pro-
cess between the qubit n = 1 and n = 2 Fock state mediated
by the cavity. (Note crucially that the excitations between n =
0 and n = 1 qubit Fock state is absent because the nonlinear
conversion can only take place when at least one qubit photon
present.) To see this, it is instructive to rewrite Eq. (C43) as

�
nc−nc(2)
rel ≈ −〈

l̂ a(0)
rel ,Lnc

eff r̂
a(0)
rel

〉
(C44)

with

Lnc
eff = κnc

eff (ñcD[â†
n�1] + D[ân�2]), (C45)

κnc
eff = χ̃2 κ̃a + κ̃c

(� − U )2
, (C46)

where we have introduced annihilation/creation operators
ân�2 and â†

n�1 that only acts on higher-number Fock states,
i.e.,

ân�2|n〉 = √
n|n − 1〉, â†

n�1|n〉 = √
n + 1|n + 1〉

(C47)

but ân�2|n〉 = 0(n � 1), â†
n�1|n〉 = 0(n = 0), reflecting the

absence of the excitations between n = 0 and n = 1 states
from the nonlinear conversion process.

The fact that �
rel(2)
rel can be expressed as Eqs. (C44) and

(C45) shows that �
nc−nc(2)
rel can be interpreted as a first-order
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correction from the effective dissipator Lnc
eff [cf. Eq. (B4)].

The effective dissipation rate κnc
eff [Eq. (C46)] can be under-

stood as the Fermi’s Golden rule rate of the transition from
the (nc, na) = (1, 1) state to (nc, na) = (0, 2) state (and its
inverse), where it is given as the product of the transition
rate χ̃2 and the density of states. The first term of Lnc

eff that
describes the effective incoherent qubit pumping process from
qubit n = 1 to n = 2 state is proportional to ñc because the
nonlinear conversion that excites the qubit can only activate in
the presence of the cavity photon population. This incoherent
pumping process to the higher qubit states contributes as the
decrease of the qubit T1-decay rate, which follows from the
relation 〈l̂ a(0)

rel ,D[â†
n�1]r̂a(0)

rel 〉 ≈ 2. Note that the fact that this
involves the n = 2 qubit Fock state is essential in obtaining

the negative contribution to �rel, since the the transition be-
tween n = 0 and n = 1 would affect the T1-decay rate in the
opposite way, following from 〈l̂ a(0)

rel ,D[â†]r̂a(0)
rel 〉 ≈ −1 at low

temperature.
On the other hand, its inverse process from the qubit n = 2

to n = 1 state contribute as the increase of the qubit T1-decay
rate. Since the n = 2 state can only be populated when the
qubit is populated (ña > 0), this term is proportional to ña,
which follows from the relation 〈l̂ a(0)

rel ,D[ân�2]r̂a(0)
rel 〉 ≈ −4ña.

We can similarly compute the third term �
nc−cd(2)
rel of

Eq. (C34), which is the “cross term” contribution of the non-
linear conversion and correlated dissipation. As in the first
term �

nc−nc(2)
rel , the intermediate states are given by Eq. (C35).

After a lengthy but straightforward computation, we arrive at

�
nc−cd(2)
rel =

∞∑
nc,na=0

pc(0)
ss,nc

ra(0)
rel,na

×
[

2γ̃↓χ̃ Im

[
1

κ̃a + λ
(0)
↓c,(na,na−1)

]
(na − 1)Cc,ss↓

nc
Ca,rel↓

na
+ 2γ̃↓χ̃ Im

[
1

κ̃a + λ
(0)
↑c,(na−1,na )

]
(na − 1)Cc,ss↑

nc
Cc,rel↓

na

+2γ̃↑χ̃Im

[
1

κ̃a + λ
(0)
↑c,(na,na+1)

]
naC

c,ss↑
nc

Ca,rel↑
na

+ 2γ̃↑χ̃Im

[
1

κ̃a + λ
(0)
↓c,(na+1,na )

]
naC

c,ss↓
nc

Ca,rel↑
na

]
. (C48)

A notable difference from Eq. (C38) is that the imaginary part of the “propagator” Gβ = 1/(−κ̃a − λ
(0)
β ) (where β labels

the intermediate state) enters the expression, while the real part of Gβ shows up in Eq. (C38). The physical meaning of the
latter is the density of states of the system, while the former is related to that by the Kramers-Kronig relation. This difference
reflects the property that this term originates from the combination of the coherent and dissipative perturbation. Comparing the
relation ImGβ ∼ 1/(� − U ) and ReGβ ∼ κ̃c,a/(� − U )2, one finds that this gives rise to one factor of � − U larger compared
to �

nc−nc(2)
rel and the peculiar sign dependence to the sign of � − U . Indeed, at low temperature n0

c , n0
a � 1, we find

�
nc−cd(2)
rel ≈ 2γ̃↓χ̃

−1

� − U
pc(0)

ss,nc=0ra(0)
rel,na=2C

c,ss↑
nc=0Cc,rel↓

na=2 + 2γ̃↑χ̃
−1

� − U
pc(0)

ss,nc=0ra(0)
rel,na=1C

c,ss↑
nc=0Ca,rel↑

na=1

≈ 2γ̃↓χ̃
−1

� − U

〈
l̂ a(0)
rel D[ân�2]r̂a(0)

rel

〉 + 2γ̃↑χ̃
−1

� − U

〈
l̂ a(0)
rel D[â†

n�1]r̂a(0)
rel

〉
≈ 2(κc − κa)

g2U

�2

−1

� − U
(−4ña) + 2

(
κcn̄0

c − κan̄0
a

)g2U

�2

−1

� − U
· 2

= g2

�2

U

� − U

[
8(κc − κa)ña − 4

(
κcn̄0

c − κan̄0
a

)]
, (C49)

giving the second term of Eq. (14). Note crucially that,
again, the transition between (nc, na) = (1, 1) Fock state to
(nc, na) = (0, 2) state and its inverse is playing the dominant
role to this term as well, as one can see from the second line
of Eq. (C49).

This completes the derivation of Eq. (14).

3. Limitation of Eq. (14)

So far, we have analytically derived the second-order
corrections to the qubit T1-decay rate �rel in terms of the
nonlinear conversion and correlated dissipation L1. As seen in
Figs. 2 and 3 in the main text, the obtained formula [Eq. (14)
in the main text] gives an excellent agreement with our nu-
merical simulation (which we provide details in Appendix E)
in most regimes. However, we see a slight deviation when

the nonlinearity is relatively large U = 0.1|�| and is in the
regime where the qubit decay κ̃a is dominated by Purcell
decay contribution κa � κP. Notably, the formula recovers its
predictive power in the opposite regime κa > κP, even with
large nonlinearity U = 0.1|�|, see Fig. 3.

We argue below that this deviation is due to the missing
higher-order correction in terms of L1, that can become im-
portant when κa � κP. We show that there exists correction to
�rel of O((g2U 2/�4)κcñc) from the higher-order perturbation
only in the regime κa � κP, which is comparable to �

nc−nc(2)
rel

[the third term of Eq. (14) in the main text]. This is due to the
appearance of “resonant” processes that involves higher order
qubit T1-decay modes as its intermediate state. These results
are in agreement with what is seen in the numerics. We stress,
however, that the qualitative features and the order of magni-
tude of the correction are well captured already in Eq. (14),
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since the most dominant correction of O((g2U/�3)κμñμ)
from the second term of Eq. (14) is already appropriately
included in our second-order perturbation theory.

The next-order correction would be from the fourth-order
perturbation in terms of L1. From the recursion relation (B2),
we have

�
(4)
rel = −〈

l̂ (0)
rel ,L1r̂ (3)

rel

〉 = −〈
l̂ (0)
rel ,L1(L0 + κ̃a)−1L1(L0 + κ̃a)−1L1(L0 + κ̃a)−1L1r̂ (0)

rel

〉
= −

∑
μ=crs,nc,cd

∑
β,γ ,δ �=rel

〈
l̂ (0)
rel ,L

μ
1 r̂ (0)

β

〉 1

λ
(0)
β + κ̃a

〈
l̂β,Lμ

1 r̂ (0)
γ

〉 1

λ
(0)
γ + κ̃a

〈
l̂ (0)
γ ,Lμ

1 r̂ (0)
δ

〉 1

λ
(0)
δ + κ̃a

〈
l̂ (0)
δ ,Lμ

1 r̂ (0)
rel

〉
(C50)

where we have introduced a compact notation for the cross-Kerr nonlinearity Lμ=crs
1 = Lcrs, nonlinear conversion Lμ=nc

1 =
Lnc, and correlated dissipation Lμ=cd

1 = Lcd. As in Rayleigh-Schrödinger perturbation theory for quantum mechanics, this can
be understood as a result of the summation over all possible processes involving four steps of virtual excitations from the
unperturbed initial state.

Let us consider in particular the process where two nonlinear conversion (Lnc) and two correlated dissipation (Lcd) are
involved, which evolves the qubit T1-decay mode as follows:

r̂ (0)
rel

Lnc−→ r̂δ = r̂c(0)
↓ ⊗ r̂a(0)

(na+1,na )
Lcd−→ r̂γ = ρ̂c(0)

ss ⊗ r̂a(0)
k=2,m=0

Lnc−→ r̂β = r̂c(0)
↓ ⊗ r̂a(0)

(na+1,na )
Lcd−→ r̂ (0)

rel . (C51)

Here, na only takes na � 1 because the nonlinear conversion only activates when qubit excitation is present. This is a process
where the qubit T1-decay mode is excited to a T2 mode by the nonlinear conversion Lnc, then converted to a higher order qubit
T1-decay mode by the correlated dissipation Lcd, and then ultimately transferring back to the qubit T1-decay mode by the further
perturbation from Lnc and Lcd. The contribution from this process can be estimated as

�
(4)
rel ∼ χ̃2γ̃ 2

↑ pc(0)
ss,nc=1ra(0)

rel,na=1Re

[
1

λ
(0)
↓c,(na=2,na=1) + κ̃a

1

λ
a(0)
k=2,m=0 + κ̃a

1

λ
(0)
↓c,(na=2,na=1) + κ̃a

]

∼ χ̃2γ̃ 2
↑ ñc

1

(� − U )2

1

κ̃a
� g4

�4

U 2

(� − U )2

(κc − κa)2

κ̃a
ñc (C52)

at low temperature. Here, it is proportional to χ̃2γ̃ 2
↑ because

two nonlinear conversion and correlated dissipation are in-
volved, and have used Eqs. (C14) and (C36) to estimate the
contribution from the propagators of the intermediate states.

Due to the fact that this is a contribution from the fourth-
order correction, �

(4)
rel is proportional to g4/�4. This, at a

glance, seems to always give only subleading-order correction
to �rel compared to the corrections given in Eq. (14) in the
main text that are ∝ g2/�2. However, note the appearance of
the qubit decay rate κ̃a in the denominator in its expression,
which is due to the property that this process involves a
(higher order) qubit T1-decay mode as its intermediate state.
Because of this “resonant” structure, in the regime κa � κP =
(g2/�2)(κc − κa), we can further estimate the correction as
(recall that κ̃a = κa + κP � κP in this regime)

�
(4)
rel ∼ g4

�4

U 2

(� − U )2

κ2
c

g2

�2 (κc − κa)
ñc

∼ g2

�2

U 2

(� − U )2
κcñc, (C53)

which is comparable to the third term in Eq. (14) in the main
text. Note how one of the g2/�2 factor in the numerator is
canceled out with that in the denominator to yield this large
magnitude. The obtained order of magnitude matches with
the magnitude of the deviation between Eq. (14) and the
numerics. This is also consistent with the observation made in
Fig. 2 in the main text that Eq. (14) matches with the numerics

at very small U � |�|, where the second term of Eq. (14)
dominates over �

(4)
rel .

On the other hand, when κa � κP, κ̃a in the denominator
of Eq. (C52) does not get as small and the cancellization of
g2/�2 seen above does not occur. As a result, �

(4)
rel ∝ g4/�4

only gives subleading correction compared to the terms ob-
tained in Eq. (14) in the main text. This is consistent with
the results obtained in Fig. 3, where an excellent agreement
is still obtained even with a relatively large nonlinearity U (=
0.1|�|).

APPENDIX D: BARE CAVITY COHERENT DRIVE

This section deals with the bare cavity coherent drive ĤD =
fce−iωDt ĉ0 + H.c. and will derive Eq. (20) in the main text. As
sketched in the main text, we first move to the rotating frame
that eliminates the time dependence from the Hamiltonian and
further make a displacement transformation that eliminates
linear terms ∝ ĉ0, â0 from the Hamiltonian. The resulting
equation of motion at weak drive regime |αa|2 � 1 and zero
temperature n̄0

c = n̄0
a = 0 is given by,

∂t ρ̂ = −i[Ĥ ′
s, ρ̂] + κaD[â0]ρ̂ + κcD[ĉ0]ρ̂ ≡ L′ρ̂, (D1)

with

Ĥ ′
s � Ĥ ′

0 + Ĥ ′
int, (D2)

where

Ĥ ′
0 = Ĥ0 + Ĥquad
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� (ωa − ωD − 2U |αa|2)â†
0â0 + g(â†

0ĉ0 + h.c.)

+ (ωc − ωD)ĉ†
0ĉ0, (D3)

is a modified quadratic Hamiltonian from the energy shift that
arises due to the drive (where the squeezing terms ∼â0â0

and â†
0â†

0 are omitted as they play no role to the order of our
interest), and

Ĥ ′
int = Ĥint + V̂ [αa], V̂ [αa] = −U (αaâ†

0â†
0â0 + H.c.).

(D4)

The displacement fields αc, αa satisfy the relation,(
ωc − ωD − iκc/2 g

g ωa − ωD − iκa/2

)(
αc

αa

)
= −

(
fc

0

)
.

In what follows, we diagonalize the modified quadratic
Hamiltonian as Ĥ ′

0 = (ω̃′
a − ωD)â′†â′ + (ω̃′

c − ωD)ĉ′†ĉ′
by introducing the modified polariton operators ĉ′ �
[1 − g2/(2�′2)]ĉ0 − (g/�′)â0 and â′ � [1 − g2/(2�′2)]â0 +
(g/�′)ĉ0, where ω̃a � ωa + g2/�′ and ω̃c � ωc + g2/�′.
These expressions has the same form as the the usual
blackbox basis without coherent drive (see main text), where
the qubit-cavity detuning � = ωa − ωc is replaced by

�′[αa] = � − 2U |αa|2, (D5)

since the only difference between Ĥ0 and Ĥ ′
0 is the energy shift

from the drive.
For the interaction term Ĥ ′

int ≈ Ĥ slf
int

′ + Ĥ crs
int

′ + Ĥnc
int

′, they
are given as the sum of the self- and cross-Kerr nonlinearity
and the nonlinear conversion as before [cf. Eqs. (2) and (3) in
the main text],

Ĥ slf
int

′ = χ ′
aaâ′†â′†â′â′, (D6)

Ĥ crs
int

′ = χ ′
caĉ′†ĉ′â′†â′, (D7)

Ĥnc
int

′ = χ̃ ′(â′†â′†â′ĉ′ + ĉ′†â′†â′â′), (D8)

with χ ′
aa = −(U/2)[1 − g2/(2�′2)], χ ′

ca = −2g2U/�′2, and
χ̃ ′ = gU/�′. The drive term V̂ [αa] transforms as

V̂ [αa] ≈ −U (αaâ′†â′†â′ + H.c.), (D9)

where we have dropped the higher-order corrections
O((g2/�2)Uαa, α

3
a ).

The resulting Lindblad master equation in this basis takes
the form

∂t ρ̂ = L′ρ̂ = L′
indρ̂ + L′

cdρ̂. (D10)

Here, L′
ind and L′

cd take the similar form to Lind [Eq. (6) in
the main text] and Lcd [Eq. (9) in the main text], respectively,
except for the replacement of parameters and some additional
terms arising from the drive V̂ [αa]:

L′
indρ̂ = −i[Ĥ ′

s, ρ̂] + κ ′
a[αa]D[â′]ρ̂ + κ ′

c[αa]D[ĉ′]ρ̂ (D11)

L′
cdρ̂ = − γ̃ ′

↓[αa]

2
{â′†ĉ′ + ĉ′†â′, ρ̂}

+γ̃ ′
↓[αa](â′ρ̂ĉ′† + ĉ′ρ̂â′†). (D12)

As stressed in the main text, the intrinsic qubit polariton
damping rate is modified to

κ̃ ′
a[αa] = κa + g2

(�′[αa])2
(κc − κa)

� κa + κP + g2

�2

4U

�
(κc − κa)|αa|2 (D13)

and similarly for the cavity polariton dissipation rate and
correlated dissipation rate,

κ̃ ′
c[αa] = κc + g2

(�′[αa])2
(κa − κc)

� κc − κP − g2

�2

4U

�
(κc − κa)|αa|2, (D14)

γ̃ ′
↓[αa] = g

�′[αa]
(κc − κa) (D15)

� γ̃↓ + 2gU

�
(κc − κa)|αa|2. (D16)

We now compute the qubit T1-decay rate �rel[αa] of this
system. Since the form of the master equation (D10) is very
much similar to that of the thermal case [Eq. (5) in the main
text], most of the analysis below would be parallel to the
previous section. Similarly to the thermal case, we regard
the qubit-cavity coupling terms and V̂ [αa] that gives rise to
nonsecular nonlinearity, given by

L′
1ρ̂ = −i

[
εcrsĤ

crs
int

′ + εnsĤ
nc
int

′ + εVV̂ [αa], ρ̂
] + εcdL′

cdρ̂

(D17)

as the perturbation on top of the unperturbed part L′
0 = L′ −

L′
1, or

L′
0ρ̂ = −i[Ĥ ′

0 + Ĥ slf
int

′, ρ̂] + κ ′
a[αa]D[â′]ρ̂ + κ ′

c[αa]D[ĉ′]ρ̂.

(D18)

Here, again, εcrs = εns = εV = εcd = 1 is the book-keeping
constant. We will compute up to the second-order in L′

1, where
the qubit T1-decay rate is given by �rel[αa] = �

(0)
rel + �

(2)
rel .

(The first-order correction vanishes as before.)
The unperturbed part Eq. (D18) has the same form as

that of the thermal case Eq. (C1). Therefore, those results
can be directly applied by the appropriate replacement of the
parameters such as κ̃μ → κ̃ ′

μ[αa]. This gives the unperturbed
qubit T1-decay rate [cf. Eq. (C17)]

�
(0)
rel [αa] = κ̃ ′

a[αa] = κa + κP + g2

�2

4U

�
(κc − κa)|αa|2.

(D19)

Note that the coherent drive strength dependence is already
included in this unperturbed part.

We move on to consider the perturbative correction to
the qubit T1-decay rate from L′

1. Actually, it turns out that
the only contribution at zero temperature is that from V̂ [αa].
As before, the cross-Kerr nonlinearity does not contribute to
the qubit T1-decay rate since they do not change the photon
excitation number. For the nonlinear conversion and the cor-
related dissipation to be activated, photon excitations should
be present in the steady state, which, however, are absent at
zero temperature n̄0

c = n̄0
a = 0.
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Since V̂ [αa] only excites the qubit, the intermediate state
that participates to the second-order correction to the qubit
T1-decay rate would be of the form that solely involves the
coherence of the qubit,

r̂ (0)
ss,(na+1,na ) ≡ ρ̂c(0)

ss ⊗ r̂a(0)
(na+1,na ) (D20)

with corresponding eigenvalue

λ
(0)
ss,(na+1,na ) = − κ̃a

2
(1 + 2na) + i(ω̃′

a − ωD − Una).

(D21)

As a result, the second-order correction is computed as

�
(2)
rel [αa] ≈ −ε2

VU 2|αa|22Re

[
1

κ̃a + λ
(0)
ss,(na=2,na=1)

]〈
l̂ a(0)
rel ,D[â′†

n�1]r̂a(0)
rel

〉

≈ −ε2
V

2U 2

(ω̃a − ωD − U )2
κ̃a|αa|2, (D22)

where the creation operator â′†
n�1 only acts on the Fock states

with n � 1. It is proportional to κ̃a and the denominator has
the form (ω̃a − ωD − U )2 [in contrast to Eq. (C43) where
it is proportional to κ̃a + κ̃c and 1/(� − U )2], reflecting the
eigenvalue of the intermediate state. This is the second term of
Eq. (20) in the main text and hence completes the derivation.

APPENDIX E: NUMERICAL SIMULATION

We outline here the procedure we took to determine the
qubit T1-decay rate �

diag
rel from numerical diagonalization of

the Linbladian both for the thermal case L [Eq. (4) in the
main text] and L′ for the coherent drive case [Eq. (D10)]. To
identify the qubit T1-decay rate, recall that the density matrix
evolves as

ρ̂(t ) = ρ̂ss +
∑

α

wαeλαt r̂α (E1)

with wα = 〈l̂α, ρ̂(0)〉. Here, we took the normalization of
r̂α and l̂α to satisfy Tr[l̂†

α l̂α] = 1 together with the bi-
orthogonality relation Tr[l̂†

α r̂β] = δα,β . Equation (E1) tells us
that if one starts in an initial state where the qubit is excited,
e.g., by adding a single photon to the steady state

ρ̂(0) ∝ â†ρ̂ssâ. (E2)

then one will excite a set of Liouvillian eigenmodes r̂α each
with its own exponential decay rate −Re λα . We can define
operationally the T1-decay rate of the qubit by the slowest
decay rate associated with such an initial state (as this will
define the long-time relaxation). Alternatively, we could de-
fine the T1-decay rate as the rate associated with the excited
mode with the largest weight |wα| (i.e., the mode that most
closely represents the deviation between the initial state and
the steady state). Either of these definitions can be used from
numerical simulations to extract the qubit T1 rate; for all pa-
rameters shown in our numerical plots, both definitions yield
the same result. The resulting numerically-obtained qubit T1-
decay rate defined as �

diag
rel = −λrel is computed using QuTiP

code [28,29] and are plotted in Figs. 1–3 in the main text.
A more direct and experimentally relevant way to compute

the T1-decay rate is to fit the photon number to an exponen-
tially decaying curve after transient dynamics have damped
out. To gain further confidence in our approach, we have also
computed the qubit T1-decay rate �sim

rel in this manner from

the direct simulation of the Lindblad master equation (5) with
initial condition given by Eq. (E2). We have fitted the time
evolution of the qubit photon number to 〈â†â〉(t ) ∼ e−�sim

rel t at
long times, and compared �

diag
rel and �sim

rel in Fig. 4. As one
sees, we find an excellent agreement between the two qubit
T1-decay rates, supporting our approach of determining �rel

numerically.

APPENDIX F: EXTENSIONS TO OTHER MODELS -
QUBIT-MEDIATED CROSS-KERR INTERACTION

In this section, we briefly explain how our general for-
malism could be applied to other relevant driven-dissipative
circuit QED models studied in the literature. We will not
explicitly perform the calculation, but rather setup the prob-
lem and sketch the solution so that any interested reader
could apply the same technique to their model. We focus on
a ubiquitous system studied in the context of bosonic error

FIG. 4. Comparison between the two different definitions of
qubit T1-decay rate �

diag
rel and �sim

rel . Here, �
diag
rel is determined from

numerical diagonalization of the Lindbladian L (see main text).
�sim

rel is determined by numerically computing 〈â†â〉(t ) and fitting
to the relation 〈â†â〉(t ) ∼ Ae−�sim

rel t at late times. This is computed
by simulating Eq. (5) in the main text, with the initial state set to
the form of Eq. (E2). For the fitting, we have used the data set at
t = [0.95T, T ], where T = 8 × 104|�|. The two different definitions
of qubit T1-decay rates �

diag
rel and �sim

rel are in excellent agreement. We
have taken the same parameters as that of Fig. 3(a) (with κa = 0) in
the main text.
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correction: two (bare) linear cavity modes b̂0 and ĉ0 are both
off-resonantly coupled to a common transmon qubit â0 [38].
The goal here is to use the transmon to mediate nonlinear
mode-mode interactions. Of course, an issue is the transmon
will also generate unwanted dissipative interactions, which are
drive dependent. Our approach provides a powerful means to
treat this system.

The starting Hamiltonian describing the isolated system is

Ĥ0 = ωbb̂†
0b̂0 + ωcĉ†

0ĉ0 + ωaâ†
0â0 − U

2
â†

0â†
0â0â0

+(gbâ†
0b̂0 + gcâ†

0ĉ0 + fbe−iωDt b̂0 + fce−iωDt ĉ0 + H.c.)

(F1)

where ωk is the bare resonant frequency, gk is the coupling
between the linear mode and the qubit, and fk the strength
of the coherent drive on each linear mode, which we take
to be at the same frequency ωD. As we have done through-
out, we shall assume that each mode is subject to it’s own
independent Markoivian environment with decay rate κk0 and
thermal occupation n̄k0 for k ∈ {a, b, c}. Following the proce-
dure outlined in Appendix A, integrating out the Markovian
baths leads to the master equation

∂t ρ̂ = −i[Ĥ0, ρ̂]

+
∑

k∈a,b,c

(
κk0

(
n̄k0 + 1

)
D[k̂0]ρ̂ + κkn̄k0D[k̂†

0]ρ̂
)
, (F2)

which, note, is written in terms of the bare qubit and cavity
modes. We can now succinctly outline how to apply our
method to this problem, which can be readily generalized to
more complicated setups.

(i) First diagonalize the linear and quadratic parts of Ĥ0.
This involves moving to a rotating frame at frequency ωD,
diagonalizing the quadratic 3 × 3 matrix via a simple unitary
transformation and then performing a simple displacement
transformation to eliminate the linear drives. With this pro-
cedure, one obtains a set of polariton modes k̂, which, by
construction, can be written as a linear combination of the bare
modes k̂0 and the drives fk . Given that the detuning between
the bare qubit and cavity modes are much larger than their

coupling |gb/c/(ωa − ωb/c)|2 � 1, these polaritons will serve
as the starting point for Lindblad perturbation theory.

(ii) One then writes the coherent Hamiltonian H0 in
this new polariton basis. This gives rises to the usual self
and cross-Kerr interaction. In addition, to lowest order in
|gb/c/(ωa − ωk )|, there will be a set of nonlinear conversion
processes of the form χ̃b/caâ†â†âb̂/ĉ and α∗

a â†ââ, where αa

is proportional to the drive strength. Although they are non-
resonant, one must keep these terms since, as explained in
the main text, the interplay between the dissipative conver-
sion and this coherent nonlinear conversion will lead to the
leading-order correction in the qubit T1-decay rate.

(iii) The jump terms are also written in terms of the po-
lariton creation and annihilation operators. Writing these out
explicitly, one makes a distinction between the terms, which
describe damping of the polariton modes and those which
describe a dissipative conversion process. Retaining only the
former amounts to making the standard secular approxima-
tion; our method relies on keeping all such terms.

(iv) With all relevant terms in hand, one splits the Lind-
bladian in two parts L̂ = L̂0 + L̂1. The first term L̂0 consists
solely of terms, which do not couple the various polariton
modes. We stress that L̂0 includes self-Kerr interactions,
which (as discussed in the main text) can be treated exactly.
The remaining part describes the dissipative and coherent
polariton-polariton coupling terms. All such terms are neces-
sarily are of the order |gb/c/(ωa − ωb/c)| (assuming |gb/(ωa −
ωb)| ∼ |gb/(ωa − ωc)|) and thus serve as the correct starting
point for Lindblad perturbation theory.

(v) The eigenvalues and eigenvectors of L̂0 must then be
found, usually within some approximate scheme (using e.g.
the smallness of the bare nonlinearity U ). This only involves
solving three single-mode problems, since L̂0 does not couple
the different polaritons. This was done explicitly in Appen-
dices C and D.

(vi) One can now perform Lindblad perturbation in L̂1 us-
ing L̂0 as the unperturbed Lindbladian. With this information,
one can systematically investigate, e.g., how qubit-induced
dissipation depends on drive amplitudes and the strength of
the various thermal noise terms.
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