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Epidemic dynamics in inhomogeneous populations and the role of superspreaders
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A variant of the susceptible-infected-recovered model for an inhomogeneous population is introduced to
account for the effect of variability in susceptibility and infectiousness across a population. An initial formulation
of this dynamics leads to infinitely many differential equations. Our model, however, can be reduced to a
single first-order one-dimensional differential equation. Using this approach, we provide quantitative solutions
for different distributions. In particular, we use GPS data from ∼107 cell phones to determine an empirical
distribution of the number of individual contacts and use this to infer a possible distribution of susceptibility and
infectivity. We quantify the effect of superspreaders on the early growth rate R0 of the infection and on the final
epidemic size, the total number of people who are ever infected. We discuss the features of the distribution that
contribute most to the dynamics of the infection.
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I. INTRODUCTION

A strong temptation in modeling a system consisting of
many similar parts is to make the assumption that these parts
have identical properties. Accordingly, the classical mod-
els in epidemiology assume (often implicitly) that everyone
has the same propensity to be infected and, if infected, the
same propensity to infect others [1]. This assumption may
be justified when differences in the salient parameters are
small. However, one of the interesting features of the cur-
rent COVID-19 pandemic is the huge variation in infectivity:
small numbers of infectious events or individuals seem to be
responsible for a large number of cases [2–14]. This feature
seems to be present in other coronavirus epidemics including
SARS [15–17] and MERS [18–20]. One can point to different
explanations for this phenomenon: individual variations in
viral load and shedding [14,21,22], in droplet production (see
the review in Ref. [23]), in contact networks [8,10,12,24,25],
and differences in the features of ventilation systems at cer-
tain events and venues [26,27]. Inhomogeneity seems to have
played an important role for other epidemics as well [28–30],
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leading to the rule of thumb that “20% of patients pro-
duce 80% of infections” [31]. However, it seems that for
coronavirus-related infections, the variability is even higher
than that heuristic [13,14]. In a recent book [32], the historian
Lepore has noted that “the study of the human condition is
not the same as the study of the spread of viruses and the
density of clouds and the movement of the stars,” which is
incontrovertible. The converse, however, is not: it appears that
the spread of viruses is dependent on at least one aspect of the
human condition, namely, the intrinsic variability and lack of
uniformity of human behavior.

There are two related, but distinct, notions of super-
spreading in this literature, namely, superspreading events
and superspreading individuals. Superspreading events are
events that produce many infections. Superspreading individ-
uals (superspreaders) are specific people that produce many
infections (such as Typhoid Mary in the early 1900s). As
one might imagine, in reality, some combination of these
two processes is present. In this paper, however, we set our
sights on the latter phenomenon: a superspreader is always an
individual, rather than an event.

It is reasonable to assume that a variability in infectivity
is accompanied by a variability in susceptibility. Common
explanations of variability in individual infectivity—increased
shedding due to a higher rate of virus multiplication in
the given host, increased exposure period, and increased
personal contacts—suggest that increased infectivity may cor-
relate with increased susceptibility. We note that there are
arguments for the opposite correlation: for example, some
studies indicate that older age may correspond to higher
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susceptibility but lower infectivity [33], while other studies
seem to contradict this finding [34]. The change of contact
patterns caused by mitigation measures further confounds this
issue [35]. However, the assumption of positive correlation be-
tween infectivity and susceptibility seems to be a reasonable
one. One conclusion of this is that superspreaders might be
more prominent at the early stages of an epidemic. During
the course of an epidemic, the fraction of superspreaders will
typically decrease with time. This would lead to a change in
the apparent value of the average transmission rate, which
could make it difficult to evaluate the effectiveness of mit-
igation measures. This effect might be quite large and is
not captured by many standard models. Generally speaking,
inhomogeneity may lead to a large change in the mean be-
havior of a system, especially when fast growth is involved.
Understanding the effect of inhomogeneity would increase the
fidelity of models based on real-world data and lead to more
effective public policy.

Several recent works (see, e.g., Refs. [9–12,25,36–38])
have addressed the issue of heterogeneity in the population,
but they either concentrate on specific distributions or treat the
variability in infectivity and susceptibility separately, with-
out considering the effect of a possible correlation between
the two. Reference [10] in particular reports numerical ex-
periments with heterogeneous quenched contact probabilities
(ours are uniform). A rich set of outcomes was obtained that
calls for an analytical treatment in the flavor of this paper.

In this paper, we discuss the epidemic dynamics for a
population with variable infectivity potential accompanied by
variable individual susceptibility. We obtain the results for the
general case of an arbitrary distribution of susceptibility and
infectivity. We also provide a calculation of R0 that quantifies
the unintuitive effect of superspreaders on the early growth
rate of the epidemic and find that it depends strongly on the
correlation between susceptibility and infectivity.

Furthermore, one of the distributions holds special interest.
If we assume that the main driver of inhomogeneity is diver-
sity in the number of social contacts for an individual, then
data [39] on the distribution of these contacts suggests a very
wide distribution of infectivity and susceptibility.

An important question for modeling the inhomogeneity
is whether the result depends only on the moments of the
distribution (mean, variance, skewness ...) or on the behavior
of the tails of the distribution. The answer to this question
could inform the construction of realistic predictive models in
the future. We discuss both the cases of fat tails and skinny
tails, and the transition between these regimes.

We recently became aware of work by Tkachenko et al.
[40] that also employs a model with distributed infectivity
and susceptibility of the population. The treatments of the
issue in Ref. [40] and the present paper are, however, different.
We attempt to study the range of effects caused by a varying
degree of correlation in a systematic way, in the framework of
a minimal model. Tkachenko et al., on the other hand, postu-
late a one-to-one correspondence between susceptibility and
infectivity. This assumption is a limiting case for our model,
corresponding to the worst-case scenario for the epidemic, as
we show in Appendix C. In terms of fits to real-world data,
Tkachenko et al. considered a time series of hospitalizations
in Chicago and New York City to calibrate their model, while

we take a different approach and work from anonymized GPS
data from cell phones to infer empirical distributions of the
number of social contacts. In situations with matching as-
sumptions, the conclusions of Ref. [40] and the present paper
are in agreement. We believe that, together, these two works
present a nicely complementary view of correlation between
susceptibility and infectivity in epidemics.

The rest of the paper is organized as follows: In Sec. II,
we give a mathematical description of the dynamics of our
model. In Sec. III, we reduce our model to a one-dimensional
integrodifferential equation, analyze the long time dynamics,
and describe an early time criterion for epidemic outbreak. In
Sec. IV, we compare the results of our model for different dis-
tributions of population attributes, including an empirical one
from anonymized cell phone data. We end with our discussion
and conclusions in Sec. V. In the Appendices, we provide
derivations which are relevant to the main text and we discuss
some of the methodological aspects of our empirical data.

II. THE MODEL

Classic SIR models [1] divide the population into three
compartments: susceptible S, infected I , and recovered (or
deceased) R. The rate of new infections in this model is
proportional to the number of encounters of susceptible per-
sons with the infected persons, while the rate of recovery is
proportional to the number of infected persons. This gives us
the well-known SIR equations

İ = βSI − γ I,

Ṙ = γ I,
(1)

where S, I , and R are the fractions of susceptible, infected, and
recovered persons to the constant population size, dot means
the time derivative, β and γ are non-negative constants, and
we use the fact that, with our normalization, the fraction of
susceptible persons S satisfies the equation

S + I + R = 1. (2)

We use the simplest version of the model, which accounts
neither for additional births and deaths nor for population
migration. Additionally, we do not allow for the possibility
of recovered individuals being reinfected.

We now allow the parameters to be different for different
individuals, namely, let the infection rate β in Eqs. (1) be
the product of individual susceptibility s and infectivity σ .
To obtain the rate of infection, we integrate over the values
of s for susceptible individuals and over the values of σ for
infected individuals. Note that in our model the values of s, σ ,
and γ are fixed for each person and do not change with time.

Let p(σ, s, γ ) dσ ds dγ be the probability that a person
selected uniformly at random from the population has suscep-
tibility s, and, when infected, has infectivity σ and recovery
rate γ . Note that p does not change with time in our model.
We will have reason to make repeated use of the averaging
operator E: For any function f (σ, s, γ ), we define

E[ f ] ≡
∫

f (σ, s, γ )p(σ, s, γ ) dσ ds dγ . (3)

Equations (1) and (2) should now be rewritten because I ,
R and S are not just functions of time t , but also depend on s,
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σ , and γ , namely, let I (σ, s, γ , t ) dσ ds dγ be the probability
that a person selected uniformly from the entire population at
time t is infected and has (initial) susceptibility s, infectivity
σ , and recovery rate γ . Similarly, we introduce S(σ, s, γ , t )
and R(σ, s, γ , t ). Then Eq. (2) becomes

S(σ, s, γ , t ) + I (σ, s, γ , t ) + R(σ, s, γ , t ) = p(σ, s, γ ), (4)

and Eqs. (1) become

İ (σ, s, γ , t ) = S(σ, s, γ , t )s
∫

ηI (η, q, κ, t )

× dq dκ dη − γ I (σ, s, γ , t ), (5)

Ṙ(σ, s, γ , t ) = γ I (σ, s, γ , t ). (6)

When the proportion of infected individuals is small,
S(σ, s, γ , t ) in Eq. (5) is close to p(σ, s, γ ), giving a linear
approximation of Eq. (5). For distributions where is γ a con-
stant, it can be shown (Appendix B) that the early behavior of
an epidemic is determined by R0 = E[σ s]/γ .

The total fraction Ω (t ) of persons who have ever been in-
fected at time t is the sum of currently infected and recovered
individuals. If we stratify Ω by s, σ , and γ , we can write

Ω (t ) =
∫

T (σ, s, γ , t ) dσ ds dγ (7)

with

T (σ, s, γ , t ) = I (σ, s, γ , t ) + R(σ, s, γ , t ). (8)

The final epidemic size is

Ω∞ = lim
t→∞

∫
T (σ, s, γ , t ) dσ ds dγ . (9)

We will use index 0 for the initial conditions in Eqs. (5)
and (6), so I0(σ, s, γ ) = I (σ, s, γ , 0), etc.

III. ANALYTIC RESULTS

In this section, we discuss the general properties of our
model. We assume that the distribution of infectivity and
susceptibility is such that the moments E[σ ], E[s], and E[σ s]
as defined in Eq. (3) exist. If the distribution is so heavy tailed
that these moments do not exist, then important integrals in
our analysis will not converge. This is not merely a technical
restriction. For instance, the short time behavior of the model
should be quite different if E[σ s] is infinite.

Let us introduce the notation

φ(t ) = 1

E[σ ]

∫
σ I (σ, s, γ , t ) dσ ds dγ , (10)

ψ (t ) = 1

t

∫ t

0
φ(t ′)dt ′. (11)

An individual has infectivity σ if infected and 0 if not. There-
fore, E[σ ] is the maximal average infectivity (when everyone
is infected simultaneously), and φ(t ) is the ratio of the cur-
rent average infectivity and the maximal one. Further, ψ (t )
is the historical average of φ(t ). Both these quantities are
thus between zero and one. In our model (without births or
immigration and no persons with zero recovery rate), there

are no infected persons at t → ∞, so in this limit

lim
t→∞ φ(t ) = 0, lim

t→∞ ψ (t ) = 0. (12)

It is shown in Appendix A that the stratified fraction of
people who ever have been infected at time t [see Eqs. (7) and
(8)] is

T (σ, s, γ , t ) = p(σ, s, γ ) − S0(σ, s, γ ) e−sE[σ ]ψ (t )t . (13)

For outbreaks that started with a small number of infected
persons, almost all remaining individuals are susceptible, so
S0 ≈ p. The number of currently infected individuals is

I (σ, s, γ , t ) = − S0(σ, s, γ ) e−sE[σ ]ψ (t )t

+ e−γ t (p(σ, s, γ ) − R0(σ, s, γ ))

+ γ S0(σ, s, γ )
∫ t

0
dt ′e−γ (t−t ′ )−sE[σ ]ψ (t ′ )t ′

.

(14)

As a result, if we know ψ (t ), then we know the full solution. It
is shown in Appendix A that ψ (t ) is a solution of the equation

E[σ ]
d (tψ (t ))

dt

=
∫

σ

[
I0(σ, s, γ )e−γ t − S0(σ, s, γ )

×
∫ t

0
dt ′e−γ (t−t ′ ) d

dt ′
(
e−sE[σ ]ψ (t ′ )t ′)]

dσ ds dγ . (15)

To study the behavior of Eq. (15), we will make several
simplifying assumptions. First, we assume a constant recovery
rate across the population:

p(σ, s, γ ′) = p(σ, s)δ(γ − γ ′). (16)

This means that the other variables (S, I , R) are also propor-
tional to δ(γ − γ ′); we will use the same notation for them as
functions of σ and s.

Second, we assume the initial number of recovered indi-
viduals is zero,

R0(σ, s) = 0. (17)

Third, we assume that the initial distribution of infected
persons is proportional to p(σ, s), and is small:

I0(σ, s) = εp(σ, s), S0(σ, s) = (1 − ε)p(σ, s), 0 < ε � 1.

(18)

To see why any other initial distribution I0 that is small should
behave similarly, see Appendix B.

With these assumptions, Eq. (15) can be further trans-
formed from an integrodifferential equation to a first-order
differential equation,

E[σ ](ν̇ + γ ν) = −(1− ε)
∫ ∞

0
ds

∫ ∞

0
dσσ p(σ, s)

× e−sE[σ ]ν(t ) + E[σ ], (19)

for the function ν(t ) = ψ (t )t [see Eq. (A14)].
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To numerically solve Eq. (15) it is convenient to rewrite
it as two first-order differential equations (see Appendix E).
In the rest of this section, we discuss the properties of the
solution of this equation.

Let us start with the final epidemic size [Eq. (9)]. It can
be shown (Appendix A) that at t → ∞, the function ψ (t ) in
Eq. (11) behaves as 1/t . Choose L so at large t ,

ψ (t ) ≈ L

t
, L � 0. (20)

Then Eq. (9) with T from Eq. (13) becomes (see Appendix A)

Ω∞(ε) = 1 − (1 − ε)E
[
e−sE[σ ]L

]
, (21)

where L is the unique nonnegative root of the equation

F (L) = L − 1

γ
+ 1 − ε

γE[σ ]
E

[
σ e−sE[σ ]L] = 0. (22)

We are interested in an infection that started with a small
number of initial cases, which corresponds to ε → 0. If in this
limit Eq. (22) has a strictly positive root, the final epidemic
size

Ω∞ = Ω∞(0) (23)

is nonzero, and does not depend on ε: in other words, the
epidemic takes off. If the limit does not have a strictly positive
root, then the infection immediately dies out and the final epi-
demic size is 0. In this ε → 0 limit, F (0) = 0 and F (1/γ ) >

0, so Eq. (22) has a positive (nonzero) root if dF (0)/dL < 0.
Taking the derivative, we see that a nonzero root corresponds
to the condition

R0 = E[σ s]

γ
� 1. (24)

Given this result, we take a brief detour from our discussion
of t → ∞. Another way to look at epidemic spread is to
study the short term behavior of the solution. Our analysis
(Appendix B) shows that the initial small infection spreads
with exponential rate R0 = E[σ s]/γ determined by Eq. (24).
The upshot is that the growth rate of the epidemic is highly
dependent on how correlated the infectivity and susceptibility
are.

One naive generalization of R0 from the SIR model, i.e.,
the average number of secondary infections produced by a
typical infection would be R′

0 = E[σ ]E[s]/γ . To explain why
R0, rather than R′

0, determines the exponential growth rate of
the infected population, we will illustrate what the two quanti-
ties measure. If we choose a person from the entire population
uniformly at random and infect them, then the average number
of secondary infections would be R′

0. For instance, if a cruise
ship travels somewhere and almost everyone is infected, then
when they return home the expected number of secondary in-
fections each person produces will be R′

0. On the other hand,
a person who was infected via community spread (early in the
epidemic) will cause on average R0 secondary infections. The
difference between these cases is that in the first case almost
all travelers are infected so the fact that someone is infected
tells us little about their susceptibility, whereas in the second
case people are infected via community spread which occurs

with a probability proportional to their susceptibility early in
the epidemic. See Appendix B for details.

We will now continue our discussion of the final epidemic
size with some limiting cases. As mentioned above, for an
epidemic to spread, it is necessary that R0 = E[σ s]/γ � 1.
Near this transition, where R0 ≈ 1, we may write down an
approximation for L. Again, we will be interested in the limit
of small initial epidemic size ε → 0, although it is not difficult
to generalize the following result for nonzero ε. Let R0 > 1.
Assuming that L is small, and that p(σ, s) falls off quickly
enough for large s, we may approximate Eq. (22) as

F0(L) ≈ γE[σ ]L − E[σ ] +
∫

σ p(σ, s)

×
(

1 − sE[σ ]L + (sE[σ ]L)2

2

)
ds dσ. (25)

Therefore, if we get close enough to the transition where
E[σ s] − γ is small

L ≈ 2

E[σ ]E[σ s2]
(E[σ s] − γ ). (26)

In this regime, Eq. (21) gives the total epidemic size as

Ω∞ ≈
∫

p(σ, s)
(
1 − e−2s(E[σ s]−γ )/E[σ s2]

)
ds dσ. (27)

Let us now briefly discuss the opposite limit. Instead of
γ being so large that the epidemic almost doesn’t start, we
study γ so small that the epidemic infects almost everyone.
It is expected that if γ = 0, then the entire population will
eventually become infected; that is, Ω∞ = 1. Equation (21)
shows that in this case L → ∞. It is easy to show that for
small γ , L ≈ 1/γ , and Eq. (21) predicts an exponentially
small number of individuals not infected.

This framework allows one to make predictions for a num-
ber of specific distributions discussed in the next section.
We conclude the general discussion with one very interest-
ing case: when the distribution has a very small number of
superspreaders, individuals with anomalously high infectiv-
ity. (Here very small means small enough to not appreciably
change E[σ s].) A relevant question is whether these individu-
als have an oversized contribution in the epidemic. Equations
(21) and (22) show that this is not the case, and the contri-
bution of superspreaders is limited by the linear term in the
average value of E[σ s] (see Appendix D). Therefore, while
superspreaders still contribute to the dynamics, they are only
a primary driver of infection in our model when they signifi-
cantly change R0 if their number is large.

IV. RESULTS FOR DIFFERENT DISTRIBUTIONS OF
INFECTIVITY AND SUSCEPTIBILITY

Let us further illustrate the general results using specific
distributions for s and σ . First, consider an N-component
SIR model. That is, there are N different types of individuals
who have parameters σi, si, γi and represent a portion of the
population pi, and

p(σ, s, γ ) =
N∑

i=1

piδ(σ − σi )δ(s − si)δ(γ − γi ), (28)
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δ(x) being Dirac’s delta function. In the case where N = 1,
this reduces to the standard SIR model. We see in Appendix
B that this model is a limiting case of the model presented in
this paper [41].

Another useful distribution to study is the gamma dis-
tribution with σ = s. In particular, we are interested in the
distribution

p(σ, s, γ ′) = p(s)δ(σ − s)δ(γ ′ − γ ), (29)

where

p(s) = βαsα−1e−βs

�(α)
(30)

and α, β are positive constants. This system is interesting
to study because the integrals involved in solving for L are
analytically tractable. In the case where α = 1, we recover
the exponential distribution and we can find Ω∞ exactly
[Eq. (F6)]. We analyze the case of the gamma distribution in
Appendix F.

We further illustrate the dynamics of epidemics using
several special cases of distributions of infectivity σ and sus-
ceptibility s with the assumption of constant recovery rate γ .
(See Appendix C for an analysis of which distributions lead
to the worst outcomes for the final epidemic size.)

Even with constant γ , the answer depends on the proba-
bility distribution p(σ, s). We discuss three limiting cases: (i)
completely independent σ and s, with p(σ, s) = pσ (σ )ps(s);
(ii) completely positively correlated σ and s with σ ∝ s; and
(iii) positively correlated σ and s with a correlation coeffi-
cient ρ.

Note that since only the product σ s enters the equations,
we always can multiply σ by a constant factor f , and s by
the factor 1/ f . We choose this factor to ensure that E[σ ] =
E[s]. In the numerical calculations in this section, we used the
following parameters roughly following [42–44]:

E[σ ] = E[s] = 0.6 day−1/2,

γ = 0.125 day−1, ε = 1 × 10−4. (31)

At present, our understanding of variability in individual
susceptibility and infectivity is far from complete. While the
consensus is that they have a wide distribution (see the dis-
cussion in the Introduction), the shape of this distribution is
not known, and most studies assume a convenient one for
their calculations. Since we want to explore the dependence
of the dynamics on the distribution itself rather than on its
parameters, we compare two reasonable a priori assump-
tions: a log-normal distribution with parameters μ and σ̃ ,
and a gamma distribution with parameters α and β. Another
approach is to suggest some mechanism for the variability
and choose a distribution that follows this mechanism. One
such mechanism is the variability of individual contacts: the
more contacts a person has, the higher their s and σ are.
It is important to note that in this model s is completely
correlated with σ because they are caused by the same
mechanism.

We are fortunate to be able to use empirical data about
the number of contacts from the “path-crossing” network
described in Looi et al. [39]. Their network is constructed

FIG. 1. Comparison of empirical, log-normal, and gamma dis-
tributions with the same average infectivity E[s] = 0.6 day−1/2 and
variance ζ 2 with ζ = 4.16 day−1/2.

from the mobility data provided by SafeGraph, a company
that aggregates and anonymizes geolocation data from cell
phone applications. SafeGraph collects GPS location pings
for millions of adult smartphone users in the United States,
where each ping represents the latitude and longitude of one
user at one time stamp. Looi et al. [39] transformed the
set of location pings into a dynamic network, where users
are represented as nodes and edges indicate the number of
times two users crossed their paths (see Appendix G for the
details). We use the number of path crossings as a proxy for
the number of users’ social contacts, which is in its turn a
proxy for susceptibility and infectivity. Due to the number of
assumptions, here one should be careful with the interpreta-
tion of the results. We do not claim that the SafeGraph data
provide the distribution of σ and s. Rather, we think they
suggest features of the real distribution. Moreover, it should
be stressed that this is just one of many possible mechanisms
for susceptibility and infectivity heterogeneity, see, e.g., the
discussion in Ref. [13]. We do not claim that this is the only,
or even the main mechanism—it is just the one for which we
have data.

An interesting feature of the SafeGraph distribution is that
it is very wide. The average number of contacts per user is
0.342 × 103, while the standard deviation is 1.04 × 103. We
can try to approximate the empirical distribution of contacts
using a theoretical distribution. In Fig. 1, we show log-normal
and gamma approximations together with the empirical distri-
bution with the same mean and variance.

In the remainder of this section, we discuss the numerical
solutions of the model equations for the log-normal, gamma,
and empirical distributions obtained with the approach dis-
cussed in Appendix E. See Appendix F for analytical solutions
in special cases.
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FIG. 2. Comparison of epidemics spread for gamma [panels (a),
(b)] and log-normal [panels (c), (d)] distributions of infectivity and
susceptibility with standard deviation ζ and parameters in Eq. (31).
The cases of independent or completely correlated σ and s are
shown.

In Fig. 2, we compare the epidemic’s progression for
log-normal and gamma distributions with the same mean s
and varying distribution widths. We see that a wider distri-
bution leads to a lower epidemic size. When the width of
the distribution decreases, the curve goes to the one for the
classical SIR model. An interesting feature is that a wide
correlated distribution of s and σ leads to an earlier start of
the epidemics instead of the S-like curve of the standard SIR
model.

In Fig. 3, we study the influence of the positive correlation
between infectivity and susceptibility. For simplicity, we show
just the final size Ω∞. As demonstrated by this figure, the
more correlated these parameters are, the higher the size is,
as predicted by the analysis in the previous section.

For another comparison, we take the empirical number of
contacts between the individuals (Appendix G) as a proxy
for both s and σ . We renormalize the number of contacts
to obtain the average infectivity E[s] in Eq. (31). This leads
to variance ζ 2 = 17.27 day−1 (ζ = 4.16 day−1/2). Then we
fit the parameters of log-normal and gamma distributions to
get the same E[s] and ζ . All three distributions are shown in
Fig. 1.

The results are shown in Fig. 4 together with the solution
for the classical SIR model with the infectivity and suscepti-
bility equal to the averages E[s] and E[σ ].

The figures suggest that, generally speaking, variability in
susceptibility and infectivity lowers the final epidemic size
and the correlation between them increases it. Important spe-
cial cases of this statement are proven in Appendix C and,
based on the figures, we expect it to hold more generally.

FIG. 3. Dependence of final epidemic size Ω∞ on
ρ where [ln(s), ln(σ )] is a Gaussian vector with mean
E[s] = E[σ ] = 0.6 day−1/2, Var(s) = Var(σ ) = ζ 2 and correlation
E[sσ ] = E[s]E[σ ] exp(ρς2) with ς 2 ≡ ln[1 + ζ 2/(E[s]E[σ ])].
Note that ρ is the correlation coefficient for ln(s) and ln(σ ) rather
than for s and σ .

Of special interest is the question of whether individuals
with high infectivity (superspreaders) influence the epidemic
dynamics and final epidemic size. To model the effect of

FIG. 4. Epidemics progression for the distributions shown in
Fig. 1 with parameters in Eq. (31). A classical SIR solution for the
same susceptibility and infectivity is also shown

033283-6



EPIDEMIC DYNAMICS IN INHOMOGENEOUS … PHYSICAL REVIEW RESEARCH 3, 033283 (2021)

FIG. 5. Final epidemic size for a mix of normal individuals
(same distribution as in Fig. 2) and superspreaders described by
Eq. (33). The effect of superspreaders is at most linear in their
proportion.

superspreaders, we can discuss a special bimodal distribution
of infectivity,

p(σ ) = (1 − λ)pn(σ ) + λps(σ ), (32)

where pn describes normal persons with low σ , and ps

describes superspreaders with high σ . In our numerical ex-
periments, we modeled superspreaders using a power-law
distribution

ps(σ ) =
{

0, σ < b
(a − 1)ba−1σ−a, σ � b,

(33)

with the parameters a = 4, b = 1.2 day−1/2. With these
parameters, the average infectivity of superspreaders is
1.8 day−1/2, i.e., three times the average infectivity in our
simulations. The results are shown in Fig. 5. We see that the
influence of superspreaders is at most linear in their proportion
λ. This is not coincidental: as shown in Appendix D, the effect
of superspreaders is at most linear.

V. DISCUSSION AND CONCLUSIONS

The aim of any idealized model is to provide insights about
the real world. We believe our model provides several impor-
tant insights beyond the assumptions involved in its derivation
and treatment.

First, the variation in individual susceptibility and infec-
tivity does matter. All examples studied in Sec. IV have the
same average susceptibility and infectivity—but the outcomes
greatly differ. Generally wider distributions lead to lower final
epidemic size and, in the case of correlated infectivity and
susceptibility, a faster initial outbreak.

Second, the correlation between infectivity and suscepti-
bility is important: the higher the correlation, the larger the
epidemic size.

Third, the average and the width of infectivity and suscep-
tibility are not enough to predict the outcome: the actual shape
of the distribution matters too. The comparisons of log-normal
and gamma distributions in Fig. 2, and of three different dis-
tributions having the same first and second moments in Fig. 4,
demonstrate this clearly.

This conclusion shows that a prediction of the epidemic’s
spread is a hard task from the practical point of view. Indeed,
one never knows the exact shape of the distribution, since
it involves the measurement of individual infectivities and
susceptibilities of a great many people. The sensitivity to the
shape of the distribution beyond a couple of moments is bad
news for precise predictions.

Having said this, we still need to answer the question
of which features of the distribution are the most salient
for predictions. There were a number of works stressing the
importance of superspreaders: individuals or events with an
anomalously high potential for spreading (see the Introduc-
tion). Our model suggests a more nuanced view. On the one
hand, because the susceptibility and infectiousness of indi-
viduals are correlated through how many people someone
interacts with, increasing the number of superspreaders in a
way that does not change the average infectivity or suscep-
tibility will increase R0 = E[σ s]/γ , which greatly increases
how fast the infection takes off and decreases the threshold
for the outbreak and somewhat increases the final epidemic
size. In the unrealistic case where we add pairs of one su-
perspreader and one unusually careful person so the variance
increases and R0 is unchanged, adding both these people will
actually tend to decrease the final epidemic size. This can
be seen in Eqs. (21) and (22), where we have exponentials
suppressing the contribution of individuals with anomalously
high susceptibility (or high infectivity, if these parameters are
correlated). This can also be seen in Appendix C and in Fig. 4.
The final result is determined by the average E[σ s] and the
distribution shape at low to moderate susceptibilities. It should
be noted that, for wide distributions, the median s and mean s
are quite different, and our conclusion concerns mean, rather
than median, susceptibility.

Perhaps the following analogy may help to understand the
meaning of this result. In comic books, the outcome of a
war is determined by a handful of superheroes and supervil-
lains. In reality, by contrast, the final result is determined
by the combined effort of many people at the lowest rungs
of the military hierarchy: privates, petty and junior officers,
and so forth. Our conclusion is that epidemic spread is like
the real war rather than the comic-book one. The forego-
ing analysis has an essential implication for public health
policy. While the prevention of superspreading is important
[it changes the exponential growth rate R0 = E[σ s]/γ and
drives down the averages in Eqs. (21) and (22)], it is the
mundane everyday efforts that matter most. Therefore, a way
to localize the outbreak before mass vaccination becomes an
option is to drive down the spread during many daily activ-
ities and perform rigorous tracing of everyday contacts. It is
important to note that this discussion concerns superspread-
ing individuals. The suppression of superspreading events, on
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the other hand, might be a powerful tool in preventing the
spread.

In sum, we provide a simple but efficient mathematical
apparatus to calculate the epidemic dynamics for a population
with variable infectivity and susceptibility, and cast it in a
form suitable for numerical estimates. We hope this apparatus
might turn out to be useful beyond the insights formulated in
this paper.

Our model has some limitations that provide ample mo-
tivation for future work. One of the most important among
them is the neglect of spatial inhomogeneity (the panmictic
assumption). In reality, each person has their own network
of contacts, which is a source of inhomogeneity in infectivity
[11]. The spread of infection is significantly influenced by the
finite size of the individual’s contact network compared to the
full population [7,11,43–46]. It would be very interesting to
model the combination of spatial inhomogeneity and inho-
mogeneity in infectivity and susceptibility. Lastly, operating
in the current pandemic context, where long-lasting immunity
has been observed, we have operated within the SIR paradigm,
where a recovered person can never be infected again. If we
allow for the reinfection of recovered individuals, such as in
an SIRS or SIS model, we would expect superspreaders to
have a much greater impact on the course of the epidemic.
This is because their removal from the system at early times is
now only temporary. Therefore, considering the possibility of
reinfection will be a very important future application of our
methods.
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APPENDIX A: DERIVATION OF MAIN EQUATIONS

This Appendix is dedicated to the derivation of the main
equation and the results of the general analysis in Sec. III.

First, we derive Eq. (13). Let us add Eqs. (5) and (6) and
use the definitions of T (σ, s, γ , t ) to obtain

Ṫ (σ, s, γ , t ) = [p(σ, s, γ ) − T (σ, s, γ , t )]sE[σ ]φ(t ). (A1)

By inspection, we may verify that Eq. (13) is a solution to
this differential equation. We see that this solution satisfies
the initial conditions

T (σ, s, γ , 0) = p(σ, s, γ ) − S0(σ, s, γ ). (A2)

We now turn to the derivation of Eq. (14). First, we use
Eq. (5) and the definitions of T (σ, s, γ , t ) and φ(t ) to write

İ (σ, s, γ , t ) = (p(σ, s, γ ) − T (σ, s, γ , t ))
× sE[σ ]φ(t ) − γ I (σ, s, γ , t ). (A3)

Substituting this expression into Eq. (A1), we arrive at

İ (σ, s, γ , t ) = Ṫ (σ, s, γ , t ) − γ I (σ, s, γ , t ) (A4)

or, equivalently,

d

dt
(eγ t I (σ, s, γ , t )) = eγ t Ṫ (σ, s, γ , t ). (A5)

This differential equation admits a solution

I (σ, s, γ , t ) = e−γ t

(∫ t

0
dt ′eγ t ′

Ṫ (σ, s, γ , t ′) + I0(σ, s, γ )

)
.

(A6)

We now perform integration by parts in the above expression.
In the second step and the second-to-last step, we will use our
solution for T (σ, s, γ , t ) from Eq. (13):

eγ t I (σ, s, γ , t ) = eγ t T (σ, s, γ , t ) − T0(σ, s, γ ) −
∫ t

0
dt ′γ eγ t ′

T (σ, s, γ , t ) + I0(σ, s, γ )

= eγ t T (σ, s, γ , t ) − (T0(σ, s, γ ) − I0(σ, s, γ )) −
∫ t

0
dt ′ γ eγ t ′

(p(σ, s, γ ) − S0(σ, s, γ ))e−sE[σ ]ψ (t ′ )t ′

= eγ t T (σ, s, γ , t ) − R0(σ, s, γ ) − (eγ t − 1)p(σ, s, γ ) + S0(σ, s, γ )γ
∫ t

0
dt ′ eγ t ′

e−sE[σ ]ψ (t ′ )t ′
(A7)

= eγ t (T (σ, s, γ , t ) − p(σ, s, γ )) + (p(σ, s, γ ) − R0(σ, s, γ )) + S0(σ, s, γ )γ
∫ t

0
dt ′eγ t ′

e−sE[σ ]ψ (t ′ )t ′

= −eγ t S0(σ, s, γ )e−sE[σ ]ψ (t )t + (p(σ, s, γ ) − R0(σ, s, γ )) + S0(σ, s, γ )γ
∫ t

0
dt ′ eγ t ′

e−sE[σ ]ψ (t ′ )t ′
,

and therefore

I (σ, s, γ , t ) = −S0(σ, s, γ )e−sE[σ ]ψ (t )t + e−γ t (p(σ, s, γ ) − R0(σ, s, γ )) + S0(σ, s, γ )γ
∫ t

0
dt ′ e−γ (t−t ′ )e−sE[σ ]ψ (t ′ )t ′

. (A8)

This final line matches Eq. (14).
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Finally, we derive the equations of motion for tψ (t ) as written in Eq. (15). We begin by substituting in our solution for
I (σ, s, γ , t ) into the definition of φ(t ) in Eq. (10):

E[σ ]φ(t ) =
∫

σ I (σ, s, γ , t )dσ ds dγ =
∫ (

σγ S0(σ, s, γ )
∫ t

0
dt ′ e−γ (t−t ′ )−sE[σ ]ψ (t ′ )t ′

)
dσ ds dγ

+
∫

σ
{
e−γ t [p(σ, s, γ ) − R0(σ, s, γ )] − S0(σ, s, γ )e−sE[σ ]ψ (t )t

}
dσ ds dγ . (A9)

Noticing that φ(t ) = d (ψ (t )t )/dt , we get

E[σ ]
d (tψ (t ))

dt
=

∫ (
σγ S0(σ, s, γ )

∫ t

0
dt ′ e−γ (t−t ′ )−sE[σ ]ψ (t ′ )t ′

)
ddσ ds dγ

+
∫

σ
{
e−γ t [p(σ, s, γ ) − R0(σ, s, γ )] − S0(σ, s, γ )e−sE[σ ]ψ (t )t

}
dσ ds dγ . (A10)

Integrating this equation by parts, we get

E[σ ]
d (tψ (t ))

dt
=

∫ ((
σS0(σ, s, γ )

(
e−sE[σ ]ψ (t )t − e−γ t −

∫ t

0
dt ′ e−γ (t−t ′ ) d

dt ′
(
e−sE[σ ]ψ (t ′ )t ′)))

+
∫

σ
{
e−γ t [I0(σ, s, γ ) + S0(σ, s, γ )] − S0(σ, s, γ )e−sE[σ ]ψ (t )t

})
dσ ds dγ

=
∫

σ

[
I0(σ, s, γ )e−γ t − S0(σ, s, γ )

∫ t

0
dt ′e−γ (t−t ′ ) d

dt ′ (e)

]
dσ ds ddγ , (A11)

which matches Eq. (15).

Let us now derive Eq. (22) and propose an iterative algo-
rithm for its numerical solution.

Assuming constant γ [Eq. (16)], we multiply both sides of
Eq. (15) by eγ t and take a time derivative of both sides:

d

dt

(
E[σ ]

d (ψ (t )t )

dt
eγ t

)

= −
∫ [

σS0(σ, s)eγ t d

dt

(
e−sE[σ ]ψ (t )t)] dσ ds. (A12)

Taking the derivative of the left-hand side, multiplying by e−γ t

and integrating over time, we get

E[σ ](ψ̇t + ψ + γψt )

= −
∫ (

σS0(σ, s)e−sE[σ ]ψ (t )t
)

dσ ds + C, (A13)

where C is a constant based on initial conditions. With the
initial conditions Eq. (18), we get C = E[σ ]. As an aside,
we may alternatively write Eq. (A13) as a first-order, time-
independent equation using ν(t ) = ψ (t )t ,

E[σ ](ν̇ + γ ν) = −
∫ (

σS0(σ, s)e−sE[σ ]ν
)

dσ ds + E[σ ].

(A14)

We rewrite as

ν̇ = (1 − γ ν) − 1

E[σ ]

∫ (
σS0(σ, s)e−sE[σ ]ν

)
dσ ds. (A15)

It is not hard to see that the right-hand side is Lipshitz in ν,
so the solution exists and is unique on R�0 by a standard
application of the Picard-Lindelof theorem. In fact, we have
a bijection between solutions to the system Eqs. (4)–(6) and

solutions to Eq. (A15) given by

ν(t ) =
∫ t

0

(∫
σ I (σ, s, γ , t ′)dsdσ

)
dt ′ (A16)

in one direction and by Eqs. (13) and (14) in the other.
Thus, existence and uniqueness of solutions to Eq. (A15) im-
plies the existence and uniqueness of solutions to the system
Eqs. (4)–(6).

We already know that limt→∞ ψ (t ) = 0 [Eqs. (12)]. Sup-
pose that

∫ ∞
0 φ(t ) dt converges, and thus the following limit

exists:

lim
t→∞ ψ (t )t = L. (A17)

Then in the case S0(σ, s) = 1 − ε, we obtain Eq. (22).
To justify the assumption Eq. (A17), we construct an algo-

rithm to calculate L and prove it converges to a non-negative
root of Eq. (22). We will find the solution using the following
iterations:

L0 = 1

γ
, (A18)

Li = 1

γ
− 1 − ε

γE[σ ]
E

[
σe−sE[σ ]Li−1

]
, i = 1, 2, . . . . (A19)

Below we will prove that the sequence Li converges to the
relevant root.

Lemma 1. Suppose Eq. (22) has non-negative roots and L̃
is the largest root. Then the sequence L0, L1, . . . converges
to L̃.

Proof. We will prove that for all i,

L̃ � Li � Li−1. (A20)

Then the sequence L0, L1, . . . is bounded and nonincreasing,
and therefore converges. The limit of this sequence is a root
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of Eq. (22), and due to inequality Eq. (A20) and the fact that
L̃ is the largest root, it converges to L̃.

First, note that from Eqs. (22) and (A18), it follows that
L̃ � 1/γ = L0.

For i = 1, we have from the iteration Eq. (A19) L1 � L0

and, since L̃ � L0,

L1 � 1

γ
− 1 − ε

γE[σ ]
E

[
σe−sE[σ ]L̃

] = L̃, (A21)

so inequality Eq. (A20) is true.
Suppose this inequality is true for i − 1, i.e.,

L̃ � Li−1 � Li−2. (A22)

Then we will prove it for i. Indeed,

Li = 1

γ
− 1 − ε

γE[σ ]
E

[
σe−sE[σ ]Li−1

]
� 1

γ
− 1 − ε

γE[σ ]
E

[
σe−sE[σ ]Li−2

] = Li−1 (A23)

and

Li �
1

γ
− 1 − ε

γE[σ ]
E

[
σe−sE[σ ]L̃

] = L̃. (A24)

In other words, if the inequality is true for i − 1, it is true for
i, so it is true for all i. �

Lemma 2. Equation (22) always has a non-negative root no
smaller than ε/γ .

Proof. Similarly to the proof of Lemma 1, we can prove
the inequality

ε

γ
� Li � Li−1. (A25)

Indeed, for any i we can iteratively prove that

Li �
1

γ
− 1 − ε

γE[σ ]
E

[
σe−sE[σ ]·0] = ε

γ
. (A26)

Therefore the sequence L0, L1, . . . converges to a number no
smaller than ε/γ . This number is a root of Eq. (22), which,
according to Lemma 1 is the largest root. �

The last lemma shows that the assumed behavior of ψ (t )
at large t is indeed ψ ≈ L/t .

APPENDIX B: SHORT-TIME BEHAVIOR AND
INITIAL CONDITIONS

In this Appendix, we show that in a mixed population the
parameter that determines whether an infection grows expo-
nentially or dies out is

R0 = E[σ s]

γ
.

We also show that the long-term behavior of the epidemic
does not depend on the initial conditions.

At early time, when the proportion of the population in-
fected and the proportion of the population recovered are very
small, Eqs. (5) and (6) can be linearized as

İ (σ, s, γ , t ) = p(σ, s, γ )s
∫

ηI (η, q, κ, t )dηdqdκ

− γ I (σ, s, γ , t ) (B1)

and

Ṙ(σ, s, γ , t ) = γ I (σ, s, γ , t ). (B2)

We consider the case where γ is fixed for the entire pop-
ulation and the distribution p(σ, s) = ∑n

i=1 piδσi,si (σ, s) is a
finite combination of delta functions. With the notation Ii(t ) =
I (σi, si, t ), Eqs. (B1) and (B2) become a finite-dimensional
system of equations:

dIi(t )

dt
= pisi

(
n∑

j=1

σ j I j (t )

)
− γ Ii. (B3)

We rewrite this as

dI

dt
= AI, (B4)

with I = (I1(t ), . . . In(t ))
T

and Ai j = pisiσ j − γ1i= j . Let

σ =
⎡
⎣σ1

...

σn

⎤
⎦, (sp) =

⎡
⎣s1 p1

...

sn pn

⎤
⎦. (B5)

Let

Ai j = |(sp)〉〈σ | − γ I. (B6)

From this, we see that the largest eigenvalue of A is
E[σ s] − γ = 〈σ |(sp)〉 − γ = ∑n

i=1 siσi pi − γ with the asso-
ciated eigenvector |(sp)〉, and that all other eigenvectors are
perpendicular to σ and have eigenvalue −γ .

Now a general distribution p(σ, s) can be approximated by
a sum of point values, to conclude that the linear Eqs. (B1)
and (B2) have the largest eigenvalue

λ = E[sσ ] − γ , (B7)

with corresponding eigenvector I (σ, s) = sp(σ, s) and all
other eigenvalues negative.

If p(σ, s) is a compactly supported distribution, we con-
clude that if a small enough proportion of the total population
is infected at time zero, then until the proportion of the popu-
lation that is susceptible drops appreciably below 1, we have

It (σ, s) = et (E[sσ ]−γ )sp(σ, s) + O(e−γ t ). (B8)

The quantity R0 is also what epidemiologists measure
when they measure the number of secondary infections pro-
duced by a typical infection in the very early stages of
the epidemic. The key to understanding why this number is
E[sσ ]/γ instead of E[s]E[σ ]/γ comes from the word “typi-
cal.” Based on Eq. (B8), early in the epidemic the probability
q(σ, s) that a person with infectivity σ and susceptibility s is
infected is proportional to sp(σ, s), so

q(σ, s) = sp(σ, s)∫
sp(σ, s)dsdσ

= sp(σ, s)

E[s]
. (B9)

To find the number secondary infections per unit time, this
typical infection produces, we take this person’s infectivity
and multiply by the average susceptibility in the population
to get σtypicalE[s]. Averaging σtypical over the measure q(σ, s)
gives

E[σtypical]E[s] =
∫

sσ p(σ, s)dsdσ
E[s]

E[s]
= E[sσ ]. (B10)
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Multiplying by the typical recovery time 1
γ

gives the expected
number of secondary infections.

As with the usual SIR model, if R0 > 1 the infection will
spread and if R0 < 1 the infection will die out. This allows us
to see that the growth rate of an epidemic is highly dependent
on how correlated s and σ are, with higher correlation leading
to a higher growth rate. In a true population, we expect a
person’s infectivity σ and susceptibility s to be highly corre-
lated through factors like how many people someone interacts
with. In particular, superspreaders have an outsize effect on
the early growth of the epidemic in the most realistic case
where s and σ are highly correlated, because in this case R0

grows like the second moment E[σ 2] of the infectivity rather
than the first moment.

The second takeaway is that if the proportion of the popula-
tion that is infected at time 0 is small enough, the solution for
the system Eqs. (5) and (6) does not significantly depend on
the details of the initial conditions. This can be seen by writing
the initial profile of infected I0(σ, s) as a sum of eigenvectors
for Eqs. (B1) and (B2),

I0(σ, s) = Csp(σ, s) + I ′
0(σ, s), (B11)

and comparing with Eq. (B8) to see that I ′
0(σ, s) has minimal

effect and the long-term solution is almost identical to the
solution starting from initial condition

I0(σ, s) = Csp(σ, s). (B12)

APPENDIX C: WORST-CASE DISTRIBUTIONS

In this Appendix, we discuss which distributions provide
the highest possible epidemic size Ω∞ (the worst-case sce-
narios).

We prove two statements:
(1) Variability is good. If s and σ are independent, then

the final epidemic size is less than or equal to the final
epidemic size of the classical SIR model with s0 = E[s],
σ0 = E[σ ]. This conclusion agrees with the other studies
of heterogeneity based on different assumptions and models
[10,11,25,29,36,37,40].

(2) Strong positive correlation is bad. If the marginal dis-
tributions of s and σ are known, then the joint distribution
p(σ, s) that maximizes the final epidemic size is given by the
percentile coupling, where the nth most infectious person is
also the nth most susceptible person.

Both these statements follow from the following lemma:
Lemma 3. Let μ and ν be two possible joint distributions

for (s, σ ). Let Eμ and Eν denote the expectation with respect
to μ and ν, respectively, and similarly for final epidemic sizes
Ω

μ
∞ and Ων

∞. If

Eμ[σ ] � Eν[σ ], (C1)

and for all c > 0,

Eμ[e−cs] � Eν[e−cs], (C2)

and also

Eμ[σe−sc] � Eν[σe−sc], (C3)

then

Ωμ
∞ � Ων

∞. (C4)

Proof. Using Eqs. (C2) and (C1) together with Eq. (22),
we see that for any L > 0,

Fμ(L) = L − 1

γ
+ 1

γEμ[σ ]
Eμ

[
σe−sEμ[σ ]L

]
� L − 1

γ
+ 1

γEν[σ ]
Eν

[
σe−sEν [σ ]L

] = F ν (L). (C5)

Let Lμ be the unique positive zero of Fμ(L) if such a zero ex-
ists, and otherwise let Lμ = 0. Now Fμ(0) = F ν (0) = 0 and
both are convex functions of L, which together with Eq. (C5)
gives Lμ � Lν .

Then from Eqs. (C3) and (C1), we obtain

Ωμ
∞ = 1 − Eμ[e−sEμ[σ ]Lμ

]

� 1 − Eν[e−sEν [σ ]Lν

] = Ων
∞. (C6)

�
To prove statement (1), let us take a distribution ν with

independent σ and s, and let μ = δ(σ − Eν[σ ])δ(s − Eν[s]).
We have Eμ[σ ] = Eν[σ ] by definition. From Jensen’s in-
equality [47, Sec. 1.7(iv)],

Eμ[e−cs] = e−cEν [s] � Eν[e−cs], (C7)

and from Jensen’s inequality and independence of s and σ

under distribution ν we have

Eμ[σe−cs] = Eν[σ ]e−cEν [s] � Eν[σe−cs]. (C8)

Thus the final epidemic size for our arbitrary distribution with
independent s and σ is not greater than the final epidemic size
of a delta mass with the same mean.

To prove statement (2), let ν be an arbitrary measure with
the correct marginal distributions, and let μ be the percentile
coupling: the most susceptible person is the most infectious,
the second most susceptible person is the second most in-
fectious, and so on. In particular, if we sample twice from
μ and obtain (s1, σ1) and (s2, σ2), then with probability 1,
the statement s1 � s2 implies σ1 � σ2. This property implies
that if f is an arbitrary decreasing function and g is an arbi-
trary increasing function, then the percentile coupling is the
coupling that minimizes the expectation E[ f (s)g(σ )] for the
given marginal distributions of s and σ . In particular, this
distribution minimizes E [σe−sc] for all c > 0, so it satisfies
Eq. (C3). It also has the same marginals as the other measure
ν, thus inequalities Eqs. (C1) and (C2) are satisfied. Thus,
for the given marginal distributions of s and σ , the percentile
coupling is the worst possible joint law in that it maximizes
the final epidemic size of the infection.

To understand the meaning of statement (1), consider the
case of the population with the same infectivity, where some
individuals have zero susceptibility, while all other individuals
have the same large susceptibility s1. Let f1 be the fraction of
these individuals. The epidemic size in this population does
not exceed f1. To increase the variance of s while keeping
the mean susceptibility constant, we must increase s1 and
decrease f1, so large variance corresponds to lower epidemic
size. Similarly, one can consider a population with infectivity
σ being either zero or a large value σ0 and show that when σ0

increases and the fraction of infectious individuals decreases,
the epidemic size also decreases. Statement (2) can be ex-
plained in the following way. Highly susceptible individuals
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become infected in the beginning of the epidemics, when
the supply of susceptible individuals is high. If these highly
susceptible individuals are also highly infectious, they can
cause many secondary infections among the naïve population
in this scenario, thus increasing the total size of the epidemics.

APPENDIX D: THE EFFECT OF SUPERSPREADERS

In this Appendix, we discuss the effect of a superspread-
ers: a small subpopulation of people with anomalously high
infectivity.

Consider the distribution of infectivity σ and susceptibility
s as a sum of the normal distribution pn and the superspreaders
ps with the latter having support at σ > σs with large σs, as
shown in Eq. (32).

The short-term behavior is determined by the value of
E[sσ ], which can be represented as

E[σ s] = (1 − λ)En[σ s] + λEs[σ s], (D1)

where subscripts n and s denote averaging with the distribu-
tions pn and ps correspondingly. This equation shows that (i)
the only way superspreaders come into short-term behavior is
the renormalization of average σ s and (ii) their influence is
linear in the proportion of superspreaders λ.

Let us discuss the case where the number of superspreaders
is low enough, so the contribution of superspreaders to the

averages is small, i.e.,

λEs[σ s] � En[σ s]. (D2)

In this case, the contribution of superspreaders into the short-
term dynamics is small according to Eq. (3). We are going to
show that there is no anomalous contribution to the long-term
dynamics either.

We are looking into the final epidemic size, which is deter-
mined by Eqs. (22) and (21).

First, consider the case where superspreaders have the
same susceptibility distribution as the other individuals. In this
case, s and σ are independent, and our equations become

L − 1

γ
+ 1

γ
En

[
e−sE[σ ]L

] = 0, (D3)

Ω∞ = 1 − En
[
e−sE[σ ]L

]
. (D4)

We see that in this case the only way superspreaders contribute
is the changing of E[σ ].

Now consider the case where superspreaders have anoma-
lous susceptibility s, and higher σ corresponds to higher
s. Then the contribution of superspreaders is asymptotically
small in both Eqs. (22) and (21), i.e., again no worse than
linear in the number of superspreaders.

APPENDIX E: NUMERICALLY SOLVABLE EQUATIONS

In this Appendix, we will recast Eq. (15) into a set of
differential equations suitable for numerical analysis.

With the constant γ assumption Eq. (16) and initial condi-
tions Eqs. (17) and (18), we can write down Eq. (15) as

E[σ ]
d (tψ (t ))

dt
=

∫ (∫ t

0
e−γ (t−t ′ )−sE[σ ]ψ (t ′ )t ′

dt ′γ (1 − ε) + e−γ t − (1 − ε)e−sE[σ ]ψ (t )t

)
p(σ, s)σ dσ ds, (E1)

with

I (σ, s, t ) =
(∫ t

0
e−γ (t−t ′ )−sE[σ ]ψ (t ′ )t ′

dt ′γ (1 − ε) + e−γ t − (1 − ε)e−sE[σ ]ψ (t )t

)
p(σ, s) (E2)

and

T (σ, s, t ) = p(σ, s)
(
1 − (1 − ε)e−sE[σ ]ψ (t )t

)
. (E3)

The initial condition is

ψ (0) = ε. (E4)

We introduce the function ν(t ):

ν(t ) = tψ (t ). (E5)

We multiply both parts of Eq. (E1) by eγ t and divide by E[σ ]:

eγ t dν(t )

dt
= 1 + γ (1 − ε)

E[σ ]

×
∫ t

0

(∫
eγ t ′−sE[σ ]ν(t ′ )σ p(σ, s) dσ ds

)
dt

− 1 − ε

E[σ ]

∫
eγ t−sE[σ ]ν(t )σ p(s, σ ) dσ ds. (E6)

We differentiate this equation with respect to t and multiply
by e−γ t :

ν̈ + γ ν̇ = (1 − ε)ν̇
∫

e−sE[σ ]νsσ p(σ, s) dσ ds. (E7)

Let us introduce a new variable,

ξ = ν̇, (E8)

then we can write down Eq. (E7) as

ξ̇ = ξ

[
(1 − ε)

∫
e−sE[σ ]νsσ p(σ, s) dσ ds − γ

]
,

ν̇ = ξ .

(E9)

We need initial conditions for Eqs. (E9). By definition
Eq. (E5), ν(0) = 0. From Eqs. (E8), (E5), and (E4), we get
ξ (0) = ψ (0) = ε, so we can write initial conditions as

ν(0) = 0, ξ (0) = ε. (E10)
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Equations (E9) with the initial conditions Eqs. (E10) depend
at any moment t on ξ (t ) and ν(t ) only, and therefore can be
solved by any suitable method for differential equations.

APPENDIX F: SPECIAL DISTRIBUTIONS

For several important distributions, we can provide analyt-
ical results. These results can be used for more sophisticated
models, so we provide them below. We are particularly inter-
ested in the low-γ limit, where outbreaks are large and not
easily controlled.

We discuss the completely correlated case when σ (s) is a
monotonic function. Since we always can rescale them keep-
ing σ s constant, let us assume σ = s, so

p(σ, s, γ ′) = p(s)δ(σ − s)δ(γ ′ − γ ). (F1)

1. The gamma distribution

Consider a gamma distribution with fixed γ and s = σ , so
p(s) in Eq. (F1) becomes

p(s) = βαsα−1e−βs

�(α)
, (F2)

α and β being positive constants. First, let us calculate L, the
root of Eq. (22). In our case, we have

0 = E[σ ](γ L − 1) +
∫ ∞

0

βαsαe−βs

�(α)
e−sE[σ ]L ds, (F3)

where E[σ ] = α/β. This gives for L the equation

0 = γ L − 1 +
(

1 + αL

β2

)−α−1

, (F4)

which can be easily solved numerically. The final epidemic
size is given by Eq. (21), and may be written as

Ω∞ =
∫ ∞

0
p(s)(1− e−sE[σ ]L ) ds

= 1 −
(

1 + αL

β2

)−α

= 1 − (γ L − 1)(1 + αL/β2)

=
(

α

β2
− γ

)
L + αγ

β2
L2. (F5)

In the case of the exponential distribution (i.e., α = 1),
Eq. (F5) becomes

Ω∞= (3 − 4β2γ +
√

1+ 4β2γ )(1− 2β2γ+
√

1+ 4β2γ )

4β2γ
,

(F6)

when R0 > 1. We emphasize that Eqs. (F5) and (F6) are exact
formulas.

In the low γ limit, we may approximate L by L = 1/γ −
f (γ ) (see Eq. (A19) and Lemma 1), where the second term

can be written as

f (γ ) ≈ β

αγ

∫ ∞

0

βαsαe−βs

�(α)
e−sα/(βγ ) ds

≈ 1

γ

(
1 + α

γβ2

)−α−1

≈
(

β2

α

)α+1

γ α. (F7)

Since α > 0, f (γ ) is well defined near γ = 0 and the approx-
imation is well-controlled.

2. Low-recovery-rate limit for the log-normal distribution

Let us discuss a log-normal distribution with fixed γ and
s = σ , where p(s) in Eq. (F1) becomes

p(s) = 1

τ s
√

2π
exp

(
− (ln s − μ)2

2τ 2

)
, (F8)

with the constants τ > 0 and μ. Note that due to Eq. (F1),

E[s] = E[σ ] = exp(μ + τ 2/2). (F9)

Using Eqs. (A19) and (F9), we obtain the iterative equation
for ε → 0:

Li = 1

γ
− 1

γE[σ ]

∫ ∞

0
se−sE[σ ]Li−1

1

τ s
√

2π
e− (ln s−μ)2

2τ2 ds

= 1

γ
− eμ

γ τE[σ ]
√

2π

∫ ∞

0
dse−seμE[σ ]Li−1− (ln s)2

2τ2

= 1

γ
− eμ

γ τE[σ ]
√

2π
Jτ (eμE[σ ]Li−1), (F10)

where we have defined

Jτ (a) ≡
∫ ∞

−∞
e−aey+y− y2

2τ2 dy. (F11)

In principle, these equations are enough to construct an it-
erative solution for L. However, we may take this a step further
for the low γ (large L) limit. In particular, if L is large, then so
is each Li. For a ≡ eμE[s]L  1, Eq. (F11) can be evaluated
by a standard saddle point approximation [48,49]. Setting y′ =
y
√

a + τ 2 and expanding around ys.p.

√
a = τ 2 + W (aτ 2eτ 2

)
gives

Jτ (a) � eτ 2/2τ
√

2π√
W (aτ 2eτ 2 ) + 1

e− 1
2τ2 [2W (aτ 2eτ2

)+W (aτ 2eτ2
)2]

, (F12)

where W (aτ 2eτ 2
) is the principal branch of the Lambert

W function, satisfying W (ρ) expW (ρ) = ρ. This expres-
sion is valid up to a small correction of order O(τ 2/W ) ∼
O[τ 2/ ln(a)] � 1.

Returning to our iterative solution for L in Eq. (F11), we
will now plug in the previous expression. Note that E[σ ] =
eμ+τ 2/2

Li = 1

γ
− 1

γ
e− 1

τ2 [W (τ 2e2μ−τ2/2Li−1 )+W (τ 2e2μ−τ2/2Li−1 )2]
. (F13)

In particular,

L1 = 1

γ
− 1

γ
e− 1

τ2 [W (τ 2e2μ−τ2/2/γ )+W (τ 2e2μ−τ2/2/γ )2]
. (F14)
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One may continue this iteration procedure to arbitrary
precision.

APPENDIX G: SAFEGRAPH DATA

In this Appendix, we describe the approach by Looi et al.
[39] to transform the set of location pings into a dynamic
network. In this network, users are represented as nodes and
an edge (u, v, t ) indicates that user u crossed paths with user
v at time t . A path crossing is defined to occur when two users
have pings which are separated by less than 50 meters and
less than five minutes. It should be stressed that a path here is
the same as a world line in relativity theory: it encompasses
spatial and temporal dimensions, so the users cross paths if
they are at the same place at the same time.

To ensure that users are represented accurately, various
filters are applied; for example, excluding users with fewer
than 500 pings or removing duplicate users, which could
potentially occur if a single person carries multiple mobile
devices. To compute the path crossings efficiently, the au-
thors apply a sliding time window and, within each time
slice, use a k-d tree to identify all pairs of points within
50 meters of each other. We refer the reader to the original

paper for details of the network-construction methodology.
The constructed network captures 1 613 884 111 path cross-
ings between 9 451 697 users across three evenly spaced
months in 2017 (March, July, and November). The network
provides an estimate of the true contact network, where each
user’s number of contacts represents how many people they
could possibly transmit the virus to or from. Thus, we can use
each user’s degree in the path crossing network to estimate
their susceptibility and infectivity.

Previous analyses of SafeGraph data have shown that it
is representative of the US population, in that it does not
systematically overrepresent users from certain income levels,
racial demographics, degrees of educational attainment, or ge-
ographic regions [50]. Recently, their mobility patterns have
been instrumental in helping researchers study responses to
the COVID-19 pandemic and to model the role of mobility in
the spread of disease [7,45,51,52]. Even so, there are caveats
to the data that we use. Most notably, the path-crossing net-
work covers three months in 2017, but individuals’ mobility
patterns may have changed substantially following the onset
of the pandemic. Furthermore, different types of noise may
affect an individual’s number of observed crossings; for ex-
ample, the frequency with which their phone pings. Filtering
for only well-represented users can help to mitigate this issue.
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