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We present an effective field theory approach to the topological response of Floquet systems with symmetry
group G. This is achieved by introducing a background G gauge field in the Schwinger-Keldysh formalism, which
is suitable for far from equilibrium systems. We carry out this program for chiral topological Floquet systems
(anomalous Floquet-Anderson insulators) in two spatial dimensions and the group cohomology models of
topological Floquet unitaries. These response actions serve as many-body topological invariants for topological
Floquet unitaries. The effective action approach also leads us to propose topological response functions that were
not considered before. For a particular family of models, we find that our response theory captures a symmetry
protected version of the chiral unitary index.
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I. INTRODUCTION

Topological phenomena in periodically driven systems
(Floquet systems) have been widely discussed recently. For
recent review articles, see, e.g., Refs. [1–3]. In a typical
setup, we consider dynamics governed by the Hamiltonian
which depends periodically on time t : H (t + T ) = H (t ).
Correspondingly, we consider the time-evolution operator

U (t, t0) = T exp

[
−i

∫ t

t0

dt ′H (t ′)
]
, (1)

where T represents time ordering. As a slight variation of the
problem, we also consider a periodic time evolution described
by a periodic unitary U (t + T ) = U (t ), without mentioning
Hamiltonians.

It has been discovered that such periodic drive can give
rise to topological phenomena of at least two different kinds:
(i) The periodic drive can turn a nontopological static system
into a topological system, which can essentially be under-
stood as a static topological system. (ii) The periodic drive
can give rise to a topological phenomenon, which is unique
to periodically driven systems and has no analog in static
systems. Initial studies of topological Floquet systems were
limited to the first kind of dynamical topological phenom-
ena [4–8]. On the other hand, phenomena of the second kind
have been discovered and studied more recently [9–19]. Of
particular interest in this paper are topological chiral Floquet
drives (anomalous Floquet-Anderson insulators) in two spatial
dimensions [20–26], which are characterized by the three-
dimensional (3D) winding number of their single-particle
Floquet unitary operators.
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The purpose of this paper is to develop an effective re-
sponse field theory approach to Floquet topological systems.
Our primary focus will be topological phenomena of the sec-
ond kind which are intrinsic to the nonequilibrium nature of
periodically driven systems.

For “static” topological phases of matter, their descrip-
tions in terms of effective response field theories have been
well developed (see, for example, Ref. [27]). A canonical
example is the Chern-Simons effective field theory describ-
ing the response of quantum Hall states in (2 + 1)D. One
first introduces suitable background gauge fields; for the case
of particle-number-conserving systems, we can introduce the
background U (1) gauge field A. We can then integrate out the
dynamical “matter” fields:

Z[A] = Tr
[
e− ∫ β

0 dτH (A)
] ≡ exp (−Seff [A]), (2)

where we are working with Euclidean signature. For integer
quantum Hall systems, it is known that the topological part
of the effective action is purely imaginary and given by the
Chern-Simons term

Seff [A] = iν

4π

∫
A ∧ dA = iν

4π

∫
dτd2r εμνλAμ∂νAλ, (3)

where ν is an integer. The modulus of the (topological part
of the) partition function is independent of A and can be
normalized to be 1, |Z[A]| � 1.

Topological effective response field theories describe the
properties of quantum many-body systems which are stable
against interactions. It should be also emphasized that start-
ing from effective response field theories it is often possible
to construct explicit formulas for many-body topological in-
variants. (See, for example, Refs. [28,29]). In deriving the
effective field theory, it is crucial that we deal with gapped
(topological) phases, where matter fields represent “fast” de-
grees of freedom and can then be “safely” integrated over, i.e.,
the integration over the matter field can be controlled by the
inverse gap expansion and leads to a local effective action.
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It should also be noted that in the presence of the gap, the
topological term in the response field theory encodes purely
the properties of the ground state. In other words, the presence
or absence of the topological term in the response theory can
be deduced from the adiabatic response of the ground state,
without discussing gapped excited states. For example, in the
case of the integer quantum Hall effect, the coefficient of the
Chern-Simons term is expressed in terms of the many-body
Chern number.

In this paper, we develop an effective response the-
ory approach for periodically driven (topological) systems,
paralleling effective response theories for static topologi-
cal phases with symmetry. Specifically, we will work with
the Schwinger-Keldysh generating functional of Floquet
unitaries,

Z[A1, A2] = Tr[U (A1)ρ0U
†(A2)], (4)

where we have introduced external (nondynamical) U (1)
gauge fields A1 and A2, which couple to the evolution operator
U (t ) and to its conjugate U †(t ), respectively.1 The initial
state ρ0, will be taken to be a Gibbs ensemble at infinite
temperature, ρ0 ∼ eαQ, where α is a chemical potential and
Q is the U (1) charge operator. We will demonstrate that
the Schwinger-Keldysh generating functional W [A1, A2] =
−i log Z[A1, A2] for many-body localized Floquet systems is
a local functional of A1 and A2, and, furthermore, encodes the
topology of the system. In fact, we will see that this framework
can be applied to many-body localized systems whose explicit
time dependence is not necessarily periodic, as the topological
origin of our response functional—i.e., its independence on
smooth deformations of the system—is completely unrelated
to time periodicity of the microscopic system. Periodicity,
combined with other properties, will only be used to show
quantization of topological response.

The paper is organized as follows. In Sec. II, we explain
how to apply the Schwinger-Keldysh approach to periodically
driven topological systems. In Sec. III, we consider chiral
Floquet drives (anomalous Floquet Anderson insulators) in
two spatial dimensions, for which we explicitly compute the
Schwinger-Keldysh effective action, and identify the topolog-
ical term. We also show that, for a particular family of models,
this topological term captures a symmetry protected version
of the chiral unitary index discussed in [24,44]. In Sec. IV, we
describe two generalizations of topological effective response
that were not considered before. Further material and techni-
cal details are discussed in the Appendix. In Appendix A, we
study yet another class of topological Floquet drives, those
which are constructed by using the group cohomology. There,
we find that the topological terms of the Schwinger-Keldysh
functional are members of (labeled by) Hd (G,U (1)), where
G is the symmetry group and d is the spatial dimension.
In Appendix B, we discuss an approach based on the
so-called channel-state map, which provides a perspective
complementary to the Schwinger-Keldysh approach.

1One can also promote static background gauge fields to dynamical
ones, by integrating over the gauge field. The effect of such dynami-
cal gauging was discussed in Ref. [18]. In this work, we will confine
ourselves to background gauge fields.

II. SCHWINGER-KELDYSH RESPONSE

A. Generalities

In this section, we introduce the basic framework that
will be used as a systematic approach to topological Floquet
phases. While our interest lies in Floquet systems, we shall
start with general discussions that can be applied to any time-
dependent Hamiltonian H (t ). A modern introduction to the
Schwinger-Keldysh formalism can be found in Refs. [30,31].

We will assume that H (t ) possesses a U (1) symmetry, and
we couple it to an external gauge field Aμ(t, �r), so that the
evolution operator is given by

U (t1, t0; A) = T exp

[
−i

∫ t1

t0

dt ′H (t ′; A)

]
, (5)

where H (t ; A) is the Hamiltonian coupled to Aμ(t, �r). The
current conjugate to Aμ will be denoted as Jμ.

We introduce the Schwinger-Keldysh generating function-
als Z[A1, A2] and W [A1, A2] by [30,31]

Z[A1, A2] = eiW [A1,A2] = Tr[U (t1, t0; A1)ρ0U
†(t1, t0; A2)],

(6)

where ρ0 is the initial state of the system at t = t0. The oper-
ator inside the trace can be thought of as the time evolution
of the density matrix ρ0, ρ(t1) = U (t1, t0; A1)ρ0U †(t1, t0; A2),
where each factor of the evolution is coupled to a different
gauge field A1μ and A2μ.

In typical applications, we adiabatically switch on per-
turbations causing nonequilibrium dynamics. It is then
convenient to start the time evolution from t0 = −∞ with
the initial state ρ0 in the remote past which is chosen as an
equilibrium state. We also send t1 → +∞ when discussing
correlation functions with operators located at arbitrary late
times. Then, the Schwinger-Keldysh contour runs from −∞
to +∞ and back. One striking feature is that this approach
does not require knowing the final state

The Schwinger-Keldysh trace with background (6) pro-
vides a compact and efficient way to encode various
nonequilibrium correlation functions. Indeed, differentiating
Z[A1, A2] n times with respect to A1μ and m times with respect
to A2μ leads to a correlation function of n time-ordered and m
antitime-ordered currents Jμ

Tr[ρ0T (Jμ(x1) · · · )T̃ (Jα (xn+1) · · ·)]

= 1

in(−i)m

δn+meiW [A1,A2]

δA1μ(x1) · · · δA2α (xn+1) · · ·
∣∣∣∣
A1,2=0

, (7)

where x = (t, �r) and T̃ represents antitime ordering.
The generating functional W [A1, A2] should satisfy certain

basic properties due to unitarity of the evolution:

W [A1, A2] = −W ∗[A2, A1], W [A, A] = 0,

ImW [A1, A2] � 0, (8)

where the first two can be seen straightforwardly from
the definition (6), while the last condition follows from
the fact that the absolute value of the trace of the
operator U (∞,−∞; A1)ρ0U †(∞,−∞; A2) is bounded by
unity [31,32].
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B. Application to (topological) Floquet systems

We will now apply the Schwinger-Keldysh formalism to
study topological properties of Floquet systems.

1. Choice of the initial state

For static systems, one typically chooses the initial state
ρ0 to be the ground state or the thermal state. In the case
of our interest, we observe that the time dependence of
the Hamiltonian is not slow compared to the energy gap of the
instantaneous Hamiltonian H (t ), and thus there is no notion
of ground state or of thermal equilibrium. The most natural
choice in this context, in the absence of any symmetry, is to
choose ρ0 to be the infinite temperature state,

ρ0 = I/N , (9)

where I is the identity operator and the normalization factor
N is the dimension of the Hilbert space. In Appendix B, we
will see that with this choice of initial state, the Schwinger-
Keldysh trace can be viewed as an inner product of unitaries
when unitaries are mapped to states by using the channel-state
map (the so-called Choi-Jamiołkowski isomorphism).

In the presence of a symmetry, the most natural choice of
ρ0 is the Gibbs ensemble formed by the conserved charges of
the system,

ρ0 = eαQ

Tr eαQ
, (10)

where Q is the charge operator (number operator) associated
to the U (1) symmetry, and the parameter α plays the role of
chemical potential. Instead of introducing α in the initial state
ρ0, α can also be introduced as the difference between the
(uniform and time-independent) temporal component of A1

and A2 in U (t1, t0; A1) and U (t1, t0; A2).
This choice of initial state allows us to put our focus

on properties of evolution operators themselves rather than
the time evolution of individual states. (See, for example,
Ref. [33] which also uses the infinite temperature state). We
also recall that under Floquet time evolution, states may in-
definitely be heated up by the drive, which may wash out any
topological phenomena. Various mechanisms in the literature
are used to prevent this (e.g., many-body localization [34–36]
or prethermalization [37–42]). It is also worth recalling that
eigenstates of Floquet unitaries are all expected to behave sim-
ilarly, e.g., no mobility gap separating ergodic and many-body
localized states.

2. Choice of the Schwinger-Keldysh contour

We now describe our choice of the Schwinger-Keldysh
contour. First, we note that there are characteristic values of
times, integer multiples of the period of the Floquet drive
T . In our discussion, we will mostly evaluate the Schwinger-
Keldysh generating functional for t1 − t0 = (integer) × T . At
these values the generating functional will exhibit additional
important properties in relation to topology when dealing with
special models—see Sec. III.

Second, for generic systems, it will be important to take
the integers m, n to be large. A convenient object to study

response to Aμ is then

Z[A1, A2] = eiW [A1,A2]

= lim
κ→∞ Tr[U (κT,−κT ; A1)ρ0U

†(κT,−κT ; A2)],

(11)

where we chose t1 = −t0 = κT with κ a half-integer; for
simplicity, we have chosen the Schwinger-Keldysh contour to
be symmetric around t = 0. As we will see, the infinite-time
limit guarantees that, for generic models, when the system is
in the localized regime, only topological contributions will
survive, as in the infinite-time limit nontopological effects
are averaged out, making them transparent to the response
captured by the generating functional W [A1, A2].

Having fixed the definition of the time contour, we now
discuss the structure of the gauge transformations. These have
the form

A1μ → A1μ + ∂μλ1, A2μ → A2μ + ∂μλ2, (12)

where λ1(t, �r) and λ2(t, �r) are independent functions, except
at the end points t0 and t1, where they must be related as

λ1(t0, �r) = λ2(t0, �r) + 2πn0,

λ1(t1, �r) = λ2(t1, �r) + 2πn1, (13)

where n0 and n1 are integers. Small gauge transformations will
satisfy λ1, λ2 → 0 at t = t0, t1.2

The gauge invariance of the effective action will be further
discussed in Sec. III A.

3. Slowly varying background

We will restrict to background sources which are slowly
varying in space and time. In our discussion, we will be con-
cerned with systems which are in the localized regime. As far
as the system localizes, we expect the generating functional
W to be a local functional in A1 and A2, which is a crucial
feature of our formulation as it will allow us to write down W
in a derivative expansion in A1 and A2, as far as the latter are
sufficiently slowly varying, enabling us to identify particular
couplings in W which contribute to topological response.

Below we will be interested in the structure of the
Schwinger-Keldysh generating functional W , which depends
on background U (1) gauge fields A1μ, A2μ and on the con-
stant chemical potential α. For the rest of the paper, we will
further take A0 = 0 and Ai = Ai(�r), for both copies of the
background. We will thus restrict to “static” response. Oper-
ationally, these configurations are the most general for which

2We assume that, in the operator formalism, gauge transformations
are implemented by unitary transformations of the form V (t ) =
ei

∑
r λ(t,r)nr , where nr is the charge density operator. The evolution

operators in the Schwinger-Keldysh generating functional transform
as

U (t1, t0; A1) → V1(t1)U (t1, t0; A1)V †
1 (t0), (14)

and U (t1, t0; A2) → V2(t1)U (t1, t0; A2)V †
2 (t0), (15)

which implies Eq. (13).
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we can analytically compute topological response from the
microscopic models that we are interested in, and take the
continuum limit. We will see that this choice is sufficient
to capture the topological character of periodically driven
systems.3

It is convenient to introduce a new basis for the back-
ground,

Ari = 1
2 (A1i + A2i ), Aai = A1i − A2i, (16)

where this change of basis is sometimes referred to as the
Keldysh rotation [30]. This basis is convenient as the con-
straints (8) can be easily implemented. We will write W as an
expansion in number of derivatives acting on Ari, Aai, and a
power expansion in Aai, which will make it easy to enumerate
the list of terms compatible with (8). Note that the second
condition in (8) requires each term in W to contain at least
one power of Aai. To zeroth order in derivatives, there is no
gauge-invariant term that we can write down. To first order in
derivatives, the most general generating functional is

W = i
(α)

2πT

∫
dtd2rBa, Ba = εi j∂iAa j, (17)

where (α) is an arbitrary function of α. One immediately
sees that (17) satisfies conditions (8). Additional terms will
be at least second order in derivatives, such as (εi j∂iAa j )2

or (εi j∂iAr j )(εkl∂kAal ). Since we are interested in topological
responses, we will focus on (17), as it is the only term with
a coupling constant that is dimensionless in length units. In
the next sections we will focus on a family of systems which
displays precisely this type of response, and we will see
how their topological properties are encoded in the function
(α). We will look at Floquet systems defined on closed
as well as open spatial manifolds. In the first case, we will
consider backgrounds with nontrivial flux in order for (17) to
contribute, while in the second case (17) can be written as a
boundary term.

III. TOPOLOGICAL CHIRAL FLOQUET DRIVE

In this section we shall study in detail the Schwinger-
Keldysh Floquet response of a particular model. Consider a
two-dimensional square lattice with periodic boundary con-
ditions of size Lx × Ly, where Lx, Ly are even integers. The
total number of sites is LxLy = N . We denote site coordinates
with r = (x, y) ∈ Z × Z, and split sites into sublattice A, with
coordinates x + y ∈ 2Z, and sublattice B with coordinates
x + y ∈ 2Z + 1. The model is given by a Floquet Hamiltonian
H (t ) of period T obtained as follows. Divide the period T in
five intervals of equal duration T/5, where each of the first
four intervals has Hamiltonian Hn, with n = 1, 2, 3, 4, where

Hn =
∑
r∈A

Hn,r, Hn,r = −J (eiAr,r+bn c†
r cr+bn

+ H.c.), (18)

with J = 2.5π
T , and where

b1 = −b3 = (1, 0), b2 = −b4 = (0, 1), (19)

3We remark that, from the point of view of our effective response,
there is no technical limitation in considering terms which depend
on A10, A20, and which have (slow) time dependence. We leave this
to future work.

FIG. 1. The topological chiral Floquet drive (18) on the square
lattice. Red and blue arrows represent chiral trajectories of particles
starting from A and B sublattice, respectively.

while during the fifth interval the Hamiltonian is zero. The
fifth interval will be of practical use later, when we shall
introduce disorder. Note that the Hn,r and Hn,r′ commute with
each other, so the evolution can be factorized on each site
r ∈ A. The resulting evolution is to move a particle around
a plaquette, and bring it back to its original position after
one period, as illustrated in Fig. 1. This model was originally
introduced in Ref. [20] and has been extensively studied, e.g.,
in Refs. [21,22]. In addition, we added a minimal coupling to
a background U (1) gauge field, where

Ar,r+b =
∫ r+b

r
drA(r) (20)

is the gauge link from site r to site r + b. Note that, as
mentioned in Sec. II, we are restricting to background gauge
fields with A0 = 0 and Ai = Ai(r). In principle, one can take
slowly time-dependent background sources Ai(t, �r) and per-
turbatively solve the model by doing derivative expansion in
time. However, we expect such configurations to contribute
only through higher derivatives to the generating functional
W . Static configurations will be sufficient to evaluate (α)
introduced in (17), thus capturing the topological character of
these periodically driven systems.

The Floquet unitary is given by

U (T/2,−T/2) ≡ UF = U4U3U2U1, Un =
∏

r

e−iT/5Hn,r

with e−iT/5Hn,r = 1 − (nr − nr+bn )2 + i(nr − nr+bn )2(eiAr,n c†
r

cr+bn
+ H.c.). In passing, we notice that this model has a

unitary on-site particle-hole symmetry, given by

cr → (−1)rc†
r , c†

r → (−1)rcr, Ai(r) → −Ai(r),

where (−1)r = +1 or −1 if r belongs to sublattice A or B,
respectively.

This Floquet drive is special or ideal in the sense that, in
the absence of the background gauge field, UF = I , i.e., the
Floquet Hamiltonian is identically zero, and hence there is
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no heating. For more generic models, this is not the case and
UF = exp(−iT HF ), where HF is a Floquet Hamiltonian. To
avoid heating, we need to demand HF is, e.g., many-body
localizing.

A. Response functional on the torus

We shall now compute the Schwinger-Keldysh generating
functional W [A1, A2] introduced in (6) for the chiral Floquet
drive, subject to the periodic boundary conditions described
in the beginning of this section. Since the Hamiltonian is
quadratic (U is Gaussian), W reduces to a quantity built from
the single-particle counterpart of the Floquet unitary; U (t1, t0)
transforms the fermion creation or annihilation operators as
U (t1, t0)ciU †(t1, t0) = Ui j (t1, t0)c j and U (t1, t0)c†

i U †(t1, t0) =
U∗

i j (t1, t0)c†
j = c†

jU
†
ji(t1, t0), where the N × N unitary matrix

Ui j (t1, t0) is the single-particle evolution operator acting on
the single-particle Hilbert space. By noting the formula

Tr (e
∑

i, j c†
i Ai j c j ) = det (I + eA), (21)

we then find

eiW = 1

Tr (eαQ)
det

[
e− α

2 I + e
α
2 U (A1)U†(A2)

]
, (22)

where we used (10) as initial density matrix, and U (A) ≡
U (κT,−κT ; A). (Here and henceforth, “tr” and “det” denote
the trace and determinant in the N-dimensional single-particle
Hilbert space, respectively, as opposed to “Tr” which is
the trace taken over the 2N -dimensional many-body Hilbert
space). We used a “particle-hole symmetrized” definition of
number operator, i.e.,

Q =
∑

r

(nr − 1/2), nr = c†
r cr, (23)

where the eigenvalues of Q run from −N
2 to N

2 , and Tr (eαQ) =∏
r (e− α

2 + e
α
2 ) = (2 cosh α

2 )N . The chemical potential α can
be used to project the “unnormalized” generating functional
to a given sector with fixed particle number:

Tr (eαQ) eiW =
∑

q

eαqZq+N/2[A1, A2], (24)

where the subscript q + N/2 is the nonsymmetrized particle
number running from 0 to N . For the case of Gaussian Floquet
unitaries, expanding the determinant in (22) we obtain, for
example,

Z1[A1, A2] = tr [U (A1)U†(A2)],

ZN [A1, A2] = det [U (A1)U†(A2)]. (25)

It is easy to check that UF (A) is diagonal with its diagonal
elements given by eiBr , where Br is a flux picked up by a
particle which is located initially at r: UF (A) = ∑

r eiBr |r〉〈r|.
Then,

eiW = 1(
2 cosh α

2

)N

∑
{nr=0,1}

e(nr− 1
2 )αe+i

∫
dt
T

∑
r (B1r−B2r )nr

= 1(
2 cosh α

2

)N

∏
r

[
e− α

2 + e
α
2 ei

∫
dt
T (B1r−B2r )

]
. (26)

Note that the time integral in the exponents
∫

dt should be
thought of as

∫ κT
−κT dt , with κ a sufficiently large integer. We

can check that (26) is consistent with particle-hole symmetry,

Z[−A1,−A2,−α]

Z[A1, A2, α]
= ei

∫
dt
T

∑
r [B1r−B2r ] = 1, (27)

where we noted the quantization of the total flux
∑

r Bsr =
2π × (integer) (s = 1, 2) on a close manifold since Ar,r′ is an
angular variable, Ar,r′ ≡ Ar,r′ + 2π .

Equation (26) is the exact microscopic result and can be
used to study systems with arbitrary configurations of the
background gauge fields—see around Eqs. (30) and (36), for
example. We now specialize to background configurations
which are slowly varying compared to the lattice constant. In
this limit, ∂Ai/∂r j � Ai, i.e., one expands eiBr = 1 + iBr +
· · · , and resumming, the only finite contribution to the gener-
ating functional will be4

exp iW [A1, A2] = exp i
(α)

2π

∫
dt

T

∫
d2r[B1(r) − B2(r)],

(28)

with

(α) = θ + f (α), θ = (0) = π, f (α) = π tanh
α

2
.

Note that the generating functional is now a pure phase and
topological in the sense that it does not require a (spatial)
metric for its definition. In Sec. III D we will show that (α)
is independent of continuous deformations of the microscopic
system, and in Sec. III E we will prove that θ is quantized.

The effective action (28) is a Schwinger-Keldysh analog
of the theta term, exp[i θ

2π

∫
M2

dA], which appears, e.g., as
an effective response functional of (1 + 1)-dimensional static
topological insulators (e.g., the SSH model), where M2 is
the (1 + 1)-dimensional space time [27]. For the static case,
θ is a periodic variable, θ ≡ θ + 2π , because of the Dirac
quantization condition: For any (1 + 1)-dimensional closed
Euclidean space time M2,

∫
M2

dA = 2π × integer, which is a
consequence of the large U (1) gauge invariance.

For the Schwinger-Keldysh functional (28), the situation
seems more complicated in the sense that the combination
Aai = A1i − Ai2 entering in (28) is “neutral” under spatial
large gauge transformations, i.e., transformations which al-
low a nontrivial flux of Aai across the torus. Indeed, due
to (13), λ1(t0, r) and λ2(t0, r) must be topologically equiv-
alent as spatial functions, as well as λ1(t1, r) and λ2(t1, r),
and hence there is no large gauge transformation to quantize∫

dAa = ∫
(dA1 − dA2) (where we consider the integral only

over the space, as
∫

dt/T is simply an integer). Neverthe-
less, we can still argue that (α) in (28) has a periodicity
(α) ≡ (α) + 2π . First we note that if the dependence
on A1 and A2 of the generating functional Z[A1, A2] enters
through the total fluxes

∑
r B1r and

∑
r B2r , they have to be

separately quantized since A1 and A2 are angular variables,
Asr ≡ Asr + 2π . Second, periodicity of (α) can also be

4Note that the continuum limit should be taken before the infinite-
time limit, i.e., in taking Br → 0, the integral

∫
dt should be

performed over a finite-time interval.
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proven from the following argument. When we switch off
one of the gauge fields, A2, say, the Floquet unitary of the
model reduces to identity U (κT,−κT ; A2 = 0) = I , i.e., the
second Schwinger-Keldysh copy simply disappears. Hence
the Schwinger-Keldysh trace (6) reduces to eiW [A1,A2=0] =
Tr[U (A1)ρ0] which is now invariant under the “accidental”
large gauge transformation A1i → A1i + ∂iλ, while A2i re-
mains zero.5 On the other hand, the effective action (28)
reduces to exp[−i (α)

2π

∫
dt
T

∫
d2rB1(r)] in which (α) should

be now periodic because of the (large) gauge invariance under
A1i → A1i + ∂iλ.

In the latter argument above, we relied on a special feature
of the model, U (κT, κT ; A = 0) = I , which is not true in
general: For more general cases U (κT,−κT ; A = 0) is not
the identity given by the exponentiated Floquet Hamiltonian,
U (κT,−κT ; A = 0) = exp(−i2κT HF ). Nevertheless, the pe-
riodicity of the Theta angle (α) in the Schwinger-Keldysh
effective action will persist at least for a wide class of models,
thanks to the fact that the value of (α) is independent of
continuous deformations of the system, as will be shown in
Sec. III D. Indeed, Floquet unitaries U (t ) can be smoothly de-
formed into the form U ′(t ) = Ũ (t ) exp(−itHF ), where Ũ (t ) is
periodic (the so-called micromotion part), with Ũ (t = T ) =
I , and exp(−itHF ) captures the nonperiodic part. If one can
then smoothly deform U (t ) into Ũ (t ) (see, e.g., Ref. [19]),
which one can do with the nonperiodic evolutions of the
models discussed in later sections,6 then the identification
(α) = (α) + 2π continues to hold. This implies that, on
the torus, θ is a Z2 invariant. We will see in Sec. III C that,
taking the Schwinger-Keldysh trace on a strip, θ is unambigu-
ous and therefore defines a Z invariant.

In Sec. III E we will prove that θ is quantized for generic
Hamiltonians. In the case of the simple model (18) and (19),
quantization of θ can also be easily implied using the ac-
cidental particle-hole symmetry discussed around Eq. (21),
(A1i, A2i, α) → (−A1i,−A2i,−α), i.e.,

exp iW [A1, A2]

→ exp −i
(−α)

2π

∫
dt

T

∫
d2r[B1(r) − B2(r)], (29)

which means that, when α = 0, θ is quantized as θ = π ×
integer. As in the case of static topological insulators, the
quantized theta term can be thought of as a topological
invariant differentiating topologically distinct (many-body
localized) Floquet unitaries (regardless of the microscopic de-
tails of the system, and even for strongly coupled many-body
systems, as far as the thermodynamic limit is well defined).
For generic values α, one can see that particle-hole symmetry
implies f (α) = − f (−α). In the next section, we will show
that (α) is independent of continuous deformations of the
Hamiltonian and that f (α) contains additional topological
information of the system.

5This enhanced symmetry can also be seen without setting A2 = 0
by simply noting that U (A2), for this particular model, commutes
with gauge transformations.

6In fact, some literature just entirely focuses on periodic Floquet
unitaries U (0) = U (T ) = I , see Ref. [19].

We close this subsection with a few remarks. First, while
we have been focusing on smooth configurations of the
background gauge fields, it is also interesting to consider
nonsmooth configurations, e.g., a pair of localized magnetic
fluxes φ and −φ inserted through two plaquettes. The cor-
responding background gauge field can be introduced by
considering a “string” on the dual lattice connecting these two
plaquettes and assigning eiArr′ = e±iφ for those links intersect-
ing the string. It is straightforward to see

Z[A1, A2 = 0] = (1/2)(1 + cos φ), (30)

where we set α = 0 for simplicity. The partition function
is real and its amplitude is zero for φ = π × integer. This
background configuration is fairly singular, and cannot be
described by the topological effective action. The situation is
similar to the response effective action of the (integer) quan-
tum Hall effect; in the presence of the Chern-Simons term,
the response partition function vanishes when one introduces
a monopole. (See Ref. [43], for example).

Second, while we have been discussing the free fermion
model, the topological response functional (26) can be also
derived for more generic models. Consider the Floquet mod-
els introduced and discussed in Refs. [23,44]. These models
consist of swap operators, acting on each link. As an example,
we follow Ref. [44]. The model consists of hard-core bosons
living on a square lattice. For each link, we define a SWAP
operator,

Sr,r′ |nr, nr′ 〉 = |nr′ , nr〉, (31)

where nr = 0, 1 is the occupation number of hard core bosons
at site r. Sr,r′ can be given explicitly as

Sr,r′ = 1 + b†
rbr′ + b†

r′br − nr − nr′ + 2nrnr′ . (32)

Combing these SWAP operators, Uj = ∏
r∈A Sr,r+b j , the total

Floquet drive is given by UF = U4U3U2U1. In the absence
of boundaries, one can readily check that U is the identity
operator,

〈{n}|UF |{n′}〉 = δ{n},{n′} =
∏

r

δnr ,n′
r
. (33)

The background U (1) gauge field can be introduced by
replacing b†

rbr′ → b†
rgrr′br′ in Srr′ where grr′ = g∗

r′r and
grr′ = eiArr′ ∈ U (1). One can check easily Srr′ (A)|nr, nr′ 〉 =
gnr−nr′

rr′ |nr′ , nr〉.UF (A) is diagonal in the occupation number
basis and given by

〈{n}|UF (A)|{n′}〉 = exp[iI (n, A)]δ{n},{n′}. (34)

Here, for a fixed configuration {n}, eiI (n,A) can be written as

eiI (n,A) =
nr=1∏

r

eiBr =
∏

r

eiBr nr = ei
∑

r Br nr , (35)

where the product
∏nr=1

r is over all r where a particle is
present, nr = 1. It is then straightforward to see that the topo-
logical response functional is given by (26).

Third, while we have focused for the Floquet unitary at
t1 − t0 = (integer) × T , we can monitor the time evolution of
the partition function Z[t1, t0; A1, A2] numerically for arbitrary
t0,1 and for a given static gauge field configuration. In Fig. 2,
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FIG. 2. The time evolution of Z[A1, A2] for the static gauge field
configuration (36) for 3T/4 < t < T for Lx = Ly = 4, 8, 12, 16, 20
with α = 0.8. Here t = t1 − t0, with t0 = −T/2. The dotted line
represents (α = 0.8) = 1.94795.

Z[t1, t0 = −T/2; A1, A2] is plotted as a function of t1 for the
background field configuration A2i = 0 and

A1x(x, y) = 0,

A1y(x, y) =
{

0, y = 1, . . . , Ly − 1,

2πx
Lx

, y = Ly.
(36)

In this configuration, the magnetic flux is inserted through
plaquette located on a row at y = Ly. The total flux is 2π .
We see that the amplitude |Z[A1, A2]| approaches to ∼1 as
t1 → T/2. On the other hand, away from t1 = T/2, the am-
plitude |Z[A1, A2]| can be very small (nearly zero); in these
time regions, Z[A1, A2] seems not to be topological in nature.
In addition, as t1 → T/2, arg Z → (α).

B. Separating bulk and boundary actions

We now move on to discuss the chiral Floquet drive in
the presence of open boundary conditions. Let us first recall
that, in the absence of boundaries, and with background gauge
field, the single-particle unitary UF (A) is diagonal in the occu-
pation number basis, with the diagonal elements depending on
the background A. Let us now make a boundary by removing
some links. While the bulk part of UF (A) continues to be
diagonal, the boundary part is not, as after one period the
location of a particle on the boundary is shifted, see Fig. 3.
We can then decompose UF (A) as

UF (A) = Ubulk(A) ⊕ Ubdry(A), (37)

FIG. 3. Chiral Floquet drive with open boundary. (a) Cylindrical
geometry with open (periodic) boundary condition in y (x) direction
and (b) “Disc” geometry with open boundary condition in both x and
y directions. Shaded (unshaded) sites belong to the boundary (bulk)
Hilbert space.

where Ubulk and Ubdry are supported by two spaces orthogonal
to each other; we will refer them as the bulk and boundary
Hilbert spaces. For our current model, the boundary Hilbert
space consists of a subset of sites living on the boundary, as
in Fig. 3. Correspondingly, the many-body Floquet unitary
factorizes, UF = Ubulk ⊗ Ubdry, leading to the factorization of
the generating functional:

eiW [A1,A2] = Tr [U (A1)ρ0U
†(A2)]

= Tr [Ubulk(A1)ρ0,bulkU
†
bulk(A2)]

× Tr [Ubdry(A1)ρ0,bdryU
†
bdry(A2)]

= eiWbulk[A1,A2]eiWbdry[A1,A2], (38)

where we also split the initial density matrix into bulk and
boundary parts: ρ0 = ρ0,bulk ⊗ ρ0,bdry.

The bulk effective functional Wbulk[A1, A2] can be com-
puted in the same way as the torus case, and is essentially
given by (26), where now in the product

∏
r we simply remove

sites which belong to the boundary Hilbert space. Taking the
continuum limit,

Wbulk[A1, A2] = (α)

2π

∫
dt

T

∫
bulk

d2r [B1(r) − B2(r)]. (39)

We also note that

Zbulk[−A1,−A2,−α]

Zbulk[A1, A2, α]
= ei

∫
dt
T

∑bulk
r (B1r−B2r ) �= 1, (40)
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since the total flux
∑bulk

r Br on an open manifold is not sub-
ject to the quantization condition; particle-hole symmetry is
broken.

The generating functional for the boundary unitary Wbdry

can also be evaluated explicitly:

Zbdry[A1, A2, α] = 1(
2 cosh α

2

)Nbdry

×
∏

x

{
e− α

2 + e
α
2 ei

∑x+2κ

x′=x [A1(x′ )−A2(x′ )]}.
(41)

Here we chose the geometry (a) in Fig. 3 and populated only
one of the boundaries, x labels the sites on the boundary,
A(x) = Ax,x+1 for both A1(x) and A2(x), and Nbdry is the total
number of boundary sites. Note that in contrast to the bulk
unitary the boundary unitary is not gapped (many-body local-
ized), Ubdry(A = 0) is not identity. We can also verify

Zbdry[−A1,−A2,−α]

Zbdry[A1, A2, α]
= e−i

∫
dt
T

∑◦ bdry(A1−A2 ) �= 1, (42)

where ∑◦ bdry represents the sum taken over links on the bound-
ary region (an analog of a 1D line integral

∮
along the

boundary). The “Wilson loop” e−i
∫

dt
T

∑◦bdry (A1−A2 ) is not subject
to quantization condition, and hence particle-hole symmetry
is broken, as in the bulk. On the one hand, when the bulk
and boundary generating functionals are combined, the to-
tal generating functional respects the particle-hole symmetry,
Z[−A1,−A2,−α]/Z[A1, A2, α] = 1. The situation is similar
for the trace of the single unitary operator Tr [Ubdry(A)] (which
is not the Schwinger-Keldysh trace), which takes a simple
form and is given by

Tr [Ubdry(A)] = e−Lx
α
2 + e+Lx

α
2 ei

∑◦ bdryA, (43)

where Lx is the total number of sites in the boundary Hilbert
space. The trace (43) does not preserve particle-hole sym-
metry, while it enjoys the large U (1) gauge invariance.
On the other hand, by adding (multiplying) a counterterm,
e−(i/2)

∫
dt
T

∑◦ bdry
ATr [Ubdry(A)] is particle-hole symmetric, but not in-

variant under large U (1) gauge transformations. The situation
is completely analogous to the well-known mixed anomaly (a
conflict between particle-hole and U (1) symmetry) in (0 + 1)-
dimensional field theory [45]. This is consistent with the
fact that the boundary unitary realizes a single chiral (Weyl)
fermion; the single-particle boundary unitary in momentum
space is given simply by Ubdry(A) = exp ikx where kx is single-
particle momentum along the boundary.

Finally, note that the bulk response (39) has the same form
as that of the closed system in Eq. (29). This is expected as
the system is localized.

C. Strip invariant and magnetization

Let us introduce the Schwinger-Keldysh trace on a strip:

eiWstrip[A1,A2] = Tr[U (A1)ρ0PstripU (A2)], (44)

where Pstrip is the projector onto sites contained in the strip
shown in Fig. 4. Since the size of the strip is large compared
to the localization length, we can take the continuum limit as

FIG. 4. Representation of the initial state on the cylinder. Sites
are populated within the strip indicated in purple. The strip has length
Lx in the x direction (i.e., it wraps the cylinder), thickness � in the y
direction, and distance d from the boundaries of the cylinder, with
�, d � ξ , where ξ is the localization length.

in the previous section, giving

Wstrip[A1, A2] = (α)

2π

∫
dt

T

∫
strip

d2r [B1(r) − B2(r)], (45)

which has a similar form as (39), but the spatial integration is
now taken over the strip. Despite (39) and (45) look formally
identical, it is crucial to note that θ = (α = 0), as defined
in (45), is completely unambiguous and is thus, upon proof of
its quantization, Z-valued. Indeed, θ in (39) could be shifted
by multiples of 2π by adding boundary contributions to the
system, thus making the integer part of θ

2π
a purely boundary

quantity [27]. However, the strip invariant (45) is defined on
a strip located far away from the boundary. To shift θ we
would need a topological defect in the bulk.7 We conclude
that θ is perfectly well defined as a bulk quantity and its value
is completely unambiguous. This important point leads us to
give (45) a different name, and we shall call it strip invariant.

Now since the magnetic flux can have a continuous value,
we can differentiate Wstrip[B, 0] with respect to a uniform
background magnetic field B and directly relate our response
to magnetization. Indeed,

∂

∂B
eiWstrip[B,0]|B=0

= Tr

[
ρ0U

†(B = 0)
∂

∂B
U (B)

]

= −i
∫ κT

−κT
dt Tr

[
ρ0U

†(t,−κT )
∂H (t )

∂B
U (t,−κT )

]

= −i
∫ κT

−κT
dt Tr [ρ0U

†(t,−κT )MU (t,−κT )], (46)

where we suppressed the subscript bulk from various quanti-
ties for simplicity, κ is a half-integer, and we used

U †(κT,−κT )
∂

∂B
U (κT,−κT ; B)

∣∣∣
B=0

= −i
∫ κT

−κT
dt U †(t,−κT )

∂H (t, B)

∂B
U (t,−κT ), (47)

7In particular, by changing the thickness � of the strip θ would have
a jump. We shall not consider this situation in this work.
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and where we identify M ≡ −∂H/∂B as the magnetization
operator. We are then led to introduce

mα = i

2κT LxLy

∂

∂B
eiWstrip[B,0]

∣∣∣
B=0

, (48)

where the factor of 2κT is the total length of the time in-
tegral, and LxLy is the area of the bulk. We naturally view
mα as the magnetization averaged over time and space. This
quantity was introduced in Ref. [22] for the single-particle
“infinite temperature” state. Using the bulk generating func-
tional worked out in (39), we then find

mα = −(α)

2πT
, (49)

so that, for α = 0, the averaged magnetization is half-
quantized. In Ref. [22] it was found that the averaged
magnetization is quantized. The relative factor of 1/2 is in that
we are considering the sum over states with arbitrary particle
numbers.

If we focus on the N-particle sector of the Hilbert space,
then we have the integral quantization of the averaged
magnetization. Indeed, explicit evaluation of the generating
functional restricted to the N-particle sector ZN [A1, A2] in (25)
(evaluated inside the strip of Fig. 4) gives

−i log ZN,bulk[A1, A2] = 2θ

2π

∫
dt

T

∫
d2r [B1(r) − B2(r)],

(50)

for smooth background gauge fields. Note the relative factor
of 2 as compared to (39). Using again Eq. (46), where this time
ρ0 is the density matrix supported on the bulk and restricted
to particle number N , gives

∂

∂B
ZN,bulk[A, 0] = −i

∫ κT

−κT
dt Tr′M(t ), (51)

where Tr′ is the N-particle trace taken over the bulk sites. This
then gives the time-averaged magnetization per unit area as

1

2κLx�

∫ κT

−κT
dt Tr′M(t ) = θ

π
. (52)

D. Stability under deformations

We shall now show that (α) must be independent of
continuous deformations of the Hamiltonian, as far as the
system is localized. In any geometry, such as the torus de-
scribed in Sec. III A or the strip of Fig. 4, consider smoothly
deforming the Hamiltonian inside two regions I and II whose
size and distance is much larger than the localization length,
and denote by HI (t ), HII (t ) the Hamiltonian in region I, II ,
respectively. Further, assume that the length scale of defor-
mation from HI (t ) to HII (t ) is much shorter than the scale of
variation of the gauge field Ai. The response at first derivative
order must then be

W [Aa] = 1

2π

∫
dt

T

∫
d2r (α, r) εi j∂iAa j (r), (53)

where (α, r) approaches the value I (α),II (α) in region
I, II , respectively, and the chemical potential α is constant
everywhere. One can obtain (53) using the same effective field
theory approach that led to (17), although in the current setup

there is no translation invariance, and thus  is allowed to
depend on position. We again emphasize that the approach
leading to the local response action (53) [or (17)] relies on
the system being localized. Varying the generating functional
with respect to Ai(r) gives the time-averaged expectation
value of the current,

δeiW [A]

δAi(r)

∣∣∣∣
A=0

= −i
∫

dt Tr

[
ρ0U

†(t,−κT )
∂H (t )

∂Ai(r)
U (t,−κT )

]

= −i
∫

dt Tr[ρ0Ji(r, t )] ≡ −iJ̄ i(r), (54)

where we used steps similar to those around Eq. (46). Plug-
ging in the functional (53) gives

J̄ i(r) = − 1

2π

∫
dt

T
εi j∂ j(r). (55)

Due to localization this current should vanish, as far as r is
sufficiently far from any boundaries, such as the boundary of
the strip in Fig. 4, or the boundary of the cylinder itself. We
now show why this is the case for a model of the form H (t ) =
H0(t, A) + Hint(t ), where H0 is the chiral Floquet Hamiltonian
in (18) and (19), and Hint(t ) is a generic interaction term which
does not depend on Ai and has a generic time dependence,
i.e., it does not have to be periodic: Any Hint(t ) will be fine
as far as the system remains many-body localized. The trace
of the current operator for the Hamiltonian H (t ) evaluated at
r = r̄ is

−i Tr[ρ0Ji(r̄, t )] = Tr[ρ0U
†(t )(c†

r̄+icr̄ − c†
r̄ cr̄+i )U (t )]. (56)

If the system is on a closed manifold, where we do not project
out any states, then ρ0 commutes with U (t ) which immedi-
ately leads to the vanishing of the trace, Tr [ρ0U †(t )(c†

r̄+icr̄ −
c†

r̄ cr̄+i )U (t )] = Tr [ρ0(c†
r̄+icr̄ − c†

r̄ cr̄+i )] = 0. (See Ref. [46]
for a similar discussion). Thus, as far as W [A] is given by the
local functional (53), (α) must be independent of continuous
deformations. Let us now consider a system with boundaries,
where the region initially populated is located in the deep bulk
and sufficiently far from the boundaries, as represented in
Fig. 4. Thanks to localization, the populated region remains
far from the boundary. Additionally, in this region the cur-
rent is insensitive to whether the system is open or closed,
therefore we conclude that the expectation value of the current
still vanishes. In turn, comparing with (55) this implies that 

cannot change continuously. Note that in the above proof we
did not make any use of the periodicity of the Hamiltonian.
Independence on continuous deformations of this topological
response is guaranteed solely by localization.

E. Quantization of θ

We consider the strip invariant (44) for a system populated
only within a strip that is located far from the boundary of the
lattice, as illustrated in Fig. 4. Since we want to study θ =
(0), we shall take the chemical potential α = 0. Applying
Eq. (22) we find

eiWstrip = 1

2L�
det[I + PstripU†U (B)], (57)
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where Pstrip is the single-particle projector on the strip, and U
is the single-particle evolution operator. To first order in B,

1

2L�
det

[
1

2
I + PstripU†U (B)

]
= 1 + B

2
tr(PstripU†∂BU ).

(58)

Then, using (39),

θ = 2π

iκL�
∂BeiW

∣∣∣
B=0

= 2π

iκL�

1

2
tr(PstripU†∂BU ). (59)

In Appendix C we show that θ can be written as

θ = −πW [Ũ0] = nπ, (60)

where W [Ũ0] is the winding number introduced in Ref. [21],
and Ũ0(t ) is a periodization of the unitary U (t ), defined as

Ũ0(t ) =
{U(

t − κ
2 T,− κ

2 T
)

t ∈ (0, T )

eiHF (t−2T ) t ∈ (T, 2T )
, (61)

where HF is the single-particle Floquet Hamiltonian defined
by Ũ (T − κ

2 T,− κ
2 T ) = e−iHF T . The proof of (60) uses tech-

niques introduced in Refs. [21,22] and relies on two important
elements. One is that the system localizes, which allows us
to perform nontrivial manipulations of the trace on the right-
hand side of (59) and to bring it in the form of a winding
number; the other is that our response is evaluated on a
timescale much longer than the period T , which allows us to
discard the nonperiodic part of U (t ).

F. Numerical tests of stability

As mentioned in the beginning of this section, the topolog-
ical chiral Floquet model (18) and (19) is somewhat special or
ideal in the sense that its Floquet Hamiltonian is zero, UF = I .
In this subsection, we shall depart from the ideal model (18)
and (19) by adding disorder and perturbations,8

H (A) = H0(t, A) +
∑

r

wrc†
r cr + λ

∑
r

(−1)ηr c†
r cr, (62)

where H0(t, A) is the Hamiltonian introduced in (18) and (19)
coupled to gauge field Ai; the second term is a disorder poten-
tial, where wr are uncorrelated and can take values between
[−W,W ] with equal probability; and, finally, the third term is
a clean potential, where ηr = 0 or 1 depending on whether r
lies in sublattice A or B, respectively. [Note that H0(t, A) is
zero for 4T/5 < t < T while the last two terms in (62) are
present for all t .] In the following, we shall probe numerically
the stability of the response introduced above. The disorder
term, when sufficiently strong, guarantees localization. On the
other hand, what the small λ perturbation is expected to do
is to induce a finite bandwidth in the quasi energy spectrum,
and nonzero Floquet Hamiltonian, HF �= 0: It can compete
with the disorder term. Both of these terms, when sufficiently
strong, can drive the system away from the topological phase

8We have also studied different topological Floquet models, which
are translationally invariant, characterized by the nonzero 3D wind-
ing number topological invariant (and hence nonzero quantized
magnetization), and having nonzero Floquet Hamiltonian HF �= 0.
The results will be reported elsewhere.

FIG. 5. Plot of (α) as a function of disorder strength W , for
various values of α when λ = 0 (a) and λ = 0.1 (b).

with nonzero  by going through a continuous transition.
While such transition is interesting, in this paper, we limit
our attention to small perturbations to the ideal chiral Floquet
drive, and postpone the detailed study of the putative transi-
tion to future works.

We study the dependence of (α) on the disorder strength
W . To this aim, we simulated the Hamiltonian (62) on a
cylindrical lattice of size Lx = 20 and Ly = 40. As initial
state, we populated a cylindrical strip of width 16, so that the
distance from the boundaries is sufficiently large compared to
the localization length, see Fig. 4. This ensures that we can
neglect boundary effects. The generating functional and the
Theta angle (α) are obtained by taking the average of the
disorder realizations of the Schwinger-Keldysh trace:

eiWstrip[A1,A2] = Tr [U (W, A1)ρ0PstripU †(W, A2)], (63)

where · · · represents disorder averaging, in the presence of
a fixed background field configuration with

∫
dA1 = 2π and∫

dA2 = 0. In our simulation, we performed 20 disorder re-
alizations. We emphasize that, as mentioned below Eq. (11),
we need to evaluate W [A1, A2] over a very long time in or-
der to isolate the topological terms. One can indeed verify
numerically that evaluating W [A1, A2] over a time which is
comparable to the microscopic timescales of the system, (α)
quickly deviates from the unperturbed value as one increases
disorder, even if the system is localized.9

We first set λ = 0. Figure 5(a) shows the dependence of
(α) on W for different values of α. For values of W that
are not too large compared to the quasienergy gap of H0,
ε = 2π/T = 0.8, one sees the presence of a plateau. At larger

9Evaluating W over short times is equivalent to having backgrounds
A1i, A2i that vary fast in time, thus probing quasienergy scales that are
characteristic of the microscopic system.
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FIG. 6. The plots show the transmission probability g(r) as a function of r = (x, 0) in the first row, and r = (0, y) in the second row. As
W becomes larger than λ, correlations between sites drop exponentially.

values, the disorder seems sufficiently strong to generate a
transition to a topologically trivial state. Confirming this re-
quires more accurate numerical simulations, which we leave
for future work. As a diagnostics of localization, we consid-
ered the normalized transmission probability

g(r) = max
wr

lim
κ→∞

∣∣∣∣ 〈r|U (κT,−κT ; A = 0) |r0〉
〈r0|U (κT,−κT ; A = 0) |r0〉

∣∣∣∣, (64)

which measures the correlation between a site in the middle of
the strip, r0 = (0, Ly/2) and site r after a long-time evolution,
and the correlation is maximized over disorder realizations.
As plotted in Fig. 6, we see that the system is localized for all
values of W near the plateau

Let us now switch on the third term, the clean potential
term. Figure 6 shows that the localized regime holds for
λ � W , as expected. For W comparable or smaller than λ,
localization is lost and we thus expect to see a deviation of
(α) from the unperturbed value. This indeed happens for
W < 0.2–0.3, as shown in Fig. 5(b), consistently with the
delocalization-localization transition which happens around
W = 0.2, as shown in Fig. 6. As W is increased, localization
becomes stronger and (α) is brought back to the unperturbed
value. For strong-enough disorder, we again see that (α)
drops to zero.

G. Topological chiral Floquet p, q drives

In this section we apply our response theory to a gen-
eralization of chiral Floquet models which is motivated by
and related to a class of models introduced in Refs. [24,44].
Those authors found that a class of Floquet systems in two
dimensions admits a topological classification by a rational
number (Gross-Nesme-Vogts-Werner [47] or chiral unitary
index), and characterizes asymmetric quantum information
flow at their boundaries. The topological index can be de-
fined without referencing any symmetry, and hence these

topological Floquet drives do not require any symmetry
for their existence. From the perspective of the Schwinger-
Keldysh effective field theory approach we are pursuing, one
possible way to detect such topological Floquet drives is
to introduce a “gravitational” background, and look for a
topological term in the gravitational effective action. Here,
we instead consider a topological Floquet drive with U (1)
symmetry, consisting of excitations with suitably assigned
charges, which perform clockwise or counterclockwise chiral
motions. We will see that the chiral unitary index is cap-
tured by the response we introduced in the earlier part of
this section, once we assign charges properly and study the
α dependence of the effective functional.

We start again with a square lattice partitioned into two
sublattices, precisely as described above Eq. (18). For each
site we will now consider a Hilbert space Hp ⊗ Hq, where we
further factorize Hp = ⊗r

i=1 Hpi and Hq = ⊗s
i=1 Hqi , where

pi, qi are prime numbers, and Hk has dimension k. For a given
site r, we label states in Hk by their U (1) charge as |r, nk〉
where nk = 0, . . . , k − 1 is the (particle-hole unsymmetrized)
particle number. We then consider the following four-step
Floquet drive:

UF = U4U3U2U1,
(65)

Un =
∏

r

(∏
pi

U (pi )
n,r

)(∏
qi

U (qi )
n,r

)
,

where the action of these unitaries on a state |r, npi〉 is

U (pi )
n,r

∣∣r, npi

〉 = einpi Ar,r+bn
∣∣r + bn, npi

〉
, (66)

and, similarly, the action on a state |r, nqi〉 is

U (qi )
n,r

∣∣r, nqi

〉 = einqi Ar,r+b5−n

∣∣r + b5−n, nqi

〉
. (67)

In summary, U swaps the location of p-type particles fol-
lowing counterclockwise rotation as in the chiral Floquet

013117-11



GLORIOSO, GROMOV, AND RYU PHYSICAL REVIEW RESEARCH 3, 013117 (2021)

model (18) and (19), while it swaps the location of q-type
particles following clockwise rotation. This type of evolution
was introduced in Refs. [24,44]. In our case, we additionally
assign U (1) charges to particles so that our response can di-
rectly capture the topology of those models. In Refs. [24,44],
the topological classification was demonstrated by deforma-
tion arguments, where the deformations involved exchanging
subspaces of Hp of dimension pi with subspaces of Hq of
dimension qi whenever pi = qi. This leads to a topological
classification labeled by the factors pi and qi which are pair-
wise coprime, i.e., the classification is labeled by p/q. Our
assignment of charges has been made so that such defor-
mations. preserve the U (1) symmetry of our Hamiltonian.
We can then hope that the response functional W [A1, A2]
will automatically capture the topology property detected and
classified by the chiral unitary index. This will turn out to
be the case, which illustrates how W furnishes a systematic
diagnostic tool for topology. It would be interesting to deal
directly with the neutral system, coupling it to a metric rather
than a U (1) gauge field. We leave this for future work. (See,
however, Sec. IV A for a possible geometric response of topo-
logical chiral Floquet drive).

Let us now obtain the generating functional. First, the
initial density matrix is ρ0 = eαQ/Tr eαQ, with Q the total
charge,

Q =
∑

r

(∑
i

ñpi,r +
∑

j

ñq j ,r

)
, (68)

where we again used particle-hole symmetrized numbers ñk,
in the sense that the map nk → k − 1 − nk becomes ñk →
−ñk. One then finds

Tr eαQ =
∏

r

∏
pi

[pi−1∑
k=0

e
(

k− pi−1
2

)
α

] ∏
q j

[q j−1∑
k=0

e
(

k− q j −1

2

)
α

]
.

(69)

Repeating similar steps as those in the beginning of Sec. III A,
we obtain the generating functional

eiW [Aa] = 1

Tr eαQ

∏
r

∏
pi

[pi−1∑
k=0

e(k− pi−1
2 )αe+ik

∫
dt
T Br

]

×
∏
qi

[qi−1∑
k=0

e(k− qi−1
2 )αe−ik

∫
dt
T Br

]
. (70)

The structure of this generating functional is similar to that
of (26), where, at each site r, we sum over all possible par-
ticle numbers and the corresponding flux collected through
the micromotion of each particle around the corresponding
plaquette. The continuum limit gives

W [Aa] = p,q(α)

2π

∫
dt

T

∫
d2rBa(r), (71)

where

p,q(α) = θp,q + fp,q(α), (72)

with

θp,q = π

r∑
i=1

(pi − 1) − π

s∑
i=1

(qi − 1),

fp,q(α) = π

r∑
i=1

(
pi coth

piα

2
− coth

α

2

)

− π

s∑
i=1

(
qi coth

qiα

2
− coth

α

2

)
. (73)

Notice that if there are common factors pi = qi, then the
corresponding terms will cancel out in p,q(α), so the contin-
uum limit depends only on factors of the two respective sets
{pi, i = 1, . . . , r} and {qi, i = 1, . . . , s} which are different
from each other, i.e., the response exactly depends on p/q!
This is fully consistent with the chiral unitary index, which
we now recover as a topological response. Interestingly, one
can see that the phase of (70) is also only dependent on p/q.
Following the argument of Sec. III F, one then concludes that
p,q(α) is independent of localization-preserving deforma-
tions of the system.

IV. MORE ON EFFECTIVE THEORY OF RESPONSE

In Sec. III, our primary focus was to derive or calculate
the Schwinger-Keldysh effective response functional starting
from microscopic models such as the 2D chiral Floquet drive.
However, one of the advantages of the effective field theory
approach is that, based on a few basic principles, one can
put constraints on allowed terms in the effective action, and
systematically enumerate them, even without knowing micro-
scopic details of the system. In this section, we illustrate the
advantage of the effective field theory approach to response by
describing two new types of quantized response. We should
emphasize that, while the examples below are consistent with
the effective field theory of response, we do not yet know
whether and how they can be realized microscopically, which
we leave to future work.

A. Geometric response

For the first example, we consider the response to partic-
ular geometric deformations. Recall that Floquet systems are
invariant under discrete time translation by a period T and
that, since we probe the long-time behavior, time translation
can be viewed as a continuous symmetry. We now gauge
this symmetry and introduce a corresponding gauge field. The
gauge symmetry acts on the time coordinate as follows:

t → t + f (�r). (74)

The corresponding gauge field, which we denote as
ai, transforms as an Abelian gauge field δai = −∂i f (�r).
The gauge-invariant generating functional is

eiW = Tr[U (∞,−∞; a1i )ρ0U
†(∞,−∞; a2i )], (75)

where ρ0, up to normalization, is the identity, or the projector
on a strip such as that in Fig. 4. Gauge invariance of the
generating functional W implies that the current conjugated
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to ai is conserved (in the absence of other external fields):

Qi = δW

δai
, ∂iQ

i = 0. (76)

The current Qi is the (quasi-)energy current since time
translation symmetry is responsible for the (quasi-)energy
conservation.

To the leading order in derivatives W takes the following
form:

W =
∫

dt

T

∫
d2r c1(εi j∂ia1 j − εi j∂ia2 j ), (77)

where as before the time integration is done on t ∈
(−κT, κT ), κ a half-integer which we shall take to infinity at
the end, and where the factor of 1/T has been inserted for con-
venience. We consider a geometry without boundaries where
ai has a nontrivial flux. The spatial slice is assumed to be flat
with the periodic boundary conditions, while ai is given by

ai = ωεi j r j, ω = kT

L2
, (78)

where T and L are defined through the twisted space-time
boundary conditions

t ∼ t + T, r1 ∼ r1 + L, (79)

(t, r1, r2) ∼ (t − ωL(r1 − r2), r1, r2 + L). (80)

Consistency of the above coordinate identifications implies
that k is an integer.10 The flux of ai will then be 2ω which is
quantized. The fact that real time is periodic means that we
can consistently place on this geometry only systems whose
evolution is truly periodic, U (t, t0) = U (t + T, t0).

An example of such system is the unperturbed chi-
ral Floquet model of Sec. III. Suppose that the system
has time-reversal invariance, in the sense that HT (t, ai ) =
H (−t,−ai ).11 Following the reasoning around (29), one then
requires

c1

∫ κT

−κT

dt

T

∫
d2rεi j∂ia j = c12κL22ω = 2π

�⇒ c1 ∈ π

T
Z, (81)

thus leading to quantization of c1.
Next we discuss the physics interpretation of c1. This coef-

ficient describes the time-averaged “thermodynamic” quantity
known as energy magnetization [48–50]. It is defined as the
variational derivative12

mE = δW

δ(εi j∂ia j )
, (82)

10Indeed, the composition of the second identification followed by
the third one in (79) results in an identification which is equal to the
composition of the third followed by the second one, up to a shift of
time t ∼ t − ωL2.

11One could define a slightly more general notion of time-reversal
invariance, i.e., HT (t, ai ) = H (t0 − t, −ai ). This definition is equiv-
alent to the one in the main text up to translating the definition of the
Hamiltonian H (t, ai ) → H ′(t, ai ) ≡ H (t + t0/2, ai ).

12Here we assume that W depends on ai only through its flux.

giving

Qi = εi j∂ jmE , (83)

which justifies the definition. With this definition at hand we
find that the energy magnetization takes the form

mE = c1

2πT
. (84)

The coefficients  in (17) and c1 are completely indepen-
dent of each other and provide two independent invariants
characterizing a topological Floquet phase. Comparing to the
quantization of the magnetization we have a relative factor of
2π/T .13

B. Time-ordering sensitive topology

We now turn to the second extension of our effec-
tive response. So far we have seen response of factorized
form W [A1, A2] = W0[A1] − W0[A2], i.e., the two Schwinger-
Keldysh copies of the background are decoupled, and setting
one of them to zero would yield equivalent amount of infor-
mation. We now show that, at least from the point of view
of the effective field theory, this is not always the case. The
fact that the two copies can talk to each other gives rise to an
additional type of topological terms which are related to time
ordering. The most immediate example is the response to a
U (1) gauge field in 6 + 1 dimensions. At leading derivative
order, the most general generating functional is

W = 1

4π2

∫
dt

T

∫
d6r εi jkl pq[3c2∂iAr j∂kArl∂pAaq

+ (c3 + c2/4)∂iAa j∂kAal∂pAaq], (85)

where c2, c3 are constants, and we set the chemical potential
to zero for simplicity. Moreover, we conveniently introduced

Ari = 1
2 (A1i + A2i ), Aai = A1i − A2i. (86)

The part proportional to c2 can be factorized into

c2ε
i jkl pq(∂iA1 j∂kA1l∂pA1q − ∂iA2 j∂kA2l∂pA2q), (87)

where the two copies of the background are decoupled as
before. This means that, if c3 = 0, c2 captures information
related to the time average of a time-ordered correlation func-
tion. The coefficient c3 couples nontrivially A1i and A2i, and
is related to the time average of a nontime-ordered correlation
function. To see this more explicitly, let us specialize to the
background configuration

(As1, As2) = Bs,12

2
(−r2, r1),

(As3, As4) = Bs,34

2
(−r4, r3), (88)

(As5, As6) = Bs,56

2
(−r6, r5),

13This comes from that the “charge” of the system with respect to
large time translations is T , due to the first identification in (79),
while in the magnetization case, the U (1) charge is 2π .
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where s = 1, 2 labels the Schwinger-Keldysh copies.
Then (85) gives

∂3eiW

∂B1,12∂B1,34∂B1,56

∣∣∣∣
B=0

= 3κL6

2π2
(c2 + 2c3), (89)

where L6 is the volume of the system and κ = 1
2

∫
dt
T

is a half-integer as usual. Now introduce time-dependent
B1,12(t ), B1,34(t ), B1,56(t ). Using (7),

δ3eiW

δB1,12(t1)δB1,34(t2)δB1,56(t3)

∣∣∣∣
B=0

= Tr [ρ0T (M12(t1)M34(t2)M56(t3))], (90)

where M12(t ) is the magnetization operator coupled to B12 in
the Heisenberg picture,14

M12(t ) = −U †(t,−∞)

[
∂H (t )

∂B12

]
t

U (t,−∞), (91)

and similarly for M34(t ) and M56(t ). Note that (89) is the time-
integrated counterpart of (94), so that

c2 + 2c3 = 2π2

3κL6

∫
dt1dt2dt3 Tr[ρ0T (M12(t1)M34(t2)M56(t3))],

(92)

i.e., c2 + 2c3 is the time integral of a time-ordered three-point
function of magnetization operators. Similarly, one gets

∂3eiW

∂B1,12∂B1,34∂B2,56

∣∣∣∣
B=0

= −3κL6

2π2
c3. (93)

and, using (7),

δ3eiW

δB1,12(t1)δB1,34(t2)δB2,56(t3)

∣∣∣∣
B=0

= Tr [ρ0T (M12(t1)M34(t2))M56(t3)], (94)

and we see that c3 is related to the time average of a three-
point function of the same operators as for c2 + 2c3, but with
different time ordering:

c3 = − 2π2

3κL6

∫
dt1dt2dt3 Tr[ρ0T (M12(t1)M34(t2))M56(t3)].

(95)

It would be very interesting to realize microscopic systems
that lead to such “time-order sensitive” topology. We end this
section by mentioning that, obviously, one can use standard
methods of dimensional reduction to reduce the response (85)
to lower dimensions.

14For simplicity of illustration, in Eq. (94) we neglected terms
containing higher derivatives of the Hamiltonian with respect to mag-
netic field, e.g., ∂2H (t,B)

∂B12∂B34
. If the Hamiltonian has appreciable nonlinear

dependence on the magnetic field, then the contribution of such terms
in (94) may become important.

V. CONCLUSION

In this paper, we put forward topological response theory
for nonequilibrium topological systems using the Schwinger-
Keldysh formalism. Taking the chiral Floquet drives in two
spatial dimensions as an example, we identify topologi-
cal terms in the Schwinger-Keldysh generating functional
in the presence of static background U (1) gauge field.
As yet another example, in Appendix A, we discuss the
Schwinger-Keldysh generating functional for topological Flo-
quet unitaries constructed from group cohomology [19] with
symmetry G in d-spatial dimensions. There again, we iden-
tify topological response actions which are elements of
Hd (G,U (1)), in agreement with the previous claim [13–15].

The presence of these topological terms in the response
actions provides the (many-body) definition of topological
Floquet unitaries, and serves as (many-body) topological
invariants. We expect that the Schwinger-Keldysh effective-
field-theory approach should work beyond the models studied
in this paper, in generic space dimensions and with various
kinds of symmetries. Nevertheless, the case studied in this
paper, namely, the 2D topological chiral Floquet drive with
U (1) symmetry, may be somewhat special in the sense that the
quantized topological term is readily related to the physically
meaningful response, i.e., quantized magnetization. For topo-
logical terms for other symmetries, it may be more difficult or
nontrivial to relate them to insightful, physically measurable
responses.

Our approach should work even in the absence of
symmetry—one may be able to discuss the coupling of Flo-
quet unitaries to a background gravitational field. This may
be of particular interest, since there are topological Floquet
unitaries without symmetry [23,24]. These systems are char-
acterized by asymmetric quantum information flow at their
boundaries, and by the quantized edge topological index. It
would be interesting if we can capture the topological index
by properly introducing (a lattice version of) gravitational
background and by the presence of a topological term in the
gravitational effective action. (While we postpone the detailed
implementation of this to future works, we discuss the possi-
ble geometric response of the coupling of 2D Floquet drives
in Sec. IV).

There are plenty of open questions, such as an extension
of our work to other symmetries, transitions between different
Floquet topological phases, applications of our formalism to
other nonequilibrium (topological) systems, etc. Among the
most pressing issues is to develop a more comprehensive
understanding of the structure of the Schwinger-Keldysh ef-
fective topological action. For example, we have limited our
focus to background field configurations where Ai,1, Ai,2 are
time independent and α is a constant. The motivation for
this is that we can exactly compute the effective action for
these choices, but nevertheless, it would be important to study
the effective action for generic time and for more generic
background configurations.

Studying the Schwinger-Keldysh effective action in the
presence of generic background field configurations seems
also important to resolve the following puzzle: We identified
the theta term in the Schwinger-Keldysh effective topological
action for 2D chiral Floquet drives, which values in Z2 for
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closed spatial manifolds and in the presence of particle-hole
symmetry. While the quantization of magnetization can be
discussed by using open spatial manifolds, there is a ques-
tion if the bulk effective action for closed spatial manifolds
can fully capture the topological nature of 2D chiral Floquet
drives. Also, the theta term is quantized by particle-hole sym-
metry. While it does exist in the model we looked at, one
would expect that particle-hole symmetry may be a special
property of the Floquet drive at particular times, but would
ultimately be unnecessary for the fundamental topological
property of chiral Floquet drives.

Another point to mention is that the Schwinger-Keldysh
effective topological actions studied in this paper all have the
factorized form, i.e., the effective response partition function
factorizes between two Schwinger-Keldysh copies [see also
comments below (A23)]. We may speculate that factorized
response partition functions describe only the subset of topo-
logical Floquet drives, i.e., there may be topological Floquet
drives for which the factorization does not take place, and the
effective functional is given by a complicated polynominal of
Aa and Ar . This may happen in particular in higher dimen-
sions, as discussed in Sec. IV. We leave detailed study of such
systems for future works.

Note added. While finalizing the manuscript, Ref. [46]
appeared on arXiv, which has some overlap with our work.
Another recent study [51] also considers topological response
far from equilibrium.
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APPENDIX A: GROUP COHOMOLOGY MODELS

In this Appendix, we consider topological Floquet drives
preserving discrete symmetry G. It has been proposed that
topological Floquet systems in d spatial dimensions protected
by G can be systematically constructed by using the group
cohomology [13–16]

Hd+1(G × Z,U (1)) = Hd+1(G,U (1)) × Hd (G,U (1)).

(A1)

Here Hd+1(G,U (1)) corresponds to static SPT phases
in d spatial dimensions protected by G. On the other
hand, Hd (G,U (1)) describes nontrivial topological
unitaries specific to Floquet drives.15 For example,
when d = 1 and G = Z2 × Z2, H2(G × Z,U (1)) =
H2(G,U (1)) × H1(G,U (1)) = Z2 × (Z2 × Z2). Here
H2(G,U (1)) = Z2 corresponds to the classification of static

15Recall that static SPT phases described by the group cohomology
are expected to exhaustive for low spatial dimensions, and hence the
group cohomology classifies all SPT phases.

SPT phases protected by with G = Z2 × Z2, which includes
the Haldane phase; H1(G,U (1)) = Z2 × Z2 classifies to
nontrivial topological unitaries specific to Floquet drives.

1. d = 1 and G = Z2

It is also possible to construct explicit lattice models
corresponding to the group cohomology Hd (G,U (1)). As
an example, consider the case of d = 1 and G = Z2 [13].
We consider a chain with the two-dimensional on-site local
Hilbert space spanned by {|±〉}, where |±〉 are the eigen state
of the Pauli matrix σ x with eigenvalues ±1. The Z2 symmetry
is generated by

∏
j σ

x
j , where the product is over all sites in

the chain. We consider the Floquet drive of the form:

U (t ) = e−itH =
∏

j

e+itσ z
j σ

z
j+1

=
∏

j

[
cos(t ) + iσ z

j σ
z
j+1 sin(t )

]
, (A2)

where H = −∑
j σ

z
j σ

z
j+1. When t = π/2, and with PBC,

U (t ) is the identity operator, up to a phase factor:

U (π/2) =
∏

j

[
iσ z

j σ
z
j+1

] = iN , (A3)

where N is the total number of lattice sites. While trivial
with PBC, the unitary U (t = π/2) is nontrivial with open
boundary condition.

Following the spirits of the preceding sections, let us now
introduce Z2 gauge fields α j, j+1 = ±1 for links on the chain,
and consider:

H[α] = −
∑

j

σ z
j α j, j+1σ

z
j+1. (A4)

Then, our Floquet unitary is

U (t, α) =
∏

j

e+itσ z
j α j, j+1σ

z
j+1

=
∏

j

[
cos(t ) + iσ z

j α j, j+1σ
z
j+1 sin(t )

]
. (A5)

When t = π/2 and with PBC,

U (t = π/2, α) = iN
∏

j

α j, j+1 =: iNW (α). (A6)

Hence, U (t = π/2, α) is given by the identity multiplied by
the Wilson loop for Z2 gauge field W (α) = ±1. It follows
that the Schwinger-Keldysh trace for two Floquet unitaries
U (t, α′) and U (t, α) is given by

Z[t ; α, α′] = Tr [e−itH (α)e+itH (α′ )]. (A7)

In particular, when t = π/2,

Z[t = π/2; α, α′] = W (α′)W (α). (A8)

2. Generic construction

a. The Dijkgraaf-Witten theory.

The above construction for d = 1 and G = Z2 can be
readily extended to more generic cases [19]. To describe the
generalization, let us briefly recall the basic ingredients in
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FIG. 7. Triangulation of space time (here for the case of two
space-time dimensions) for the Dijkgraaf-Witten model.

the Dijkgraaf-Witten theories [52]. Dijkgraaf and Witten gave
a generic construction of (exponentiated) topological actions
exp(iI[g, Mn]) for discrete gauge theories with gauge group
G, where Mn is n-dimensional Euclidean space time, and {g}
represents a gauge field configuration (see Fig. 7).

The first step of the construction is to triangulate space
time in terms of n-simplicies (“triangles”), and assign direc-
tions (arrows) to each link (e.g., we assign numbers for each
vertex in a simplex; for i < j, →; for j < i, ←). For each
elementary triangle (n-simplex) |�n| = ±1 represents the ori-
entation of the simplex with respect to the orientation of space
time.

We now assign gauge field gi j ∈ G to each link. We
only consider flat gauge field configurations. For example,
when n = 2, each triangle has three links with three gauge
fields g01, g12, and g02; we impose the flatness condition by
g01g12 = g02, so that two out the three gauge fields are inde-
pendent. Next, we assign for each n-simplex �n a Boltzmann
weight ωn(g01, g12, g23, · · · ) ∈ U (1). (For the first entry in
ω, we start from the vertex with no incoming edge, etc).

Then, the topological action for a given triangulation is given
by

exp iI[g, Mn] =
∏
�n

ωn({g})|�
n|. (A9)

As the final step, we demand the action functional to be in-
dependent of triangulations of Mn. This leads to the condition
on ωn, the so-called cocycle condition, which is symbolically
given by dωn = 1. (We do not write down the definition of d
here, but it can be found in the literature). Each solution to this
equation gives a topological action exp iI[g, Mn]. Inequivalent
solutions to the cocycle condition are classified by the group
cohomology Hn(G,U (1)).

b. SPT partition functions.

Equation (A9) defines the action functional of the
Dijkgraaf-Witten theory (topological gauge theory) on Mn

with gauge group G. Summing over all gauge field configu-
rations {g} defines the Dijkgraaf-Witten theory. On the other
hand, the action functional exp iI[g, Mn] itself can be viewed
as a response theory of an SPT phase protected by symmetry
G [53].

The path integral for the “matter field” can be constructed
as follows. We first introduce degrees of freedom living on
vertices; let us call them vi ∈ G (where vi is an element in the
group algebra). We introduce G-gauge transformations as

vi → αivi, gi j → αi gi jα
−1
j . (A10)

Note that combinations v−1
i gi jv j are gauge invariant. In some

sense, {vi} can be identified as a gauge transformation.

The Dijkgraaf-Witten action is gauge invariant. Hence, we can write

eiI[g,Mn] =
∏
�n

ωn
(
v−1

0 g01v
−1
1 , v−1

1 g12v
−1
2 , v−1

2 g23v
−1
3 , · · · )|�n| = eiS[g,v,Mn]. (A11)

Since {vi} is arbitrary, we can sum over {vi},

Z[g, Mn] = eiI[g,Mn] = 1

|G|Nv

∑
{vi}

eiS[g,v,Mn]

= 1

|G|Nv

∑
{vi}

∏
�n

ω
(
v−1

0 g01v1, v
−1
1 g12v2, v

−1
2 g23v3, · · ·

)|�n|
, (A12)

where Nv is the number of vertices. We can then switch off the background field g:

Z[Mn] = 1

|G|Nv

∑
{vi}

∏
�n

ω
(
v−1

0 v1, v
−1
1 v2, v

−1
2 v3, · · ·

)|�n|
. (A13)

This can be considered as a partition function of an SPT phase protected by symmetry G. If there is no boundary on Mn,
Z[Mn] = 1.

It is also convenient to introduce

ν(g0, g1, g2, g3, · · · ) ≡ ω
(
g−1

0 g1, g−1
1 g2, g−1

2 g3, · · ·
)
. (A14)

ν satisfies (here, we take n = 3 for simplicity).

ν(gg0, gg1, gg2, gg3) = ν(g0, g1, g2, g3), ν(g1, g2, g3, g4)ν(g0, g2, g3, g4)−1ν(g0, g1, g3, g4)

× ν(g0, g1, g2, g4)−1ν(g0, g1, g2, g3) = 1. (A15)
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Conversely, when these conditions are satisfied by ν, one can construct a group cocycle ω by

ω(g1, g2, g3) = ν(1, g1, g1g2, g1g2g3). (A16)

Using ν, the partition function can be written as

Z[Mn] = 1

|G|Nv

∑
{v}

∏
�n

ν(v0, v1, v2, v3, · · · )|�
n|. (A17)

c. Group cohomology models realizing topological floquet drives.

Let us now come back to our question on topological Flo-
quet drives. Can we construct an explicit unitary operator with
global symmetry G and for a given space dimension d , which,
upon introducing a background gauge field, and then taking
the Schwinger-Keldysh trace, reproduces the response action
functional exp iI[g, Md ], or more precisely exp iI[g1, g2, Md ]?
We can actually simply take the SPT path integral (A17) and
“turn” it into a topological Floquet drive. Consider a unitary:

U (t = T ) =
∑
{v}

∏
�d

ν(v0, v1, v2, · · · )|�
d ||{v}〉〈{v}|, (A18)

which is completely diagonal. One can check easily that
U (t = T ) is the identity operator since

〈{v}|U (t = T )|{v′}〉 = δ{v},{v′}
∏
�d

ν(v0, v1, v2, · · · )|�
d |

= eiS[g=0,v,Md ]δ{v},{v′}

= eiI[g=0,Md ]δ{v},{v′}, (A19)

where we recall (A11). We can introduce a background gauge
field and consider:

U (t = T, g) =
∑
{v}

∏
�d

ω
(
v−1

0 g01v1, v
−1
1 g12v2, · · ·

)|�d |

× |{v}〉〈{v}|. (A20)

Recalling (A11) again,

〈{v}|U (t = T, g)|{v′}〉 = eiS[g,v,Md ]δ{v},{v′}

= eiI[g,Md ]δ{v},{v′}, (A21)

the Schwinger-Keldysh trace

Z[t ; g1, g2] = N−1Tr [U (t, g1)U †(t, g2)] (A22)

is given by, when t = T , as a product of the group-
cohomology partition functions:

Z[t = T ; g1, g2] = exp (+iI[g1, Md ] − iI[g2, Md ]). (A23)

The topological Schwinger-Keldysh response action (A23)
is consistent with the general classification (A1) in the
sense that the topological term is (A23) is a member of
Hd (G,U (1)). Equation (A23) is also in harmony with (28)
[although its microscopic counterpart (26) is more compli-
cated]. We note that in the group cohomology models, the
floquet unitary at t = T is given by the identity operator, up to
an over all phase factor which is given by ω ∈ Hd (G,U (1))
[see (A21)]. As a consequence, (A23) simply factorizes
Z[t = T ; g1, g2] = N−1Tr [U (T, g1)]Tr [U †(T, g2)]. This is

not the case for the 2D the chiral floquet model; the flo-
quet unitary at t = T is diagonal but not proportional to
the identity; (26) does not simply factorize. Nevertheless,
Tr [U (T, A1)U †(T, A2)] depends only on the difference, Aa =
A1 − A2, and for smooth (long-wave length) configurations,
the topological term can still be written in the factorized
form (28). The factorization of the response Schwinger-
Keldysh action has an affinity with the proposed group
cohomology classification (A1), in which we do not see
any inkling of the Schwinger-Keldysh formalism; at least
naively, the group cohomology Hd+1(G × Z,U (1)) is ex-
pected to classify the Euclidean path integral without using
the Schwinger-Keldysh copies. Nevertheless, the calculations
presented here show the factorization of the Schwinger-
Keldysh action, and the topological terms in each copies,
Tr [U (t, g1)] and Tr [U †(t, g2)], are labeled by Hd (G,U (1));
we thus land on (A1).

APPENDIX B: CHANNEL-STATE MAP APPROACH

In this Appendix, we introduce an approach based on the
so-called channel-state map (the Choi-Jamiołkowski isomor-
phism), which maps arbitrary unitary operator, acting on a
Hilbert space H, to a state living in a bigger (doubled) Hilbert
space, H ⊗ H∗. In physics context, this has been used in
the thermofield double state, and the thermo field dynam-
ics [54]. This channel-state map allows us to “transplant”
the approaches to static (topological) states to (topological)
unitaries and develop an effective response theory.

As the Schwinger-Keldysh formalism, the thermo field
dynamics provides a framework to describe the real-time
nonequilibrium dynamics of finite temperature systems. In
particular, at equilibrium, the thermo field dynamics and the
Schwinger-Keldysh formalism are equivalent. In some sense,
the purpose of this section is to “redo” what we have achieved
in the main text using the Schwinger-Keldysh formalism
by using the thermo field dynamics (channel-state map), al-
though the precise relation between the Schwinger-Keldysh
approach and the approach presented here is not entirely
clear.

As a by-product of using the channel-state map, we will
be able to make a contact with the common trick used, e.g.,
in Ref. [25] to derive the periodic table of noninteracting
Floquet fermion systems (the “Hermitian map”). There, one
first artificially doubles the original (single-particle) Hilbert
space, and then embeds Floquet unitaries into a Hermitian
operator (“Hamiltonian”) acting on the doubled Hilbert space.
We will provide a point of view in terms of the channel-state
map.
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1. Operator-state map

The channel-state map (the Choi-Jamiołkowski isomor-
phism) applies to an arbitrary quantum channel (trace-
preserving completely positive map), and maps it to a
quantum state (density matrix) in the doubled Hilbert space.
In simplest cases, it maps a unitary operator U acting on the
Hilbert space H to a (pure) state in the doubled Hilbert space
H ⊗ H∗:

|U 〉〉 = (I ⊗ U )|�〉〉, (B1)

where |�〉〉 is a maximally entangled state

|�〉〉 = (1/
√
N )

∑
i

|i〉|i〉∗, N ≡ dim H = TrH I. (B2)

Essentially the same mapping from an operator to a state is
used in the context of the thermofield double state, where
a thermal density operator is mapped to a state (thermofield
double state) in the doubled Hilbert space. Observe that the
overlap of two states corresponding to unitaries U and U ′ is

〈〈U |U ′〉〉 = (1/N )TrH[U †U ′], (B3)

which can be represented as a Schwinger-Keldysh path-
integral with the infinite temperature thermal state as the
initial state.

2. Fermionic chiral Floquet drive

Let us now consider a fermionic system described by a set
of fermion annihilation or creation operators, {ψ̂a, ψ̂

†
b } = δab.

Here a, b = 1, . . . , N and N is the number of independent “or-
bitals,” i.e., the dimension of the single-particle Hilbert space.
Following our general discussion, we double the fermion
Fock space, H → H ⊗ H, and consider the state (I ⊗ Û )|�〉〉
where |�〉〉 is a suitable maximally entangled state in the
doubled Hilbert space. For the current example, an appropriate
choice of |�〉〉 is given by

|�〉〉 ≡
∏

a

1√
2

[ψ̂†
aA + ψ̂

†
aB]|0〉〉, (B4)

where we now have two independent sets of fermion an-
nihilation or creation operators, {ψ̂aA, ψ̂

†
aA} and {ψ̂aB, ψ̂

†
aB},

acting on each copy of the fermion Fock space, HA and
HB. Note that for a given “site” a, the state is a equal
superposition of states of charge q on A and −q on B,
where q = ±1/2 is the total particle number measured
from half-filling, [ψ̂†

aA + ψ̂
†
aB]|0〉〉 = |10〉〉 + |01〉〉 = ∑

q |q +
1/2,−q + 1/2〉〉. The state dual to Û can be constructed ac-
cordingly as |U 〉〉 = (I ⊗ Û )|�〉〉.

We will be interested in “short-range correlated states,” i.e.,
all equal time correlation functions: 〈〈U |�̂†

i · · · �̂ j · · · |U 〉〉 =
〈〈�|Û †�̂

†
i Û · · · Û †�̂ jÛ · · · |�〉〉 are local in the sense that they

decay exponentially in distances. As far as evolution driven
by U is “local” or “nonergodic,” as in the case of many-body
localized evolution, we expect that |U 〉〉 can be treated as a
ground state of a gapped system.

The reference state |�〉〉 is a unique ground state of the
“parent” Hamiltonian

K̂0 =
∑
a,b

(ψ̂†
aAψ̂bB + H.c.), (B5)

acting on H ⊗ H. Similarly, |U 〉〉 is a unique ground state of

K̂ = (I ⊗ Û )K̂0(I ⊗ Û †)

=
∑
a,b

(ψ̂†
aAÛ ψ̂bBÛ † + H.c.). (B6)

Let us have a closer look at of this mapping for the
case of a quadratic Hamiltonian Ĥ = ∑N

a,b=1 ψ̂†
aHabψ̂b and

the corresponding unitary evolution operator Û . The many-
body unitary operator Û defines a unitary matrix U through
Û ψ̂aÛ † = Uabψ̂b. The state |U 〉〉 = (I ⊗ Û )|�〉〉 can be explic-
itly calculated easily:

|U 〉〉 =
∏

a

1√
2

[
ψ̂

†
aA +

∑
b

U†
abψ̂

†
bB

]
|0〉〉. (B7)

The parent Hamiltonian is

K̂ =
2N∑

i, j=1

�̂
†
i Ki j�̂ j =

N∑
a,b=1

[ψ̂†
aAUabψ̂bB + ψ̂

†
bBU

†
abψ̂aB],

(B8)

where �†, �, and the 2N × 2N matrix K are given by

�̂† = [ψ̂†
A ψ̂

†
B], K =

[
0 U
U† 0

]
, �̂ =

[
ψ̂A

ψ̂B

]
. (B9)

Passing from the original (single-particle) unitary matrix U to
the Hermitian matrix K is the “Hermitian map” used in, e.g.,
Ref. [25] to derive the periodic table of Floquet topological
systems. While the original Hamiltonian H is a member of
symmetry class A (if we do not assume any symmetry), K is
a member of symmetry class AIII: K is invariant under the
following antiunitary transformation (chiral symmetry):

Ŝ ψ̂aA Ŝ−1 = ψ̂
†
aA, Ŝ ψ̂aB Ŝ−1 = −ψ̂

†
aB,

Ŝ ψ̂
†
aA Ŝ−1 = ψ̂aA, Ŝ ψ̂

†
aB Ŝ−1 = −ψ̂aB. (B10)

This transformation can be considered as a composition of the
modular conjugation operator (tilde conjugation operator) in
the Tomita-Takesaki theory (the thermofield double theory),
and the swap operation ψ̂A ↔ ψ̂B.

3. Building effective response field theories by
dimensional reduction

Note that the spectrum of K is gappled and completely
“flat”: Its eigenvalues are all either ±1. Any K of this form
can be obtained from a more “physical” Hamiltonian pre-
serving chiral symmetry and having a energy gap by spectral
flattening [55]. As |U 〉〉 is realized as a unique ground state
of a gapped Hamiltonian K̂ , its topological properties can
be studied and classified by using the techniques of static
(symmetry-protected) topological phases.

With the help of the operator-state map, and assuming
the presence of reasonable parent Hamiltonians K̂ , we now
proceed to develop effective response field theories. We
henceforth resurrect the so-far neglected time dependence in
the unitaries, Û (t ), and work with periodic unitaries, Û (t +
T ) = Û (t ).

Following the recipe of deriving effective response field
theories for static topological phases, we introduce a
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imaginary-time space-time path integral of type (2). Naively,
this would introduce yet another time than the real time t ,
which simply enters in the path integral as a parameter; For a
Floquet system living on physical (d + 1)-space-time dimen-
sions, we have (d + 2)-dimensional space time. As we will
see, this issue can be naturally solved if we make a contact
with the theory of adiabatic quantum pump, a typical example
of which is the Thouless pump in (1 + 1)-dimensional system.
The topological properties of Floquet unitary operators in
(d + 1)-dimensions, may be related to (d + 2)-dimensional
topological phases. The response field theory of the latter
can be dimensionally reduced to describe the target (d +
1)-dimensional physics. This means that we are effectively
considering the adiabatic evolution of Floquet unitaries U (t )
as a function of t , while the time evolution of physical states
by Floquet unitaries are not adiabatic in general.

Observe also that if we start from systems with no-
symmetry (class A), then mapping unitaries to states by the
channel-state map transforms the symmetry class from A to
AIII by working with the doubled Hilbert space. This is in a
perfect harmony with the above dimensional shift (d + 1) →
(d + 2), and with the Bott periodicity.

Now, following the recipe of deriving effective response
field theories for static topological phases, we introduce a
background U (1) gauge field V = Vμdxμ. This in principle
has nothing to do with physical electromagnetic U (1) gauge
field A = Aμdxμ, as it is introduced in the doubled Hilbert
space (see the comments below, though). By integrating over
the matter field, we would then arrive at the effective response
theory. Since we are in (3 + 1)d, and since our Hamiltonian
K belongs to class AIII, the topological part of the resulting
effective action is given by the axion term:

Weff [V ] = θ

8π2

∫
dud3x εμνκλ∂μVν∂κVλ, (B11)

where u is the fictitious imaginary time, which is analytically
continued to the Lorentz signature in Eq. (B11). The θ angle
here is pinned to quantized values, θ = π × (integer), by the
chiral symmetry.

The next step is to dimensionally reduce this action to
(2 + 1)D: We shrink the size of z-direction Lz to zero, and
decompose the vector field Vμ in (3 + 1)d into vector and
scalar fields in (2 + 1)D. Explicitly, we introduce the scalar in
terms of the z component of V as �(u, x, y) = Vz(u, x, y)/Lz.
The resulting action is given by

Weff [V ] = θ

2π2

∫
dudxdy εμνλ∂μ� ∂νVλ. (B12)

From the effective response action we can read off the
topological responses and also topological invariants. (See,
for example, Ref. [29]). We consider the magnetic field
BV = εi j∂iVj , and define the local magnetization density
M(u, x, y) by

M(u, x, y) ≡ δWeff

δBV
= θ

2π2
∂u�(u, x, y). (B13)

We also introduce the magnetization per unit volume

m(u) = 1

Vol

∫
dxdy M(u, x, y). (B14)

Then, the time average of m(u) is

m(u) = 1

T

∫ T

0
du

θ

2π2

d�

du
= 1

T

θ

2π2
[�(T ) − �(0)]

= 1

T

θ

π
. (B15)

Recalling θ = π × integer, this fictitious magnetization is
quantized. Its connection to the physical magnetization is
unclear, though. Nevertheless, we note that it can be shown
that the θ angle is given in terms of the winding number topo-
logical invariant associated with the unitary matrix U (t ) [55].
This then proves, indirectly, that the fictitious magnetization
agrees with the physical magnetization discussed in Ref. [22].

APPENDIX C: PROOF OF QUANTIZATION OF θ

Here we give the details of the proof outlined in Sec. III E.
In the below we will assume that the system is on a L × L
torus rather than a cylinder, where the torus is obtained by
gluing together the two boundaries of the cylinder of Fig. 4.
This will not affect the value of θ since the lattice is populated
only on a strip at a distance d � ξ from the boundary of the
cylinder.

1. Magnetization operator

Consider the projector P′ on sites contained in the strip
with x in (0, L − w), with ξ � w � L. Such region is then a
subset of the strip with equal area, up to a correction of order
w/L. Thanks to localization, this means that

tr(PstripU†∂BU ) = tr(P′U†∂BU ) + O(�w), (C1)

where the reminder can be neglected, as the first term is
O(�L).

In the presence of a background gauge field, the single-
particle Hamiltonian H in the position eigenstate basis |�r〉
becomes

Hab → Habei
∫ a

b d�r· �A, Hab = 〈�ra|H|�rb〉. (C2)

Taking the following gauge potential (Ax, Ay) = B
2 (−y, x), we

have
∫ a

b d�r · �A = B
2 (yaxb − xayb), which is well defined in the

region covered by the projector P′. Thus

∂B
(
Habei

∫ b
a d�r· �A)∣∣

B=0 = iHab(xbya − xaya)

= − i

2
〈�ra|�r × [�r, H]|�rb〉, (C3)

where we used �r|�ra〉 = �ra|�ra〉, and �r = (x, y). Then

tr(P′U†∂BU ) = −i
∫ κT/2

−κT/2
dt tr(P′U†(t )∂BH(t )U (t ))

= i
∫ κT/2

−κT/2
dt tr[P′�r(t ) × ∂t �r(t )], (C4)

where we used ∂tO(t ) = i[U†(t )H(t )U (t ),O(t )] and where
U (t ) is the single-particle unitary from −κT/2 to t .
Equation (C4) is the expectation value of the magnetization
operator.
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2. Coupling to U (1) fluxes

Consider again coupling the Hamiltonian to a background
as in (C2), where this time we take a constant gauge field �A =
(Ax, Ay). This gives

∫ a
b d�r · �A = �A · (�ra − �rb), and thus

∂ (Habei �A·(�ra−�rb) )

∂ �A = i�raHab − i�rbHab, (C5)

or

∂H
∂ �A = i[�r,H(t )]. (C6)

Defining

��r(t ) = −iU†∂ �A U (t ), (C7)

the above implies that ∂t��r(t ) = ∂t �r(t ). Since, from Eq. (C7),
��r(−κT/2) = 0,

��r(t ) = �r(t ) − �r(−κT/2). (C8)

We have ∫ κT/2

−κT/2
dt tr(P′U†(t )∂ �AU (t ) × U†(t )∂ �AHU )

= −i
∫ κT/2

−κT/2
dt tr [P′��r(t ) × ∂t �r(t )]. (C9)

Now

− i
∫ κT/2

−κT/2
dt tr [P′��r(t ) × ∂t �r(t )]

= −i
∫ κT/2

−κT/2
dt tr [P′�r(t ) × ∂t �r(t )]

+ i tr [P′�r(−κT/2) × �r(κT/2)]. (C10)

The second term is bounded as a function of κ , as �r can
only take values within the strip. The definition of θ in (59)
contains a factor of 1

κ
, and thus we can drop such term when

taking κ → ∞. We then find∫ κT/2

−κT/2
dt tr[P′U†(t )∂ �AU (t ) × U†(t )∂ �AHU ]

= −i
∫ κT/2

−κT/2
dt tr [P′�r(t ) × ∂t �r(t )]. (C11)

Using (C1), (C4), and (C2), we conclude

tr(PU†∂BU )

= −
∫ κT/2

−κT/2
dt tr[P′U†(t )∂ �AU (t ) × U†(t )∂ �AHU ]

= −
∫ κT/2

−κT/2
dt tr[PstripU†(t )∂ �AU (t ) × U†(t )∂ �AHU ].

(C12)

Now consider a gauge field configuration

�A = (A′
x, Ay(y)), Ay(y) =

{
A′

y y ∈ strip

0 otherwise
, (C13)

where A′
x is constant, and Ay is equal to A′

y within the strip and
zero otherwise. Now note that the operators in Eq. (C12),

∂A′
y
H, U†(t )∂A′

y
U (t ), (C14)

are nonvanishing only within the strip, up to exponential
corrections in units of the localization length ξ . For the first
operator, this is true because the Hamiltonian is local, and A′

y
is varied only within the strip. For the second operator, this
is also true because the system is localized. For such a gauge
field configuration, we can then get rid of the strip projector
Pstrip in the trace, and write

tr[PstripU†(t )∂ �A′U (t ) × U†(t )∂ �A′HU ]

= tr[∂ �A′U (t ) × U†(t )∂ �A′H], (C15)

up to a term of order Lξ , where sites are populated with
a fraction between 0 and 1. Finally, the background (C13)
is equivalent to threading fluxes A′

xL and A′
y� through the

two holes of the torus. Similarly, the configuration used
around (C5) is equivalent to fluxes AxL and AyL. The two
backgrounds are gauge equivalent if the respective fluxes are
the same, i.e., A′

x = Ax and A′
y = AyL/�. This means that

tr[∂ �A′U (t ) × U†(t )∂ �A′H] = �

L
tr[∂ �AU (t ) × U†(t )∂ �AH]. (C16)

Putting together (59), (C12), (C15), and (C16), we then find

θ = iπ

2κL2

∫ κT/2

−κT/2
dt tr[∂ �AU (t ) × U†(t )∂ �AH]. (C17)

Note that the dependence on the strip size � completely
dropped out.

As a consequence of our effective response theory, in the
thermodynamic limit the RHS of (C17) must be independent
of �A [56]. We can thus take its average

θ = iπ

2κL2

∫ −κT/2

−κT/2
dt

(
L

2π

)2∫ 2π/L

0
d2A tr[∂ �AU (t )×U†(t )∂ �AH].

(C18)

Integrating by parts we obtain

θ = i

8πκ

∫
dt

{
−

∫
d2A tr[∂ �AU (t ) × ∂ �AU†(t )H]

+
[
εi j

∫
dAi tr

(
∂AiU (t )U†(t )H

)]Aj=2π/L

Aj=0

}
. (C19)

Since Aj = 0 and Aj = 2π/L differ by a gauge transfor-
mation, we can write H(Aj = 0, t ) = X †

j H(Aj = 2π/L, t )Xj

and U (Aj = 0, t ) = X †
j U (Aj = 2π/L, t )Xj . Also, ∂Ai Xj = 0

for i �= j, and thus the boundary term in (C19) vanishes.
Using ∂tU = −iHU and δUU† = −UδU†, with δU denoting
a variation of U , we then find

θ = − 1

8πκ

∫ κT/2

−κT/2
dt

∫ 2π/L

0
d2A

× tr[U†∂ �AU (t ) × U†(t )∂ �AU (t ) · U†(t )∂tU ]. (C20)

This looks like a winding number but U (t ) is not periodic. In
the next section we shall periodize the evolution.
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3. Periodization and winding number

Let us divide the time integral in (C20) into single-period
intervals

θ = −π

κ

κ−1∑
n=0

W̄ [Un] , (C21)

where

W̄ [Un] = 1

8π2

∫ T

0
dt

∫ 2π/L

0
d2A

× tr[U†
n ∂ �AUn(t ) × U†

n (t )∂ �AUn(t ) · U†
n (t )∂tUn]

(C22)

where

Un(t ) = U
[
t + (

n − κ
2

)
T

]
, (C23)

and we further decompose U [t + (n − κ
2 )T ] = U0(t )U ((n −

κ
2 )T ), with U0(t = 0) = I . Defining Ũn(t ) = Ũ0(t )U ((n −
κ
2 )T ), with

Ũ0(t ) =
⎧⎨
⎩
U0(t ) t ∈ (0, T )

eiHF (t−2T ) t ∈ (T, 2T )
, (C24)

where HF is the Floquet Hamiltonian, defined through
e−iHF T = U0(T ), we see that Ũ0(t ) is periodic with period 2T .
Now write

W̄ [Un] = W [ Ũn] − W [eiHF (t−(n+1)T )], (C25)

where W [U ] is defined as W̄ [U ] in (C22) but with time in-
tegration over (0, 2T ). We now show that the second term
in (C25) vanishes in the t → ∞ limit. Decompose

HF =
∑

k

εkPk, eiHF t =
∑

k

eiεkt Pk, (C26)

where εk are the Floquet quasienergies and Pk are projectors
on the corresponding Floquet eigenstates, with Pk1 Pk2 = 0 for
k1 �= k2. Since Floquet eigenstates are localized, they will
not wrap the cylinder, and the flux induced by �A is thus
felt as a gauge transformation. The quasienergies are there-
fore independent of �A, and the projectors Pk depend on �A
as (Pk )abei �A·(�ra−�rb), where we are using the same notation as
around Eq. (C5). This leads to

∂ �APk = i[�r, Pk]. (C27)

Then
κ−1∑
n=0

W̄ [eiHF (t−(n+1)T )]

= 1

8π2

∫ 2π/L

0
d2A

∫ 0

−κT
dt

× tr
(
e−iHF t∂ �AeiHF t × e−iHF t∂ �AeiHF t · iHF

)
= − i

8π2
εi j

∫ 2π/L

0
d2A

∫ 0

−κT
dt

×
∑
{ki}

e−i�εtεk5 tr
(
Pk1

[
ri, Pk2

]
Pk3

[
r j, Pk4

]
Pk5

)
, (C28)

where �ε = εk1 − εk2 + εk3 − εk4 . At large κ , the integral will
grow slower than κ , unless �ε = 0. We assume that the
quasienergy spectrum is nondegenerate, which we expect to
be generically true for a given disorder realization and flux
value. Then only terms with k1 = k2 and k3 = k4 or k1 = k4

and k2 = k3 remain. After some manipulation, the remaining
contribution is

− i

4π2
εi j

∫ 2π/L

0
d2A

∫ 0

−κT
dt

∑
k1,k2

εk1 tr
(
Pk1 riPk2 r j

)

= − iκT

L2
εi j

∑
k1,k2

εk1 tr
(
Pk1 riPk2 r j

)

= − iκT

L2
εi j

∑
k1

εk1 tr
(
Pk1 rir j

) = 0, (C29)

where we used
∑

k Pk = I . We are finally left with

θ = −π

κ

κ−1∑
n=0

W [ Ũn] , (C30)

where W [ Ũn] was defined below (C25) as the winding number
of the unitary Ũn, the latter being periodic by construction.
Assuming that the Floquet Hamiltonian HF is topologically
trivial, in each term of the sum, we can smoothly deform

to the identity the factor U ((n − κ
2 )T ) = e−iHF (n− κ

2 )T inside
Ũn(t ) = Ũ0(t )U ((n − κ

2 )T ), and thus write

θ = −πW [ Ũ0]. (C31)

We thus identified θ with the winding number of Titum et al.
and quantization follows.
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