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Dynamics and phases of nonunitary Floquet transverse-field Ising model
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Inspired by current research on measurement-induced quantum phase transitions, we analyze the nonunitary
Floquet transverse-field Ising model with complex nearest-neighbor couplings and complex transverse fields.
Unlike its unitary counterpart, the model shows a number of steady phases, stable to integrability-breaking
perturbations. Some phases have robust edge modes and/or spatiotemporal long-range orders in the bulk. The
transitions between the phases have extensive entanglement entropy, whose scaling with the system size depends
on the number of the real quasiparticle modes in the spectrum at the transition. In particular, the volume-law
scaling appears on some critical lines, protected by pseudo-Hermiticity. Both the scaling of entanglement entropy
in steady states and the evolution after a quench are compatible with the non-Hermitian generalization of the
quasiparticle picture of Calabrese and Cardy at least qualitatively.
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I. INTRODUCTION

Nonequilibrium quantum dynamics in many-body systems
is an active area of research cutting across many different sub-
fields of physics. While nontrivial dynamics can be generated
in many different ways, there are two generic routes that are
particularly attractive. The first is to induce dynamics by a
periodic drive, the so-called Floquet approach. A wealth of re-
cent work shows that many-body Floquet systems can exhibit
novel phase transitions [1–5]. Realizing nontrivial quantum
dynamics in interacting Floquet systems, however, requires
extra ingredients that help suppress or completely avoid heat-
ing to an uninteresting infinite-temperature state [6–8]. In
particular, the heating can be mitigated by introducing disor-
der which localizes energy via many-body localization (MBL)
[1,4], or by adding external dissipation [9–11].

Another, seemingly distinct, route to novel nonequilibrium
dynamics is to consider the evolution of a monitored many-
body quantum system. By tuning the measurement rate, and
considering an ensemble of quantum trajectories (each corre-
sponding to a particular set of measurement outcomes), one
can induce a novel class of phase transitions [12–14]. Instead
of traditional phase transitions due to symmetry breaking,
these measurement-induced phase transitions (MIPTs) do not
have conventional order parameters, but instead are witnessed
by entanglement properties and other quantum information-
theoretical quantities [15,16]. First experimental evidence of
such transitions has recently been reported [17,18].

In this work, we analyze a potentially even richer class
of nonequilibrium many-body dynamics realized by combin-
ing time-periodic Floquet driving with effective nonunitary
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evolution (which can be associated with monitoring of
the quantum system). Our starting point is the archetypal
Floquet transverse-field Ising model (TFIM), where a one-
dimensional (1D) lattice of spins (described by Pauli operators
Xj,Yj, Zj) evolves in each drive period according to the
operator

UF = eiJ
∑

j Xj Xj+1 eih
∑

j Z j . (1)

In the well-studied measurement-free case, J and h are real,
and correspond respectively to uniform nearest-neighbor Ising
interactions and transverse fields. For uniform J and h, if the
initial state |�0〉 [Fig. 1(a)] is not a Floquet eigenstate, the
system, in the long-time limit, may locally approach a periodic
version of a generalized Gibbs ensemble [19]. On the other
hand, if disorder is included, the model exhibits a number of
unique nonequilibrium phases [1,4,20].

Instead of the unitary case specified above, here we con-
sider what happens when the evolution operator UF is made
nonunitary by allowing both J and h to be complex. This is
equivalent to adding measurement and postselection to our
Floquet dynamics. To be concrete, suppose that each Zj and
each bond variable XjXj+1 are continuously monitored using
a click-style measurement [21]. For each site j in the lattice
there are two click detectors, Ai and Bi, with the probability
of detector A generating a click in some time interval dt
being controlled by the operator Âi = (1 ± Zi )/2, and the
probability of detector B clicking being controlled by the
operator B̂i = (1 ± XjXj+1)/2. We specifically consider post-
selected evolution on experimental runs where no clicks in
any of the detectors are recorded. Using the standard the-
ory of continuously monitored systems (see, e.g., Ref. [22]),
one can show that the resulting evolution is controlled by a
non-Hermitian Hamiltonian. The anti-Hermitian part is gen-
erated by the imaginary parts of J and h, which we denote
βJ and βh; they correspond respectively to the strengths of
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FIG. 1. (a) Floquet evolution in Eq. (1) of |�0〉. (b) Phase diagram of steady states for αJ = αh ≡ α. βh > 0 is fixed and βJ is varied.
It contains four different phases that satisfy an area law in entanglement entropy. The magenta boundaries (solid line, αJ = αh = π/4, and
dotted line, βJ = −βh) represent a volume law while the blue solid line represents a logarithmic law. The critical points for αJ = αh = 0 have a
logarithmic law. The four phases are distinguished by the presence or absence of real 0- or π -edge modes in the spectrum with open boundary
conditions. In particular, � means no edge modes. Inset: The phase diagram of the unitary Floquet model [1]; the real parts of the parameters
used in the main panel sweep the red diagonal (αh = αJ ).

the Aj and Bj measurements. We note that special cases and
particular aspects have been discussed in, e.g., Refs. [23–25].

The Floquet nonunitary TFIM allows us to study the inter-
play of Floquet driving and measurement-induced dynamics
in the simpler setting where the evolution is deterministic (the
specific postselection that we use eliminates the stochasticity
inherent in quantum measurement). Despite the relative sim-
plicity, we find a number of interesting effects:

(1) There is a rich variety of steady-state (long-time)
phases, which can be characterized by the presence or absence
of boundary Majorana modes in the fermionic language when
open boundary conditions are used [see Fig. 1(b)].

(2) The entanglement entropies of the steady states can
be understood in terms of the non-Hermitian quasiparticle
picture, at least at the spectral level. In particular, non-area-
law steady states appear when there are real modes in the
spectrum. For example, this occurs on the boundaries be-
tween distinct phases, where there is an extensive growth in
the steady-state entanglement entropy, with the growth be-
ing logarithmic or in some cases volume law. While some
of the volume-law behaviors were previously noticed (when
the nonunitary model is a spacetime dual to a unitary model
[26–31]), we find new volume-law regimes that cannot be un-
derstood from the duality. Instead, we tie this new volume-law
regime to the pseudo-Hermiticity of the non-Hermitian Flo-
quet Hamiltonian. We show that the topological entanglement
entropy that was employed to detect measurement-induced
transitions in random quantum circuits [32] can also be used
to locate some of these boundaries. This may provide an
alternative angle to study Floquet non-Hermitian topological
phases (see, e.g., Refs. [33,34]).

(3) The postselected measurement-induced dynamics we
study allows one to directly stabilize dynamical phases, with-
out the need for disorder, MBL, or additional engineered

dissipation. Importantly, this dynamics is robust against (at
least) some integrability-breaking perturbations.

(4) Simple conformal field theory (CFT) with complex
time can provide qualitative description of the entanglement
entropy evolution, and the “central charge” of the Floquet
criticality is parameter dependent.

In the rest of the paper, we substantiate and expand on
these results as follows. In Sec. II, we describe the spin model
and its fermionization as well as formulate the qualitative
quasiparticle picture. Furthermore, we analyze the spectrum
of the effective Hamiltonian with both periodic boundary
conditions (PBCs) and open boundary conditions (OBCs) and
study the evolution of entanglement entropy after a quantum
quench. We then present the general phase diagram of steady
states. In Sec. III, we report the detailed numerical analysis
of entanglement entropy evolution and scaling, as well as
topological entanglement entropy (TEE). We show that the
entanglement entropy growth is consistent with the quasipar-
ticle picture at least on the spectral level. Then, in Sec. IV, we
discuss different quench dynamics of an open chain of spins
in different phases. The effect of breaking the integrability is
also briefly discussed. In Sec. V, we focus on the J = h case
(both complex) and compare the numerical results and the
CFT results in both the continuous-time limit and the Floquet
case. Finally, in Sec. VI, we summarize and mention some
future directions. Some details are relegated to the Appendix.

II. MODEL

In our work, we consider a 1D chain of 1/2 spins under-
going a time-periodic nonunitary evolution UF described in
Eq. (1). We start with an initial state |�0〉, e.g., a product
state, and study the quench dynamics [see Fig. 1(a)]. We
take J ≡ αJ + iβJ and h ≡ αh + iβh to be complex. Then UF
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induces a nonunitary Floquet evolution under non-Hermitian
Hamiltonians H1 = J

∑
j XjXj+1 and H2 = h

∑
j Z j . Since

UF = e−βJ
∑

j Xj Xj+1 eiαJ
∑

j Xj Xj+1 e−βh
∑

j Z j eiαh
∑

j Z j , (2)

UF can be regarded as a unitary evolution interspersed with
imaginary-time evolution. The imaginary-time evolution may
be achieved by introducing couplings to ancillary spins (ex-
ternal to the circuit) that are being measured projectively [35].
As discussed in the Introduction, the imaginary-time evolution
can also be associated with postselected measurement-
induced dynamics.

Our study interpolates between and extends beyond several
special cases that have been considered previously in the lit-
erature. If J and h are real, UF gives a unitary evolution, and
it corresponds to the noninteracting case of the kicked Ising
model. Upon making a spacetime duality transformation, i.e.,
exchanging space and time, J and h become generally com-
plex and satisfy αJ = αh = ±π/4. There are self-dual points
at |J| = |h| = π/4 [26–29]. At these points, the dual of the
original unitary circuit is also unitary, and such a circuit is
called dual unitary. Many exact results can be derived using
this defining property [26–29,36,37]. Away from self-dual
points, however, the spacetime dual is no longer unitary,
and corresponds to a non-Hermitian evolution. Naturally, the
“evolution” along the spatial direction is not independent of
the temporal evolution [30,31,38]. For instance, it has been
shown that the entanglement entropy scaling (volume vs area
law) of the output of the dual nonunitary circuit is directly
related to the entanglement growth starting from an unentan-
gled initial state in the original time direction (up to some
boundary conditions) [31,39]. It was argued in Ref. [30] that
the impediment to the entanglement growth in the presence
of projective measurements is directly related to localization
(area law) in the dual circuit.

When J and h are purely imaginary and small (βJ > 0 and
βh < 0), we recover the continuum limit, which was discussed
in Ref. [40]. Our phase diagram includes an area-law-to-area-
law phase transition via a logarithmic critical point, similar to
the results in Ref. [41] (which were for a non-Floquet system).
It was also found there that the phase diagram under the
non-Hermitian evolution is smoothly connected to the phase
diagram of a continuously monitored free fermion system.
Related ideas have been explored also in Ref. [42], where
MIPT was studied in a special model with an effective PT -
symmetric non-Hermitian Hamiltonian.

Although our model has a large parameter space [spanned
by complex (J, h)], we will primarily focus here on the in-
teresting case where αJ = αh (but βJ and βh are general).
Physically this corresponds to continuous monitoring of a
critical unitary system [red line in the inset of Fig. 1(b)]. As
we show, the continuous monitoring can drive the system into
several distinct steady states as shown in the main panel of
Fig. 1(b). We also note that while we focus on a particular set
of postselected trajectories (the “no-click” trajectories), recent
work on a related system suggests that the qualitative features
here may also be characteristic of all trajectories [40].

A. The Jordan-Wigner transformation

To facilitate the analysis, we write the TFIM in
terms of complex fermions by using the Jordan-Wigner
transformation,

Zj = 1 − 2c†
j c j, XjXj+1 = (c†

j − c j )(c
†
j+1 + c j+1). (3)

Furthermore, we define the real Majorana modes

a2 j−1 = c j + c†
j , a2 j = i(c j − c†

j ), (4)

which lead to further simplification,

UF = UXXUZ = e−J
∑L

j=1 a2 j a2 j+1 e−h
∑L

j=1 a2 j−1a2 j . (5)

Here we have imposed the antiperiodic (periodic) boundary
condition on fermions for the even (odd) fermion parity sector.
In later discussions, we will also consider the case when OBCs
are used. We can write

H1 ≡ i
L∑

j=1

a2 jW
′

2 j,2 j+1a2 j+1 (6)

and

H2 ≡ i
L∑

j=1

a2 j−1W
′′

2 j−1,2 ja2 j, (7)

where W ′ and W ′′ are 2L × 2L matrices. Upon application of
the Baker-Campbell-Hausdorff (BCH) formula, the bilinear
structure of H1 and H2 leads to an effective bilinear Floquet
Hamiltonian

H ≡ i
2L∑

j,k=1

a jWj,kak (8)

with

e4W = e4W ′
e4W ′′

. (9)

B. The quasiparticle picture

The simple bilinear form of Hamiltonian (8) implies the
existence of noninteracting quasiparticle modes. The quasi-
particle picture can be very useful for expressing the time
dependence of wave functions as well as for interpreting
the entanglement evolution after a quench [43,44]. Since the
effective H is non-Hermitian, the quasiparticles are not canon-
ical fermions [45,46].

If the non-Hermitian quadratic Hamiltonian H is diago-
nalizable, then H = ADA−1 with diagonal D. The matrix A
relates the canonical fermion modes a j and the quasiparticles
γk , and

H =
∑

εk γ̃
†
k γk. (10)

Here εk is in general complex and γ̃
†
k �= γ

†
k . However,

the anticommutation relations {γ̃ †
k , γk′ } = δk,k′ are still sat-

isfied. Let us denote Nk ≡ γ̃
†
k γk . Then [Nk, Nk′ ] = 0 and

N2
k = Nk . Therefore, we can conveniently use a nonorthonor-

mal basis |nk1 , nk2 , . . . , nkL 〉, such that Nki |nk1 , nk2 , . . . , nkL 〉 =
nki |nk1 , nk2 , . . . , nkL 〉 where nk = 0, 1. The expectation values
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of Nk depend on time:

〈Nk (t )〉 = 〈ψ |e−it
∑

k ε̄kγ
†
k γ̃k γ̃

†
k γk eit

∑
k εk γ̃

†
k γk |ψ〉

〈ψ |ψ〉 . (11)

Depending on the sign of Im(εk ), 〈Nk〉 will evolve in time
to either 0 or 1. In the long-time limit, only the real modes
with Im(εk ) = 0 play a nontrivial role, similar to the purely
real modes in unitary systems. Such (propagating) modes are
expected to play an important role in distributing entangle-
ment through a system starting from unentangled states [43].
In the thermodynamic limit, qualitatively, we expect that in
the absence of real modes, the final entanglement scaling
satisfies an area law. In contrast, for a finite density of real
modes, the entanglement scaling will satisfy a volume law
[43], whereas if we only have a finite number of real modes
the entanglement scaling satisfies the logarithmic law.

There are a few points to be noted here. First, the system
can be protected by the pseudo-Hermiticity [47] in some pa-
rameter regimes. Namely, there exists a Hermitian matrix η

such that ηHη−1 = H†. If a pseudo-Hermitian Hamiltonian
H is diagonalizable, then it has an antilinear symmetry such
as a PT symmetry. The spectrum of H can be real if the anti-
linear symmetry is not spontaneously broken. Second, the real
eigenmodes and the complex eigenmodes are not necessarily
orthogonal, which could affect the quasiparticle picture of en-
tanglement spreading. Nevertheless, we find that the heuristic
non-Hermitian quasiparticle picture described above properly
accounts for our numerical results. Similar discussion of the
Su-Schrieffer-Heeger model can be found in Ref. [48], where
it was found that the spectrum is dictated by the PT symmetry
and that the entanglement scaling also depends on the (partial)
reality of the spectrum (see also Refs. [49–53]).

C. The spectrum

To obtain basic insights into our model, we first consider
the spectrum of the problem. For PBCs, we identify regimes
where the system has pseudo-Hermiticity symmetry, which
has profound implications for the phase diagram. For PBCs,
we find different localized edge Majorana mode configura-
tions that correspond to different phases.

1. Periodic boundary condition: Continuous-time limit

Let us first consider the case |J| = |h| → 0; then

UF ≈ eiJ
∑

j Xj Xj+1+ih
∑

j Z j

= eiJ
∑

j (c
†
j −c j )(c

†
j+1+c j+1 )+ih

∑
j (1−2c†

j c j ). (12)

Diagonalizing the Hamiltonian in k space gives us the eigen-
values

λ1,2 = ±2
√

h2 − 2hJ cos(k) + J2. (13)

Importantly, it is possible for λ1,2 to be real even for complex
J and h. In those cases, the real modes behave similarly to
the Hermitian case and may contribute to a non-area-law
behavior in the steady-state entanglement entropy [43]. We
now consider these special cases.

If J = h, then λ1,2 = ±4J| sin(k/2)|. Therefore, for com-
plex J = h with small absolute values, at k = 0 we have
λ1,2 = 0. The quasiparticle picture suggests that the steady

state will have a logarithmic-law behavior in entanglement
entropy. This is not surprising because all modes but the zero
mode will either decay or grow and will not contribute to the
entanglement entropy.

If J = α + iβ and h = α − iβ, then λ1,2 =
±2

√
2
√

α2 − β2 − (α2 + β2) cos k. For a given k, the
modes are either complex conjugates of one another or purely
real. The condition cos k = (α2 − β2)/(β2 + α2) determines
the exceptional points in the k space where the eigenvectors
coalesce to (−1, 1)/

√
2. The existence of real modes and/or

complex conjugate pairs is not a coincidence: For these
parameters, it is protected by the pseudo-Hermiticity. In fact,
if we write the Hamiltonian in Eq. (12) in the k space, for
each 2 × 2 Hk , η is explicitly given by

η =
(

1 β

α
cot

(
k
2

)
β

α
cot

(
k
2

)
1

)
. (14)

Note that for generic complex J and h, there is no PT or
pseudo-Hermiticity symmetry to protect the reality of the
spectrum, unlike in Refs. [42,48]. The pseudo-Hermiticity is
important because it allows for the partially real spectrum,
with the real modes generating a steady state with a volume
law in entanglement entropy.

2. Periodic boundary conditions: General case

Now let us consider the Floquet unitary UF of Eq. (1) for
general parameter values. The spectrum is given by [30]

εk = ±
√

−w2
k , (15)

where

ewk = x

4
±

√(x

4

)2
− 1 (16)

with x = 2(1 + cos k) cos(2h − 2J ) + 2(1 − cos k) cos(2h +
2J ). Similar to the continuous-time limit, a real zero mode
exists at k = 0 for J = h. It is also easy to check that there are
two cases that can lead to an extensive number of real modes:
(1) αJ = αh = π/4 mod π/2 (dual to the unitary case) and
(2) αJ = αh �= 0 mod π/2, βJ = −βh (or αJ = − αh �= 0
mod π/2, βJ = βh in the spacetime dual). The spacetime
duality is implemented by exchanging time and space coor-
dinates [26,27,30]. In particular, for UF , the spacetime dual
has the form

ŨF = eiJ ′ ∑
j Xτ j Xτ j+1 eih′ ∑

j Zτ j (17)

up to some boundary terms. Here J ′ = −π
4 − i

2 log tan h
and h′ = −π

4 − i
2 log tan J . For real J and h, UF is uni-

tary, corresponding to the first case. Indeed, if J = h =
π
4 λ, then J ′ = h′ = −π

4 + iβ with β = 1
2 log(tan( π

4 λ)). It is
easy to check that real modes exist between [0, 2πλ] be-
cause cos−1( cosh(4β )−1

cosh(4β )+3 ) = 2πλ. This case is protected by the
pseudo-Hermiticity of the effective Hamiltonian (expressed in
terms of complex fermions in the k space) with the η matrix
given by η = σx. The second case is a natural extension of
the continuous-time case we discussed in the previous section.
It is still protected by pseudo-Hermiticity but the η matrix
is more complicated. This extensive number of real modes
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FIG. 2. Absolute values of the spectrum of the Hamiltonian H
as a function of α = αJ = αh when OBCs are used. L = 40. Top:
βJ = −1.0, βh = 0.5 (in units of π/4). Bottom: βJ = −0.1, βh = 0.5
(in units of π/4).

will produce a volume law in the entanglement entropy in the
steady state.

The cases with real modes define the position of the phase
boundaries as shown in Fig. 1(b). Indeed, the quasiparticle
picture implies that these real modes will not decay or grow
and produce a non-area-law steady state. We will verify this
numerically in the next section.

3. Open boundary conditions

If we use OBCs, it is easy to calculate the spectrum nu-
merically in real space directly. The bulk of the spectrum is
not very sensitive to the boundary conditions, but there can
also be special edge modes: zero modes and π modes. In
Fig. 2, we show the absolute value of the spectrum as we tune
α = αJ = αh. We can check that these edge-mode energies
are real. Because of the reflection symmetry, let us focus
on the 0 � α � π/2 regime. In the upper panel, βJ < −βh.
When α � π/4, the spectrum has zero edge modes, while
for α � π/4, the spectrum has π edge modes. In the lower
panel, βJ > −βh. When α � π/4, the spectrum has no edge
modes, while when α � π/4, the spectrum has both zero
and π modes. The presence or absence of the edge modes
distinguishes different regimes in Fig. 1(b) and thus can be
used to label the phases. Note that there is a strong finite-size
effect when α is close to π/4. As the phase boundaries are

approached, the edge modes become non-normalizable for
finite L. These edge modes are close relatives of those in the
clean unitary case [54,55] as well as the Floquet-MBL unitary
case [1]. They are the topological edge modes associated with
Floquet symmetry-protected phases [56–58]. They retain real
energies even when J and h become complex. We will see later
in Sec. IV that these modes are good indicators of different
dynamical behaviors after a quantum quench.

D. Evolution and steady states

Having established basic spectral features of our model, we
now turn to the dynamics in a quench protocol where we start
the system in a fermionic Gaussian state and let it evolve under
UF . The Floquet Hamiltonian H [Eq. (8)] has the following
form in terms of complex fermions:

H =
∑

ξi jc
†
i c j + �−

i jcic j + �+
i jc

†
j c

†
i . (18)

In general, �+
i j �= (�−

i j )
∗. In terms of real Majorana fermions,

H =
∑

Hi jaia j, (19)

and hence

H† =
∑

H̄T
i j aia j . (20)

We want to study the evolution of the states under this gen-
erally non-Hermitian Hamiltonian. Since the Hamiltonian is
quadratic, a Gaussian state remains Gaussian. We can calcu-
late the entanglement entropy as a function of time from the
correlation function Ci j (t ) = 〈ψ (t )|aia j |ψ (t )〉/〈ψ (t )|ψ (t )〉,
where |ψ (t )〉 = exp(−iHt )|ψ0〉 and |ψ0〉 is the initial state.
Under the nonunitary evolution,

dC

dt
= i(−CT H̄T C + CT H̄C + CHCT − CHT CT ). (21)

Note that since we used the effective Floquet Hamiltonian,
only the correlation functions at multiples of the periods cor-
respond to those in the original system. The time evolution of
C can be obtained by solving this equation numerically. If it
is a continuous-time evolution, the steady state is approached
when dC/dt → 0. In the Floquet setting, the definition of a
steady state can be weakened: C(t + nT ) = C(t ) where n is a
positive integer and T is a period also yields a steady state,
even if C(t + T ) �= C(t ). This case corresponds to discrete
time crystals that spontaneously break the discrete time trans-
lation symmetry.

If we have a density matrix ρ of a total system comprised
of subsystem A and subsystem B, we can obtain the reduced
density matrix ρA by tracing out subsystem B: ρA = trBρ.
Then the von Neumann entanglement entropy is defined as
SA = −tr[ρA ln ρA]. For the free fermion system, it can be
evaluated directly using C′

i j ≡ Ci j − δi j [43]:

SA = −tr

[
1 − C′

A

2
ln

1 − C′
A

2
+ 1 + C′

A

2
ln

1 + C′
A

2

]
, (22)

where C′
A is C′

i j with i, j restricted in A. If all eigenvalues of
C′

A are denoted as {±νi}, we have

SA = −
∑ [

1 − νi

2
ln

1 − νi

2
+ 1 + νi

2
ln

1 + νi

2

]
. (23)
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In the case of OBCs, we will also be interested in a gen-
eralized TEE, which can be obtained from partitioning the
one-dimensional system into four segments as follows:

Then TEE is defined as [32,40,59,60]

Stop = SAB + SBC − SB − SABC . (24)

This TEE was designed to detect ground-state topological
transitions. As we will see in the next section, it can also be
used to identify certain transitions in the steady state of our
nonunitary Floquet system.

E. Phase diagram

We now briefly summarize the main features in the phase
diagram of steady states shown in Fig. 1. The phase dia-
gram can be determined easily by studying the spectra of
the Hamiltonian H in Eq. (8). It depends on the relative
magnitude of βJ and βh. The phases are demarcated by the
lines |βJ | = |βh|, and α = π/4. When βJ = −βh, the steady-
state entanglement entropy satisfies the volume law; when
βJ = βh the steady-state entanglement entropy satisfies the
logarithmic law (see next section). The volume-law phase at
α = π/4 exists because the nonunitary circuit is dual to a
unitary circuit, as was already remarked in Ref. [30], but also
because it is protected by the pseudo-Hermiticity, just as in
the case βJ = −βh. The rest of the phase diagram has an area
law. If OBCs are imposed, the non-Hermitian spectrum may
contain different real-energy edge modes (zero or π Majorana
modes). Different phases are labeled by the modes present
within them: (�) region (no edge modes), (0) region (zero
modes), (π ) region (π modes), and (0π ) region (both zero
and π modes).

In this work, we focused on the αJ = αh plane on the
entire complex manifold where volume-law critical lines can
be found. While we have not exhaustively studied parameter
regimes αJ �= αh, a few general comments can be made on dif-
ferences that emerge in this more general case. If αJ �= αh, the
area-law phases can become logarithmic-law phases depend-
ing on βJ and βh. The transitions between area-law phases
become transitions between area-law phases and logarithmic-
law phases. These scaling laws are still compatible with the
quasiparticle picture at least at the spectral level: If the spec-
trum of the effective Floquet Hamiltonian contains no real
modes, then it has an area-law scaling; on the other hand,
if the spectrum contains a few real modes, the scaling is
logarithmic. The volume laws we discussed on critical lines
are replaced with logarithmic laws (see, e.g., Ref. [25]). There
is a critical line for αJ �= αh that corresponds to the critical line
for αJ = αh = π/4 while the boundaries at βJ = ±βh remain
where they were. Within phases, the edge modes persist, and
different quench dynamics with OBCs (discussed in Sec. IV)
only weakly depend on the condition αJ = αh. We leave this
detailed discussion to future work.

FIG. 3. Temporal evolution of entanglement entropy SA with the
PBCs. α = 0.2, βh = 0.1 (in units of π/4). LA = 8 and LA/L =
1/20. Inset: Evolution of SA with OBCs. The subsystem A is chosen
to be [1, LA]. If the subsystem A is moved away from the boundary,
the curves approach those with PBCs shown in the main panel.

III. ENTANGLEMENT ENTROPY EVOLUTION
AND SCALING

In this section, we present the numerical results on the
temporal evolution of entanglement entropy and its scaling in
the steady states. For simplicity, we take L to be even and
focus on the case in the initial state with odd (even) sites
occupied and even (odd) sites empty. We will see the entan-
glement scaling is compatible with the quasiparticle picture
for a quench problem. Namely, the steady state can have an
area law, a logarithmic law, and a volume law, depending
on whether the spectrum of the non-Hermitian Hamiltonian
contains no real modes, a few real modes, or an extensive
number of real modes, respectively. We also compute the TEE
defined in Eq. (24) and use it to detect the phase transitions at
βJ = ±βh.

A. α �= π/4

The phase diagram for this case can be seen in Fig. 1(b).
We sample three representative points from the phase dia-
gram: βJ = −0.2,−0.1, 0.1 while fixing α = 0.2 and βh =
0.1 (in units of π/4). The evolution of the entanglement
entropy of subsystem A is shown in Fig. 3. The entanglement
scaling in different phases is presented in Fig. 4 both on the
linear scale and logarithmic scale.

If the system is in the area-law phase, the entanglement
entropy first increases, and possibly drops before it saturates
at long times. When βJ = βh, the qualitative behavior of the
evolution curve is similar and the system flows to a steady
state with a logarithmic law. This pattern is general and shared
by the CFT calculation to be discussed in Sec. V. When βJ =
−βh, the system approaches a volume law in the long-time
limit. The evolution curve of SA is similar to that of a unitary
quench: It increases almost linearly at first and then saturates
gradually after a time roughly proportional to LA. The wig-
gly features are due to the finite-size effects: increasing the
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FIG. 4. Dependence of SA on the subsystem size LA. Linear
(left) and logarithmic (right). α = 0.2, βh = 0.1 (in units of π/4).
LA/L = 1/10.

total system size reduces the entanglement revivals and thus
smooths the curve.

In the above discussion, we imposed PBCs. If different
boundary conditions are imposed, e.g., OBCs, the dynamical
behavior can be slightly different. With OBCs, the entangle-
ment entropy also depends on the location of subsystem A. If
A is located deep in the bulk, then the entanglement entropy SA

becomes insensitive to the choice of boundary conditions and
the curves approach those with PBCs (see the inset in Fig. 3).
However, if A sits by the boundary, say, [1, LA], even though
the qualitative features are the same, the saturated values of
SA are slightly different.

B. α = π/4

When α = π/4, the nonunitary circuit is dual to a unitary
circuit. It sits on one of the critical lines of the phase diagram
[Fig. 1(b)]. By resorting to the spacetime duality, it is easy
to see that the steady state under the evolution of UF has a
volume-law scaling [dotted magenta line in Fig. 1(b)]. The
volume law is compatible with the observation in Ref. [31]
that an area-law steady state is ruled out (up to boundary
conditions and fine tuning) for a nonunitary circuit that is
dual to a unitary circuit which produces a non-area-law steady
state. Previous works found that volume-law entanglement in
a free-fermion chain is destroyed in the presence of arbitrarily
weak measurements [61,62], and it was suggested in Ref. [30]
that the volume law is symmetry protected by the unitarity of
the unrotated circuit. However, as we have already mentioned,
more generally, the volume-law phase is protected by the
pseudo-Hermiticity of the effective Hamiltonian.

We also mentioned in Sec. II C that if J = h = α in the uni-
tary circuit, then J ′ = h′ = −π

4 + iβ with β = 1
2 log(tan(α))

and the real modes exist in the interval [0, 8α]. In fact, we
checked numerically that the entanglement entropy density
SA/LA is almost linear in α if α is not too small (Fig. 5).
Plotted together is the initial entanglement entropy growth
rate. We see indeed that these two quantities are almost the
same, which is not surprising because they are related by
the spacetime duality [31,39] (up to boundary conditions and
finite-size and finite-time effects).

We also present the time evolution of SA of the nonunitary
case with different β = βJ ′ = βh′ in Fig. 6. We see that SA

increases almost linearly for small T and then saturates. As

FIG. 5. Entanglement entropy density SA/LA (blue) and en-
tanglement entropy early growth rate SA(T )/2T (red) as a
function of α = J = h in the spacetime-dual model. βJ ′ = βh′ =
log(tan(α))/(π/2) (in units of π/4). LA/L = 1/10. Blue and red
lines are the respective linear fits.

we increase β, since more modes become complex, SA of the
steady state decreases. Since SA/LA is almost linear in α, the
dependence of SA/LA on β can be easily obtained by inverting
the relation between β and α. In particular, if α is close to π/4,
β ≈ α − π/4, and thus SA/LA is also linear in β for small β.

C. Topological entanglement entropy

We also compute the TEE [Eq. (24)] of different phases
and show that it can always be used to detect the transi-
tion between (0) phase and the trivial (�) phases. In Fig. 7,
TEE is shown for fixed α and βh, and varying βJ . The TEE
approaches zero for small |βJ | and ln 2 when |βJ | is large.
The curves associated with different sizes cross at a point
where βJ0 ≈ βh. The contribution to ln 2 comes from a pair of
Majorana modes (2 ln

√
2). The finite-size scaling is presented

FIG. 6. Evolution of SA for different β = βJ = βh and fixed
α = 1 (in units of π/4). LA = 8, LA/L = 1/25. PBCs are used.
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FIG. 7. (a) Topological phase transition between steady states,
tuned by βJ and detected by TEE. α = 0.2, βh = −0.3 (in units of
π/4). LA/L = 1/4. OBCs are used. The dashed line marks Stop =
ln 2. (b) Scaling collapse of the data, obtained for βJ0 ≈ βh and
ν ≈ 1.

in the lower panel by plotting Stop against (βJ − βJ0)Lν . All
data collapse almost perfectly onto a single curve. The critical
exponent ν is determined to be approximately 1.

The TEE is also quantized to ln 2 in the (π ) phase as long
as it stays away from the special line α = π/4 where a phase
transition occurs. We can interpret the (π ) phase as alternation
between two states in the (0) phase with opposite polarization.
Then the TEE in the (π ) phase at one instant is the same as
that in the (0) phase. The topological information in the (0π )
phase is more subtle, and we may need to construct a new
quantity to extract it, which we leave for future work.

IV. QUANTUM QUENCH IN THE SPIN LANGUAGE

We have shown that zero modes and/or π modes exist in
the fermionic language if OBCs are imposed (see Fig. 2), the
same as in the unitary case [54,55]. Different combinations
of edge modes are expected to be associated with different
evolutions of many-body states. In this section we summarize
the results on the time evolution obtained directly in the spin

language, starting from some random initial states (not close
to Floquet eigenstates). We find four types of evolution corre-
sponding to different phases in Fig. 1(b):

(i) In the trivial phase (�), both 〈Si
x〉 → 0 for all sites

and 〈S1
x SN

x 〉 → 0, where N is the total size, after a few drive
periods [Fig. 8(a1)].

(ii) There are two regions in the phase diagram with
zero modes (0). If βJ < −βh, for a small system, 〈Si

x〉 of
the state rapidly drops to zero while 〈S1

x SN
x 〉 stays finite.

For a small system, the final state has a large overlap with
the Greenberger-Horne-Zeilinger state, (|↑〉⊗L+ |↓〉⊗L )/

√
2

(though it is very sensitive to integrability-breaking terms).
Increasing the size slows down the initial decay of 〈Si

x〉. In the
thermodynamic limit, both 〈Si

x〉 and 〈S1
x SN

x 〉 should stabilize to
a finite value, meaning that the steady state breaks the spin-flip
Z2 symmetry [Fig. 8(b1)]. If βJ > βh, the steady state is an
antiferromagnet instead of a ferromagnet.

(iii) In the phases with a π mode (π ), the situation is
similar to the one with the zero mode, except that the spins
keep flipping, breaking the Z2 time-translational symmetry
[Fig. 8(c1)]. A typical evolution of 〈S1

x 〉 of different sizes is
shown in Fig. 9(a). We expect that in the thermodynamic limit,
the steady state is in a Floquet (discrete time-crystal) phase.
Moreover, if βJ > βh, the steady state also breaks the Z2

translational symmetry, corresponding to an antiferromagnet
as opposed to the case βJ < −βh when it is a ferromagnet
[Fig. 8(c1)].

(iv) In the phase with both zero modes and π modes (0π ),
the spins in the bulk 〈Si

x〉 and the spins near the edges behave
differently as illustrated in Fig. 8(d1). We take the initial state
as a product state of polarized spins. Bulk spin correlations
lim|i− j|�1〈Si

xS j
x 〉 drop to zero, in contrast to the phases with

only zero or π modes. The steady states depend on βJ and
βh. Thus, the initial behavior of different initial states can be
different. In general, the oscillating pattern can be observed
but edge spins have larger amplitudes. We expect that the bulk
spin amplitudes approach zero in the thermodynamic limit,
while the edge oscillations persist.

In the above discussion, OBCs were used. The main
features in the (0) phase and the (π ) phase are basically
unaffected if PBCs are used. This implies emergence of the
long-range order in the bulk. However, the (0π ) phase de-
pends crucially on the boundary conditions: Since this phase
is evidenced solely by the edge spin oscillations, this signature
disappears if we use PBCs.

We next compare these different dynamics with those in
the unitary case. To this end, we plot quench dynamics with
different real parameters in Figs. 8(a2)–8(d2). The four panels
correspond to the same combinations of edge modes as in
the nonunitary case. In a clean system, we can see that the
edge states are robust. These features can be attributed to the
presence of (almost) strong edge modes [55,63,64]. However,
the bulk flows to the “infinite-temperature” state very quickly
(up to revivals due to the finite system size). In the mag-
netically ordered phases, (0) and (π ), physically this can be
understood in terms of domain-wall dynamics: Domain walls
can move freely in the absence of disorder, quickly destroying
the bulk order; however, they cannot flip the edge spins, since
that would lead to a change in the number of domain walls,
and thus significantly change the quasienergy. The situation is
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FIG. 8. Evolution of 〈Si
x〉 in different phases (labeled along the right edge) in the nonunitary (left) and the unitary (right) case. Here,

i = 1, 2, . . . , L; L = 12. In each panel, the spatial direction is vertical and the temporal direction is from left to right. The initial states
are product states of spins (red, |↑〉; purple, |↓〉). (a1) α = 0.5, βJ = −0.5, βh = 1.5; (b1) α = 0.5, βJ = −1.5, βh = 0.5; (c1) α = 1.5,
βJ = −1.5, βh = 0.5; (d1) α = 1.5, βJ = −0.1, βh = 0.5; (a2) αJ = 0.5, αh = 1.0; (b2) αJ = 1.0, αh = 0.5; (c2) αJ = 1.5, αh = 1.0; (d2)
αJ = 1.5, αh = 1.0. All parameters are in units of π/4.

very different from the system with disorder (MBL regime)
[1], where there are four different Floquet-MBL phases, each
characterized by a unique eigenstate order. Apparently, com-
paring the figures on the left and on the right in Fig. 8, we find
that the impact of imaginary parts of J and h is significant.
In particular, the long-range bulk orders cannot be stabilized
without the imaginary parts, i.e., measurements.

Since the TFIM is integrable, the steady states may depend
on the initial states. Indeed, we see that if we start with

FIG. 9. Size dependence of 〈Si=1
x 〉 in the (π ) phase. α = 1.5,

βJ = −1.5, βh = 0.5 (in units of π/4). (a) Without integrability-
breaking K = 0.0. (b) With integrability-breaking K = 0.2 (in units
of π/4). The initial state is |↓ · · · ↓〉.

some special initial states, say, with
∑

i〈Si
x〉 = 0, the quench

dynamics can have a different behavior. One example in the
(π ) phase is given in Fig. 10(a) where the initial state is
the antiferromagnetic state. This state has no overlap with
the ferromagnetic (π ) steady state [see Fig. 8(b1)] and as a
result becomes featureless very quickly. However, if we add
a small longitudinal field K

∑
j Xj to break the integrability,

FIG. 10. Effect of the integrability-breaking term K
∑

j Xj for a
special initial (antiferromagnetic) state. (a) K = 0.0, (b) K = 0.2.
α = 1.5, βJ = −1.5, βh = 0.5 (in units of π/4).
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FIG. 11. Effect of the integrability-breaking term K
∑

j Xj in the
(0π ) phase. (a) K = 0.0, (b) K = 0.2. α = 1.5, βJ = −0.1, βh = 0.5
(in units of π/4).

the steady state reminiscent of Fig. 8(b1) above reemerges
[Fig. 10(b)].

We also studied the effect of the same integrability-
breaking term K

∑
j Xj on dynamics. The dependence of the

evolution on the system size in the (π ) phase when K �= 0 is
shown in Fig. 9(b). As we can see, when we increase the sys-
tem size, the decay rate drops rapidly to zero. A similar pattern
in the (0) phase is observed. Thus we expect these phases to be
stable in the thermodynamic limit under the small perturbation
(0 < K � 1). As can be seen from Fig. 11, in the (0π ) phase,
a small K can polarize the spins, but the edge-bulk distinction
survives for a long time. This observation suggests that the
influence of almost strong edge modes remains beyond the
unitary case discussed in Ref. [55]. It is interesting to compare
this behavior with the observation in the Google simulation in
Ref. [65], where they observed that the edge spins under the
unitary UF evolution, in contrast to bulk spins, are resilient to
integrability- and symmetry-breaking effects and dephasing
effects such as low-frequency noise.

Finally, note that αJ = αh is not necessary to obtain differ-
ent dynamics regimes in the nonunitary case that we identified
above. We also expect that the main features are robust against
other non-Hermitian deformations.

V. CONFORMAL FIELD THEORY AT J = h

So far, our focus has been on the area-law phases as well
as volume-law critical lines in the phase diagram shown in
Fig. 1(b). Now let us shift attention to the critical line with
a logarithmic law at J = h. In the unitary case, i.e., J and h
are real, if |J| = |h| → 0, UF approaches that of the TFIM in
the continuous-time limit. The critical point is the celebrated
Ising critical point described by the Ising CFT and the quench
problem is well studied [43,66]. It is interpretable using the
quasiparticle picture [43]. In the general case, the critical line
(stabilized by disorder or interactions) may be called Floquet
quantum criticality [67]. In this section, we extend J and h to
complex values and study the quench problem.

FIG. 12. Evolution of SA in a CFT [Eq. (25)] with different η.
c = 1/2, ε = 0.185, l = LA = 10.

A. Continuous-time limit

When J = h and |J| = |h| → 0, the qualitative behavior of
the system is captured by the continuous-time limit where the
dispersion is given by ±4J| sin(k/2)| [Eq. (13)]. For complex
J and h, the dispersion is rotated to the complex plane in
general. If we assume that the formalism developed by Cal-
abrese and Cardy [43] can be generalized to this case, the
quench problem can equivalently be described by exp(−i(1 −
iη)tHCFT), where η � 0 quantifies the rotation. For more in-
formation, see the Appendix. Since exp(−i(1 − iη)tHCFT) =
exp(−itHCFT) exp(−ηtHCFT), the initial state first evolves by
exp(−ηtHCFT) then by the unitary operator exp(−itHCFT).
Since exp(−ηtHCFT) evolves the initial state to the ground
state of HCFT asymptotically, the long-time evolution ap-
proaches that of the ground state.

As discussed in the Appendix, the von Neumann entangle-
ment entropy is

SA(t ) ≡
[
− ∂

∂n
trρn

A(t )

]
|n=1, (25)

with

trρn
A(t ) �

(
π

2τ0

)2dn
(

cosh(π l/2τ0) + cosh(πt/τ0)

8 sinh(π l/4τ0)2 cosh2(πt/2τ0)

)dn

,

(26)

where dn = (c/12)(n − 1/n), c being the central charge, and
τ0 = ε + ηt , ε being a regularization constant. In the deriva-
tion of the above equations, we have assumed t, l � τ0.

Typical evolutions of (normalized) von Neumann entangle-
ment entropy SA are depicted in Fig. 12. ε = 0.185 is chosen
such that if η = 0, SA for l = LA saturates at the same value
SA ∼ πcl/12ε of the Ising CFT (c = 1/2). When η becomes
finite, SA keeps increasing until t ∼ l/2, then it starts to drop.
In a closed system, the regularization ε affects both the initial
growth rate and the saturation value of entanglement entropy.
With dissipation η, ε becomes less important after some time:
t > ε/η. However, ε determines not only the initial maxi-
mum of SA but also the ground-state entanglement entropy.
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FIG. 13. Comparison of the evolution of SA of a CFT and the
numerical result of the nonunitary TFIM. The evolution in a CFT
[Eq. (25)] with c = 1/2, ε = 0.185, and l = LA = 10 (blue). The
evolution under UF of the continuous complex TFIM [Eq. (12)]
with J = h = 1 − iη, LA = 10 and LA/L = 1/10 (red). (a) η = 0.01,
(b) η = 0.10, (c) η = 0.20. The oscillations are due to the finite-size
effects.

The long-time limit depends on ε but not η because as we
mentioned the state approaches the ground state. The larger
η is, the faster the decaying rate is. In general, SA can have
a volume law before gradually approaching a logarithmic
law at long times. The evolutions of SA of the TFIM with
continuous time and different η [Eq. (12)] are compared with
those predicted by Eq. (25) in Fig. 13. We see that they match
qualitatively.

Note that even thought HCFT is the critical Ising Hamilto-
nian in our main discussion, the formalism of Calabrese and
Cardy [43] applies to general critical HCFT. Thus, we expect
the simple qualitative prediction from the CFT to be much
more general. Also, as mentioned in Sec. III A, the pattern
of the evolution of SA, i.e., increasing first then decaying, is
shared by the area-law phases. Similar features were observed
in dissipative systems (see, e.g., Refs. [68,69]).

B. Floquet criticality

Since there is no phase transition until αJ = αh = π/4,
even though the preceding discussion was focused on the
continuous-time limit, the evolution of entanglement entropy
in Fig. 12 should qualitatively apply more broadly (i.e., for
finite J = h). Once we move away from the continuous-time
limit, the Floquet criticality [67] is no longer the canonical
c = 1/2 Ising CFT. In Fig. 14(a), we fix the total system size
L = 100 and plot SA against different subsystem sizes LA.

FIG. 14. (a) Subsystem dependence of SA in a total system with
L = 100 with fit in Eq. (27) using J = h = 0.2 − 0.1i (in units of
π/4). a ≈ 0.165 and b ≈ 0.54. (b) Fitting values of a as a function
of η. J = h = ηi (in units of π/4).

Then the numerical data are fit by

a ln

(
L

π
sin

πLA

L

)
+ b (27)

to extract the central charge [32,66]. In the continuous-time
limit, a = 1/6 = c/3 since c = 1/2. In the Floquet setting,
both a and b depend on J = h. The fitting in Eq. (27) applies as
long as α = αJ = αh is away from π/4, the critical line where
the quench resembles that in the unitary case with an extensive
number of real modes. For example, if J = h = 0.2 − 0.1i (in
units of π/4), we find a ≈ 0.165 and b ≈ 0.54. In general,
the fit a depends on imaginary part β but not the real part α.
Larger β leads to smaller a. In Fig. 14(b), we set α = 0 and
β = η, i.e., J = h = ηi, and plot a for several values of η. We
see that it decreases as a function of η.

VI. DISCUSSION

In this work, we have studied the nonunitary Floquet TFIM
(kicked Ising model) with complex couplings and transverse
fields. We analyzed the spectrum of the Floquet Hamiltonian
in the fermionic language using the Jordan-Wigner transfor-
mation with both PBCs and OBCs, and used it to map out the
phase diagram. For PBCs, we found that the spectrum may
contain no real modes, a few real modes, or a finite density
of real modes, the latter enabled by pseudo-Hermiticity of
the Hamiltonian for special values of parameters. For OBCs,
we found that real zero- and/or π -edge modes can exist in
different phases. We presented the numerical result for the
evolution of subsystem entanglement entropy after a quan-
tum quench. In general, the entanglement entropy increases
initially, then begins to drop, and eventually saturates to
some steady-state value. The three just mentioned spectral
cases lead to an area law, a logarithmic law, and a volume
law of entanglement entropy in the steady state, respectively.
The scaling behavior can be interpreted in terms of real-
energy non-Hermitian quasiparticles being responsible for
establishing entanglement (the initial entanglement peak can
be attributed to complex-energy quasiparticles, which can lead
to enhanced entanglement on the timescales of their lifetime).
A quantized TEE exists if a zero mode or π mode exists. We
also studied the quench dynamics of an open spin chain from a
typical initial state and identified four types of dynamical be-
haviors corresponding to different edge-mode configurations.
Compared to the clean unitary case, which generally lacks
bulk long-range order, bulk order is stabilized by nonzero
imaginary parts of J and h, i.e., measurements. Finally, we
considered the case when J = h and compared the numerical
results in the continuous-time limit with the analytical result
of a CFT by extending Calabrese and Cardy’s formalism to
complex time. They match qualitatively. Also, the effective
central charge of the Floquet criticality was found to depend
on J = h.

There are many promising future directions. First, there are
many observables that can be used to study the nonunitary
Floquet TFIM. In this work, we only computed entanglement
entropy. As a matter of fact, we found mutual information
has a similar behavior. It is also possible to compute other
quantities such as entanglement negativity [70]. In particular,
the general CFT formalism can also be generalized properly
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to give us some insights into the evolution and the scaling
of these quantities. In our work, we only discussed the non-
Hermitian generalization of the quasiparticle picture at the
spectral level; a quantitative check on the entanglement en-
tropy growth as in Refs. [44,68,69] should be done. It is also
interesting to see if more general topological quantities can be
constructed to distinguish all four cases [so far we found that
the (0, π ) phase is not clearly detected by TEE, in contrast to
(0) and (π ) phases]. In addition, the relation to the skin effects
in the context of Floquet non-Hermitian topological phases
[33,34] should be explored [71]. Also, we have focused on
1D spin chains. Some of our discussion for the 1D case can
be easily generalized to higher dimensions.

Second, we have used non-Hermitian Hamiltonians as our
starting point to study the effect of measurements by com-
plexifying the coefficients. Complex J and h correspond to
postselecting no-jump trajectories, with the jump operators
Li = (1 ± XiXi+1)/2 and Li = (1 ± Zi )/2, respectively. There
are many other types of measurements. We hope that the
results of the simplified system can at least yield some in-
sights into dynamical systems described by the stochastic
Schrödinger equation where there are few or no postse-
lections [40]. How more general continuously monitored
systems behave deserves to be studied more closely (see,
e.g., Refs. [41,61,69]). Whether different spin dynamics of
a dissipative Floquet TFIM survive under a quench without
postselection should be explored [10,40,65,72].

Third, there are many ways to extend the non-Hermitian
Hamiltonian. Other physical effective Hamiltonians can be
studied in a similar way. In this work we only briefly dis-
cussed the effect of the integrability-breaking term

∑
h′

iXi in
the Hamiltonian. We can also include terms like Jz

∑
ZiZi+1

which after the Jordan-Wigner transformation is mapped to
a density-density interaction [1]. Introducing long-range in-
teractions is another direction with possible experimental
relevance [10]. We know that introducing spatial disorder in
the unitary case into such a system with a small Jz leads
to MBL and stabilizes the Floquet phases [1,4]. How these
systems respond to complexification of the coefficients is an
interesting open question.

Lastly, several more general ideas discussed in this work
deserve further investigation. For example, the partially
real spectrum on some critical lines implies a spontaneous
breaking of the antilinear symmetry associated with a diago-
nalizable pseudo-Hermitian Hamiltonian [47] as a function of
momentum k (rather than some external control parameter).
The effect of the existence of such an exceptional point in the
k space on entanglement and purification transition should be
further explored [42]. As another example, we noticed that
positive or negative decay rates effectively lead to projective
measurements in the momentum space. A general question
is whether engineered dissipation can be used to construct
interesting phases like topological phases [73–75].
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APPENDIX: CONFORMAL FIELD THEORY
WITH COMPLEX TIME

The evolution of entanglement entropy of a unitary critical
system after a quantum quench is discussed in Refs. [43,66].
We discuss a minor generalization to a special critical non-
Hermitian system by rotating the real time to the complex
plane.

If H is the Hamiltonian of a CFT, then the non-Hermitian
Hamiltonian (1 − iη)H with η > 0 may be regarded as a
critical Hamiltonian of the non-Hermitian system since the
zero mode remains intact while other modes become complex.
In our context, when J = h = α(1 − iη) and |J| � 1, the
effective Hamiltonian is approximately described by that of a
critical TFIM but with complex couplings. We assume that the
CFT formalism is applicable to (1 − iη)H and show that the
CFT formalism yields results that are compatible with those
in Ref. [69] qualitatively.

Suppose the system starts with the initial state |ψ0〉 at t = 0
and then starts to evolve under (1 − iη)H . We first compute
the density matrix

〈ψ (x, t )|ρ0|ψ ′(x′, t )〉
= Z−1〈ψ (x)|eit (1+iη)H−εHρ0e−it (1−iη)H−εH |ψ ′(x′)〉
= Z−1〈ψ (x)|e−(tη+ε−it )Hρ0e−(tη+ε+it )H |ψ ′(x′)〉, (A1)

where ρ0 = |ψ0〉〈ψ0|, Z = tr[ρ0e−2(ε+tη)H ], and a term εH
has been added to make the quantity convergent.

Let us write τ1 = ε + tη + it and τ2 = ε + tη − it ; then
the density matrix ρ can be represented as two path integrals:
the first one starts with ψ ′(x′, τ ) at τ = −τ1 and ends with
ψ0(x) at τ = 0, and the second one starts with ψ0(x) at τ = 0
and terminates with ψ (x, τ ) at τ = τ2. Divide the system (at
τ = 0) into region A and its complement B; then the reduced
density matrix ρA can be obtained by gluing ψ0(x) of the first
integral with that of the second one at τ = 0 for x inside region
B. trρn

A can be obtained by cyclic gluing:

trρn
A = Zn(A)/Zn, (A2)

where Zn(A) is the path integral on an n-sheet surface. Taking
n = 1 and A to be the entire system, we have Z1 = Z and
trρ = 1. The Rényi entropies are given by

S(n)
A = 1

1 − n
trρn

A, (A3)

and the von Neumann entanglement entropy by

SA = − ∂

∂n
trρn

A|n=1. (A4)

To compute trρn
A, we make use of the conformal

invariance and parametrize the strip with width
τ = τ1 + τ2 by the upper half plane of the complex
plane via the conformal map w = (2τ0/π ) log z with
τ0 = ε + ηt . If the total length of A is l and the original
end points of A sit at −l/2 and l/2, the images of these
two branch points are z1 = exp(−π l/4τ0) exp(iπτ1/2τ0)
and z2 = exp(π l/4τ0) exp(iπτ1/2τ0), respectively. Following
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Ref. [43], Zn(A)/Zn can be computed from the correlation
function of the two branch point twist fields with scaling
dimension dn = (c/12)(n − 1/n):

trρn
A(t ) � F̃n(x)cn

(
π

2τ0

)2dn

×
(

cosh(π l/2τ0) + cosh(πt/τ0)

8 sinh(π l/4τ0)2 cosh2(πt/2τ0)

)dn

, (A5)

where F̃n(x) is a function that depends on the model and
the boundary condition, x being the four-point ratio, and cn

are constants that cannot be determined with this method but
c1 = 1. If we are interested in asymptotic behaviors, e.g.,
t, l � τ0, F̃n(x) is irrelevant and we can put it to be 1. After

some algebraic manipulations, we obtain

trρn
A(t ) � cn

(
π

2τ0

)2dn
(

eπ l/2τ0 + eπt/τ0

eπ l/2τ0 eπt/τ0

)dn

. (A6)

Note that since τ0 = ε + ηt , for t, l � τ0 to be satisfied, we
require that η � 1 and t � l/η. We can normalize the entan-
glement entropy by subtracting SA(0) from SA(t ). Using the
approximation in Eq. (A6), we find that normalized entangle-
ment entropy is given by

SA(t ) � c

3
ln

(
ε + ηt

ε

)
+

{
πct

6(ε+ηt ) , ε � t < l/2
πcl

12(ε+ηt ) , l/2 < t � l/η.

(A7)
If we take l/2 < t < l/η and t → ∞, SA(t ) will saturate.

The derivation above can be generalized to Rényi entropies
straightforwardly. In fact, Rényi entropies have similar behav-
iors as the von Neumann entanglement entropy.
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