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The study of active matter has revealed novel non-equilibrium collective behaviors, illustrating their potential
as a new materials platform. However, most work treat active matter as unregulated systems with uniform
microscopic energy input, which we refer to as activity. In contrast, functionality in biological materials results
from regulating and controlling activity locally over space and time, as has only recently become experimentally
possible for engineered active matter. Designing functionality requires navigation of the high-dimensional
space of spatio-temporal activity patterns, but brute force approaches are unlikely to be successful without
system-specific intuition. Here, we apply reinforcement learning to the task of inducing net transport in a specific
direction for a simulated system of Vicsek-like self-propelled disks using a spotlight that increases activity
locally. The resulting time-varying patterns of activity learned exploit the distinct physics of the strong and weak
coupling regimes. Our work shows how reinforcement learning can reveal physically interpretable protocols for
controlling collective behavior in non-equilibrium systems.
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I. INTRODUCTION

Active matter has revealed exciting new patterns of
self-organization not found in equilibrium systems [1,2].
Pioneering theoretical and experimental work explored the
complexity generated by spatio-temporally uniform systems,
in particular with uniform non-equilibrium microscopic driv-
ing across space and time. The resulting phenomena are
sometimes seen as a step towards achieving complex func-
tionality shown by biological materials. However, biological
functionality, e.g., cytokinesis or cell migration [3–5], can be
attributed to not merely being out of equilibrium but rather,
to the ability to regulate activity as a function of space and
time.

Recent experimental advances have demonstrated regu-
lation of activity in diverse engineered systems, including
bacteria, colloids, and reconstituted cytoskeletal components;
while details differ, these experimental platforms allow for
activity to be modulated as a function of space and time,
usually through optical means [6–11].

However, we do not currently have systematic computa-
tional frameworks to exploit these new experimental tech-
niques for manipulating active matter. The high-dimensional
space of spatio-temporal protocols opened up by these ex-
perimental advances cannot be explored through brute-force
alone. Furthermore, activity is a scalar field, and therefore
it is not immediately clear how control of this quantity can
achieve complex targets like spatial structure or net momen-
tum transfer. For example, while a colloid can be induced to
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self-propel with light, light only controls the scalar speed at
which the colloid self-propels, and not the vector direction.
Consequently, previous work relied on system-specific phys-
ical intuition [11–17] or assumed complete knowledge of the
underlying dynamical equations [18].

In contrast, data-driven approaches can be model-free
and have shown promise for similar control problems [19]
but typically with a few coupled degrees of freedom such
as single-particle navigation [20–26], or bio-inspired loco-
motion [27–33]. These works have established data-driven
techniques, in particular reinforcement learning [34], as a
powerful tool for tackling control problems in physics. How-
ever, less attention [18,35] has been given to many-body
non-equilibrium systems of the kind studied here.

Here, we address the challenge of control in active mat-
ter by leveraging developments in model-free reinforcement
learning (RL) (Fig. 1). We construct an RL setup that identifies
time-varying patterns of a scalar activity parameter capable of
inducing directed transport in a simulated system of Vicsek-
like self-propelled disks. As aligning interactions between the
disks are increased from zero, the nature of learned proto-
cols changes, illustrating the flexibility of the reinforcement
learning approach. We find that the learned protocols can
be physically interpreted in terms of the distinct underlying
physics at weak and strong coupling.

In doing so, our goal is to demonstrate that reinforcement
learning is a well-suited technique for achieving functionality
in a broad class of active systems. While the system under
consideration here is simple and canonical, it contains two
physically very distinct regimes. The success we demonstrate
in each regime is therefore indicative that the performance of
the approach is not due to a unique aspect of the regime-
specific physics. Our approach therefore promises to be a
useful, model-free tool in confronting the high-dimensional
protocol search problem that is universal to optically-activated
active matter.
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FIG. 1. Reinforcement learning provides a framework to control
active matter by modulating activity over space and time. Recent
experimental advances allow local modulation of activity by light
in diverse active matter systems [6–12]. We consider a framework
in which a reinforcement learning (RL) agent controls the illumi-
nated region—its location, size, and shape—in order to achieve a
desired non-equilibrium organization. Particle positions and velocity
are coarse-grained, and passed to an RL agent, which decides where
to place the light. The active matter system responds to the agent’s
choices of illumination; RL receives a reward based on this response
and updates its control protocol accordingly.

II. METHODS

Simulation environment overview

More concretely, we set out to maximize directional trans-
port in a 2D system of self-propelled particles by controlling
activity. Particle positions are updated similarly to the canon-
ical Vicsek model [2,36], but with the distinction that the
magnitude of activity ν(x, t ) is a function of space and time:

xi(t + �t ) = xi(t ) + ν(x, t )pi(t )�t + 1

γ
Fex + η, (1)

pi(t + �t ) = (Uθ ◦ W )((1 − k)pi(t ) + kp̄i(t )), (2)

where p is the particle polarization, p̄ its local spatial average,
�t a timestep, Uθ a random rotation, W a normalization, and
k a coupling in the interval [0,1), Fex comes from a WCA
excluded volume pair-potential, γ is a drag coefficient, and η

is a spatial diffusion term. ν(x, t ) is now a generic spatiotem-
poral field controlling the speed (but not direction) of active
self-propulsion.

As in recent experiments where spatio-temporal control of
activity has been achieved optically [6–11], we assume that
particles’ polarities are unaffected by light. We stress that the
only microscopic quantity changed by the light field is the ac-
tive propulsion speed. All other quantities, such as rotational
diffusion or coupling between polarities, are independent
of optical activation. As noted, particles also experience

excluded volume and a small amount of thermal noise; refer
to Appendix A for more detail on how the simulations are
implemented.

In what follows, we will formulate an RL setup for max-
imizing the x component of the system’s momentum, in
distinct physical regimes. We emphasize that the goal of max-
imizing +x momentum is relatively simple, but requires a
nontrivial strategy; as light only controls the scalar speed at
which a particle self-propels, not the vector direction, sim-
ply illuminating the particles will not produce transport in a
specific direction (see Sup Movie 1 within the Supplemental
Material [37]).

B. Formulating RL for active matter

Having described the simulation environment, we now turn
to the selection of an appropriate algorithm for navigating
the space of activity protocols. We also have to make choices
about how this algorithm will interact with the simulation en-
vironment; we need to choose how to represent states, actions,
and rewards. While most reinforcement learning algorithms
are constructed with the goal of enabling successful opti-
mization within a high-dimensional space of protocols, some
algorithms will be better suited to the specific requirements of
manipulating optically-activated active matter. We therefore
make our choices motivated by the potential application of
our approach beyond our simulated Vicsek-like environment.

1. Defining states, actions, and rewards

Reinforcement learning is commonly framed in the lan-
guage of Markov decision processes, which contain four
essential ingredients: states, actions, transitions, and rewards
[34]. Transitions are determined by the physics of our active
matter simulation, but the other three ingredients need to be
defined as well.

There are many possibilities for defining states. We could,
for instance, consider the state of the system to be a list of the
positions and velocities of each particle. However, in order to
respect the permutation invariance of the system, we instead
construct coarse-grained density and velocity fields (Fig. 1).
While it is possible that the coarse graining leads to violation
of the Markov property for transitions between states, we
assume that the grid is fine-grained enough to make these vi-
olations quantitatively small. Furthermore, this approach has
the benefit of being easily extended to other common active
matter systems, which are more readily described on larger
length scales or in terms of fields.

Similarly, there are many possibilities for defining actions,
corresponding to the different families of spatio-temporal ac-
tivation fields. For simplicity, we constrain our optical field to
be a single elliptical light source with fixed intensity, which
we term the “spotlight”. All particles within the spotlight
experience the same active propulsion speed. All particles
outside of the spotlight are inactive. The RL algorithm (Fig. 1)
is allowed to take actions, which change the (a) center, (b)
length, and (c) aspect ratio of the spotlight as a function of
time, but do not change the intensity or tilt of the spotlight.
We note that, by specifying that there is only one spotlight, we
have placed constraints on the space of protocols considered
by our RL setup. Any protocols identified in the RL procedure
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are therefore only guaranteed to be locally optimal in this
restricted space. However, our approach easily generalizes
to families of protocols with multiple spotlights that may be
necessary to consider in other active matter contexts.

As previously noted, our goal will be for the RL setup
to maximize and maintain the x component of the system’s
momentum. Therefore, we choose to define the reward for
any action as the subsequent instantaneous x momentum in
the system. This is in contrast to other common use cases of
reinforcement learning outside of physics, where the reward
is frequently sparse in time.

2. Selecting an algorithm

There are a similarly wide array of possibilities for select-
ing a particular reinforcement learning algorithm. We wanted
to choose one that would be well-suited to active matter sys-
tems in general. As such, we needed to find an RL algorithm
that could take advantage of nonsparse rewards, naturally en-
code stochastic protocols, and accommodate continuous state
and actions spaces.

These requirements suggested a class of algorithms known
as online actor-critics [34]. Actor-critics have two compo-
nents: An actor and a critic. The actor is a neural network,
which receives coarse-grained density and velocity fields, as
well as the current size and location of the spotlight. Based on
this input, the actor samples a change to the pattern of light
from a probability distribution, and receives its instantaneous
momentum reward. Aiding the actor in its search is the critic
network, which accepts the same state as the actor, but in-
stead outputs an estimate of potential future rewards; in our
case, time-integrated x momentum that can be gained in the
future. Together, these two networks satisfy the requirements
of selecting a reinforcement learning algorithm for an active
matter context.

In order to update the two networks, the actor-critic algo-
rithm makes use of the policy gradient theorem [34], which
allows the actor loss function to be written as the product of
the log probability of the actor sampling a particular choice
for spotlight movement, and the temporal difference error δt .
δt in turn is computed from the critic network, and can be
thought of intuitively as the difference between the amount of
x momentum seen in the system following spotlight motion,
and how much x momentum the critic expected to see. The
critic network is then updated with a loss function, which
quadratically penalizes δt . These updates encourage the critic
to become more accurate, and encourage the actor to move the
spotlight in ways that will outperform the critic’s expectations.
Appendix B contains more detail on the actor, critic, states,
actions, and rewards.

III. RESULTS

We begin by exploring control protocols for systems with
different coupling k between particle polarities. Prior works
have established how the physics of Vicsek-like systems qual-
itatively changes with this parameter [2,36], as well as the
response of such systems to temporally-fixed quenched disor-
der of various kinds [38,39]. The no-coupling regime has been
studied extensively as self-propelled hard spheres [40,41]. As

the coupling is increased into a high coupling regime, the
system crosses an alignment transition into a flocking phase
(see Appendix E). In order to achieve +x transport, the RL
policy should learn to break the symmetry of the particles’
responses and exploit the distinct physics of the two regimes.

In all coupling regimes, the spotlight initially does not
move in any meaningful fashion, and the net transport through
the system is correspondingly low. As training proceeds, net
transport through the system increases [Figs. 2(a) and 2(e)].

In the weak coupling limit, we find that the elliptical
spotlight becomes fully elongated in the y direction, of finite
length lx in the x direction, and, on average, is moved at a
characteristic velocity vγ in the + x direction [Figs. 2(b)–2(d)]
(see Sup Movie 2 within the Supplemental Material [37]). A
qualitatively distinct strategy with no well-defined spotlight
speed and large fluctuations in size is learned at in the strong
coupling regime [Figs. 2(f) and 2(g)] (see Sup Movie 3 within
the Supplemental Material [37]).

A. Weak coupling

We next asked if we could obtain physical insight from our
model-free learning approach, starting with the weak coupling
limit.

Based on data in Fig. 2, we propose that the learned pol-
icy in the zero-coupling regime functions as a purification
process. As the spotlight moves rightward, left-moving par-
ticles tend to exit the spotlight quickly, losing activity and
reducing–x momentum. In contrast, right-moving particles
tend to remain within the spotlight for longer because both
move in the same direction [Fig. 3(a)], maintaining +x mo-
mentum.

We can quantify this intuition using a simplified 1D model
in a region of length L with periodic boundary conditions,
with an spotlight region of length l < L. Particles move with
an active speed vp when they are in the spotlight, and there is
a conversion rate r of particles that switch their direction of
motion per particle per unit time.

We limit analysis to a protocol where the spotlight moves
to the right at a constant velocity vγ and make several simpli-
fying assumptions: (a) number density is a constant ρa within
the spotlight and a constant ρi outside it. (b) Particles move
with an active speed vp when they are in the spotlight and
only experience diffusive motion outside. (c) The fraction of
left-moving particles is a constant fa in the spotlight and fi

in the dark. (d) Particles instantaneously randomize their di-
rection of motion upon exiting the spotlight. (e) The spotlight
is a rectangular region of length lx in the +x direction, fully
elongated in the y direction.

These assumptions are broken by real systems and by our
simulated system. Furthermore, instances of the learned pro-
tocol show deviations that might reflect stochasticity inherent
to learning and physical fluctuations such as nonuniform den-
sity, finite rotational decoherence time, and other violations of
our assumptions. Nevertheless, we will show that this simple
model of purification explains the time-averaged behavior of
the learned protocol.

To make quantitative connection between the learned pro-
tocol and our purification model, we compute +x momentum
as a function of purification model parameters. In the model,
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FIG. 2. Reinforcement learning generates distinct protocols to induce directional transport in self-propelled disks at weak and strong
coupling. Weak coupling: (a)–(d); strong coupling: (e)–(g). [(a), (e)] As the RL setup trains, average x momentum during a training episode
increases. X momentum remains highly stochastic (grey curves), but running average of (a) 500 or (e) 1000 episodes shows clear improvement
(black curve). [(b), (f)] Training changes spotlight shape and movement in distinctive ways at weak and strong coupling in order to induce
rightward transport. [(c), (g)] Kymographs of spotlight intensity, particle density, and particle x velocity for the learned protocols in the weak-
and strong coupling regimes. Kymographs focus on the one spatial dimension important for the target behavior, but some information is lost
in the x projection. Examples of the full system dynamics are available in Sup Movies 2,3 within the Supplemental Material [37]. (d) For
weak coupling, averaging over multiple aligned periods of the learned policy shows that the spotlight moves from left to right at a well-defined
velocity, with traveling wave of particle density with positive x velocity carried along.

we have four unknowns (ρa, ρi, fa, fi ) with four constraints.
(a) Particle number conservation:

ρal̃ + ρi(1 − l̃ ) = ρ, (3)

where ρ is the overall (linear) number density.
(b) Steady-state particle flux balance into the spotlight:

(1 + ṽ) faρa + δṽ(1 − fa)ρa = ṽρi, (4)

where δṽ is |1 − ṽ|.
(c) Steady-state flux balance of left-moving particles into

the spotlight:

(1 + ṽ) faρa + r̃ l̃ρa fa = ṽρi fi + r̃ l̃ρa(1 − fa). (5)

(d) Steady-state flux balance of left-moving particles into the
dark region

ṽρi fi + r̃(1 − l̃ )ρi fi = (1 + ṽ) faρa + r̃(1 − l̃ )ρi(1 − fi ).
(6)

The equations then involve three nondimensional quantities,
ṽ = vγ

vp
, l̃ = l

L , and r̃ = rL
vp

. To account for the excluded
volume of the particles, we modify the system of equa-
tions above an adjustable density threshold ρev . For further

explanation of the various terms in the model, please see
Appendix C.

We numerically solve these coupled equations, allowing
us to compute a phase diagram for net x momentum as a
function of ṽ and l̃ [Fig. 3(b)]. We fix r̃ and ρev based on
values measured in the simulation itself (Appendix D).

The phase diagram shows that maximum steady-state
momentum is achieved when vγ ≈ vp, consistent with the
average velocity of our learned protocol [Fig. 3(b)] and similar
to earlier physics-based single swimmer analyses of periodic
activity pulses [14,15]. Static patterns of diffusivity variations
have also been known to generate drift [42].

Our theory additionally provides a mechanistic explanation
for the existence of an optimal length lx for the spotlight,
as we see in our RL-derived policy. Below this length, the
spotlight is too small to accommodate more than a small
number of particles, and excluded volume interactions prevent
additional accumulation. Above this length, the spotlight is
too big to purify the left-moving particles. Balancing these
two competing effects yields an optimal spotlight length close
to the length learned by our RL policy [Fig. 3(b)].

Finally, the structure of the equations suggests that, so long
as we keep ρev and r̃ fixed, the velocity of the spotlight vγ

should be approximately equal to the active speed vp. This
prediction is confirmed by simulations run at different vp

(with l̃ = .3) [Fig. 3(c)].
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FIG. 3. Weak coupling protocol can be interpreted as a purifi-
cation process. (a) As spotlight moves right, left-moving particles
exit the spotlight (and become inactive) sooner than right-moving
particles that cotranslate with spotlight. Consequently,–x momentum
of left movers is quenched at the left edge of the spotlight while
+x momentum is maintained within the spotlight. At steady state,
density lost by exiting particles is replenished by particles that lie
ahead of spotlight’s path. (b) Phase diagram for 1D model in (a).
X momentum as function of normalized spotlight velocity ( vγ

vp
) and

normalized spotlight length ( lx
L ). X momentum is maximized for

vγ ≈ vp and for intermediate lx (black star), close to parameters
identified by reinforcement learning (RL) (white star, black-dotted
line). Error bars represent the standard deviation of distributions for
the trained protocol. (c) We trained RL on self-propelled systems
with different light-enhanced activity vp. Spotlight speed vγ scales
with vp as predicted by theory (black line). Boxplots extend from
lower to upper quartile of velocity distribution, with a line at the
median.

B. Strong coupling

The learned protocol at strong coupling does not have a
well-defined spotlight velocity. Instead, spotlight size is cor-
related with the polarity of particles.

We find that the strong coupling protocol exploits flocking
physics inherent to this regime of the Vicsek model [2]. Due
to the coupling, there is limited heterogeneity in the polar-
ity of individual particles, creating a well-defined collective
polarity (Appendix E). To understand the protocol identified
in the strong coupling regime, we compared the collective
polarity of the system to the area of the spotlight [Fig. 4(a)].
We found that RL maximized the area of the spotlight when
collective polarity pointed in the desired direction, and fluctu-
ated the spotlight area when collective polarity pointed in the
undesired direction [Fig. 4(b)]. This protocol has appealing
parallels to other on/off strategies studied, but in the context
of single-colloid navigation [20–22].

In fact, we can systematically distinguish the learned
strategies in the two coupling limits by defining two order

FIG. 4. Order parameters quantify how learned protocols switch
from purification at weak coupling to a flocking-based strategy at
strong coupling. (a) Snapshot traces of collective direction (bottom)
and ratio between area of spotlight and system area (top) for the
strong coupling protocol. Measurements of the two quantities are
made at the same time in simulation. (b) Average spotlight area as a
function of collective polarity. At strong and intermediate coupling,
the spotlight provides maximum illumination when the collective
polarity points rightward, and provides less illumination when the
collective polarity points leftward. There is no relation between col-
lective polarity and spotlight size at weak coupling. This transition
is consistent with correlations between spotlight area and collective
polarity as a function of coupling (Fig. 8). (c) Order parameters
〈P〉, 〈O〉 quantitatively track nature of protocols from weak to strong
coupling.

parameters that characterize the control protocol. We define
the purification parameter 〈P〉 to be the inverse ratio of the
standard deviation and the mean of the vγ distribution; intu-
itively, 〈P〉 is high if the spotlight has persistent motion in
one direction. We define the on/off parameter 〈O〉 to be the
ratio of spotlight area when the collective polarity points right
versus left; intuitively, 〈O〉 is high if the spotlight’s intensity
is correlated with the collective polarity of particles within the
spotlight.

We repeated the learning algorithm for coupling values
between the strong and weak regimes [Fig. 4(c)]. We find that
〈P〉 is high for low coupling and falls with increasing coupling
while 〈O〉 is high for strong coupling and falls with decreasing
coupling. Thus, the model-free RL setup learns distinct proto-
cols to exploit different physics at different coupling values.

In the crossover regime [log(k) = −1.6] where sponta-
neous collective motion begins to emerge, the learned protocol
adopts aspects of both the purification and on/off strategies
[Fig. 4(c)]. Like the strong coupling protocol, the agent has
maximal spotlight area when the collective polarity points to
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the right [Fig. 4(b)]. However, when the collective polarity
points to the left, the spotlight area is still half its maximal
value on average, potentially reflecting the larger spread of
individual particle polarities in the crossover regime.

Finally, we repeated the learning procedure at strong cou-
pling but lower densities; in this regime, the particles break
up into clusters, each with a tightly coupled alignment (Sup
Movie 4 within the Supplemental Material [37]). The learned
protocol is harder to directly interpret but achieves a peak mo-
mentum transfer closer to the weak coupling regime, despite
exhibiting characteristics more similar to the policy learned in
the strong coupling regime (Appendix F, Fig. 7). We addition-
ally repeated the learning procedure at the original density but
in larger systems with 4 times the number of particles. In this
case, the RL setup re-identified the same strategies as it did in
the smaller systems (Fig. 9).

IV. CONCLUSIONS

Over the past two decades, the physics of active matter
systems with homogeneous activity has been illuminated with
great success. Our work proposes that reinforcement learning
can be used to explore the collective physics of active particles
in spatio-temporally complex environments. For the simple
models investigated here, we were able to extract physical
insight from our initially physics-blind approach, in the strong
and weak coupling regimes. Such insight is valuable, partic-
ularly given known concerns about the ability of RL to learn
reproducible protocols [43].

Control of active matter by modulating where and when
energy is dissipated is broadly applicable since microscopic
energy dissipation (i.e., activity) is a universal aspect of active
matter systems ranging from bacteria to colloids. As such,
we envision that the approach we applied here to particulate
active matter can be readily extended to systems where the
features of interest are emergent, e.g., topological defects
[6,7]. In those systems, nonlocal effects, e.g., the change in
nematic texture due to the motion of topological defects, also
suggest the possibility that more complex functional goals
will require counter-intuitive solutions. Similar considerations
might also apply to geometrical constraints introduced by
confining active matter within deformable containers [44–47],
or attempting to manipulate an active container filled with
passive matter [48–50]. Broadening the nature of the prob-
lem, it might also be fruitful to consider the application of
reinforcement learning to design the interaction protocols
between objects, which carry their own sources of illumina-
tion [51]. We therefore propose that reinforcement learning
provides an appealing, model-free method for generating in-
tuition and functionalizing the effects of localized activity in
systems hosting topological excitations or otherwise complex
dynamics.
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APPENDIX A: SIMULATION DETAILS

Simulations are run in two dimensional periodic bound-
ary conditions using HOOMD-blue [52] (2.9.0). Translational
dynamics of the system are fairly simple. A WCA potential
between particles is used to enforce excluded volume begin-
ning at a radius of .5. Positions are updated under Langevin
dynamics, with a drag coefficient of 5, and a small kT of
.03. Self-propulsion is incorporated into the dynamics via the
addition of a constant force whose magnitude is the product
of the drag coefficient and the active speed referenced in the
text. Unless otherwise noted, this active speed is set to 3.9.
The direction of the force is updated every five timesteps, and
points along the particle’s instantaneous polarity at the time of
the update.

The angular dynamics of the polarity are also fairly simple.
Each particle carries with it a unit vector polarity, which points
in the plane. Every five timesteps, this polarity is rotated by a
random angle drawn from the distribution π√

1000
N (0, 1).

For simulations that incorporate a Vicsek-like coupling be-
tween physically proximal particles, every five timesteps the
polarity update begins by computing a list of each particle’s
neighbors, which are within a radius of 1.33, including the
central particle. In the following the central particle will be
referenced to with the index i. From this list of particles, a
mean polarity pi is computed. The polarity pi of particle i is
then updated to be (1 − k)pi + kpi, where the coupling k can
take on values in [0,1). The updated polarity is then normal-
ized to be of unit length. As before in the noninteracting case,
each polarity is subsequently rotated by a random angle drawn
from the distribution π√

1000
N (0, 1).

In all simulations performed here, 144 particles are initial-
ized on a square lattice with an overall number density of 0.25
particles per unit area. The mass of each particle is set to 1.
Polarities are initialized by drawing from a uniform distribu-
tion between 0 and 2π . Timesteps were set to be 5×10−3.

APPENDIX B: LEARNING ALGORITHM DETAILS

We implemented a simple TD actor-critic algorithm [53]
based on the implementation found in Ref. [54], using Ten-
sorflow (2.0.0).

Reinforcement learning is based on the framework of
Markov decision processes (MDPs), which involve a time-
series of states, actions, and rewards. The formulation of the
three essential components of the states, the actions, and the
rewards are independent of the specific reinforcement learn-
ing algorithm. We outline those three key components before
briefly describing our implementation of the actor-critic algo-
rithm.

1. States, actions, rewards

States are represented by concatenating the coarse-grained
number density field, the coarse-grained x-velocity field, the
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coarse-grained y-velocity field, and the current position and
shape of the spotlight(s). The fields are all flattened into
vectors before concatenation. In our current study, all fields
are 3×3, so the size of the state space is 3×(3 × 3) +
4×(#spotlights), which comes to a total of 31. The coarse
grained velocity fields are constructed by averaging the ve-
locities of all the particles in a particular grid square; if
no particles are present, then the velocity is assigned to be
zero. This procedure is accomplished using the SciPy func-
tion binned_statistic_2d, and the corresponding density field
construction is done using the NumPy function histogram2d.
While it is possible that the coarse-graining leads to violation
of the Markov property for transitions between states, we
assume that the grid is fine-grained enough to make these
violations quantitatively small.

The action space is of dimension 4×(#spotlights). Each
arm is specified as a 4-tuple: (x, y, rat io, length) where x is
the x position of the center of the arm, y is the y-position of
the center of the arm, rat io is the ratio between the extent of
the spotlight in the x direction compared to the y direction,
and length is the extent of the spotlight in the x direction.
In other words, the region activated by a given arm is an
ellipsoid centered at (x, y), with an x dimension of length
and a y dimension of length

rat io . However, the output of the actor
network is not directly these variables, but is instead a vector
(δ1, δ2, δ3, δ4). This effectively regularizes and constrains the
policy to be relatively continuous in time. This vector then up-
dates the current (x, y, rat io, length) to the following values:

x → (x + dδ1 + lx )%(2lx ) − lx, (B1)

y → (y + dδ2 + ly)%(2ly) − ly, (B2)

rat io → clip(rat io + .1δ3, .1, 3), (B3)

length → clip(length + .1δ4, .2lx, 1.8lx ), (B4)

where clip is a function that clips the first entry to be within the
bounds in the second and third entries, % is the mod function,
and lx, ly are half the widths of the simulation box in the x
and y dimensions respectively. For the intermediate and strong
coupling regimes discussed in Fig. 4, the constraint that lx
must be smaller than the full simulation box length is relaxed,
and the spotlight is allowed to occupy the full volume of the
simulation box:

length → clip(length + .1δ4, .2lx, 2.2lx ). (B5)

Note that d sets the maximum distance the agent can move
the spotlight center between updates. On physical grounds,
this should not be faster than the maximum distance a particle
can move between updates. Hence, for a given level of activ-
ity, we set d so that the spotlight can move 4x the distance that
particles can move in the time between spotlight updates.

In order to improve training, we preprocess states before
they are fed into the actor and the critic. Specifically, we
generate 105 random samples of states the agent is likely to
encounter, and then using the sklearn StandardScaler function
to define a function, which scales states relative to the random
samples. For density fields, this means we sample a 3-by-3
matrix where each entry is drawn from a uniform distribution
between 0 and 1, and then normalize and scale this matrix so

that the sum is equal to the number of particles in the system.
For velocity fields, we sample two 3-by-3 matrices where each
entry is drawn from a uniform distribution between 0 and 1,
and then scale them so that entries run between +/− the active
speed of the particles. For the entries corresponding to the
spotlight descriptors, we sample four scalars from the [0,1]
uniform distribution and scale the first so that it runs between
+/−lx, the second between +/−ly, the third between .1 and
3, and the fourth between 0.2lx and 1.8lx. For the intermediate
and strong coupling regimes, the fourth was sampled between
0.2lx and 2.2lx

The reward is simply the sum of the x velocities in the
system.

2. TD actor-critic

Given this setup for states, actions, and rewards, we now
describe implementation of a simple TD actor-critic agent;
more detail can be found in standard RL references, e.g.,
Ref. [34].

Our actor-critic agent has two neural networks, the actor
and the critic. We represent the critic as a simple feed-
forward neural network with two hidden layers, each with
400 neurons, and a single output node. The actor is repre-
sented as a feed-forward neural network with two hidden
layers, each with 40 neurons, and two output layers, each with
4×(#spotlights) nodes. Both networks use ELU activation
functions for the hidden layers. For the actor, one output
layer has a linear activation, while the other has a softplus
activation. The one output node for the critic has a linear
activation.

During training, the actor receives a state, and its outputs
are used to parameterize the means and standard deviations of
4×(#spotlights) Gaussian distributions. These distributions
are then sampled and the samples are clipped to be between
+/−1. These sampled numbers are then turned into actions as
described in Appendix B1, the system transitions to its next
state according to the physics described in Appendix A, and
then a reward is generated based on the next state.

In order to update the two networks, the actor-critic algo-
rithm makes use of the policy gradient theorem [34], which
allows the actor loss function to be written as the product
of the log probability of having sampled the action, and the
temporal difference error δt . δt in turn is computed from the
critic network, which is a bootstrapped approximation for
the difference between the value the critic network assigns to
the next state and what value it should actually be. Since this
is a bootstrapped estimate, we approximate what the value
should actually be the sum of the reward received in the
transition and the value of the previous state. In order to insure
that the critic network outputs will not diverge, the value of
the previous state is discounted by a scalar 0 < γ < 1. The
critic network is then updated with a loss function, which
quadratically penalizes δt . All updates are performed just for
one learning step, and with a batch size of one, using the
Adam optimizer.

In regards to hyperparameters, we attempted to choose
standard values, which did not need much changing in be-
tween the various parameter regimes we considered in this
work. The size of the networks remained the same, and for all
networks trained, γ is set to 1−10−3. The learning rate is 10−4
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for the critic and 2×10−6 for the actor. We initially start these
values to be 10 times higher, and then quadratically decay
the learning rate to their stated values using the tensorflow
polynomial_decay function.

Training is done in episodes of 100 training steps, over
which we record the total reward. Each training step consists
of 50 timesteps. Every 900 episodes, the system restarts to
the initial square lattice with randomized polarities. Figure 2
agent training was run for 4.95×104 episodes, Fig. 3 agents
were trained for 6.3×104 episodes, and in Fig. 4, the low
coupling agent was trained for 2.7×104 episodes, while the
high and intermediate agents were trained for 9×103 episodes.

APPENDIX C: THEORY DESCRIPTION

Here we provide a more detailed description of Eqs. (3)–
(6), as well as a description of the modifications to account for
excluded volume effects.

Equation (3) is a statement of particle number conservation
in our system, which can be written as

ρal + ρi(1 − l ) = Ntot. (C1)

The first term on the right -hand side (rhs) represents the
number of particles in the active region, and the second term
represents the number of particles in the inactive region. Di-
viding through by L yields Eq. (3).

Equation (4) is a statement that at steady-state, the number
of particles exiting and entering the active region must be
equal:

(vp + vγ ) faρa + |vp − vγ |(1 − fa)ρa = vγ ρi. (C2)

The rhs first term represents left-moving particles exiting from
the back of the active region either because the region has
moved past them, or they have propelled themselves into
the inactive region. The second term represents right-moving
particles exiting either from the back or the front of the active
region due to mismatch between the active velocity and the
velocity of the active region. The left-hand side (lhs) accounts
for inactive particles moving into the active region as the
active region advances. Dividing through by vp yields Eq. (4).

Equation (5) is a statement that at steady-state, the number
of left-moving particles exiting and entering the active region
must be equal, and this conservation is independent of the
balance of total number of particles entering and exiting:

(vp + vγ ) faρa + rlρa fa = vγ ρi fi + rlρa(1 − fa). (C3)

The rhs first term represents left-moving particles exiting from
the back of the active region. The second term represents the
loss of the bulk left-moving active population, as formerly
left-moving particles flip direction to become right-moving
particles. The lhs terms analogously represent incoming left-
moving particles from the inactive region, and addition from
particles in the active bulk that switch from right to left.
Dividing through by vp yields Eq. (5).

Finally, Eq. (6) is a statement that at steady-state, the num-
ber of left-moving particles exiting and entering the inactive
region must be equal:

vγ ρi fi + r(1 − l )ρi fi = (vp + vγ ) faρa + r(1 − l )ρi(1 − fi ).
(C4)

The physical meaning of the terms is analogous to Eq. (C3),
and dividing through by vp yields Eq. (6).

In order to account for excluded volume effects, we assume
that density within the active region is capped at a value ρev .
If Eqs. (3)–(6) initially provide a solution where ρa > ρev ,
then we instead fix ρa = ρev . Note that Eq. (3) still holds,
and therefore this implies that both ρa and ρi are fixed. What
prevents Eqs. (4)–(6) from being over-determined is that the
physics requires an additional variable W to be introduced in
order to account for the particles that are pushed out of the
active region as a result of the excluded volume interactions.
In this regime, we solve the following set of equations:

(vp + vγ ) faρa + |vp − vγ |(1 − fa)ρa + W = vγ ρi, (C5)

(vp + vγ ) faρa + rlρa fa + W fa = vγ ρi fi + rlρa(1 − fa),
(C6)

vγ ρi fi + r(1 − l )ρi fi

= (vp + vγ ) faρa + r(1 − l )ρi(1 − fi ) + W fa. (C7)

These equations are identical in meaning to Eqs. ((C2)–(C4),
the only difference being the mean-field accounting for the
extra population of left-moving particles carried away from
the active region by W .

APPENDIX D: PARAMETER ESTIMATION

In order to compute our numerical phase diagram in
Fig. 3 B, we need to set two parameters r and ρev .

In order to estimate r, we followed the same process
that generates polarity diffusion in our simulation. We gen-
erated 144 random walks of length 100 000, where every
five timesteps, the value of the walk was changed by a
sample drawn from the distribution π√

1000
N (0, 1). Particle

polarities were initialized uniformly around the unit circle.
Operationally, r is defined as the fraction of particle polarities,
which switch x direction in a unit of time. As the value of
the timestep in our simulation is 0.005 time units, we then
downsample our random walk by taking every 200th entry.
We then count the number of times the cosine of the random
walks switches sign, and divide that total sum by the number
of random walks, and the length of the downsampled walks.
In doing so, we find that for our system, r = 0.32.

In order to estimate ρev , we make the crude assumption
that the ρev is the active density ρa for any optimal protocol,
and specifically the optimal protocol found in Fig. 2. This
assumption is based on the intuition that the optimal protocol
seeks to maximize ρa until excluded volume effects saturate
the active region, which can be seen in the resultant phase
diagram in Fig. 3(b). Measuring this from simulations of the
fully converged protocol found in Fig. 2 yields a linear number
density of ρev ≈ 9. Since the simulation box is a square of
length 24, this corresponds to an area number density of 0.375.

APPENDIX E: ALIGNING INTERACTIONS
IN THE VICSEK MODEL

Central to our analysis of the strong coupling regime is the
existence of a well-defined “collective polarity”, in the sense
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FIG. 5. Increasing coupling sharpens the collective polarity dis-
tributions generated in fully-trained trained protocols. For a range
of alignment couplings, we train reinforcement learning agents and
evaluate the polarity distributions their converged policies generate.
We compute the circular standard deviation at each instance in time
and create boxplots to assess the resulting distributions. Each distri-
bution consists of N = 2.0×105 circular standard deviations, drawn
from the frames of the same simulations analyzed in Fig. 4. Each
circular standard deviation in turn is computed from the polarities of
the n = 144 particles in the simulation. Boxplots indicate the lower
and upper quartiles, with an interior line indicating the median. As
coupling increases, the polarity standard deviation decreases, indi-
cating the development of a well-defined collective polarity.

FIG. 6. In a fully-activated Vicsek system, increasing coupling
sharpens the collective polarity distribution. For simulations with
permanently activated particles run at a range of polarities, we com-
pute the circular standard deviation at each instance in time and
create boxplots to assess the resulting distributions. Each distribution
consists of N = 5.0×103 circular standard deviations, drawn from
the frames of a simulation where all particles are activated and
coupled at the corresponding coupling values. Each circular standard
deviation in turn is computed from the polarities of the n = 144
particles in the simulation. Boxplots indicate the lower and upper
quartiles, with an interior line indicating the median. The system ex-
hibits a crossover regime for polarity standard deviation at a coupling
of approximately k = 10−1.5, where the standard deviation decreases
and the distribution of standard deviations becomes more peaked
as well. This indicates the development of a well-defined collective
polarity.

FIG. 7. Learning to induce transport in a strongly coupled dilute
system with flocking domains. All nondilute data are taken from
simulations discussed in Fig. 4. (a) In the dilute regime, average
x momentum transferred by a fully-trained reinforcement learning
agent is approximately similar to the amount in the weak coupling
regime. (b) Schematic of flocking domains in the dilute, strongly-
coupled regime. (c) We evaluate the spotlight x velocity vγ in the
dilute regime, as well as over the range of couplings discussed in
Fig. 4. At weak coupling, the spotlight moves at the speed predicted
by theory (black line). At intermediate and strong coupling vγ di-
verges from the prediction and additionally is more stochastic. In the
dilute regime, vγ has an even larger spread. Boxplots extend from
lower to upper quartile of velocity distribution, with a line at the
median. (d) Average spotlight area as a function of collective polarity.
In the dilute regime, the spotlight is larger when the average polarity
points to the right.

FIG. 8. Spotlight size is anticorrelated with collective motion
away from the preferred direction at strong couplings. We calculate
Spearman’s r between spotlight area and the absolute value of the
angle between collective polarity and the +x direction for increasing
values of coupling. As coupling increases, spotlight area and angle
magnitude become more strongly anticorrelated.
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FIG. 9. Learning on 4x larger systems recapitulates the same
strategies found in smaller systems for both weak and strong cou-
pling regimes. Simulations are run with 576 particles, keeping all
other physical parameters constant unless specifically noted. The RL
approach and hyperparameters were also identical to those used in
the smaller systems. (a) In the weak-coupling regime with k = 0, we
find a qualitatively similar strategy to the one identified in Fig. 2,
where the spotlight extends laterally and moves rightward at a well-
defined velocity, close to the prediction of the simple model proposed
in the main text; see also Sup Movie 5 within the Supplemental
Material [37]. Boxplots extend from lower to upper quartile of ve-
locity distribution, with a line at the median. Training was performed
for 1.4×104 episodes. (b) In the strong coupling regime with k = .1,
we find a quantitatively similar strategy to the one identified in Fig. 2,
where the spotlight rectifies rightward motion by increasing activity
when particles collectively point to the right; see also Sup Movie 6
within the Supplemental Material [37]. Training was performed for
4.2×103 episodes.

that the majority of particles have their polarities aligned in
the same direction at any given point in time. That this quan-
tity exists is not surprising considering the well-developed
literature on the flocking transition in Vicsek and Vicsek-like
models, though the order of the transition is sensitive to com-
putational details [55].

Here, we can identify on which side of the transition the
activated system is using qualitative visual indications (Sup
Movie 3 within the Supplemental Material [37]), and also on
a quantitative analysis of the standard deviation of the angular
distribution of polarities across time (Fig. 5). These distribu-
tions are drawn from the same simulations used to generate
Fig. 4. We find that as the alignment coupling increases from
weak to strong, the distribution of particle polarities has lower
average circular standard deviations. Therefore, even during
the periods of inactivity that characterize the agent’s policy
in the strong coupling regime, the system retains a relatively
well-defined collective polarity.

The physics of the Vicsek model do not apply to the inac-
tive periods, and therefore we should not necessarily expect to
see a collective flocking polarity during the inactive periods.
However, it is entirely possible that the strength of the cou-
pling and the spatial density of the particles allow for long
decorrelation times of polarities of the individual particles,
which were aligned during the active periods. If the decorrela-
tion timescale is long compared to the inactive periods of the
policy, then we should still expect to observe a well-defined
collective polarity, as we do in the strong coupling regime
(Fig. 5).

To further evidence that the physics of the Vicsek model [2]
underlie the policy learned by the agent in the strong coupling
regime, we run simulations identical to those discussed in the
main text, except that all particles are activated (Fig. 6). We do
this across the range of couplings explored in Fig. 4. As before
in Fig. 5, we see that the collective polarity becomes more
well defined at stronger couplings. Additionally, the spread
of the distribution of circular standard deviations collected at
different time points decreases with coupling. This decrease
indicates that in the strong coupling regime, the majority of
particles are aligned the majority of the time, as long as they
are constantly activated.

The wider spread at the equivalent coupling values in Fig. 5
are therefore likely to be the result of decorrelation during
periods of inactivity.

Measurements of the circular standard deviation were per-
formed using SciPy’s circstd function.

APPENDIX F: DILUTE REGIME POLICY

While Fig. 4 in the main text reports on policies learned
for generating transport in systems, which exhibited a system-
spanning flocking transition, we were also interested in how
an RL agent might respond to a system with strong coupling
but no system-spanning collective variable. This is precisely
the sort of system, which is realized by the Vicsek model
when simulated in a dilute regime [2]. In the dilute regime, the
system-wide flocks break up into flocking domains, with dif-
ferent domain-scale collective polarities (Sup Movie 4 within
the Supplemental Material [37]).

Following training, we find that an RL agent can learn to
induce positive x-momentum in a dilute regime [Fig. 7(b)], to
a degree similar to the weak coupling regime [Fig. 7(a)]. Un-
like in the weak coupling regime, the spotlight does not move
at a well-defined velocity [Fig. 7(c)]. The dynamics of the
spotlight seems superficially more similar to those trained in
the strong coupling regime, with the spotlight larger when the
average polarity points in the positive x direction [Fig. 7(d)].

The dilute system has a number density of 0.033 and an
alignment coupling k = 0.9. All other physical constants are
the same as those given in Appendix A. Agents were trained
for 1.4×104 episodes before training was stopped and the
policies were evaluated.
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