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The relative orientation (twist) of successive layers of stacked two-dimensional (2D) materials creates varia-
tions in the interlayer atomic registry. The variations often form a superlattice, called a moiré pattern, which can
alter electronic properties. In this work we introduce a classification of the single-particle electronic structures
that can occur in twisted stacks of 2D layers by characterizing them as “moiré molecules” or “moiré crystals.”
The molecules generate localized electronic states and moiré flat bands, while the crystals are sometimes
unconventional and produce electronic banding in the configuration basis. The underpinning of this classification
is the duality between interlayer configuration and monolayer Bloch momentum in moiré Hamiltonians. We
apply this understanding to diagrams of local electron density in untwisted geometries to produce intuitive and
quantitative predictions of twistronic properties. We provide a conceptual introduction to this framework through
a one-dimensional model, and then apply it to 2D twisted bilayers of the semimetal graphene, and of MoS2, a
representative material of the transition metal dichalcogenide family of semiconductors. This level of thorough
understanding of twistronic phenomena is vital in the search for new material platforms for localized moiré
electrons.
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I. INTRODUCTION

The number of two-dimensional (2D) materials that have
been experimentally isolated as single layers of atomic-scale
thickness has been growing at a rapid pace [1–6]. Alongside
these advances, methods to combine single layers into mul-
tilayer heterostructures [7–10] have developed a remarkable
level of control over the relative orientation (twist) of succes-
sive layers, on the order of 0.1◦. The resulting heterostrucures
represent a new type of composite materials with properties
spanning a vast range that includes insulators, semiconduc-
tors, metals, and superconductors [11]. The different arrange-
ments of layers of 2D materials provide an intriguing platform
for exploring new physics and potential applications based on
their electronic, optical, magnetic, and thermal properties. The
relative orientation of successive layers, often characterized
by a twist angle between the ideal in-plane lattices, represents
an additional “knob” for adjusting the system properties. A
well-studied example is twisted bilayer graphene (tBLG),
where the twist angle between successive layers of graphene
causes controllable interlayer electronic hybridization. At a
magic twist angle (≈1◦) a symmetric hybridization between
the two Dirac cones from the individual layers introduces
flat bands in the bilayer band structure, resulting in localized
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electronic states [12–17] and enhanced electronic correlations
[18–20].

In the study of twisted bilayers, the use of a supercell
approximation [21–25] or a continuum model [13,26–28]
imposes a periodic length scale for the system to provide
interpretable band structures. We show that instead of rely-
ing on the bands of Bloch theory in momentum space, the
local density of states (LDOS) in either the space of atomic
configurations or Bloch states provides a surprising amount
of clarity in the study of twisted electronic structure. The
experimentally important notions of flat bands and moiré band
gaps are still obtainable in this context. In addition, the LDOS
can form sharply defined features in configuration space and
energy, which we call “configuration banding.” These two
regimes of interesting twistronic features, hosting localized
modes or banding, are analogous to the electronic structure
observed in conventional molecules (localized states) or crys-
tals (extended states or bands). This pattern arises because of
a duality between the momentum and position operators that
can occur in specific scenarios for moiré Hamiltonians.

To illustrate the utility of the duality interpretation in a
simple context, we first examine a one-dimensional (1D)
incommensurate chain model. Moiré flat bands occur when
only a finite number of Bloch states or local configurations
are needed to capture how two parabolic band extrema are
coupled through the interlayer coupling; this corresponds to
the “moiré molecule.” Configuration banding occurs when
an infinite number of Bloch states are needed to accurately
capture the interlayer interaction between two band structures;
this corresponds to the “momentum crystal,” which often ex-
ists alongside conventional Bloch bands in the moiré systems.
Expanding on the simple 1D example, we then investigate
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FIG. 1. (a) Geometry of a twisted bilayer formed by two identical honeycomb lattices. The bottom (top) layer is red (blue). The moiré
supercell is shown in gray and the moiré Wigner-Seitz cell is outlined in black, with colored boxes highlighting the high-symmetry stacking
locations shown in the insets, corresponding to AB, AA, and BA stackings. (b) Configuration-dependent local density of states (LDOS) for
pz orbitals in untwisted bilayer MoS2 in an energy region 4 eV below the valence band maximum. (c) Configuration-dependent LDOS for
a 4◦ twisted bilayer of MoS2. (d), (e) The same as (b) and (c), but for twisted bilayer graphene at 0.0◦ and 1.0◦. (f), (g) Top-down views of
the real-space variation in the LDOS at the energy values identified by the dashed colored lines. The LDOS in (g) appears in both tBLG and
tBLMoS2, and includes the moiré Wigner-Seitz cell outlined in white.

similar features in the electronic structure of realistic ma-
terials, such as graphene and MoS2, a representative of the
transition metal dichalcogenide (TMDC) family. The moiré
molecule interpretation can be modeled by a harmonic oscil-
lator and allows for accurate prediction of twist-induced flat
bands. The momentum crystal interpretation can also provide
highly localized electronic states, and provides an alternate
explanation of the localization caused by strong incommensu-
rate potentials.

This paper is organized as follows: Section II contains
a discussion of the methods used for modeling electronic
structure of 1D and 2D moiré systems, Sec. III categorizes
twistronic spectral features for 1D systems, Sec. IV applies
this categorization to realistic 2D moiré bilayers, and Sec. V
summarizes the results. The appendix examines how configu-
ration banding manifests in the real space LDOS.

II. METHODS

It is a daunting computational task to calculate accurately
the properties of layered structures that involve a small twist
angle. This is because these atomic arrangements are either
incommensurate or have periodicity over length scales several
orders of magnitude larger than the primitive unit cells of the
individual layers. In tBLG, the Dirac cone yields a simple
low-energy Hamiltonian from which momentum-scattering
interactions between layers can be computed [13,26,27,29–
31]. For transition-metal dichalcogenides (TMDC) similar
models for the parabolic band extrema have been used
[28,32,33]. Here, we employ accurate ab initio tight-binding
Hamiltonians [34,35] derived from density functional theory
(DFT) and maximally localized Wannier functions (MLWF)

[36] within a framework specifically developed for twisted
2D systems [37,38].

The tight-binding modeling makes it feasible to investi-
gate the electronic features in twisted 2D materials in two
different ways. First, by calculating the band structure through
diagonalization of twisted supercell Hamiltonians. Second, by
calculating the local density of states (LDOS) of aperiodic
systems by computing local spectral properties at the center
of large finite regions with the kernel polynomial method
(KPM) [38,39]. For the latter method, we used circular disks
of diameter of 80 nm for TMDCs and of 200 nm for graphene,
with both geometries containing millions of atomic orbitals.

In Fig. 1 we introduce an important concept for exploring
the physics, namely, displaying the LDOS for atomic struc-
tures chosen along lines in configuration space which connect
the high-symmetry stackings of the bilayer. This is analogous
to displaying band structures in reciprocal (momentum) space
along lines connecting high-symmetry points in the Brillouin
zone (BZ). The Wigner-Sietz cell of the moiré supercell is
outlined in Fig. 1(a), with insets showing the local atomic
configuration at selected points. The LDOS results displayed
in Figs. 1(b)–1(g) are not generated by looking at different
atoms in the same structure. Each configuration is calculated
independently of all the others by uniformly shifting the top
layer relative to the bottom one.

For both tBLG and twisted bilayer MoS2 (tBLMoS2) near
0◦, there are three high-symmetry stacking configurations:
AA, AB, and BA. The sublattices of the honeycomb structure,
A and B, are used to describe the alignment between the two
layers. AA has both the A and B atoms aligned vertically,
while AB and BA have only one pair of opposite sublattice
atoms aligned vertically between layers. For graphene, both
sublattices are identical carbon atoms, while the hexagonal

033162-2



DUALITY BETWEEN ATOMIC CONFIGURATIONS AND … PHYSICAL REVIEW RESEARCH 2, 033162 (2020)

TMDC hosts a metal on the A site and a dimer of chaclogen
atoms on the B site. Note that the AA and AB notation is often
used in the TMDCs to instead distinguish between the two
distinct phases of an aligned bilayer: the 0◦ ± 120◦ alignment
and 60◦ ± 120◦. Although near 0◦ twist the TMDC bilayers
have the same symmetry as tBLG (with AB and BA stacking
related), due to the nonidentical sublattices that symmetry is
broken for TMDC bilayers near 60◦ twist.

The smooth variations in LDOS at θ = 0◦ can be attributed
solely to the local variation in interlayer coupling over config-
uration space [40]. For θ �= 0◦, localized modes appear in both
tBLG and tBLMoS2 [Fig. 1(g)]. Their appearance in tBLG at
θ = 1.0◦ corresponds to the localized wave function caused
by moiré flat bands at the so-called magic angle [13]. The
tBLMoS2 LDoS of Fig. 1(f) is more complicated. The curved
and straight features in the LDOS smoothly expand or contract
as the energy changes, caused by surfaces of high electron
density in the configuration-energy space. This is an example
of electronic banding in the configuration basis.

III. ONE-DIMENSIONAL MODEL

To investigate the nature of twistronic phenomena, we
consider a simple 1D model consisting of two chains of
single-atom unit cells with a starting lattice parameter of
L = 1. The mismatch is introduced by changing the lattice
spacing of one layer to (1 − �)L, for a small � value as
shown in Fig. 2(a). � encodes a lattice mismatch between the
chains, and is the 1D equivalent to the twist angle. Although
we focus on twisted structures in the case of 2D bilayers,
moiré superlattices generated by a small lattice mismatch
show similar phenomena.

For the single-layer electronic structure, a nearest-neighbor
hopping of strength T0 = 1 defines the characteristic energy
scale for the system. With two atoms in different layers
separated by an in-plane distance d, the interlayer coupling is

T (d) = T1e−(d/ξ )2
. (1)

The local density of states (LDOS) for this model for various
choices of �, ξ , and T1 is shown in Fig. 2. This LDOS is cal-
culated by the conventional method: diagonalizing a periodic
supercell with 10 k-point samples in the 1D Brillouin zone.

Focusing on the � = 0 cases, there are a number of com-
mon features. Near the extrema of the electronic states, bright
lines correspond to parabolic extrema in the one-dimensional
band structure. The energy of the band extremum depends on
the interlayer stacking d because of the stacking-dependent
interlayer coupling. In this simple system, this is caused by
a splitting of the two monolayers’ identical spectra by the
interlayer coupling strength, creating copies of the monolayer
band structure that are either shifted down or up in energy
(corresponding to bonding or antibonding combinations).

When the atoms of both layers are on top of each other
(d = 0 or L) the interlayer coupling is strongest, causing
the largest splitting of the two copies. In the two ξ = 0.3
cases, the splitting is minimal as the layers have almost no
interlayer coupling at d = L/2. Although a larger value of ξ

(longer-range coupling) will generally increase the absolute
strength of the interlayer coupling for a given stacking, it
reduces the variation in the interlayer coupling as it begins

FIG. 2. (a) The 1D two-chain model, with the top (bottom) chain
in red (blue) with its lattice parameter in the same color. The relative
interlayer configuration between the top and bottom layer (d) and its
interlayer coupling [T (d)] are labeled for a pair of atoms. (b) The
interlayer coupling function T , with parameters ξ = 0.3 (0.6) and
T1 = 3 (1) in black (red). (c) Configuration-dependent LDOS of the
top atom in the two-chain model. Each of the four panels consists of
an “untwisted” geometry with � = 0, and two “twisted” geometries
with � = 0.05 and 0.1, for two different values of ξ , ξ = 0.3 (left
set), and ξ = 0.6 (right set), and two different values of T1, T1 = 1
(top set), and T1 = 3 (bottom set).

to average over adjacent sites. This is visible when comparing
the d variation in the positive LDOS extrema between ξ = 0.3
and 0.6 calculations. Increasing the variation in the interlayer
coupling, and not its absolute strength, is the key to inducing
moiré phenomena, so generally a small ξ is preferred.

The LDOS of the � �= 0 systems fall into three general
categories. Near band extrema isolated bright spots can occur,
corresponding to the emergence of moiré flat bands. Away
from band extrema two scenarios are possible. The LDOS
can either be featureless in both energy and d, or it can have
sharply defined lines crisscrossing one another. The former
is the signature of conventional Bloch waves, while the latter
is a unique feature of the moiré systems, the phenomenon we
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defined as configuration banding. In the following subsections
we will investigate each of these categories with the 1D
model, explaining how they arise and illustrating the duality
between the configuration and Bloch bases in twistronic ma-
terials.

A. Flat bands from a harmonic approximation

The moiré flat bands can be explained in this model by
performing a perturbative expansion in both the monolayer
eigenvalues E (k) and the interlayer coupling T (d). As we
are concerned only with the band extremum in this case,
the monolayer Hamiltonians can be modeled as a uniform
electron gas with effective mass m∗,

Hi = σ

2m∗
(
k − ki

0

)2
, (2)

where σ = ±1 depends on if we are interested in a valence
(hole) band maximum or conduction (electron) band min-
imum. The interlayer coupling can be approximated as a
perturbing potential in space T (r). When the band extremum
is located at the � point (ki

0 = 0), the full Hamiltonian can be
written entirely in the position basis

H = σ

2m∗ (ψ†
1 ∂2ψ1 + ψ

†
2 ∂2ψ2) + T (r)(ψ†

1 ψ2 + H.c.). (3)

Defining both a bonding and an antibonding pairing between
the layers, ψ± = 1√

2
(ψ1 ± ψ2), separates this into two single-

variable Hamiltonians:

H± = σ

2m∗ (ψ†
±∂2ψ±) ± T (r)ψ†

±ψ±. (4)

If the interlayer coupling can be locally expanded at its
extrema in a quadratic form T (r) = σ

2 m∗ω2r2, one obtains the
harmonic oscillator equation

H± = σψ
†
±

(
1

2m∗ ∂2 ± 1

2
m∗ω2r2

)
ψ±. (5)

This concept is illustrated in Figs. 3(a) and 3(b) for a holelike
band (σ = −1), and the effective parameters m∗ and ω are
easily extracted from the simple 1D model. The band struc-
ture for a 1D chain with nearest-neighbor coupling T0 and
lattice parameter L is given by 2T0 cos kL ≈ 2T0 + T0L2k2.
Assuming � is small, we can take m∗ = (2T0L2)−1 for both
chains. Here, we have kept terms of T0 and L (both equal to 1)
to ensure a general result. The value of ω depends on both
the strength of interlayer coupling T1 and the moiré length
λ = 1/�. Making the substitution d = r/λ in the definition
of T (d ) gives

T (r) ≈ T1e
−

(
r
λξ

)2

≈ T1

(
1 − �2r2

ξ 2

)
. (6)

Thus, 1
2 m∗ω2 = �2T1/ξ

2 and ω = 2L�
√

T0T1/ξ = ω��.
The �-independent part of the above expression, ω�, is a
useful parameter when analyzing moiré flat bands that arise
from parabolic extrema.

Comparing the expected energy levels of the harmonic
oscillator ( 1

2 + n)ω to the calculated DOS in Fig. 3(d) shows
good agreement for small � (� 0.1). For larger � values, the
electronic density fans away from the ideal oscillator modes
as the width of the associated moiré bands grows. For ideal

FIG. 3. (a) Band structure of a single 1D chain, with a har-
monic approximation of a band extremum in red. (b) Configuration
dependence of the interlayer coupling function for the bilayer 1D
chain model, with a harmonic approximation of its maximum in red.
(c) Total density of states (DOS) for commensurate bilayer chains for
� in [0, 0.4]. A fractal butterfly spectrum is evident, with a region
highlighted in the top left corner. (d) Expanded view of the region
highlighted in (c), that shows a number of isolated �-dependent
states in the DOS. The dashed red lines correspond to the energy
levels ω(n + 1/2) of a real-space harmonic oscillator based on the
red fits in (a) and (b). The red numbers indicate the n for that level.
(e) Schematic of the fitted real-space harmonic well, with the first
three energy levels of the oscillator indicated by the red lines and
numbers. The frequency ω = ω�� is displayed between the first two
energy levels.

“flatness” of the nth oscillator state, we find the condition to
be (n + 2.5)ω < T1, or at least three harmonic oscillator states
must fit in the interlayer potential well, as shown in Fig. 3(e).

B. Moiré molecules

Beyond its use to predict moiré flat bands, the harmonic os-
cillator equation also serves as a clear example of momentum-
configuration duality. The two terms in the harmonic equation,
quadratic in either the momentum operator or the position
operator, are interchangeable provided their prefactors are
comparable. For the momentum term, the prefactor was sim-
ply the curvature of the electronic bands (i.e., 1/m∗):

∂2E (k)

∂k2
. (7)

For the position term, it was the curvature of the interlayer
coupling potential

∂2T (r)

∂r2
= �2 ∂2T (d)

∂d2
. (8)
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FIG. 4. Electronic structure calculations for bilayer chains with
T1 = 3 and ξ = 0.3, with varying �. Top: LDOS for atoms of the top
layer with specific configurations d. The harmonic approximation of
T (d) is highlighted in red. Bottom: LDOS for Bloch waves of the top
layer with specific momenta k. The harmonic approximation of the
bands E (k) is highlighted in red.

Putting these together, the frequency of the harmonic oscilla-
tor is

ω = ω�� = �

√
∂2E (k)

∂k2

∂2T (d)

∂d2
. (9)

This illustrates the dual nature of momentum and configura-
tion spaces in moiré problems. Indeed, we can re-examine
the LDoS calculation to see the duality more clearly. In
configuration space, we computed the LDOS as a function of
configuration, but implicitly summed over all the momentum
degrees of freedom for the moiré supercell:

LDOS(d) =
∑

k

|ψk(d)|2. (10)

Reformulating this equation under the duality, we can instead
calculate the LDOS in momentum space by summing over all
configurations for a specific moiré wave number:

LDOS(k) =
∑

d

|ψd(k)|2. (11)

In Fig. 4, this is presented for the positive band extremum of
the 1D model. Clearly defined states are isolated in energy in
both the configuration and momentum bases. If the curvature
of E (k) is equal to that of T (d), the two sets of figures
would be indistinguishable near the band extremum. In both
configuration or momentum space, a strong dependence of
the spectrum on the local variable (d or k) causes pockets
of isolated eigenvalues in the energy spectrum. These couple
to one another, forming an effective molecule and creating
electronic structure reminiscent of molecular orbitals in both
configuration and momentum space. The higher-energy har-
monic states have more nodal points, corresponding to higher
“momentum” in 1D. This concept generalizes to 2D crystals,

FIG. 5. (a) Diagram of the bilayer chain Hamiltonian when the
monolayer couplings (Hi) are much larger than the interlayer cou-
pling (T ). (b) Configuration-dependent LDOS for the atoms of the
top layer in this limiting case with � = 0. (c) Momentum-dependent
LDOS for Bloch waves of the top layer in this limiting case with
� = 0. (d)–(f) Same as (a)–(c), but the interlayer coupling is now
much larger than the monolayer couplings. (g)–(i) Configuration and
momentum LDOS for the bilayer chain model (� = 0.1, T1 = 3,
ξ = 0.3) with the central panel describing the twistronic regime at
that energy.

where the higher-energy moiré molecular states have larger
angular momentum (s wave, p wave, etc.)

C. Moiré crystals

The question arises, when and how does the previous
expansion for ω� and the moiré molecule fail? Such a failure
is visible in the low-energy regions of Fig. 4 where the smooth
density of a banded Bloch wave appears. This occurs exactly
at the energy when the d-dependent extremum in the LDOS
reaches its minimum and changes direction. There is no longer
any spatial confinement of the spectrum, but more importantly
T (d) can be treated as a constant in this energy range. From
the Bloch-state point of view at this energy, T (d) is constant
(and thus can be neglected), reverting to the band structure of a
typical 1D crystal. This is illustrated by the schematic picture
and LDOS calculations in Figs. 5(a)–5(c). The standard result
is obtained for the LDOS in configuration space (a continuum)
and momentum space (a band).

Connecting this to the derivation of ω�, we see that
the harmonic approximation fails because ∂2T

∂d2 has vanished.
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FIG. 6. (a)–(i) Configuration-dependent LDOS for twisted bilayer graphene (tBLG) for selected energy regions and various twist angles.
The configurations correspond to a diagonal traversal of the moiré supercell. The results were calculated for finite flakes of diameter 200 nm
with a kernel polynomial method. (j) Band structure for a simple nearest-neighbor tight-binding model of graphene. The energy regions
associated with the selected LDOS energy regions of the twisted bilayer are highlighted in red. (k) Top-down view of (d). The Bloch states that
are within the interlayer coupling strength (0.3 eV) of each selected energy are highlighted in red.

A following question is, what if instead ∂2E
∂k2 vanishes? This

means the monolayer bands do not depend on k and the mono-
layer nearest-neighbor couplings are effectively zero. Such
a scenario is shown in Figs. 5(d)–5(f). Comparing the two
sets of LDOS calculations, we see the role of configuration
and momentum have interchanged: the continuum of states is
now in k while the band is in d. This is still a crystal, but
is unconventional in that its lattice occurs in the momentum
basis and generates a band structure in configuration space.

Taking T1 = 3T0 and ξ = 0.3 [Figs. 5(g)–5(i)] gives an
interesting situation: both the conventional and unconven-
tional crystals occur in the same spectrum. Isolated spots of
density, associated with moiré flat bands, occur in both spaces.
The two crystals occur, showing a continuous spectra in the
original space and a clear band structure in its dual. Com-
paring this to the � = 0 calculation of the same parameters
in the lower-left panel of Fig. 2(c), the conventional crystal
regime is predicted by a d-independent energy region of the
LDOS. For the unconventional crystal, there is an equiva-
lent k-independent energy region in the momentum-projected
LDOS at � = 0.

IV. TWO-DIMENSIONAL BILAYERS

We now turn our attention to moiré crystals in 2D. First,
we will show the ubiquitous ability for the configuration-
dependent LDOS in the untwisted geometry to predict local-
ized electronic structures in twisted geometries by looking at
examples of tBLG and tBLMoS2. Second, we will show how
conventional band structure calculations of bilayer MoS2 shed
light on how the moiré molecule interpretation can describe
the appearance and properties of moiré flat bands in generic
twisted semiconductors.

A. Predicting twistronic features from LDOS

The three distinct regimes of electronic structure in the
1D model, the moiré molecule, and the real and momentum-
space moiré crystal, can be directly predicted by careful
interpretation of the untwisted LDOS. The moiré molecule,
and its associated flat bands, occur when wells appear in
the moiré potential. For a 2D crystal, this manifests in the
LDOS as extrema or bright lines that have strong configu-
ration dependence. The conventional moiré crystal, hosting
traditional Bloch wave states, occurs in regions of the LDOS
that have little configuration dependence. The unconventional
moiré crystal and its configuration banding require a region
of LDOS that has little k dependence after averaging over all
configurations. This manifests in the configuration LDOS as
regions with steep configuration dependence.

Following these rules, the configuration dependence of
the LDOS in untwisted bilayer graphene [Figs. 6(a), 6(d),
and 6(g)] can be used to predict all emergent electronic flat
bands in the twisted cases. We first describe the important
features of the untwisted electronic LDOS. Near the Fermi
energy [Fig. 6(d)], the LDOS shows conical features near AA
stacking. The parabolic dispersion of AA bilayer graphene
explains the bright features, and their configuration depen-
dence is due to band splitting as the sublattice symmetry
is broken away from AA stacking. Near the AB and BA
stackings, no bright features are visible, as the parabolic
dispersion has disappeared. At energies far from the Dirac
cones [Figs. 6(a) and 6(g)], bright features in the LDOS also
occur. They are caused by a band structure saddle point in the
pz model for monolayer graphene, as illustrated in Fig. 6(j).
As the Fermi energy moves through this saddle point, the
curvature of the bands changes sign and the Fermi surface
undergoes a Lifshitz transition, causing a singular feature in
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FIG. 7. Configuration-dependent LDOS for the pz orbitals of bilayer MoS2 in selected energy regions of the valence bands. The
configurations go across the diagonal of the moiré cell, starting and ending at aligned AA-type stacking regions. (j)–(m) Show a top view
of the configuration-dependent LDOS at four energy values for the 4◦ twisted bilayer, interpolated from a 20 × 20 sampling of configuration
space. All results were calculated for finite flakes of radius 40 nm with the kernel polynomial method. The energy spectrum resolution is
limited by roughly 10 meV (p = 4000).

the density of states. This singular feature (of the monolayer)
is split by the effective interlayer coupling in the bilayer,
and thus has strong configuration dependence. The largest
splitting occurs at AA, with slightly weaker splitting at AB and
BA, consistent with the microscopic origins of the interlayer
coupling.

Looking at the 1◦ twisted bilayer, a singular feature appears
at 0 eV and AA stacking: this is precisely the well-known
magic angle flat band. It can be interpreted in the same fashion
as solutions of the harmonic continuum model by replacing
the quadratic monolayer Hamiltonians with the conical Dirac
spinor [13], which still provides analytic solutions [41]. At
2◦, there are two bright features at low energy, and these cor-
respond to the Van Hove singularities of the twisted bilayer.
These features arise from the conical moiré potentials visible
in the untwisted LDOS.

For the two other energy regions, twisting causes isolated
levels to occur in each of the T (d) wells of the untwisted
LDOS. In particular, between AB and BA a rather steep
harmonic moiré potential well (relative to the monolayer band
curvature) generates many stable harmonic oscillator levels,
creating checkerboard patterns in the LDOS. Doubling the
twist angle doubles the energy spacing between the states,
showing that the harmonic approximation is still in good
agreement with these features. Comparing the relative spacing
between the states centered at AA and the midpoint (between
AB and BA) we see that the curvature of T (d) in the untwisted
case proportionally affects the spacing between levels. This
will be more thoroughly validated in the following subsection.

Similar behavior can be observed in our calculations of
twisted bilayer MoS2 (tBLMoS2). In Fig. 7 we show the
LDOS intensity of the pz orbitals of sulfur as a function
of energy and local atomic structure. These orbitals extend
the farthest out of the plane of each layer and have the

strongest interlayer coupling, so we have ignored other orbital
contributions to the LDOS here. The other orbitals do couple
weakly with the pz states in certain energy regions, and thus
show faint signatures of twistronic features, but they primarily
consist of a smooth LDOS background due to uninteresting
Bloch waves (the conventional moiré crystal regime).

The first energy region is the valence band maximum
[Figs. 7(a)–7(c)]. The LDOS shows a step-function behavior
in the vertical (energy) direction, consistent with the density of
states of two-dimensional parabolic bands. At 4◦, signatures
of moiré flat bands are visible, but hard to resolve as the KPM
broadens the eigenvalues by a Gaussian of width σ = 5 meV
in these calculations. The next energy region [Figs. 7(d)–7(f)]
has singular features in the LDOS. This region arises from a
Lifshitz transition in a pz-majority band, and is functionally
identical in shape to the feature in the graphene model. This
implies that this particular twistronic structure is a signature of
pz bands on a triangular lattice. As it occurs in both graphene
and MoS2, the structure does not seem to require sublattice
symmetry on the honeycomb lattice. Similar to graphene,
moiré molecular states are visible at each of the band extrema.
In contrast, weak configuration banding is visible near the
center of the feature (−2.0 eV), which was missing in tBLG,
due to stronger interlayer coupling relative to the monolayer
band curvature in the TMDCs. This agrees with the require-
ment of a sufficiently strong interlayer moiré potential in the
1D model [Fig. 2(c)].

The last energy region [Figs. 7(g)–7(i)] again shows LDOS
features consistent with a 2D band extremum, however, the
configuration dependence is much stronger than at the valence
band maximum. Accordingly, clear moiré molecular states
exist near −4.4 eV, and more robust configuration banding
occurs at the center (−4.0 eV). Two independent sets of AA-
centered harmonic oscillator states appear more clearly in this

033162-7



CARR, MASSATT, LUSKIN, AND KAXIRAS PHYSICAL REVIEW RESEARCH 2, 033162 (2020)

FIG. 8. Interpretation of the moiré flat bands in unrelaxed twisted bilayers of MoS2 as a quantum harmonic oscillator model. (a) Band
structure comparison between a monolayer (orange) and AA-stacked bilayer (black) of MoS2. The effective interlayer coupling can be easily
interpreted at any band and momentum by looking at the strength of the band splitting. The dashed red line indicates the bilayer’s valence band
maximum, which is the zero-energy reference for the following panels. (b) Band structure of the twisted bilayer at θ = 2.28◦, showing the
characteristic splitting and flattening of the bands, as captured by the QHO model. (c) Summary of band structures for twisted bilayer MoS2

near the valence band maximum. The average band energy for each band is plotted as a function of the twist angle θ , with the bandwidth bw

given in color. The red lines indicate the expected energy levels of a harmonic oscillator defined by the monolayer’s effective mass m∗, and
the shape of the moiré potential T (r), both expanded around �. The dashed lines are a guide to the eye for θ dependence of the first (singly
degenerate) level and the second (double degenerate) level.

last case, owing to the two AA-centered T (d) wells at −4.4 eV
with different curvature. The LDOS corresponding to the
n = 0 and 1 harmonic energy levels of the shallower moiré
potential are shown in Figs. 7(l) and 7(m) displaying s and
px ± ipy symmetries, respectively. In Fig. 7(k) a bright center
inside a ring is visible, a signature of d orbital momentum
from the n = 2 level of the sharper well. At slightly higher
energy (−4.3 eV) a T (d) well centered in between AB and
BA also hosts moiré molecular states, although they are not
as well confined. The coexistence of multiple unique moiré
flat band modes at the same energy could give rise to unique
quantum phases.

These results introduce an additional constraint necessary
in the classification of possible twistronic phenomena of 2D
materials: the connectivity of the constituent monolayer band
structures. The moiré molecule and its associated flat bands
requires a small number of connected Bloch states of similar
energy and, therefore, it naturally occurs in parabolic band
extrema and Dirac points. The momentum-space crystal can
occur at 2D Lifshitz transitions in the monolayer band struc-
ture. A previous work [42] showed that these transitions can
create an infinite lattice of coupled Bloch states, preventing
convergence of the truncated continuum models for twistronic
systems. This describes the formation of a momentum-space
crystal, albeit only on a subset of the Brillouin zone, and
the failure of the continuum models is directly related to
the breakdown of the dual nature of the moiré molecule.
This means saddle points in the 2D band structure are good
candidates for the realization of configuration banding. An
alternate approach would be to find a system where the
interlayer coupling T is larger than the entire width of a
monolayer band. In van der Waals materials, the interlayer
distance between orbitals is larger than the in-plane distances,
so this is a challenging task.

The Lifshitz regions also host robust moiré flat bands at
the interlayer coupling extrema, which justifies experimental
study of twisted bilayers made of metallic materials. Unlike
flat bands arising from Dirac cones or band extrema, it
seems necessary for these to exist within a background of
metallic states. The LDOS calculations are particularly useful
for identifying these modes, as band structure calculations
are difficult to interpret within a metallic background and
continuum methods are unlikely to converge [42].

B. Flat bands in MoS2

The harmonic approximation of band extrema for the
incommensurate 1D chain is a general interpretation of any
moiré flat bands arising from interlayer hybridization. This
approximation can also give reliable predictions of band flat-
tening at the valence band maximum of MoS2. These results
are in agreement with the LDOS calculations of the previous
section, but by performing band structure calculations the
energy resolution limitation is removed, allowing for careful
comparison to the harmonic oscillator. This band extremum
(maximum) is at � and is maximized at AA stacking, as shown
in Fig. 8(a). Accordingly, we take this maximum value as
E = 0. Following the 1D case, we then extract the effective
mass m∗ from a monolayer calculation and the configuration
dependence of the � band extremum energy, which provides
the effective moiré potential T (d). Both are obtained by fitting
up to the quadratic term to extract the effective harmonic
frequency parameter ωθ = −7.24 meV per degree. For a given
twist angle, the harmonic frequency is given by ω = ωθθ .

The band structure calculations show excellent agreement
to the energy levels of the effective harmonic oscillator ω(n +
1). Unlike the 1D case, the nth 2D harmonic oscillator level
is (n + 1)-fold degenerate. Looking at the band structure of
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the θ = 2.28◦ supercell (λ = 8 nm) in Fig. 8(b), we find a
single flat band with nearly zero bandwidth at the expected
value of ωθθ = −16.5 meV. Lower in energy, a pair of nearly
degenerate flat bands have a value just shy of the next energy
level 2ωθθ = −33 meV. Below this, a set of three bands have
separated from the remainder of the valence band manifold,
although they still have a substantial bandwidth. This analysis
is performed for each supercell and we report the band average
energy and total bandwidth along the high-symmetry lines in
Fig. 8(c). Near 2◦, the first flat band is in perfect agreement
with the QHO model, but as θ increases the band becomes
less flat and its average begins to drift from the QHO model.
This same behavior can be seen for the n = 1 and 2 levels, and
so in the θ → 0◦ limit we expect every n will emerge as a flat
band in this simple tight-binding model. Following a similar
constraint of the band flattening in the 1D model, we find the
nth level will become sufficiently flat (bw < 5 meV) when the
(n + 2)th level is contained within the moiré potential well.
The moiré potential for the MoS2 model used here is approxi-
mately 100 meV deep. That means the critical twist angle for
the n = 0 flat band should satisfy |(2 + 1)ωθθ

(0)
c | < 100 meV,

yielding θ (0)
c ≈ 4.6◦. For the second and third levels of the

oscillator, this similarly provides critical values of θ (1)
c ≈ 3.5◦

and θ (2)
c ≈ 2.8◦. These are all in excellent agreement with the

results of the tight-binding calculations, namely, that when
θ < θ (n)

c the bandwidth for the nth level is below 5 meV.
Comparing this result to full DFT calculations [23] we

find good agreement to the unrelaxed case: the flat bands are
associated with AA stacking spots at the valence band maxi-
mum. However, the inclusion of atomic relaxations changes
the valence flat-band characteristics. This is primarily due
to large variations in the interlayer separation as a function
of atomic configuration [23,25], which significantly modifies
the interlayer moiré potential. The predicted moiré potential
also depends sensitively on the choice of van der Waals DFT
functional [43]. For this reason, the results presented in Fig. 8
are meant to serve as an introduction to the band flattening
phenomena in twisted semiconductors, not as a fully self-
consistent prediction of flat bands. See Refs. [23,25] for fully
ab initio predictions of band flattening in semiconductors,
including important relaxation effects.

Although the derivation of an explicit harmonic oscillator
equation relies on the maximum being at �, it is not a
necessary condition for the harmonic oscillator interpretation
of the flat bands. Any band extremum in any material can
host moiré flat bands, with its own characteristic twist angle
depending on the interlayer coupling strength and effective
mass. From this perspective, the Dirac cones of graphene are
an exception to the rule. The two-sided nature of the Dirac
equation causes the flat-band condition to occur only under a
fine tuning of the twist angle to a magic value. For generic
insulators or semiconductors, this fine tuning is not necessary,
as reducing the twist angle always causes a shallower moiré
potential and leads to more confined harmonic states and thus
flatter bands [44].

In experiment, one wants not only to minimize the band-
width bw, but also to keep each set of flat bands separated
sufficiently in energy. In the unrelaxed model studied here, it
is clear that although one can make the bandwidth arbitrarily
small as θ → 0◦, the band gaps (given by ωθθ ) will vanish.

A tradeoff between bandwidth and band gap should be con-
sidered depending on the goal of the proposed experiment.
For angles well above the first critical angle θ (1)

c ≈ 4.6◦, no
bands are guaranteed to be flat or gapped from the rest of the
valence manifold. If more than one harmonic oscillator level
is required, or a certain minimum bandwidth is desired, this
will set an upper bound for the desired twist angle. In both
cases, any constraint on the minimum allowed band gap will
set a lower bound on the twist angle. Unlike twisted bilayer
graphene, variations in the twist angle [45] are not likely to
fundamentally alter the correlated behavior of electrons in
the material, as the band flatness is generally monotonic with
respect to the twist angle.

Additional corrections should be carefully considered in
the future. The anharmonicity in the effective mass and in-
terlayer coupling will be necessary for accurate comparison
to experimental results, but the overall intuition for the moiré
flat bands is unchanged. In addition, in-plane relaxations at
small twist angles form domain-wall structures [46–49] and
will cause the moiré potential to become independent of the
twist angle [50]. This prevents the tuning of ω to arbitrarily
small values, and will define a minimum possible bandwidth
for the flat bands. As the � bands of MoS2 are primarily pz

character and thus have negligible spin splitting, spin-orbit
coupling was not needed here. If the moiré bands instead
arise from the K valley in a TMDC material other than MoS2,
spin-orbit coupling can be important [28,33,44].

V. CONCLUSION

We have provided a classification of twist-induced elec-
tronic structure in 1D and 2D moiré systems through the
local density of states. The self-dual nature of the moiré
Hamiltonians puts the momentum and configuration bases on
equal footing, providing insight into twistronic features. In
particular, moiré flat bands can be robustly predicted from
either the LDOS or band structures of untwisted systems.
The LDOS approach also allows for prediction of flat bands
even in metallic backgrounds, and explains the formation of
effective momentum crystals, problems not yet addressed by
band structure methods. The study of moiré heterostructures
made of arbitrary 2D materials is made much easier within
this framework. Apart from the strengthening of correlated ef-
fects, many applications that take advantage of the electronic
localization in these structures can be envisaged, such as
arrays of quantum dots or networks of 1D electron channels.
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APPENDIX: CONFIGURATION BANDS
AND THE MOIRÉ COMB

The configuration bands of the momentum-space moiré
crystal are clear in the configuration-dependent LDOS of the
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FIG. 9. (a) LDOS for the 1D bilayer model as a function of local configuration d at � = 0.1. For a commensurate geometry, only a finite
number of configurations are sampled. The sampled configurations for two different choices of d0 are indicated by the red “moiré combs.” (b),
(c) Real-space LDOS for the two commensurate geometries (C) introduced in (a). The configuration banding is lost due to the finite sampling
of configurations. The moiré length λ is given at the bottom of (c). (d)–(f) Real-space LDOS for three selected incommensurate geometries
(I), parametrized by � = 0.1 × (1 + �). As these geometries are not periodic on the moiré length, the configuration bands are visible in real
space.

1D model [Fig. 5(g)], but one may ask what these electronic
states look like in real space. Calculations of the LDOS for a
system with a momentum-space crystal are presented in Fig. 9
for various choices of �. It begins with a commensurate cell,
�0 = 0.1.

To understand the role of incommensurate systems in the
context of configuration banding we introduce incommensu-
ration through the parameter �, setting � = �0 × (1 + �).
� must be irrational to generate a truly incommensurate
system. However, in calculating the d-dependent LDOS via
the finite-sized method (for both 1D and 2D bilayers), we find
that small values of � have no qualitative effect when �0 is
small. The d-dependent LDOS is a stable quantity under small
variations in the twist angle. For this reason, in the following
discussion and in Fig. 9 we always use the configuration
LDOS calculation for � = �0, and have � only affect the
sampling of d to generate the real-space LDOS.

The interlayer configuration at the origin (r = 0) is con-
trolled by the parameter d0. For commensurate systems, this
choice of d0 is only unique up to 1/λ, as units of the inverse
moiré length correspond to a translation of the origin. Modify-
ing d0 will show the relative stability of the real-space LDOS
under small changes in interlayer alignment in commensurate
systems.

For all choices of �, the high- and low-energy regions
show isolated electronic states that are robust under changes
in the initial configuration d0 and incommensuration �. These
are the harmonic oscillator states of the moiré molecule, and
their stability with respect to � is explained by the insensi-
tivity of the previous harmonic expansion to the microscopic
details of atomic geometry.

For commensurate geometries, a slight relative movement
of the layers can drastically alter the electronic structure in
the momentum-space crystal regime. Near zero energy in
Figs. 9(b) and 9(c) the energies of the localized modes change
significantly when the configuration is moved by half of �.

This is because a commensurate system only samples a finite
number of configurations, and so changing the initial configu-
ration d0 causes different sections of the configuration bands
to manifest. A visual aid for inferring the real-space LDOS
from the configuration space LDOS is a “moiré comb” which
has a spacing � between each tooth, as shown in Fig. 9(a).
The two red combs correspond to two values of d0 which
generate geometries with vastly different LDOS near zero
energy. Changing the initial configuration of the commen-
surate system corresponds to moving the comb left or right,
while changing the energy of interest moves it up or down.
The electronic structure of these commensurate geometries
in the momentum crystal energy range looks markedly sim-
ilar to the stable isolated states of the moiré molecule, but
they are highly sensitive to small changes in alignment be-
tween the layers. Care must be taken in moiré supercell
calculations to avoid interpreting these features as stable flat
bands.

Incommensurate geometries, or geometries which are not
periodic on the moiré length, with � �= 0 can be interpreted
as a sequence of moiré supercells of length 1/�0 but with
the variable d0 varying in space. The isolated electronic
states that result band with a wavelength determined by
a second-order moiré length, which is the length required
for d0 to go once through the range [0, L]. This electronic
structure hosts highly localized wave functions, which are
not directly provable from the LDOS calculations, but have
been studied extensively for incommensurate potentials acting
on 1D tight-binding models [51–53]. In particular, self-dual
models of this form [51,54] bear strong resemblance to the
momentum-space crystal structure studied here. Making a
direct connection between the moiré system and these in-
commensurate potential models via explicit comparison of
the tight-binding models is difficult, owing to the inability
to pair atoms of the top and bottom layers together in a
consistent manner across the surface of a moiré pattern [55].
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However, the previous ψ± model (Eq. 4) is identical to the
incommensurate potential models at the continuum limit,

provided one replaces the k2 term with a complete monolayer
Hamiltonian.
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