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The connections between standard theoretical tools used to study open quantum systems can sometimes seem
opaque. Whether it is a Lindblad master equation, the equation of motion for the Wigner function, or a dissipative
Keldysh action, features evident in one formalism are often masked in another. Here, we reformulate the tech-
nique of third quantization in a way that explicitly connects all three methods. We first show that our formulation
reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians. This
symmetry can then be used to easily diagonalize these models, and it provides an intuitive way to demonstrate the
separation of dissipation and fluctuations in linear systems. For bosons, we then show that the Wigner function
and the characteristic function can be thought of as “wave functions” of the density matrix in the eigenbasis of
the third-quantized superoperators we introduce. The field-theory representation of the time-evolution operator
in this basis is then the Keldysh path integral. To highlight the utility of our approach, we apply our version of
third quantization to a dissipative nonlinear oscillator, and we use it to obtain new exact results.
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I. INTRODUCTION

Open quantum systems are generically much more dif-
ficult to characterize than their closed-system counterparts.
Quadratic systems of bosons or fermions coupled to Marko-
vian baths are arguably an exception: computing average
values and correlation functions is straightforward using
either the master equation, Keldysh field theory, or the
Heisenberg-Langevin equations. However, it is often use-
ful to understand the full structure of the eigenvalues and
eigenvectors of the Lindbladian. This information can help
answer questions that are difficult to address using Keldysh
or Langevin equations, e.g., the full time evolution of an
arbitrarily complicated non-Gaussian initial state. In a set of
seminal works, Prosen [1] and Prosen and Seligman [2] intro-
duced the technique of third quantization, which allows one
to obtain the spectral decomposition of quadratic multimode
Lindbladians in a manner that is analogous to diagonalizing
a second-quantized quadratic Hamiltonian. For all its virtues
and widespread use in the literature [3–11], the method as pre-
sented does not provide an intuitive picture of open quantum
system dynamics. Further, it is not a priori clear how it is
related to more standard methods. A more physically trans-
parent formulation of third quantization that addresses these
issues could thus help make it an even more powerful tool.

In this work, we present an alternate reformulation of third
quantization that satisfies both criteria simultaneously. This is
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achieved by introducing a new set of canonical superopera-
tors, defined in Eq. (50) for bosons and Eq. (74) for fermions.
In this basis, one directly identifies the two pieces of data
that determine any quadratic Lindbladian: a non-Hermitian
Hamiltonian that acts as an effective dynamical matrix, and
a second matrix that encodes the noise. This separation of
dissipation and fluctuations further reveals a fundamental
symmetry of all such models. We show that this symmetry
can be used to effectively gauge away the fluctuation terms
in the master equation using a novel similarity transformation
implemented at the superoperator level. This provides a sim-
ple quantum-oriented way to demonstrate that the eigenvalues
of the Lindbladian are independent of noise in linear systems.

The superoperators we introduce also make the connection
between the Lindbladian and the Keldysh formalism evident.
We make this notion exact by formulating a path integral
representation of third quantization over a finite-time contour.
For bosons, we go further by demonstrating that third quanti-
zation is naturally linked to phase-space representations of the
density matrix. Namely, we show that the Wigner function and
its characteristic function can be thought of as wave functions
on the basis of what is essentially the third-quantized equiva-
lent of position and momentum eigenkets. We use this insight
to study a dissipative interacting model, a thermally damped
Kerr cavity. Our approach lets us analytically describe the
time evolution of a cavity’s Wigner function, starting from an
arbitrary initial state (see Fig. 1 for an example). To the best of
our knowledge, this result has not been previously presented,
and it highlights the power of our approach.

The paper is organized as follows. In Sec. II we work
out in detail the diagonalization procedure of the Lindbla-
dian describing a thermally damped harmonic oscillator using
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FIG. 1. Exact Wigner function of a dissipative nonlinear cavity
mode at time t = πU (with U the Kerr constant), where in each case
the initial state is a coherent state ρ̂(0) = |α〉〈α|, α = √

2(1 + i).
Evolution is generated by the master equation (103). With no dissi-
pation κ = n̄th = 0, the resulting state is a superposition of coherent
states [16]. The formation of such a state is, however, very sensitive
to any amount of dissipation. As explained in Sec. VII, third quanti-
zation allows us to obtain the exact evolution of the Wigner function
for an arbitrary initial state.

our formulation of third quantization. We then discuss how
our approach is naturally connected to both phase-space and
Keldysh formalisms of open quantum systems in Secs. III
and IV, respectively. The insight gained from this example al-
lows for a straightforward generalization to arbitrary quadratic
bosonic Lindbladians, as shown in Sec. V. Despite the change
in statistics, a similar approach is presented for the fermionic
version of this problem, as detailed in Sec. VI. We finish by
applying our phase-space formulation of third quantization to
the dissipative Kerr oscillator problem in Sec. VII.

Before we proceed, let us highlight the differences between
this work and the work of Prosen and Prosen and Selig-
man. The main dissimilarity is our starting point: we use a
distinct set of superoperators to express the third-quantized
Lindbladian; see Eqs. (50) and (74). Although a seemingly
minor difference, this alternate choice of basis makes appar-
ent the symmetry that we use to gauge away fluctuations.
Our superoperators also provide a natural connection between
third-quantization, Keldysh field theory, and phase-space rep-
resentations of open quantum systems, which has not been
considered in previous works [1,2,12–15].

II. DIAGONALIZING A LIOUVILLIAN
USING THIRD QUANTIZATION

A. Setup

While the diagonalization method we discuss can be ap-
plied to arbitrary multimode bosonic quadratic Lindbladians,
for clarity we discuss these ideas in the simplest possible
setting: a harmonic oscillator coupled to a thermal Markovian
bath. Our starting point is the equation of motion for the

density matrix (with h̄ = 1 throughout)

i∂t ρ̂ = ω0[â†â, ρ̂] + iκ (n̄th + 1)D[â]ρ̂ + iκ n̄thD[â†]ρ̂ ≡ Lρ̂,

(1)

where â is the bosonic annihilation operator of the oscilla-
tor, ω0 is its frequency, κ is its decay rate, and n̄th is the
thermal occupation of the bath. Here, we have defined the
usual dissipator as D[X̂ ]ρ̂ = X̂ ρ̂X̂ † − {X̂ †X̂ , ρ̂}/2 and L as
the Liouvillian superoperator. Our goal is to diagonalize L.
It is convenient to think of operators as being elements of a
Hilbert space ρ̂ → |ρ̂〉〉 with the usual Hilbert-Schmidt inner
product [17]

〈〈X̂ |Ŷ 〉〉 ≡ Tr(X̂ †Ŷ ) (2)

for arbitrary operators X̂ and Ŷ [18].
Using this notation, superoperators become operators act-

ing on this new space, and we thus write them with hats.
To differentiate them from operators acting on the Hilbert
space of wave functions, we write all superoperators using a
bold typeface L → L̂. The inner product Eq. (2) then allows
us to define the adjoint of any superoperator. For instance,
the adjoint Liouvillian, which controls the time evolution of
observables, is in standard second-quantized form given by

L†Ŷ = ω0[â†â, Ŷ ] − iκ (n̄th + 1)D†[â]Ŷ − iκ n̄thD†[â†]Ŷ
(3)

with D†[X̂ ]Ŷ = X̂ †Ŷ X̂ − {X̂ †X̂ , Ŷ }/2 the adjoint dissipator.

As the Lindbladian is non-Hermitian L̂ �= L̂†
, to diagonalize

it we must find both its right and left eigenvectors. That is, we
seek operators and complex numbers that satisfy

L̂|r̂μ,ν〉〉 = |Lr̂μ,ν〉〉 = Eμ,ν |r̂μ,ν〉〉, (4a)

〈〈l̂μ,ν |L̂ = 〈〈L† l̂μ,ν | = Eμ,ν〈〈l̂μ,ν |, (4b)

where, with some foresight, we have labeled the eigenvectors
by two non-negative integers μ, ν � 0.

Although the physical interpretation of the right and left
eigenvectors may not be straightforward, the eigenvalues have
a simple intuitive meaning. The real part of Eμ,ν plays the
role of energy differences between eigenstates, whereas the
imaginary component dictates the rate of decay. For the linear
system of interest, however, just as in the classical case, the
characteristic oscillation and decay rates are independent of
temperature. This simply reflects the fact that a linear system’s
response to noise is always independent of the noise itself,
something that is clear, e.g., by using Langevin equations to
describe our system [21]. We thus conclude that the eigenval-
ues of L̂ must not depend on n̄th. A crucial question though
still remains: how do we rigorously identify these fluctuations
and reach this conclusion directly from the master equation?

B. Classical and quantum superoperators

We argue that this can be straightforwardly done by in-
troducing appropriate third-quantized superoperators defined
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by

âcl|ρ̂〉〉 ≡ 1√
2
|{â, ρ̂}〉〉, âq|ρ̂〉〉 ≡ 1√

2
|[â, ρ̂]〉〉, (5a)

â†
cl|ρ̂〉〉 ≡ 1√

2
|{â†, ρ̂}〉〉, â†

q|ρ̂〉〉 ≡ 1√
2
|[â†, ρ̂]〉〉, (5b)

which we refer to as classical and quantum superoperators.
The naming convention is in analogy with Keldysh field the-
ory, which is justified by writing the Lindbladian in this basis
of superoperators,

L̂=
(
ω0 − i

κ

2

)
â†

qâcl +
(
ω0 + i

κ

2

)
âqâ†

cl − iκ (2n̄th + 1)â†
qâq.

(6)

This form directly mimics the structure of the Keldysh ac-
tion for this same model [19,20]; we make this connection
more explicit in Sec. IV. Just as in the field theory descrip-
tion, the coefficients of â†

qâcl and âqâ†
cl serve as an effective

non-Hermitian Hamiltonian, whereas the term â†
qâq should be

thought of as the fluctuations that must accompany the dissi-
pation [21]. Although â†

cl and â†
q are the conjugate of âcl and

âq, they are not the creation operators of true bosonic modes
since [âcl, â†

cl] = [âq, â†
q] = 0. Thus, we cannot interpret â†

clâcl

and â†
qâq as number operators.

Rather, despite being non-Hermitian, we should think of
â†

qâcl and −âqâ†
cl as operators whose eigenvalues correspond

to a number of quanta in a mode. This follows since the only
nonvanishing commutation relations are

[âcl, â†
q] = [â†

cl,−âq] = 1̂, (7)

with 1̂ the identity superoperator. Given their status as number
operators, to determine the eigenvectors of â†

qâcl and −âqâ†
cl

we must first find the “vacuums” of âcl, â†
cl and âq, â†

q. These
are simply the parity and identity operators

0̂cl ≡ 2eiπ â†â → âcl|0̂cl〉〉 = â†
cl|0̂cl〉〉 = 0, (8a)

0̂q ≡ 1̂ → 〈〈0̂q|âq = 〈〈0̂q|â†
q = 0, (8b)

which follows since eiπ â†â and 1̂, respectively, anticommute
and commute with both â and â†. Using Schur’s lemma, these
vacuums are unique. In complete analogy with a simple har-
monic oscillator, we can obtain the simultaneous eigenvectors
of these number operators by repeatedly applying the appro-
priate creation operators on the vacuums. Thus, we find that

|r̂′
μ,ν〉〉 = 1√

μ!ν!
(â†

q )μ(−âq )ν |0̂cl〉〉, (9a)

〈〈l̂ ′
μ,ν | = 1√

μ!ν!
〈〈0̂q|(âcl )

μ(â†
cl )

ν (9b)

are the right and left eigenvectors of â†
qâcl and âqâ†

cl with
eigenvalue μ and −ν, respectively.

The above eigenvectors are unfortunately not eigenvectors
of the Liouvillian: while the first two terms in Eq. (6) are
proportional to our generalized number operators, the last
term is not. We next show that there is a simple way to deal
with this.

C. Gauging away the noise

Recall that we have already reasoned that fluctuations in
this linear system should never affect the eigenvalues of L̂,
only its eigenvectors. We should thus be able to remove the
temperature-dependent noise term −iκ (2n̄th + 1)â†

qâq entirely
using a similarity transformation. This can indeed be achieved
by defining

V̂ ≡ e−(2n̄th+1)â†
q âq , (10)

and using the commutation relations Eq. (7) along with the
Baker-Campbell-Hausdorff identity to verify that

V̂−1L̂V̂ =
(

ω0 − i
κ

2

)
â†

qâcl +
(

ω0 + i
κ

2

)
âqâ†

cl. (11)

Since this superoperator and L̂ are isospectral, we confirm
that as promised, the temperature does not effect the eigenval-
ues of the Lindbladian. Further, the transformed Lindbladian
is now just a sum of our generalized number operators, and
hence it is diagonalized by the eigenvectors introduced in
Eqs. (9a) and (9b). Note that the transformed Lindbladian is
not in Lindblad form due to the presence of a negative rate,

V−1LV ρ̂ = ω0[â†â, ρ̂] + i
κ

2
(D[â]ρ̂ − D[â†]ρ̂), (12)

which is, however, irrelevant for diagonalization purposes
[22].

We have thus made a nontrivial mapping at the level of
master equations from a noisy damped harmonic oscillator
to its fluctuation-free equivalent. Our ability to remove the
noise term exactly is a consequence of the usual separation
of dynamics and fluctuations in linear systems, yet here there
are quantum consequences, seeing as how the eigenmodes of
the Liouvillian have a Fock state structure.

We pause to note that one could imagine adding a quadratic
term to our Liouvillian that would break our symmetry, i.e.,
a term proportional to â†

clâcl. The similarity transformation

e−(2n̄th+1)â†
q âq would no longer bring L̂ to a diagonal form,

since the former commutes with the quantum superoperators
but not the classical ones. Such a term is, however, forbidden
by the trace-preserving nature of the dynamics Tr(Lρ̂) =
〈〈0̂q|L̂|ρ̂〉〉 = 0, which a classical-classical term would vio-
late. At a quantum level, being able to eliminate the noise can
be understood as a special kind of symmetry; the combination
of linearity and conservation of probability.

This structure and an analogous transformation to Eq. (10)
will also be present in the multimode bosonic case consid-
ered in Sec. V. A comparable symmetry, transformation, and
conclusion will also be presented for fermionic master equa-
tions in Sec. VI. In nonlinear quantum systems, which are
of course also probability-conserving, fluctuations can impact
the dynamics, as we show explicitly in Sec. VII.

D. Eigenvalues, eigenvectors, and non-Hermitian quasiparticles

With Eq. (11) already in diagonal form, the similarity trans-
formation allows us to simply relate the eigenvectors r̂μ,ν, l̂μ,ν

of L̂ to r̂′
μ,ν, l̂ ′

μ,ν , those of â†
qâcl and âqâ†

cl. They are given
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by

|r̂μ,ν〉〉 = e−(2n̄th+1)â†
q âq |r̂′

μ,ν〉〉

= 1√
μ!ν!

(â†
q)μ(−âq )ν |ρ̂ss〉〉, (13a)

〈〈l̂μ,ν | = 〈〈l̂ ′
μ,ν |e(2n̄th+1)â†

q âq

= 1√
μ!ν!

〈〈0̂q|[âcl(n̄th )]μ[â†
cl(n̄th )]ν (13b)

with corresponding eigenvalues

Eμ,ν =
(

ω0 − i
κ

2

)
μ −

(
ω0 + i

κ

2

)
ν. (14)

Here we have identified ρ̂ss as the unique zero-eigenvalue
eigenvector of L̂, i.e., the steady state of dissipative dynamics.
We have also defined

âcl(n̄th ) ≡ V̂ âclV̂
−1 = âcl + (2n̄th + 1)âq, (15a)

â†
cl(n̄th ) ≡ V̂ â†

clV̂
−1 = â†

cl − (2n̄th + 1)â†
q, (15b)

where note that since V̂ is not unitary, â†
cl(n̄th ) is not the

conjugate of âcl(n̄th ) despite the notation. This is, however, of
no concern, seeing as the similarity transformations preserve
all commutation relations, e.g.,

[âcl(n̄th ), â†
q] = [â†

cl(n̄th ),−âq] = 1̂. (16)

We can thus identify âcl(n̄th ), âq and â†
cl(n̄th ), âq as the

correct independent “non-Hermitian quasiparticle” superoper-
ators which create and destroy excitations on top of the their
vacuum with a definite energy and decay rate. Although the
vacuum of the quantum superoperators is the identity, the right
vacuum of these new classical superoperators is the steady
state

âcl(n̄th )|ρ̂ss〉〉 = â†
cl(n̄th )|ρ̂ss〉〉 = 0, (17)

which is of course explicitly temperature-dependent.
The superoperators âcl(n̄th ), â†

cl(n̄th ) can also be interpreted
as having displaced the classical superoperators by fluctu-
ations. This can be made more precise by noting that V̂
does not affect average values of the creation or annihilation
operators

√
2〈â(t )〉 = 〈〈0̂q|âcl|ρ̂(t )〉〉 = 〈〈0̂q|âcl(n̄th )|ρ̂(t )〉〉 =√

2e−iω0t− κ
2 t 〈â(0)〉, consistent with the zero-mean nature of

the noise. Higher-order correlation functions such as the av-
erage particle number, however, are affected by fluctuations,
which is why the original noise-free classical superoperators
cannot be used to build up the left eigenvectors. For instance

〈〈0̂q|â†
cl(n̄th )âcl(n̄th )|ρ̂(t )〉〉

= e−κt [〈{â(0), â†(0)}〉 − (2n̄th + 1)] (18)

has the simple exponential decay characteristic of a left eigen-
vector, whereas its noise-free equivalent 〈〈0̂q|â†

clâcl|ρ̂(t )〉〉 =
〈{â(t ), â†(t )}〉 = e−κt 〈{â(0), â†(0)}〉 + (2n̄th + 1)(1 − e−κt )
does not.

E. Remaining unsatisfactory issues

This completes the diagonalization of a single thermally
damped oscillator (something that can be easily generalized to

the multimode case, as we show below). There are, however,
two unsatisfactory features of the procedure presented above.
First, the similarity transformation V̂ at this stage does not
seem to possess a simple physical interpretation. For instance,
it is well known that the steady state is a Gaussian state, with
an average particle number of n̄th. In contrast, our procedure
simply asserts that it is equivalent to e−(2n̄th+1)â†

q âq |0̂cl〉〉. Is
there a direct way to see the connection here, that is,

ρ̂ss = 1

n̄th + 1

∞∑
n=0

(
n̄th

n̄th + 1

)n

|n〉〈n|

?= 2e−(n̄th+ 1
2 )[â†,[â,·]]eiπ â†â. (19)

It is not clear at this stage how we should think about this
result or even demonstrate this equality explicitly. Second, the
right eigenvectors are given by nested commutators of â†, â
and the steady state; their explicit second-quantized form is
tedious to obtain and largely uninformative. Take, for exam-
ple, the right eigenvector describing population decay with a
characteristic decay rate of 2κ ,

r̂2,2 = 1

8n̄2
th(n̄th + 1)2

(
n̂2 − (4n̄th + 1)n̂ + 2n̄2

th

)
ρ̂ss (20)

with n̂ ≡ â†â. At first glance, there is no obvious intuitive
way to think about such an eigenvector, let alone a simple
connection to a 2-excitation Fock state.

III. EQUIVALENCE BETWEEN THIRD-QUANTIZATION
AND PHASE-SPACE FORMALISM

While seemingly devoid of physical content, we shall
now demonstrate that both the similarity transformation V̂ in
Eq. (10) and eigenvectors r̂μ,ν , l̂μ,ν of Eq. (13) have trans-
parent phase-space representations. The continuous nature of
phase space arises by asking a natural question: what are the
eigenvectors and eigenvalues of the classical and quantum
superoperators? As we now show, the answer to this ques-
tion leads to the main results of this section: the similarity
transformation V̂ is equivalent to a phase-space convolution
with a Gaussian of width 2n̄th + 1, and the eigenvectors of L̂
in phase space have a functional form equivalent to that of a
Fock state.

A. Classical and quantum eigenvectors

Thankfully, the eigenvectors of âcl, â†
cl and âq, â†

q are al-
ready familiar from quantum optics. For any complex number
α and η, let us define corresponding displaced parity and
displacement operators [23], respectively,

α̂cl ≡ 2D̂(
√

2α)eiπ â†â, (21a)

η̂q ≡ D̂(
√

2η) (21b)

with D̂(α) ≡ eαâ†−α∗â. Using the defining property of the dis-
placement operator âD̂(α) = D̂(α)(â + α) and parity operator
âeiπ â†â = −eiπ â†ââ, we arrive at

âcl|α̂cl〉〉 = α|α̂cl〉〉, â†
cl|α̂cl〉〉 = α∗|α̂cl〉〉, (22a)

âq|η̂q〉〉 = η|η̂q〉〉, â†
q|η̂q〉〉 = η∗|η̂q〉〉. (22b)
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The spectrum of each of our third-quantization superoperators
is thus the whole complex plane.

The corresponding eigenvectors are reminiscent of stan-
dard single-mode coherent states, an analogy we can make
even stronger by writing

|α̂cl〉〉 = eαâ†
q−α∗âq |0̂cl〉〉, (23a)

|η̂q〉〉 = eηâ†
cl−η∗âcl |0̂q〉〉 (23b)

in the same way that coherent states are displaced vacuum.
Unlike coherent states, however, which are not eigenvectors
of â†, âcl and â†

cl share the same eigenvectors, as do âq and â†
q.

This a consequence of [âcl, â†
cl] = [âq, â†

q] = 0. For the same
reason, α̂cl and η̂q are orthogonal to other eigenstates of the
same kind:

〈〈α̂cl|β̂cl〉〉 = Tr(α̂†
clβ̂cl ) = 2πδ2(α − β ), (24a)

〈〈η̂q|ξ̂q〉〉 = Tr(η̂†
q ξ̂q) = π

2
δ2(η − ξ ), (24b)

where the trace was computed using coherent states. In this
sense, these operators are more reminiscent of position and
momentum eigenkets. Just like their first-quantized counter-
parts, they can then be used to form a resolution of the identity

1̂ =
∫

d2α

2π
|α̂cl〉〉〈〈α̂cl| =

∫
2d2η

π
|η̂q〉〉〈〈η̂q|, (25)

where d2β ≡ d Reβ d Imβ for any complex β. It follows that
we can write the density matrix as

|ρ̂〉〉 =
∫

d2α

2π
Wρ̂ (α)|α̂cl〉〉 =

∫
2d2η

π
ρ̂ (η)|η̂q〉〉 (26)

with

Wρ̂ (α) ≡ 〈〈α̂cl|ρ̂〉〉 = 2 Tr(eiπ â†âD̂†(
√

2α)ρ̂ )

= 2 Tr

(
eiπ â†âD̂†

(
α√
2

)
ρ̂D̂

(
α√
2

))
, (27a)

ρ̂ (η) ≡ 〈〈η̂q|ρ̂〉〉 = Tr(D̂†(
√

2η)ρ̂). (27b)

Remarkably, these “wave functions” of the density matrix in
these bases are well-known objects: Wρ̂ (α) and ρ̂ (η) are pre-
cisely the Wigner function of ρ̂ and its characteristic function,
respectively [24,25].

To recover the result that Wρ̂ (α) and ρ̂ (η) are Fourier
transforms of each other, we compute the overlap

〈〈α̂cl|η̂q〉〉 = Tr(α̂†
clη̂q) = eηα∗−η∗α, (28)

using the definitions Eqs. (27a) and (27b) and the resolution
of the identity Eq. (25) to obtain

Wρ̂ (α) =
∫

2d2η

π
eηα∗−η∗αρ̂ (η), (29a)

ρ̂ (η) =
∫

d2α

2π
eη∗α−ηα∗

Wρ̂ (α). (29b)

Much like position and momentum eigenkets correspond to a
perfectly spatially localized or delocalized particle in standard
quantum mechanics, the eigenkets |α̂cl〉〉 and |η̂q〉〉 can be
thought of as states in phase space that are perfectly localized
at α or delocalized with wave vector η. That α and η are
Fourier transform pairs is also consistent with âcl, â†

q and

TABLE I. The action of third-quantized creation and annihilation
superoperators on the density matrix |ρ̂〉〉, Wigner function Wρ̂ (α),
or characteristic function ρ̂ (η). These rules can be used to obtain
an equivalent set of equations of motion; see Eq. (31) for the single
linear oscillator case.

|ρ̂〉〉 Wρ̂ (α) ρ̂ (η)

âcl
1√
2
|{â, ρ̂}〉〉 αWρ̂ (α) ∂η∗ρ̂ (η)

âq
1√
2
|[â, ρ̂]〉〉 ∂α∗Wρ̂ (α) ηρ (η)

â†
cl

1√
2
|{â†, ρ̂}〉〉 α∗Wρ̂ (α) −∂ηρ̂ (η)

â†
q

1√
2
|[â†, ρ̂]〉〉 −∂αWρ̂ (α) η∗ρ (η)

âq, â†
cl being conjugate to one another. This can be further

demonstrated by using Eqs. (23a) and (23b) to write

〈〈η̂q|âcl = ∂η∗ 〈〈η̂q|, 〈〈α̂cl|â†
q = −∂α〈〈α̂cl|, (30a)

〈〈α̂cl|âq = ∂α∗ 〈〈α̂q|, 〈〈η̂q|â†
cl = −∂η〈〈η̂q|. (30b)

Given any third-quantized Lindbladian, we can then use
Eqs. (27a) and (27b) and Eqs. (30a) and (30b) to readily find
the equation of motion for either the Wigner or the charac-
teristic function. These rules are summarized in Table I. For
example, we can recover the standard equivalent equations of
motion [25],

i∂t |ρ̂〉〉 =
[(

ω0 − i
κ

2

)
â†

qâcl +
(

ω0 + i
κ

2

)
âqâ†

cl

− iκ (2n̄th + 1)â†
qâq

]
|ρ̂〉〉, (31a)

�

i∂tWρ̂ (α) =
[
−
(

ω0 − i
κ

2

)
∂αα +

(
ω0 + i

κ

2

)
∂α∗α∗

+ iκ (2n̄th + 1)∂α∂α∗

]
Wρ̂ (α), (31b)

�

i∂tρ̂ (η) =
[(

ω0 − i
κ

2

)
η∗∂η∗ −

(
ω0 + i

κ

2

)
η∂η

−iκ (2n̄th + 1)η∗η
]
ρ̂ (η). (31c)

From now on, we will write the classical and quantum super-
operators and their action on these eigenvectors as equivalent,
e.g., âcl = α = ∂η∗ .

B. Interpretation of V̂ and phase-space eigenvectors of L̂
It is worth stressing that by using the resolution of

the identity Eq. (25), one can obtain a phase-space rep-
resentation of an arbitrary operator WX̂ (α) ≡ 〈〈α̂cl|X̂ 〉〉 =
2 Tr(eiπ â†âD̂(

√
2α)X̂ ). This is merely the Wigner-Weyl trans-

form [26], yet here it appears much more naturally using the
language of standard quantum mechanics. This allows us to
easily describe how the similarity transformation V̂ which
eliminated the noise acts on an arbitrary density matrix, some-
thing that would be extremely challenging using standard
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formulations and tools of quantum mechanics in phase space,
e.g., phase-point operators [27,28].

Being diagonal in the quantum basis, V̂ = e−(2n̄th+1)â†
q âq

simply acts by multiplication on the characteristic function
V ρ̂ (η) = e−(2n̄th+1)|η|2ρ̂ (η). We can then obtain the Wigner
function by Fourier transforming using Eq. (29a),

WV ρ̂ (α) =
∫

d2β

(2n̄th + 1)π
e− |α−β|2

2n̄th+1 Wρ̂ (β ). (32)

As promised, V̂ is the phase-space convolution with a Gaus-
sian of width (2n̄th + 1), spreading out and delocalizing any
distribution. This is also consistent with the similarity trans-
formation e−(2n̄th+1)â†

q âq removing the noise, or equivalently the
diffusion term in the Fokker-Planck equation (31b), which
has an identical delocalization effect. Note that if n̄th = 0,
then this is precisely the Glauber-Sudarshan P-function of the
oscillator, which is insensitive to vacuum noise [25].

Turning our attention to the right eigenvectors of L̂, we
find that they have a compact form in phase space,

Wr̂μ,ν
(α) ≡ 1√

μ!ν!
〈〈α̂cl|(â†

q )μ(−âq)ν |ρ̂ss〉〉

= (−1)μ+ν

√
μ!ν!

∂μ
α ∂ν

α∗Wρ̂ss (α). (33)

Focusing on the μ = ν case for simplicity and comparing with
the Wigner function of Fock state projectors |μ〉〈μ|, we obtain

Wr̂μ,μ
(α) = 2(−1)μe− |α|2

2n̄th+1

(2n̄th + 1)μ+1
Lμ

( |α|2
2n̄th + 1

)
, (34a)

W|μ〉〈μ|(α) = 2(−1)μe−|α|2 Lμ(2|α|2), (34b)

where Lμ is the μth Laguerre polynomial. Unlike the ex-
plicit second-quantized form, which from Eq. (13a) requires
computing nested commutators of â, â†, and ρ̂ss, in this
representation r̂μ,ν bear a striking similarity to Fock states.
Although they can be made almost identical by rescaling the
phase-space variable Wr̂μ,μ

(α) → Wr̂μ,μ
(
√

2n̄th + 1α), which
would make the Gaussian factors match, the argument of the
Laguerre polynomial would still differ by a factor of 2. This
property also holds when comparing arbitrary right eigen-
modes r̂μ,ν and outer products of Fock states |μ〉〈ν|, which
we show in Appendix A. There we also give the phase-space
representations of the left eigenvectors.

Using the equivalent representations of the master equa-
tion (31), we conclude that the phase-space representations of
|r̂μ,ν〉〉 and 〈〈l̂μ,ν | are also right and left eigenvectors of the
classical Fokker-Planck differential operator. The existence
of quantized Laguerre-polynomial eigenfunctions is a well-
known property of this classical damped oscillator problem
[29], but the corresponding quantum analog arguably is not.
The quantized nature of these modes in a classical or quantum
setting is easily understood for this linear problem: any ob-
servable should only oscillate and decay at integer multiples
of the fundamental frequency and decay rate, respectively. For
instance, 〈(â†)ν âμ〉 and its classical counterpart includes the
harmonics ω0(μ − ν) and decay κ

2 (μ + ν).
Finally, note that these eigenvectors are still correct even

when there is no dissipation n̄th → 0, κ → 0. This might

seem surprising at first, as in this limit Wr̂μ,μ
(α) �= W|μ〉〈μ|(α).

This discrepancy is easily understood. Without decay,
each eigenvalue Eμ,ν = ω0(μ − ν) is infinitely degenerate,
which is most obvious by writing L̂ = ω0(â†

qâcl + âqâ†
cl ) =

ω0(−∂αα + ∂α∗α∗) = ω0i∂φ , where φ = arg α. There is thus
no unique way to diagonalize L̂; in this limit, our approach
picks out one linearly independent set of eigenvectors out of
the infinitely many available ones.

IV. CORRESPONDENCE BETWEEN THIRD
QUANTIZATION AND KELDYSH FIELD THEORY

Despite the Lindbladian Eq. (6) being reminiscent of the
dissipative Keldysh action of the same model, the connection
between these approaches we have been suggesting is at this
stage not rigorous. In this section, we make the correspon-
dence concrete by showing that Keldysh field theory emerges
directly from the structure of the third-quantized Lindbladian
expressed on the basis of classical and quantum superoper-
ators. Our approach here complements standard derivations
of the Keldysh action for open systems [19,20]. Unlike these
treatments, our focus is not the derivation of a partition func-
tion for the calculation of correlation functions, but rather on
obtaining the time evolution of an arbitrary initial state. In
this sense, this section introduces an alternate formulation of
the Feynman-Vernon influence functional approach [30] and
subsequent closely related descriptions [31,32].

A. Path integral for a thermally damped harmonic oscillator

The Keldysh path integral emerges here by asking how
the Wigner or characteristic function evolves in time. Indeed,
since e−iL̂t is the time evolution superoperator, we can use the
resolution of the identity Eq. (25) formed using the classical
and quantum operators to write

|ρ̂(t )〉〉 = e−iL̂t
∫

d2α

2π
Wρ̂(0)(α)|α̂cl〉〉

=
∫

2d2η

π
ρ̂(t )(η)|η̂q〉〉, (35)

where

ρ̂(t )(η) =
∫

d2α

2π
K (η, α; t )Wρ̂(0)(α), (36a)

K (η, α; t ) ≡ 〈〈η̂q|e−iL̂t |α̂cl〉〉. (36b)

The matrix element K (η, α; t ), also referred to as the ker-
nel, thus serves as the mixed phase-space propagator, and
in principle it contains the same information as the spectral
decomposition of L̂.

Using a resolution of the identity

1̂ =
∫

d2acl, jd2aq, j

π2
eaq, j a∗

cl, j−a∗
q, j acl, j |âcl, j〉〉〈〈âq, j |, (37)

which follows directly from Eqs. (25) and (28), along with
the defining property of the classical and quantum eigenvec-
tors, we can obtain a path-integral description of Eq. (36b)
using the familiar prescription [33]. The central object will
be a functional very similar to the standard Keldysh action
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of a thermally damped harmonic oscillator. There are, how-
ever, important differences that emerge. We emphasize these
here, leaving the technical and mostly familiar details in Ap-
pendix B.

Once these details have been taken into account, we are left
with a path-integral representation of the kernel

K (η, α; t ) =
∫

D[acl, aq]eiS0[acl,aq]+∫ t
0 dt ′(a†(t ′ )J (t ′ )−J †(t ′ )a(t ′ )),

(38)

where D[acl, aq] is the usual functional integration measure,
the action takes the form

S0[acl, aq]

=
∫ t

0

∫ t

0
dt ′dt ′′(a∗

cl(t
′)a∗

q(t ′))G−1(t ′, t ′′)
(

acl(t ′′)
aq(t ′′)

)
, (39)

and the inverse of the matrix Green’s function reads

G−1(t ′, t ′′)

= δ(t ′−t ′′)

(
0 i∂t ′ − (

ω0 + i κ
2

)
i∂t ′ − (

ω0 − i κ
2

)
iκ (2n̄th + 1)

)
. (40)

Throughout this work, we will denote vectors and matrices
with a blackboard bold font to distinguish them from operators
and superoperators. Here we have defined the row vectors
a†(t ′) ≡ (a∗

cl(t
′), a∗

q(t ′)) and the source term

J †(t ′) ≡ ( − η∗δ(t ′ − t ), α∗δ(t ′)). (41)

Note that in most path integrals, from Eq. (36b), one would
normally impose boundary conditions on the fields such as
acl(0) = α, aq(t ) = η; this is incorrect here as it implies that
G−1 has a zero-eigenvalue eigenvector. We stress that one
must instead keep track of the boundary term through the
source J and work directly with the discrete representation
of the Green’s function as we do in Appendix B.

There we show that, although G−1 is symbolically the
same regardless of the length of the time contour, the matrix
Green’s function

G(t ′, t ′′) ≡
(

GK (t ′, t ′′) GR(t ′, t ′′)

GA(t ′, t ′′) 0

)
(42)

is sensitive to such changes. While the retarded GR(t ′, t ′′)
and advanced GA(t ′, t ′′) Green’s function remains the same
regardless of the contour, the Keldysh Green’s GK (t ′, t ′′) func-
tion does not,

GR(t ′, t ′′) = −i�(t ′ − t ′′)e−i(ω0−i κ
2 )(t ′−t ′′ ), (43a)

GA(t ′, t ′′) = [GR(t ′′, t ′)]∗, (43b)

GK (t ′, t ′′) = −iκ (2n̄th + 1)
∫ t

0
dT GR(t ′, T )GA(T, t ′′)

= −i(2n̄th + 1)e−iω0(t ′−t ′′ )

× (
e− κ

2 |t ′−t ′′ | − e− κ
2 (t ′+t ′′ )) (43c)

with �(t ) the Heaviside step function. Crucially, the discrete-
time path integral makes it clear that the correct choice of

the Heaviside step function at zero is �(0) = 1. We note in
passing that the vanishing of the lower right matrix element in
the Green’s function is a consequence of the lack of a a∗

clacl

term in G−1, which, as we discussed in Sec. II, is itself a
consequence of the conservation of probability. Within the
more standard construction of the dissipative path integral,
this structure only appears after a Larkin-Ovchinnikov rota-
tion [20], where the physical interpretation is more opaque.

The path integral can be computed in the usual manner
when one has a quadratic action and a source term. Making
the displacement

a(t ′) → a(t ′) + i
∫ t

0
dt ′′G(t ′, t ′′)J (t ′′), (44)

and using
∫
D[acl, aq]eiS0[acl,aq] = det(iG) = 1 as in the usual

Keldysh formalism, we obtain

K (η, α; t ) = e−i
∫ t

0 dt ′dt ′′J †(t ′ )G(t ′,t ′′ )J (t ′′ )

= e−(2n̄th+1)(1−e−κt )|η|2+e− κ
2 t (η∗αe−iω0t −c.c.). (45)

As expected due to the quadratic nature of the Lindbladian,
the propagator is a Gaussian function of α and η. Equa-
tion (45) can independently be verified to be correct by noting
that it must satisfy Eq. (31c) along with the initial condition
K (η, α; 0) = eη∗α−c.c..

B. Correlation functions and timer evolution
of the Wigner function

For the sake of completeness, in this subsection we demon-
strate how, with knowledge of K (η, α; t ) and the initial
Wigner function Wρ̂(0)(α), one can straightforwardly obtain
both arbitrary correlation functions and the time-evolved
Wigner function Wρ̂(t )(α). Since the characteristic function
ρ̂(t )(η) is the generator of symmetrically ordered correlation
functions, we can simply use Eq. (36a) to obtain

(
√

2)μ+ν〈{âμ(â†)ν}sym〉
= (∂η∗ )μ(−∂η )νρ̂(t )(η)|η=η∗=0

=
∫

d2α

2π
[(∂η∗ )μ(−∂η )νK (η, α; t )η=η∗=0]Wρ̂(0)(α), (46)

which is valid for any Lindbladian, and not simply the damped
oscillator considered here.

Using the resolution of the identity Eq. (25), we can obtain
the classical-classical phase-space propagator

�(β, α; t ) ≡ 〈〈β̂cl|e−iL̂t |α̂cl〉〉 =
∫

2d2η

π
eηβ∗−η∗βK (η, α; t ),

(47)

which we can then use to write

Wρ̂(t )(β ) =
∫

d2α

2π
�(β, α; t )Wρ̂(0)(α). (48)
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Once again this is valid for an arbitrary Lindbladian, but it
can be done here exactly due to the Gaussian nature of the
problem.

C. Path integral for arbitrary Lindbladians

Although in this example L̂ was quadratic in creation and
annihilation superoperators, it is evident that a path-integral
representation of the propagator can be obtained for arbi-
trary Lindbladians. Replacing all âq, â†

q and âcl, â†
cl by their

respective fields in the action, however, is only valid once
all quantum superoperators have been placed to the left of
the classical ones. This is due to the form of the resolution
of the identity Eq. (25). This convention is different from

the one used in the standard coherent-state path integral,
where one must ensure that the Lindbladian is normal-ordered
[19,20]. No differences emerge in this linear setting, but the
two different prescriptions will produce two different Keldysh
actions for an interacting problem. We expand on this point in
Sec. VII when we study a dissipative Kerr oscillator.

V. QUADRATIC BOSONIC LINDBLADIANS

A. Setup

We now generalize the previous results to an arbitrary
quadratic multimode bosonic Lindbladian. The model now
under consideration is a Lindblad master equation of the form

i∂t ρ̂ =
∑
n,m

Hnm[â†
nâm, ρ̂] + 1

2

∑
n,m

[Knmâ†
nâ†

m + H.c., ρ̂] + i
∑

b

D
[∑

m

(lbmâm + p∗
bmâ†

m)

]
ρ̂

=
∑
n,m

Hnm[â†
nâm, ρ̂] + i

∑
n,m

Lnm

(
âmρ̂â†

n − 1

2
{â†

nâm, ρ̂}
)

+ i
∑
n,m

Pnm

(
â†

nρ̂âm − 1

2
{âmâ†

n, ρ̂}
)

+ 1

2

∑
n,m

[Knmâ†
nâ†

m + H.c., ρ̂] + i
∑
n,m

Cnm

(
â†

mρ̂â†
n − 1

2
{â†

nâ†
m, ρ̂}

)
+ i

∑
n,m

C∗
nm

(
ânρ̂âm − 1

2
{âmân, ρ̂}

)
≡ Lρ̂, (49)

where n and m label independent bosonic modes [âm, â†
n] =

δn,m. Further, Hnm and Knm are, respectively, arbitrary Her-
mitian and complex symmetric matrices, which describes
the coherent particle-conserving and -nonconserving process
of the isolated system. The coefficients lbm and p∗

bm char-
acterize the coupling to a set of dissipative baths indexed
by b, and, consequently, the positive-semidefinite Hermitian
matrices Lnm = ∑

b l∗
bnlbm and Pnm = ∑

b p∗
bn pbm capture the

phase-insensitive loss and pumping, respectively. The com-
plex matrix Cnm = ∑

b l∗
bn p∗

bm describes coherences between
these processes. Its phase-sensitivity indicates that not all
quadratures are equivalent.

B. Multimode classical and quantum eigenvectors

Mimicking the procedure of the single-oscillator case, for
each mode m we define a set of classical and quantum creation
and annihilation superoperators

âcl, m|ρ̂〉〉 ≡ 1√
2
|{âm, ρ̂}〉〉, âq,m|ρ̂〉〉 ≡ 1√

2
|[âm, ρ̂]〉〉,

(50a)

âcl, m†|ρ̂〉〉 ≡ 1√
2
|{â†

m, ρ̂}〉〉, â†
q,m|ρ̂〉〉 ≡ 1√

2
|[â†

m, ρ̂]〉〉,

(50b)

whose only nonvanishing commutators are

[âcl, m, â†
q,n] = [âcl, n†,−âq,m] = δnm1̂. (51)

A tedious but straightforward calculation gives the third-
quantization representation of the Lindbladian,

L̂ =
∑
n,m

[(Heff )nmâ†
q,nâcl, m + (H†

eff )nmâq,mâcl, n†]

− i
∑
n,m

Nnmâ†
q,nâq,m +

∑
n,m

[(Keff )nmâ†
q,nâcl, m†

+ (K†
eff )nmâq,mâcl, n] − i

∑
n,m

[Qnmâ†
q,nâ†

q,m

+ Q∗
nmâq,nâq,m]. (52)

Here we have defined the effective Hamiltonian and two-
photon pumping matrices

Heff ≡ H − i

2
(L − G), Keff ≡ K − i

2
(C − CT ) (53)

in addition to the phase-insensitive and phase-sensitive noise
matrices

N ≡ L + G, Q ≡ 1
2 (C + CT ). (54)

The form of L̂ directly parallels the single-mode exam-
ple. The quantum-classical terms encode the dynamics, the
quantum-quantum terms the noise, and there is no classical-
classical term due to conservation of probability.

The presence of the matrices K and C breaks a global
U (1) symmetry âm → eiθ âm, â†

n → e−iθ â†
n, and, just like in

the closed-system case, it implies that we have to work with
a Nambu structure. For clarity, we first set K = C = 0 and
avoid the additional technical details that come with doubling
the size of the matrix one has to diagonalize. At the end of this
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section, we briefly discuss how the presence of these terms
changes the diagonalization procedure.

C. Correlation matrix

To justify referring to Heff and N as the dynamical and
noise matrices, respectively, let us compute the equations of
motion for the symmetrically ordered correlation matrix

Smn(t ) ≡ 〈{âm(t ), â†
n(t )}〉 = 〈〈0̂q|âcl, mâcl, n†|ρ̂(t )〉〉, (55)

which is given by

i∂tS(t ) = HeffS(t ) − S(t )H†
eff + iN. (56)

As promised, Heff serves as the dynamical matrix that deter-
mines the fluctuation-free evolution of the system. It is also
the dynamical matrix that would appear in the equation of
motion for the average values of âm(t ). The noise matrix N
only affects the correlations and occupation of the modes. Us-
ing the Heisenberg-Langevin equations, it can be shown that
N corresponds to the correlation matrix of a set of fluctuating
noisy forces acting on the oscillators. Further, note that the
dissipation cannot be larger than the noise i(Heff − H†

eff ) �
N, which ensures that the Heisenberg uncertainty principle is
satisfied [21]. Finally, we remind the reader that the identifica-
tion of noise is always contingent on the ordering prescription
used to define the correlation matrix. For example, the equa-
tions of motion for the normal-ordered covariance matrix take
the same form as that of S but with modified noise terms:
N → P .

Let us assume that all eigenvalues of Heff have negative
imaginary part, ensuring the existence of a unique steady state.
The formal solution to Eq. (56) then reads

S(t ) = e−iHeffS(0)eiH†
eff t +

∫ t

0
dt ′e−iHeff (t−t ′ )NeiH†

eff (t−t ′ )

= e−iHeff t (S(0) − Sss)eiH†
eff t + Sss, (57)

where the steady-state correlation matrix can be written as

Sss =
∫ ∞

0
dt e−iHeff tNeiH†

eff t (58a)

=
∫ ∞

−∞

dω

2π
GR(ω) N GA(ω) (58b)

= −i
∑
σ,τ

∣∣�R
σ

〉 〈�L
σ

∣∣N∣∣�L
τ

〉
Eσ − E∗

τ

〈
�R

τ

∣∣. (58c)

Here,

GR(ω) ≡ 1

ω1 − Heff
= [GA(ω)]† (59)

are the frequency-space retarded and advanced Green’s func-
tion, respectively, whereas σ and τ label the biorthonormal
eigenvectors and eigenvalues of Heff which satisfy

Heff

∣∣�R
σ

〉 = Eσ

∣∣�R
σ

〉
,

〈
�L

σ

∣∣Heff = 〈
�L

σ

∣∣Eσ , (60a)〈
�L

σ

∣∣�R
τ

〉 = δστ . (60b)

It is worth stressing that while Eq. (58c) assumes Heff can
be diagonalized, Eqs. (58a) and (58b) are always valid. Thus,

even when the dynamical matrix Heff is defective or equiva-
lently at an exceptional point [34,35], the steady state is well
defined.

D. Gauging away noise, eigenvectors, and eigenvalues

Returning to the question of how to diagonalize L̂, re-
call that in the single-mode case, linearity and the lack of
a classical-classical term is ultimately what let us easily to
diagonalize the Lindbladian. As we now show, a similar ap-
proach works in the multimode case. We can again find a
multimode similarity transformation that effectively gauges
away the fluctuations, leaving a transformed Liouvillian that
can be written in terms of generalized number operators. The
generalization of e−(2n̄th+1)â†

q âq to several oscillators is simply

V̂ ≡ exp

⎛
⎝−

∑
n,m

(Sss)nmâ†
q,nâq,m

⎞
⎠. (61)

The Liouvillian in the new frame defined by V̂ is, using the
Baker-Campbell-Hausdorff identity and Eq. (51),

V̂−1L̂V̂ =
∑
n,m

[(Heff )nmâ†
q,nâcl, m + (H†

eff )nmâq,mâcl, n†]

−
∑
n,m

(HeffSss − SssH
†
eff + iN )nmâ†

q,nâq,m

=
∑
n,m

[(Heff )nmâ†
q,nâcl, m + (H†

eff )nmâq,mâcl, n†],

(62)

where we have used HeffSss − SssH
†
eff + iN = 0, which fol-

lows from Eq. (56). In this new basis, we are then left with
two commuting third-quantized non-Hermitian Hamiltonians.
Using the same eigenvectors and eigenvalues we used to diag-
onalize Heff , these two terms can easily be brought to diagonal
form (i.e., written as a sum of commuting generalized number
operators). Moving back to the original frame, we finally
arrive at

L̂ =
∑

σ

[Eσ â†
q(σ )âcl(σ ) + E∗

σ âq(σ )â†
cl(σ )], (63)

where the relevant quasiparticle superoperators are

âcl(σ ) ≡
∑

m

[
�L

m(σ )
]∗(

âcl, m +
∑

n

(Sss)mnâq,n

)
, (64a)

â†
q(σ ) ≡

∑
m

�R
m(σ )â†

q,m, (64b)

â†
cl(σ ) =

∑
m

�L
m(σ )

(
âcl, m† −

∑
n

(Sss)nmâ†
q,n

)
, (64c)

âq(σ ) ≡
∑

m

[
�R

m(σ )
]∗

âq,m (64d)

with �R
m(σ ) ≡ 〈m|�R

σ 〉 and [�L
m(σ )]∗ ≡ 〈�L

σ |m〉. Although
â†

cl(σ ) is not the conjugate of âcl(σ ), this is irrelevant
since, using the biorthonormality of the eigenvectors of
Heff , the only nonvanishing commutators among the set
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Eqs. (64a)–(64d) are

[âcl(σ ), â†
q(σ ′)] = [â†

cl(σ ),−âq(σ ′)] = δσσ ′ 1̂. (65)

We can therefore think of â†
q(σ )âcl(σ ) and −âq(σ )â†

cl(σ ) as
non-Hermitian number operators. The right and left vacuums
of both number operators are simply the steady state and
identity operator, respectively,

âcl(σ )|ρ̂ss〉〉 = â†
cl(σ )|ρ̂ss〉〉 = 0, (66a)

〈〈0̂q|âq(σ ) = 〈〈0̂q|â†
q(σ ) = 0, (66b)

with 0̂q ≡ 1̂. The steady state |ρ̂ss〉〉 = V̂|0̂cl〉〉 is Gaussian
with a two-point correlation matrix determined by Sss. Here
0̂cl = 2MeiπN̂ is the total parity operator with N̂ = ∑

m â†
mâm,

which serves as the joint vacuum of the classical superopera-
tors, and M is the total number of modes.

In complete analogy to a second-quantized quadratic
Hamiltonian, we can now write the eigenvectors and eigen-
values of L̂ as

|r̂�μ,�ν〉〉 =
∏
σ

1√
μσ !νσ !

[â†
q(σ )]μσ [−âq(σ )]νσ |ρ̂ss〉〉, (67a)

〈〈l̂�μ,�ν | = 〈〈0̂q|
∏
σ

1√
μσ !νσ !

[âcl(σ )]μσ [â†
cl(σ )]νσ (67b)

with corresponding eigenvalues

E�μ,�ν =
∑

σ

(Eσμσ − E∗
σ νσ ). (68)

Here, �μ, �ν are lists of non-negative integers μσ , νσ which
characterize the number of “particles” μσ or “holes” νσ in
mode σ . The right and left eigenvectors are normalized such
that the biorthonormality condition 〈〈l̂ �μ′, �ν ′ |r̂�μ,�ν〉〉 = δ�μ,�μ′δ�ν,�ν ′

is satisfied.

E. Multimode Wigner function and path integral

The equivalence between third-quantization, phase-space
representations of the density matrix and Keldysh field theory

presented in Secs. II–IV can be extended to this multimode
setting in an obvious manner. For any set of complex numbers
αm and ηm, the multimode displaced parity and displacement
operator

�̂αcl ≡ 2Me
∑

m (αmâ†
m−α∗

mâm )eiπN̂ , (69a)

�̂ηq ≡ e
∑

m (αmâ†
m−α∗

mâm ) (69b)

are the eigenvectors of the classical and quantum superop-
erators, respectively. The multimode Wigner function and
characteristic function are given by

Wρ̂ (�α) ≡ Tr( �̂α†
clρ̂ ), (70a)

ρ̂ (�η) ≡ Tr(�̂η†
clρ̂ ), (70b)

from which we can obtain a simple physical interpretation
of the similarity transformation used to eliminate the noise.
Using the basis that diagonalizes the Hermitian covariance
matrix Sss, that is, the set of orthogonal modes âλ satisfying
〈{âλ, â†

λ′ }〉ss = (2n̄λ + 1)δλλ′ , we have V̂ = exp(−∑
λ(2n̄λ +

1)â†
q,λâq,λ). Given the result of Sec. III, we conclude that V̂

is a convolution with a multimode Gaussian in phase spaces
along a set of orthogonal axes determined by the modes âλ

whose width depends on the average number of quanta in that
mode in steady state.

The equations of motion for Wρ̂ (�α) and ρ̂ (�η) can be
easily read off from the third-quantized form of L̂ in Eq. (52)
and the multimode generalization of the rules in Table I,
e.g., âcl, m = αm = ∂η∗

m
. We do not reproduce them here for

the sake of compactness. We can also find the propagator
K (�η, �α; t ) ≡ 〈〈η̂q|e−iL̂t |α̂cl〉〉 for this differential equation us-
ing the Keldysh path integral. The multimode matrix Green’s
function for the finite-time contour of length t is merely the
generalization of Eq. (42),

G(t ′, t ′′) ≡
(
GK (t ′, t ′′) GR(t ′, t ′′)

GA(t ′, t ′′) 0

)
=
(−i

∫ t
0 dTGR(t ′, T ) N GA(T, t ′′) −i�(t ′ − t ′′)e−iHeff (t ′−t ′′ )

i�(t ′′ − t ′)eiH†
eff (t ′′−t ′ ) 0

)
(71)

and consequently the propagator is merely the multimode
generalization of Eq. (45),

K (�η, �α; t )

= exp

(
−iJ †

int

(
GK (t, t ) GR(t, 0)
GA(0, t ) 0

)
Jint

)

= exp

(
−J †

int

(∫ t
0 dt ′e−iHeff t ′

N eiH†
eff t

′
e−iHeff t

−eiH†
eff t 0

)
Jint

)
,

(72)

where here we have defined the integrated source term J †
int ≡∫∞

−∞ dt ′J †(t ′).

F. Symmetry-breaking terms

In the presence of U (1) symmetry-breaking terms in the
Lindbladian Eq. (52) due to nonzero K and C, the strategy
would be analogous to the one presented above. One would
now have nonvanishing anomalous steady-state covariance
matrix elements 〈{âm, ân}〉ss, which would now enter the sim-
ilarity transformation used to remove the noise terms. What
remains is a 4M × 4M non-Hermitian Hamiltonian. Just as
in the closed-system case, one would have to perform an
appropriate Bogoliubov transformation when defining third-
quantized quasiparticle superoperators. The propagator would
also take essentially the same form, the only difference
being that the matrix Green’s function would be of size
4M × 4M.
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VI. QUADRATIC FERMIONIC LINDBLADIANS

A. Setup

In this section, we will diagonalize an arbitrary fermionic Lindbladian of the form

i∂t ρ̂ =
∑
n,m

Hnm[ĉ†
nĉm, ρ̂] + 1

2

∑
n,m

[Knmĉ†
nĉ†

m + H.c., ρ̂] + i
∑

b

D
[∑

m

(lbmĉm + p∗
bmĉ†

m)

]

=
∑
n,m

Hnm[ĉ†
nĉm, ρ̂] + i

∑
n,m

Lnm

(
ĉmρ̂ĉ†

n − 1

2
{ĉ†

nĉm, ρ̂}
)

+ i
∑
n,m

Pnm

(
ĉ†

nρ̂ĉm − 1

2
{ĉmĉ†

n, ρ̂}
)

+ 1

2

∑
n,m

[Knmĉ†
nĉ†

m + H.c., ρ̂] + i
∑
n,m

Cnm

(
ĉ†

mρ̂ĉ†
n − 1

2
{ĉ†

nĉ†
m, ρ̂}

)
+ i

∑
n,m

C∗
nm

(
ĉnρ̂ĉm − 1

2
{ĉmĉn, ρ̂}

)
≡ Lρ̂, (73)

where m and n label independent fermionic degrees of free-
dom {ĉm, ĉ†

n} = δnm. The matrices H, L, P , and C have the
same form and interpretation as in the bosonic case studied
in Sec. V. The only difference is that the complex matrix K
now describes the pairing of fermions, and is thus necessarily
antisymmetric.

B. Creation and annihilation superoperators

In analogy with the bosonic case Eq. (50), we would
like to define a set of fermionic superoperators that satisfy
canonical anticommutation relations. The issue, however, is
that superoperators acting on the left and the right of the
density matrix commute with one another; this would seem to
preclude introducing superoperators with canonical fermionic
anticommutation relations. The solution is to introduce the
parity operator eiπN̂ in the definition of these modes, where
N̂ = ∑

m ĉ†
mĉm is the total number operator. Defining

ĉ1,m|ρ̂〉〉 ≡ 1√
2
|{ĉm, ρ̂eiπN̂ }〉〉,

ĉ2,m|ρ̂〉〉 ≡ 1√
2
|[ĉm, ρ̂eiπN̂ ]〉〉, (74a)

ĉ†
1,m|ρ̂〉〉 ≡ 1√

2
|[ĉ†

m, ρ̂eiπN̂ ]〉〉,

ĉ†
2,m|ρ̂〉〉 ≡ 1√

2
|{ĉ†

m, ρ̂eiπN̂ }〉〉, (74b)

one verifies that ĉ†
1,m and ĉ†

2,m are the Hermitian conjugates of
ĉ1,m and ĉ2,m as per the definition of the inner product Eq. (2).
The only nonvanishing set of anticommutators are

{ĉ1,m, ĉ†
1,n} = {ĉ2,m, ĉ†

2,n} = δnm1̂. (75)

Thus, ĉ1,m and ĉ2,n can be interpreted as genuine annihilation
operators of fermionic modes.

From the definitions Eqs. (74a) and (74b), the total parity
and identity operators serve as the unique joint vacuum for
one type of superoperator, while simultaneously serving as the
completely filled state of the other, i.e.,

1̂1, 0̂2 ≡ eiπN̂ → ĉ†
1,m|1̂1, 0̂2〉〉 = ĉ2,m|1̂1, 0̂2〉〉 = 0, (76a)

0̂1, 1̂2 ≡ 1̂ → ĉ1,m|0̂1, 1̂2〉〉 = ĉ†
2,m|0̂1, 1̂2〉〉 = 0. (76b)

To be explicit, |1̂1, 0̂2〉〉 defines a state where all type-1 quasi-
particle states are filled, and all type-2 quasiparticle states
are empty; |0̂1, 1̂2〉〉 is interpreted in a similar fashion. Note
that these effective states are not normalized to unity but
rather 〈〈1̂1, 0̂2|1̂1, 0̂2〉〉 = 〈〈0̂1, 1̂2|0̂1, 1̂2〉〉 = 2M , where M is
the total number of modes.

We stress that these superoperators and states differ from
Prosen [1], who instead introduced Majorana superoperators
instead of fermionic creation and annihilation superoperators.
Our choice allows us to make the connection to the Keldysh
formalism, as is apparent when writing the Lindbladian in this
basis,

L̂ =
∑
n,m

[(Heff )nmĉ†
1,nĉ1,m − (H†

eff )nmĉ2,mĉ†
2,n]

− i
∑
n,m

Nnmĉ†
1,nĉ2,m

+
∑
n,m

[(Keff )nmĉ†
1,nĉ†

2,n − (Keff )∗nmĉ2,nĉ1,m]

− i
∑
n,m

[Qnmĉ†
1,nĉ†

1,m − Q∗
nmĉ2,nĉ2,m], (77)

where for fermions the effective non-Hermitian Hamiltonians
and pairing matrices are defined as

Heff ≡ H − i

2
(L + P ), Keff ≡ K − i

2
(C + CT ) (78)

with the noise matrices taking the form

N ≡ L − P , Q ≡ 1
2 (C − CT ). (79)

Setting K = Q = 0 for simplicity, we confirm that the nomen-
clature is justified by defining the antisymmetrized covariance
matrix

Amn(t ) ≡ 〈[ĉm(t ), ĉ†
n(t )]〉 = 〈〈0̂1, 1̂2|ĉ1,mĉ†

2,n|ρ̂(t )〉〉 (80)

and computing its equation of motion

i∂tA(t ) = HeffA(t ) − A(t )H†
eff + iN. (81)

Note that here the dissipation must be larger than the fluctu-
ations i(Heff − H†

eff ) � N, whereas the opposite is true for
bosons. This ensures that the Pauli exclusion principle is
satisfied. The solution and physical content of Eq. (81) was
already discussed in Sec. V. Our only goal here was to stress
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that each term in the Lindbladian has a physical interpretation;
it describes either dynamics or noise.

C. Gauging away the noise

Just as in the bosonic case, there are terms in the third-
quantized representation of L̂ such as ĉ†

2,nĉ1,m which are

not allowed due to conservation of probability 〈〈1̂|L̂ =
〈〈0̂1, 1̂2|L̂ = 0. We can use this to move to a frame where
there are no fluctuations, interpreting the separation of dis-
sipation and noise in this linear system as the underlying
symmetry which allows us find such a basis. Defining the
antisymmetrized steady-state covariance matrix (Ass)mn ≡
〈[ĉm, ĉ†

n]〉ss which satisfies HeffAss − AssH
†
eff + iN = 0 and

the superoperator

V̂ ≡ exp

⎛
⎝−

∑
n,m

(Ass)nmĉ†
1,nĉ2,m

⎞
⎠, (82)

we can use the Baker-Campbell-Hausdorff formula and the
anticommutation relations Eq. (75) to obtain

V̂−1L̂V̂ =
∑
n,m

[(Heff )nmĉ†
1,nĉ1,m − (H†

eff )nmĉ2,mĉ†
2,n]

−
∑
n,m

(HeffAss − AssH
†
eff + iN )nmĉ†

1,nĉ2,m

=
∑
n,m

[(Heff )nmĉ†
1,nĉ1,m − (H†

eff )nmĉ2,mĉ†
2,n]. (83)

We can now use the eigenvectors and eigenvalues of Heff to
bring this superoperator to diagonal form (i.e., written as a
sum of commuting generalized number operators). Moving
back to the original frame, we have

L̂ =
∑

σ

[Eσ ĉ†
1(σ )ĉ1(σ ) − E∗

σ ĉ2(σ )ĉ†
2(σ )], (84)

where we have defined

ĉ1(σ ) ≡
∑

m

[
�L

m(σ )
]∗(

ĉ1,m +
∑

n

(Ass)mnĉ2,n

)
, (85a)

ĉ†
1(σ ) ≡

∑
m

�R
n (σ )ĉ†

1,m, (85b)

ĉ†
2(σ ) ≡

∑
m

�L
m(σ )

(
ĉ2,m −

∑
n

(Ass)nmĉ†
1,n

)
, (85c)

ĉ†
2(σ ) ≡

∑
m

[
�R

m(σ )
]∗

ĉ2,m. (85d)

Although ĉ†
1(σ ) and ĉ†

2(σ ) are not the conjugate of ĉ1(σ )
and ĉ2(σ ), the canonical anticommutation relations are still
preserved, e.g.,

{ĉ1(σ ), ĉ†
1(σ ′)} = {ĉ2(σ ), ĉ†

2(σ ′)} = δστ 1̂. (86)

However, as a result of the nonunitary nature of V̂ , the left
and right vacuum and completely filled state of these new
superoperators are not the same,

〈〈0̂1, 1̂2|ĉ†
1(σ ) = 〈〈0̂1, 1̂2|ĉ2(σ ) = 0, (87a)

ĉ1(σ )|ρ̂ss〉〉 = ĉ†
2(σ )|ρ̂ss〉〉 = 0, (87b)

where we can write |ρ̂ss〉〉 = 2−MV̂|0̂1, 1̂2〉〉. In direct analogy
with a standard Hermitian Hamiltonian, the eigenvectors of L̂
can then be written as

|r̂�μ,�ν〉〉 =
∏
σ

[ĉ†
1(σ )]μσ [ĉ2(σ )]νσ |ρ̂ss〉〉, (88a)

〈〈l̂�μ,�ν | = 〈〈0̂1, 1̂2|
∏
σ

[ĉ†
2(σ )]μσ [ĉ1(σ )]νσ (88b)

with corresponding eigenvalues

E�μ,�ν =
∑

σ

(Eσμσ − E∗
σ νσ ). (89)

Here, �μ, �ν are lists with entries μσ , νσ = {0, 1} and the eigen-
vectors satisfy 〈〈l̂ �μ′, �ν ′ |r̂�μ,�ν〉〉 = δ�μ,�μ′δ�ν,�ν ′ .

The inclusion of U (1) symmetry-breaking terms adds no
formal degree of complexity; one simply has to diagonalize a
larger matrix. The underlying physics, that is, the separation
of dynamics and fluctuations, still allows one to eliminate the
noise using an appropriate similarity transformation analo-
gous to Eq. (82).

D. Third quantization and Keldysh field theory for fermions

Just as we did in the bosonic case, we now develop a
path-integral representation of the dynamics starting from the
third-quantized representation of the Lindbladian in Eq. (77).
For simplicity, let us assume that we have a single fermionic
mode, such that the third-quantized Lindbladian takes the
form

L̂ =
(

ε0 − i
γ

2

)
ĉ†

1ĉ1 −
(

ε0 + i
γ

2

)
ĉ2ĉ†

2 (90)

− iγ (1 − 2n̄)ĉ†
1ĉ2, (91)

where γ is the decay rate and n̄ = 〈ĉ†ĉ〉ss is the average
number of particles in the steady state. Although here the
Hamiltonian loss and pumping matrices have been simply
replaced by numbers, H → ε0 L → γ (1 − n̄),P → γ n̄, the
generalization to several modes is straightforward.

The first step in formulating any fermionic path integral
is to introduce the fermionic equivalent of coherent states, for
which one must work with the usual Grassmann numbers [33].
We thus introduce four Grassmann numbers ψ1, ψ2, ψ̄1, ψ̄2

which anticommute with each other and all superoperators.
Recalling that we have identified the identity operator as the
vacuum of type-1 quasiparticles and the occupied state of
type-2 quasiparticles, see Eq. (76), we then define

|ψ〉〉 ≡ e−ψ1 ĉ†
1−ψ̄2 ĉ2

2
|0̂1, 1̂2〉〉, (92a)

〈〈ψ | ≡ 〈〈0̂1, 1̂2|e−ĉ1ψ̄1−ĉ†
2ψ2 , (92b)

which satisfy

ĉ1|ψ〉〉 = ψ1|ψ〉〉, ĉ†
2|ψ〉〉 = ψ̄2|ψ〉〉, (93a)

〈〈ψ |ĉ†
1 = 〈〈ψ |ψ̄1, 〈〈ψ |ĉ2 = 〈〈ψ |ψ2 (93b)

and

〈〈ψ ′|ψ〉〉 = eψ̄ ′
1ψ1+ψ ′

2ψ̄2 . (94)
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One can then verify that these coherent states can be used as
a resolution of the identity∫

dψ̄1dψ1dψ2dψ̄2 e−ψ̄1ψ1−ψ2ψ̄2 |ψ〉〉〈〈ψ | = 1̂ (95)

from which one can construct a Grassmann-valued “wave
function” that, in analogy with the Wigner function for
bosons, we denote Wρ̂ (ψ ) ≡ 〈〈ψ |ρ̂〉〉. It follows that the ma-
trix element

K (ψ ′, ψ ; t ) ≡ 〈〈ψ ′|e−iL̂t |ψ〉〉 (96)

contains all information about the dynamics.
A continuous-time version of this propagator can be built

using essentially the same procedure presented in Sec. IV.
Leaving all details to Appendix C, we arrive at

K (ψ ′, ψ ; t )

=
∫

D[ψ1, ψ2]eiS0[ψ1,ψ2]+ψ̄ ′
1ψ1(t )−ψ̄2(t )ψ ′

2+ψ̄1(0)ψ1−ψ̄2ψ2(0),

(97)

where D[ψ1, ψ2] is the standard functional measure, and the
action is

S0[ψ1, ψ2]

=
∫ t

0

∫ t

0
dt ′dt ′′(ψ̄1(t ′) ψ̄2(t ′))G−1(t ′, t ′′)

(
ψ1(t ′′)
ψ2(t ′′)

)
,

(98)

where the matrix Green’s function now reads

G−1(t ′, t ′′) = δ(t ′ − t ′′)
(

i∂t ′ − (
ε0 − i γ

2

)
iγ (1 − 2n̄)

0 i∂t ′ − (
ε0 + i γ

2

)).

(99)

The matrix Green’s function is then

G(t ′, t ′′) ≡
(

GR(t ′, t ′′) GK (t ′, t ′′)
0 GA(t ′, t ′′)

)
, (100)

where

GR(t ′, t ′′) = −i�(t ′ − t ′′)e−i(ε0−i γ

2 )(t ′−t ′′ ), (101a)

GA(t ′, t ′′) = [GR(t ′′, t ′)]∗, (101b)

GK (t ′, t ′′) = −iκ (1 − 2n̄)
∫ t

0
dT GR(t ′, T )GA(T, t ′′)

= −i(1 − 2n̄)e−iε0(t ′−t ′′ )(e− γ

2 |t ′−t ′′ | − e− γ

2 (t ′+t ′′ )).
(101c)

Mimicking the bosonic case, we can make the appropriate
translation to the Grassmann variables to eliminate the source
term and integrate over the quadratic action which gives unity
(see Appendix C for details). We then obtain

K (ψ ′, ψ ; t ) = e−(1−2n̄)(1−e−γ t )ψ̄ ′
1ψ

′
2+e(−iε0− κ

2 )t
ψ̄ ′

1ψ1−e(iε0− κ
2 )t

ψ̄2ψ
′
2 .

(102)

From Eq. (92), by taking derivatives of the Grassmann vari-
ables, we can use this propagator to obtain expectation values
of observables, e.g., ∂ψ̄ ′

1
〈〈ψ ′|e−iL̂t |ρ̂(0)〉〉|ψ ′=0 = √

2〈ĉ(t )〉.
Of course, we could have obtained this answer easily in this

single-mode example; the application of this path integral is
more useful when there are several fermionic modes.

VII. APPLICATION: DISSIPATIVE NONLINEAR CAVITY

We now provide an example of how our formalism can
be extremely useful even in situations in which there are true
interactions, and the Lindbladian is not simply quadratic. We
consider a paradigmatic problem: a single bosonic mode with
a Kerr-type (or Hubbard-type) nonlinearity, and subject to
thermal single-photon dissipation. The master equation for
this system is

i∂t ρ̂ =
[
ω0â†â + U

2
â†â†ââ, ρ̂

]

+ iκ (n̄th + 1)D[â]ρ̂ + iκ n̄thD[â†]ρ̂ ≡ Lρ̂ (103)

with U the strength of the Kerr nonlinearity. Since L̂ is now
evidently quartic in creation and annihilation superoperators,
it would seem as though describing this problem exactly is not
feasible.

Surprisingly, well-known analytic expressions for this sys-
tem exist, derived using a variety of different techniques (see,
e.g., [36–42]). While elegant, these solutions typically provide
little direct intuition or insight into the underlying physics.
Further, using them for practical calculation is often compli-
cated [e.g., Ref. [43] chose to study Eq. (103) numerically
as opposed to exploiting existing analytic expressions]. A
more recent work [44] demonstrated that the solvability of this
interacting model is related to a special symmetry. However,
the results of that work still do not provide a simple prescrip-
tion for calculating observable quantities, especially if one is
interested in a phase-space picture of the dynamics.

In this section, we will use the equivalence between third-
quantization and the Keldysh path integral to show that there
exists a simple physical picture of the interplay between the
nonlinearity and damping in this system. We call this “self-
dephasing”: the fluctuating photon number in the oscillator
causes it to dephase itself, i.e., degrade Fock space coher-
ences. Further, using a novel gauge transformation within the
path integral, this intuition will lead to simple expressions for
physical observables of interest. Namely, we will demonstrate
that we can obtain the time evolution of the Wigner function
for an arbitrary initial state. We note that we will also implic-
itly make use of the results in Secs. III and IV extensively.

A. Propagator via Keldysh path integral

In our formulation of third quantization, the nonlinear term
in Eq. (103) takes the form

U

2
(â†

qâcl + âqâ†
cl )(â

†
clâcl + â†

qâq − 2)|ρ̂〉〉, (104)

which, using Table I, in phase space is equivalent to

U

2
(−∂αα + ∂α∗α∗)(|α|2 − ∂α∂α∗ − 2)Wρ̂ (α)

= U

2
i∂φ (|α|2 − ∂α∂α∗ − 2)Wρ̂ (α), (105)

where φ = arg α. The first term in the parentheses tells us that
the frequency of the mode is amplitude-dependent, whereas
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the second stems from the quantum noise associated with
inherent uncertainty associated with the amplitude |α|2. The
last term is due the ordering convention: phase-space averages
weighted by the Wigner function are equivalent to symmetri-
cally ordered operator averages [25]. Our Hamiltonian, on the
other hand, is normal-ordered, hence this extra factor.

A path integral representation of the mixed phase-space
kernel K (η, α; t ) can immediately be read off from Eqs. (6)
and (105),

K (η, α; t ) = 〈eη∗acl (t )−ηa∗
cl (t )+a∗

q (0)α−aq (0)α∗ 〉S, (106)

where the average is with respect to the Keldysh action

S[acl, aq] =
∫ t

0
dt ′(a∗

cl a∗
q )

⎛
⎝ 0 i∂t ′ − (

ω0 − U + U
2 ncl(t ′) + i κ

2

)
i∂t ′ − (

ω0 − U + U
2 ncl(t ′) − i κ

2

)
iκ (2n̄th + 1)

⎞
⎠(acl

aq

)
. (107)

Here we have at times dropped the temporal argument for notational compactness. We have also defined ncl(t ′) ≡ a∗
cl(t

′)acl(t ′) +
a∗

q(t ′)aq(t ′). The nomenclature is justified by noting that this term comes from the contribution â†
clâcl + â†

qâq = {n̂sym, ·} in
third quantization where n̂sym ≡ 1

2 {â, â†} is the symmetrized number operator. Despite the name, our formulation still takes
into account all quantum fluctuations. Only by dropping the quantum noise term a∗

cl(t
′)acl(t ′) + a∗

q(t ′)aq(t ′) → a∗
cl(t

′)acl(t ′)
would the dynamics be rendered classical, since the phase-space equation of motion would be equivalent to that of a classical
Fokker-Planck equation; see Eq. (105).

It is worth emphasizing that Eq. (107) is the usual Keldysh action for this model written in a nonstandard way in that we have
singled out ncl(t ′). This way of writing the action is useful, however, since it makes it evident that the Kerr nonlinearity serves
as an amplitude-dependent frequency. By making the following gauge transformation within the path integral:

acl/q(t ′) → eiUt ′−i U
2

∫ t ′
0 dt ′′ncl (t ′′ )acl/q(t ′), (108)

we effectively move to a frame where the number-dependent phase accumulated by the fields has been taken into account.
This transformation has two effects: it both removes the nonlinearity in the action S → S0 and introduces a multiplicative

phase factor attached to acl(t ),

K (η, α; t ) = 〈
exp

(
η∗eiUt−i U

2

∫ t
0 dt ′ncl (t ′ )acl(t ) + αa∗

q(0) − c.c.
)〉

S0
. (109)

Although a seemingly more unwieldy expression than our starting one [Eq. (106)], we now show that not only can this be
straightforwardly evaluated, but it has a simple physical interpretation.

B. Self-dephasing through amplitude fluctuations

To remove the phase factor e−i U
2

∫ t
0 dt ′ncl (t ′ ) from the exponential in Eq. (109), we can use the δ-function representation of an

angular variable δ(θ − θ ′) = 1
2π

∑∞
l=−∞ e−il (θ−θ ′ ) and write

K (η, α; t ) =
∞∑

l=−∞

∫ π

−π

dθ

2π
eilθ+iU lt

〈
exp

(
−i

U l

2

∫ t

0
dt ′ncl(t

′) + [η∗e−iθ acl(t ) + αa∗
q(0) − c.c.]

)〉
S0

(110a)

=
∞∑

l=−∞

∫ π

−π

dθ

2π
eilθ+iU lt 〈exp(η∗e−iθ acl(t ) + αa∗

q(0) − c.c.)〉S Ul
2
. (110b)

In going from Eqs. (110a) to (110b), we have lumped the phase proportional to the integral of ncl(t ′) in a new quadratic action
defined by

S Ul
2

[acl, aq] ≡ S0[acl, aq] − Ul

2

∫ t

0
dt ′(a∗

clacl + a∗
qaq ). (111)

As shown in Appendix D, the resulting Gaussian integral for each l can then be performed, and we arrive at

K (η, α; t ) =
∞∑

l=−∞
e−i(ω0−U )lt+ κ

2 t Al (t )e−Bq,l (t )|η|2 e−Bcl,l (t )|α|2
∫ π

−π

dθ

2π
eilθ+(η∗αe−iθ −c.c.)Al (t ) (112)

=
∞∑

l=−∞
e−i(ω0−U )lt+ κ

2 t Al (t )e−Bq,l (t )|η|2−Bcl,l (t )|α|2 e−il (ϕ−φ)Jl (2|η||α|Al (t )), (113)
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where we have defined φ = arg α, ϕ = arg η, Jl as the lth
Bessel function of the first kind, and

Al (t ) ≡ �l

�l cosh �l
2 t + κ sinh �l

2 t
, (114a)

Bq,l (t ) ≡ [iU l + 2κ (2n̄th + 1)] sinh �l
2 t

�l cosh �l
2 t + κ sinh �l

2 t
, (114b)

Bcl,l (t ) ≡ iU l sinh �l
2 t

�l cosh �l
2 t + κ sinh �l

2 t
(114c)

with �l ≡
√

κ2 − U 2l2 + 2iκUl (2n̄th + 1).
It is worth emphasizing that for l �= 0, Eq. (111) is not a

valid Keldysh action, as it does not vanish when the quantum
fields are set to zero [19,20]. We should not expect this to
be the case, however, since this action has been modified to
include the effects of the fluctuating particle-dependent phase
and is only physically meaningful when computing specific
averages. For example, if we recall that the wave function in
the quantum basis ρ̂(t )(η) is the generator of symmetrically
ordered correlation functions, we have√

2〈â(t )〉
= ∂η∗ρ̂(t )(η)|η=η∗=0

=
∫

d2α

2π

〈
eiUt−i U

2

∫ t
0 dt ′ncl (t ′ )ea∗

q (0)α−c.c.acl(t )
〉
S0

Wρ̂(0)(α)

= e−i(ω0−U )t+ κ
2 t [A1(t )]2

∫
d2α

2π
αe−Bcl,1(t )|α|2Wρ̂(0)(α).

(115)

We thus have a compact expression for the exact evolution of
the average photon amplitude, starting with an arbitrary initial
state. It can also be used to compute unequal-time correlation
functions such as, e.g., linear-response coefficients [44,45].

This result can be directly extended to more general av-
erages. The general prescription is that the relevant quadratic
action that one needs to use has a form that explicitly depends
on the chosen correlation function. For example, for a corre-
lation function like 〈{âμ(â†)ν}sym〉 the corresponding action
would be S Ul

2
with l = μ − ν.

We see that our analytically exact results here directly
validate the interpretation that the Kerr nonlinearity generates
a fluctuating frequency that causes dephasing. In Fig. 2 we
plot a scaled version of 〈â(t )〉 for various parameters with ρ̂(0)
a coherent state of varying magnitude. We see that increasing
either n̄th or the magnitude of the initial state tends to kill
the revival of the average. This is in agreement with our
intuition: increasing the noise or |α0| causes an increase in
particle-number fluctuations and consequently an increase in
dephasing. Unlike the linear problem presented in Sec. II, the
temperature changes both average values and in addition has
an impact on the oscillation and decay rates.

This interpretation also makes it clear why this model
integrable, whereas adding, for instance, a linear drive
of the form J (â + â†) to the Hamiltonian renders the
problem unsolvable. Such a term would add a contribution
J
∫ t

0 dt ′[aq(t ′) + a∗
q(t ′)] to the action. Although the gauge

transformation Eq. (108) still removes the quartic nonlinearity
in the action, it is at the cost of adding a nonlinearity of infinite

0 2π 4π 6π 8π

tU

0.0

0.2

0.4

0.6

0.8

1.0

|〈â
(t

)〉/
〈â

(0
)〉|

κ = 0, n̄th = 0, |α0| = 2
κ = 0.01U, n̄th = 0, |α0| = 2
κ = 0.01U, n̄th = 1, |α0| = 2
κ = 0.01U, n̄th = 1, |α0| = 3

FIG. 2. Scaled time-dependent average for a dissipative non-
linear oscillator with an initial coherent state ρ̂(0) = | α0√

2
〉〈 α0√

2
|.

Increasing the thermal occupation n̄th or the magnitude |α0| of the
initial coherent state decreases the amplitude of the revivals at times
tU = 2πn for n ∈ N. This is due to an increase in particle number
fluctuations and thus an accompanying increase in dephasing.

order. This new action also has a simple interpretation: in this
new frame, the drive frequency is photon-number-dependent.
However, ncl(t ) implicitly depends on the drive frequency,
creating a complicated and nonlinear relation between the
photon number and the instantaneous phase of the fields
acl/q(t ). In contrast, when J = 0 no such nonlinear relation
exists, and the problem is integrable.

C. Time-dependent Wigner function

Our third-quantization fueled approach for deriving exact
expressions for this nonlinear dissipative cavity problem is
useful even beyond calculating specific time-dependent av-
erages or correlators. As we now demonstrate, it allows us
to analytically describe the time evolution of the full Wigner
function describing the state. From Eqs. (47) and (48) we have
access to this information by Fourier-transforming in the η

variable to obtain the propagator relating the Wigner function
at time t = 0 to that at later times. We give this expression in
Appendix D; it has the same functional form as Eq. (113). As
an example, let us assume that the initial state is a coherent
state ρ̂(0) = | α0√

2
〉〈 α0√

2
| → Wρ̂(0)(α) = 2e−|α−α0|2 . The time-

evolved Wigner function can be computed using only Gaus-
sian integrals. Leaving these details to Appendix D, we have

Wρ̂(t )(α) =
∞∑

l=−∞
[Pl (t )e−Ql (t )|α|2−Rl (t )|α0|2 e−il (φ−�)

× Jl (2|α||α0|Sl (t ))], (116)

where � = arg α0, and we have defined

Pl (t ) ≡ 2e−i(ω0−U )lt+ κ
2 t�l i−l

�l cosh �l
2 t + [iU l + κ (4n̄th + 1)] sinh �l

2 t
, (117)

Ql (t ) ≡ �l cosh �l
2 t + [iU l + κ] sinh �l

2 t

�l cosh �l
2 t + [iU l + κ (4n̄th + 1)] sinh �l

2 t
, (118)
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Rl (t ) ≡ �l cosh �l
2 t − κ sinh �l

2 t

�l cosh �l
2 t + [iU l + κ (4n̄th + 1)] sinh �l

2 t
, (119)

Sl (t ) ≡ i�l

�l cosh �l
2 t + [iU l + κ (4n̄th + 1)] sinh �l

2 t
. (120)

To the best of our knowledge, this relatively compact ex-
pression was not previously known. The closest analog were
results derived in Refs. [40,41] that were more complicated,
involving two infinite summations. Other equivalent exact
solutions instead work with equally intricate expressions in-
volving the evolution of Fock states [36].

In Fig. 1 we plot this function for various choice of param-
eters. We stress that our choice of initial state was purely for
illustrative purposes, and one can obtain the Wigner function
of ρ̂(t ) for an arbitrary initial state with the propagator given
in Eq. (D16)

VIII. CONCLUSION

By starting with a different set of superoperators for both
bosons [Eq. (50)] and fermions [Eq. (74)], we have reinter-
preted the standard approach to third quantization introduced
by Prosen [1] and Prosen and Seligman [2]. These new
superoperators allow us to naturally relate third quantiza-
tion, Keldysh field theory, and the phase-space formulation
of quantum mechanics. Further, our approach enables us
straightforwardly to identify a symmetry of all quadratic
Lindbladians, which can then be used to effectively gauge
away fluctuations in these models. This leads to a simple

and intuitive diagonalization procedure, and it provides a
quantum-inspired way of demonstrating that dynamics are
not affected by noise in linear systems. Finally, we have
shown that our formalism provides a simple picture of
the dynamics in a paradigmatic dissipative nonlinear cavity
model, which can be used to provide straightforward exact
expressions.

In future work, it would be worthwhile to explore whether
third quantization can be extended to spins in a useful manner.
Further, it is interesting to ask whether the set of non-
Hermitian quasiparticles which were used to diagonalize the
Lindbladian can be used to build a mean-field theory of in-
teracting open quantum systems. Namely, for example, one
could ask to what extent there exist annihilation and creation
superoperator analogs to dressed quasiparticles in a strongly
interacting closed system [33].
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APPENDIX A: PHASE-SPACE REPRESENTATIONS OF
RIGHT AND LEFT EIGENVECTORS OF A SINGLE
THERMALLY DAMPED HARMONIC OSCILLATOR

We can easily derive the phase-space representations of the
right and left eigenvectors using Table I. Starting with the right
eigenvectors,

Wr̂μ,ν
(α) ≡ 〈〈α̂cl|r̂μ,ν〉〉 = 1√

μ!ν!
〈〈α̂cl|(â†

q)μ(−âq)ν |ρ̂ss〉〉 = (−1)μ+ν

√
μ!ν!

∂μ
α ∂ν

α∗Wρ̂ss (α)

= 2(−1)μ+ν

√
μ!ν!

∂μ
α ∂ν

α∗

(
e− |α|2

2n̄th+1

2n̄th + 1

)
= 2(−1)μ√

μ!ν!

μ∑
j=0

(
μ

j

)
∂ j
α

(
α

2n̄th + 1

)ν

∂μ− j
α

(
e− |α|2

2n̄th+1

2n̄th + 1

)

= 2e− |α|2
2n̄th+1

√
μ!ν!

min(μ,ν)∑
j=0

μ!ν!

j!(μ − j)!(ν − j)!

(−1) j (α∗)μ− jαν− j

(2n̄th + 1)μ+ν− j+1

=
√

min(μ, ν)!

max(μ, ν)!

2(−1)min(μ,ν)e− |α|2
2n̄th+1

(2n̄th + 1)max(μ,ν)+1
e−iφ(μ−ν)|α||μ−ν|L|μ−ν|

min(μ,ν)

( |α|2
2n̄th + 1

)
, (A1)

where φ = arg α and L|μ−ν|
min(μ,ν) is an associated Laguerre polynomial. Using [âcl, â†

cl] = 0, the left eigenvectors can be written as

W ∗
l̂μ,ν

(α) ≡ 1√
μ!ν!

〈〈0̂q|âμ
cl(â

†
cl )

νe(2n̄th+1)â†
q âq |α̂cl〉〉 = 1√

μ!ν!
∂

μ
η∗∂ν

η 〈〈0̂q|eη∗âcl+ηâ†
cl e(2n̄th+1)â†

q âq |α̂cl〉〉
∣∣
η=η∗=0.

With the Baker-Campbell-Hausdorff identity, we can move eη∗âcl+ηâ†
cl past the factor of e(2n̄th+1)â†

q âq and use the defining property
of the classical and quantum eigenvectors to obtain

W ∗
l̂μ,ν

(α) = 1√
μ!ν!

∂
μ
η∗∂

ν
η e−(2n̄th+1)|η|2+η∗α+ηα∗

∣∣∣∣
η=η∗=0

= 1√
μ!ν!

min(μ,ν)∑
j=0

μ!ν![−(2n̄th + 1)] j

j!(μ − j)!(ν − j)!
αμ− j (α∗)ν− j

=
√

min(μ, ν)!

max(μ, ν)!

(−1)min(μ,ν)

(2n̄th + 1)− min(μ,ν)
eiφ(μ−ν)|α||μ−ν|L|μ−ν|

min(μ,ν)

( |α|2
2n̄th + 1

)
. (A2)
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APPENDIX B: CONTINUOUS-TIME REPRESENTATION
OF THE BOSONIC PATH INTEGRAL: DETAILS

In this Appendix, we provide the explicit computations that
led us to the continuous-time representation of the propagator
K (η, α; t ) = 〈〈η̂q|e−iL̂t |α̂cl〉〉 in Eq. (38). We start with the
usual approach [33] and divide the propagator in N − 1 parts
e−iL̂t = e−iL̂�t · · · e−iL̂�t with �t = t/(N − 1). We then in-
sert the resolution of the identity Eq. (37) between each
element e−iL̂�t and 〈〈η̂q| and |α̂cl〉〉. Expanding to linear order
in �t and reexponentiating gives

〈〈âq, j |e−iL̂�t |âcl, j−1〉〉
= ea∗

q, j acl, j−1−aq, j a∗
cl, j−1−iL(aq, j ,acl, j−1 )�t + O([�t]2), (B1)

where L(aq, j, acl, j−1) ≡ 〈〈âq, j |L̂|âcl, j−1〉〉. Using the defining
property of the classical and quantum eigenvectors Eqs. (22a)
and (22b), L(aq, j, acl, j−1) is obtained by simply replacing the
classical and quantum superoperators that appear in L̂ by
acl, j−1 and aq, j , respectively. We thus have

K (η, α; t ) =
∫ N∏

j=1

dacl, jaq, j

π2
eiã†G̃−1ã+ã†J̃−J̃ †ã + O(�t ),

(B2)

where the tilde indicates that we are working with discrete-
time objects. We have defined the two 2N column vectors

ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

acl,1
...

acl,N

aq,1
...

aq,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(B3)

and

J̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
...

−η

α
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

the latter only having two nonzero entries at position N and
N+1. The discrete inverse matrix Green’s function is given by

G̃−1 ≡
(

0 [G̃−1]A

[G̃−1]R [G̃−1]K

)
, (B5)

where [G̃−1]R and [G̃−1]A are Hermitian conjugate N × N
lower and upper triangular matrices, respectively, whose only
nonvanishing elements are on the main off-diagonal

[G̃−1]R =

⎛
⎜⎜⎜⎜⎜⎝

i 0 0 0 0
−ih i 0 0 0

0 −ih . . . 0 0

0 0 . . .
. . . 0

0 0 0 −ih i

⎞
⎟⎟⎟⎟⎟⎠, (B6)

[G̃−1]A = ([G̃−1]R)†, (B7)

where h ≡ 1 − i(ω0 − iκ/2)�t . The Keldysh component is
diagonal and almost proportional to the identity, except for
the first entry where it is zero,

([G̃−1]K ) j j′ = iκ (2n̄th + 1)�t (δ j j′ − δ j1δ j′1). (B8)

We can readily obtain the matrix Green’s function since its
inverse has a vanishing upper-left block

G̃ =
(
G̃K G̃R

G̃A 0

)
, (B9)

where

(G̃R) j j′ =
{

0, j′ > j,
−ih j− j′ , j � j′, (B10)

(G̃A) j j′ =
{

i(h∗) j′− j, j′ � j,
0, j > j′, (B11)

(G̃K ) j j′ = − iκ (2n̄th + 1)
N∑

k=2

�t (G̃R) jk (G̃A)k j′

= −i(2n̄th + 1)(1 − δ j1δ j′1)

1 − �t
κ

[
ω2

0 + (
κ
2

)2] h j (h∗) j′

× (h− min( j, j′ )(h∗)− min( j, j′ ) − 1). (B12)

The strange δ-function terms (1 − δ j1δ j′1) simply ensure
that the Keldysh component vanishes when either
argument is 1, i.e., at the lower boundary. This is
automatically satisfied in the continuum representation
where GK (0, t ′′) = GK (t ′, 0) = 0.

In Eq. (B2), we can then make the displacement

ã → ã + iG̃J̃ (B13)

and perform the integral over the various acl, j and
aq, j using the well-known result for Gaussian integrals∫ ∏N

j=1
dacl, j aq, j

π2 eiã†G̃−1ã = det(iG̃) [33]. Since the lower-right

block of G̃ vanishes, and because the retarded and advanced
Green’s functions are lower and upper triangular, respectively,
we have det(iG̃) = det(G̃R) det(G̃A) = 1. We are then left
with

K (η, α; t ) = exp(−iJ̃ †G̃J̃ ) + O(�t )

= exp(−i[|η|2(G̃K )NN − η∗α(G̃R)N1

− ηα∗(G̃A)1N ]) + O(�t ). (B14)

Using Eqs. (B10)–(B12) and taking the N → ∞ limit while
keeping the length of the contour fixed, �t (N − 1) = t , we
recover Eq. (45). As we have emphasized in the main text,
Eqs. (B10) and (B11) indicate that the correct normalization
of the Heaviside step function at time t = 0 as they appear in
the retarded and advanced Green’s function is �(0) = 1. This
stems from the ordering of the classical and quantum variables
within the path integral; in the discrete representation, one al-
ways takes the classical field one time step before the quantum
fields.

APPENDIX C: CONTINUOUS-TIME REPRESENTATION
OF THE FERMIONIC PATH INTEGRAL: DETAILS

In this Appendix, we demonstrate how to achieve
the continuous-time representation of the path integral of
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Eq. (97). The procedure is nearly identical to the bosonic case
presented in Appendix B, and we will thus be rather brief in
our derivation.

After writing the propagator e−iL̂t = e−i�tL̂ · · · e−i�tL̂ as
a product of N − 1 terms �t = t/(N − 1), using the resolu-
tion of the identity formed by the coherent states Eq. (95),
expanding to linear order in �t , using the defining property of
coherent states Eqs. (93a) and (93b), and exponentiating, we
arrive at a Gaussian integral whose discrete action is nearly
identical to the bosonic version Eq. (B2) with Grassmann
variables taking the place of complex variables. If we define
the 4N Grassmann variables to be integrated over with two
indices ψ̄1/2, j, ψ̄1/2, j , then the main difference between the
bosonic expression for the propagator is that the source term
is

eψ̄1
′ψ1,N −ψ̄2,N ψ ′

2+ ¯ψ ′
1,1ψ1−ψ̄2,1ψ

′
2,1 (C1)

and the 2N × 2N inverse Green’s function reads

G̃−1 ≡
(

[G̃−1]R [G̃−1]K

0 [G̃−1]A

)
, (C2)

where [G̃−1]R, [G̃−1]A, and [G̃−1]K are exactly the same as
in Eqs. (B6)–(B8) with κ → γ and 1 + 2n̄th → 1 − 2n̄. The
matrix Green’s function is then

G̃ =
(
G̃R G̃K

0 G̃A

)
, (C3)

where once again the retarded, advanced, and Keldysh
Green’s functions are the same as the bosonic version in
Eqs. (B10)–(B12) with the aforementioned substitutions to the
decay rate and occupation factor. The continuous-time version
of the path integral is then given by Eq. (97) in the main text.

In the discrete representation, after eliminating the source
term, one can integrate over the remaining Gaussian Grass-
mann integral using a well-known identity [33], after which
one concludes that this term is the identity. The final result
Eq. (102) then follows.

APPENDIX D: PATH INTEGRAL APPROACH
TO THE NONLINEAR KERR OSCILLATOR

In this Appendix, we provide all the technical steps to
obtain the results in Sec. VII. Let us first show that Eqs. (110b)
and (112) are equivalent by computing

〈exp(η∗e−iθ acl(t
′) + αa∗

q(0) − c.c.)〉S Ul
2
, (D1)

where S Ul
2

is the nonstandard quadratic action defined in
Eq. (111). It follows that to compute the functional integral,
we must first find the matrix Green’s function GUl

2
(t ′, t ′′)

corresponding to the action S Ul
2

, which by definition satisfies(
i∂t ′X − DUl

2

)
GUl

2
(t ′, t ′′) = δ(t ′ − t ′′), (D2)

where X is the first Pauli matrix

X ≡
(

0 1
1 0

)
(D3)

and we have defined

DUl
2

≡
(

Ul
2 ω0 + i κ

2
ω0 − i κ

2
Ul
2 − iκ (2n̄th + 1)

)
. (D4)

The most general solution to this differential equation is

GUl
2

(t ′, t ′′) = − i�(t ′ − t ′′)e
−it ′XDUl

2 Y>e
it ′′DUl

2
X

+ i�(t ′′ − t ′)e
−it ′XDUl

2 Y<e
it ′′DUl

2
X
, (D5)

where Y> and Y< are two matrices that satisfy

Y> + Y< = X. (D6)

We thus have four degrees of freedom remaining, as expected
from a solution to a first-order differential equation of a 2 ×
2 matrix, which must be fixed by the appropriate boundary
conditions.

Instead of going back to the discrete representation of the
action to fix these boundary conditions, we can instead make
use of Dyson’s equation

GUl
2

(t ′, t ′′) = G0(t ′, t ′′) + Ul

2

∫ t

0
dt ′′′G0(t ′, t ′′′)GUl

2
(t ′′′, t ′′)

(D7)

in conjunction with the fact that we already know G0(t ′, t ′′).
Defining

Y+ ≡
(

0 1
0 0

)
, (D8)

Y− ≡
(

0 0
1 0

)
, (D9)

one verifies that for U = 0, Y> = Y+,Y< = Y−. Since both
of these matrices square to zero, from Eq. (D7) we have

Y−GUl
2

(0, t ′′) = Y+eitXD0GUl
2

(t, t ′′) = 0. (D10)

Summing both of these equations, using Eqs. (D5) and (D6)
we have an equation for Y> or Y< only. This yields

Y> = e
itXDUl

2 e−itXD0Y+

Tr
(
Y+Y−e

itXDUl
2 e−itXD0

) , (D11)

Y< = Y−eitD0Xe
−itDUl

2
X

Tr
(
Y+Y−e

itXDUl
2 e−itXD0

) . (D12)

Computing the matrix exponential only requires diagonalizing
a 2×2 matrix and thus it can be done exactly. With GUl

2
(t ′, t ′′)

in hand, we can then eliminate the source term in Eq. (D1) as
usual by making the appropriate displacement.

After performing the displacement, we must still compute
the source-free functional integral, which is equal to the in-
verse of the functional determinant of the matrix Green’s
function [19]

1

det
(
iGUl

2

) = 〈
e−i Ul

2

∫ t
0 dt ′ncl (t ′ )〉

S0
, (D13)
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where recall ncl(t ′) ≡ a∗
cl(t

′)acl(t ′) + a∗
q(t ′)aq(t ′). Taking the

derivative with respect to U on both sides and using standard
Gaussian integral identities, we find

d
dU

〈
e−i Ul

2

∫ t
0 dt ′ncl (t ′ )

〉
S0〈

e−i Ul
2

∫ t
0 dt ′ncl (t ′ )

〉
S0

= l

2

∫ t

0
dt ′Tr

(
GUl

2
(t ′, t ′)

)
, (D14)

which should be supplemented with the boundary condition
det(iG0) = 1. It should also be noted that although G(t ′, t ′′) Ul

2

is discontinuous at t ′ = t ′′, its trace is not. With this differ-
ential equation and boundary condition, one verifies that we
have〈

e−i Ul
2

∫ t
0 dt ′ncl (t ′ )〉

S0
= 1

Tr
(
Y+Y−e

itXDUl
2 e−itXD0

) . (D15)

One then has all the required expressions to show that
Eqs. (110b) and (112) are equal.

We can then obtain the propagator �(β, α; t ) =
〈〈β̂cl|e−iL̂t |α̂cl〉〉 relating the initial Wigner function to
that at a later time by simply Fourier-transforming K (η, α; t )
in the η variable. From Eq. (112), the Fourier transform
can be computed using only Gaussian integrals. After a

straightforward but tedious calculation, we arrive at

�(β, α; t ) =
∫

2d2η

π
eβ∗η−η∗βK (η, α; t )

=
∞∑

l=−∞
Dl (t )e−E−,l (t )|β|2−E+,l (t )|α|2 e−il (φβ−φα )

× Jl (2|β||α|Fl (t )) (D16)

with φα = arg α, φβ = arg β, and we have defined

Dl (t ) ≡ 2e−il (ω0−U )t+ κ
2 t�l i−l

[iU l + 2κ (2n̄th + 1)] sinh �l
2 t

, (D17)

E±,l ≡ �l cosh �l t
2 ± κ sinh �l t

2

[iU l + 2κ (2n̄th + 1)] sinh �l
2 t

, (D18)

Fl (t ) ≡ i�l

[iU l + 2κ (2n̄th + 1)] sinh �l
2 t

. (D19)

We can then obtain Eq. (116) - the Wigner function Wρ̂(t )(α)
with ρ̂(0) a coherent state |α0〉 by using Eq. (48), Eq. (D16),
and one more set of Gaussian integrals.
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