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Probing the spin structure of the fractional quantum Hall magnetoroton
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Starting from the Luttinger model for the band structure of GaAs, we derive an effective theory that describes
the coupling of the fractional quantum Hall (FQH) system with photons in resonant Raman scattering experi-
ments. Our theory is applicable in the regime when the energy of the photons ω0 is close to the energy gap EG, but
|ω0 − EG| is much larger than the energy scales of the quantum Hall problem. In the literature, it is often assumed
that Raman scattering measures the dynamic structure factor S(ω, k) of the FQH. However, in this paper, we find
that the light scattering spectra measured in the experiments are proportional to the spectral densities of a pair of
operators which we identified with the spin-2 components of the kinetic part of the stress tensor. In contrast with
the dynamic structure factor, these spectral densities do not vanish in the long-wavelength limit k → 0. We show
that Raman scattering with circularly polarized light can measure the spin of the magnetoroton excitation in
the FQH system. We give an explicit expression for the kinetic stress tensor that works on any Landau level and
which can be used for numerical calculations of the spectral densities that enter the Raman scattering amplitudes.
We propose that Raman scattering provides a way to probe the bulk of the ν = 5

2 quantum Hall state to determine
its nature.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) was discovered
in experiment [1]. Fractional quantum Hall (FQH) systems
support a host of intriguing physical phenomena; they are
also a playground for many exotic theoretical ideas ranging
from anyons [2–4] to superconductivity [5], skyrmion [6],
and bimetric gravity [7], to name a few. Anyonic excitations
in nonabelian FQH states such as the Moore–Read state at
filling fraction 5

2 [8] may provide the building blocks for a
topological quantum computer [9]. However, FQHE is still
one of the most difficult and important unsolved problems of
modern physics.

In a classic paper, Girvin et al. [10] proposed a single mode
approximation for the FQHE in which the only excitation of
the FQH system is a gapped charge-neutral mode called “mag-
netoroton.” In the original treatment, the magnetoroton was
interpreted as the charge density wave in the lowest Landau
level (LLL). The dispersion relation of this neutral mode has
a minimum at the wavelength of the order of the magnetic
length �B, which imitates the behavior of the roton mode
in superfluid 4He. Experiments have confirmed the existence
of the magnetoroton mode in light scattering experiments
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[11–13].1 In the widely accepted theoretical interpretation
of these experiments, the light scattering intensity has been
associated with the dynamical structure factor S(ω, k) in the
LLL [15]. However, in the LLL limit, the dynamical structure
factor goes to zero as k4 [10] in the limit where the momentum
of the magnetoroton k goes to zero. On the other hand, the
Raman signal seems to persist down to k = 0, signaling that
the identification of the intensity of Raman scattering with the
dynamic structure factor may not be correct.

In this paper, we provide a theoretical treatment for Ra-
man scattering experiments. We first note that the problem of
Raman scattering involves many energy scales. The largest en-
ergy scale is that of the semiconductor gap EG and the photon
energy ω0. The next scale is the distance between the Landau
levels of the conduction-band electrons ωc = eB/m∗c, and
the smallest energy scale is the Coulomb interacting energy
between these electrons �. We assume a hierarchy

� � ωc � EG. (1)

Only the physics at the scale � is “hard,” i.e., nonperturbative
or strongly correlated, while the physics at the scales EG and
ωc are weakly coupled. To solve the Raman scattering prob-
lem effectively, one needs to separate out the nonperturbative,
strongly correlated physics at the scale � from the perturba-
tive, weak coupling physics at the other scales. (This is like the
philosophy of “factorization” in quantum chromodynamics
[16], where the perturbative physics at the hadronic scale

1For an alternative interpretation of the mode, see Ref. [14].
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is separated from the perturbative physics of higher energy
scales.)

We perform this “factorization” procedure in two steps.
The first is to integrate out the energy scale EG. Starting with
the Luttinger Hamiltonian for GaAs [17], we introduce a cou-
pling between the lowest conduction band and highest valence
band due to the interaction with light waves. We focus on the
regime of resonant Raman scattering in which the frequency
of the incoming light is close to the semiconductor energy gap
ω0 ≈ EG. Under the assumption that the detuning between the
frequency of light and the gap |ω0 − EG| is larger than both
energy scales of the Hall effect ωc and �, we integrate out
valence bands to obtain the coupling of the conduction-band
electron to the photon. The second step is to do projection to a
single Landau level. The result is an effective coupling of the
Raman photons to operators acting on a single Landau level.

Our result differs drastically from that of Ref. [15]. We
find that, instead of measuring the spectral density of the
density operator (the dynamic structure factor), the Raman
scattering experiment measures the spectral densities of the
operators that can be called the “kinetic stress tensor” opera-
tors T kin

i j = 1
m∗ ∂iψ

†∂ jψ . These operators are the components
of the stress tensor that arise from the kinetic energy term in
the many-body Hamiltonian. For simple model Hamiltonians
leading to exact zero-energy trial wave functions, the kinetic
stress tensor coincides with the full stress tensor, but that
is not the case for the general case, including that of the
Coulomb interaction. Moreover, in the LLL limit, in the long-
wavelength limit, the only components of the kinetic stress
tensor that have nonvanishing spectral densities are the two
spin-2 components T kin

zz and T kin
z̄z̄ (the spin-0 component T kin

zz̄
has vanishing spectral density in the limit k → 0).

Recent theoretical papers [18–21] have advanced a pro-
posal on the interpretation of the magnetoroton. According
to this proposal, the magnetoroton is the quantum dynamical
metric, and at the long-wavelength regime, k ∼ 0 has an an-
gular momentum = 2 in the direction of the applied magnetic
field [19]. To determine the spin of the magnetoroton, it has
been suggested [19–21] that the spin of the magnetoroton can
be detected through polarized Raman scattering.

We show in this paper how Raman scattering with circu-
larly polarized light can indeed be used to confirm the spin of
the magnetoroton, including the sign. The basic idea is very
simple: if angular momentum is exactly conserved, an FQH
state can absorb only one specific circular polarized photon
to excite a spin-2 magnetoroton mode and emit a photon with
opposite circular polarization. However, the real system does
not have full rotational symmetry, but only C4, so spins 2
and −2 are not distinct from the point of view of symme-
try. In this paper, we carefully analyze the resonant Raman
scattering using the Luttinger model of GaAs. We determine
the magnitude of the effect of nonconservation of angular
momentum through the Luttinger parameters and show that
it is numerically small (of the order of 1

40 ).
We organize the paper as follows. We start Sec. II by

introducing our theoretical model for Raman scattering of
an FQH state. In Sec. III, we present the calculation of the
intensity of circularly polarized light scattering. We show
that, in contrast with previous theoretical proposals, the peaks
in scattering intensity, at the long-wavelength regime, was

obtained mainly due to the poles in the correlation functions
of the kinetic part of stress tensor 〈T kinT kin〉. We relate the
cross-section of Raman scattering by circularly polarized light
with the spectral densities of the stress tensor. In Sec. IV, we
derive the explicit formulas for the stress tensor projected to a
Landau level, which can be used to evaluate numerically the
spectral function. We then conclude the paper in Sec. V. The
Appendices are devoted to the details of the calculation.

II. MODEL

In GaAs, the light hole and heavy hole bands make the
main contribution to the Raman scattering process [15]. Thus,
the spin-off bands can be ignored in this sense. We consider
the effective Lagrangian, with only the conduction band ψα

and j = 3
2 valence bands (which is nothing but light hole and

heavy hole bands) χα
i . In the notation, α = 1, 2 represents the

spinor index, and i = 1, 2, 3 represents three components of
the p wave function. The (“Rarita–Schwinger”) constraint is
imposed

(σ i )αβχ
β
i = 0, (2)

which projects out the j = 1
2 part from χα

i . Consider the Lut-
tinger Hamiltonian for the heavy hole and light hole (within
approximation k ≈ 0) [17]

H = 1

m

{(
γ1 + 5γ2

2

)
D2

2
− γ2

∑
i

J2
i D2

i − 2γ3[{JxJy}{DxDy}

+ {JyJz}{DyDz} + {JzJx}{DzDx}] + e

c
κJ · B

}
, (3)

where γ1,2,3 are the Luttinger parameters, m is the mass
of the electron, Ji are the SO(3) generators: (Ji ) jk = −iεi jk ,
Diχ = (∂i − i e

c Ai )χ is the covariant derivative, {·} denotes
symmetrization, e.g., {DxDy} ≡ 1

2 (DxDy + DyDx ), and e < 0
is the electric charge of the electron. Using the equality

{JiJj}{DiDj} = (J · D)2 − e

2c
J · B, (4)

we can rewrite the Hamiltonian in Eq. (3) as

H = 1

m

[(
γ1 + 5γ2

2

)
D2

2
+ (γ3 − γ2)

∑
i

J2
i D2

i − γ3(J · D)2

+ e

c

(
κ + γ3

2

)
J · B

]
. (5)

The Lagrangian for the hole band is

Lv = iχ†
iα∂tχ

α
i − χ

†
iλHi jχ

λ
j + EGχ

†
iαχα

i , (6)

where EG is energy gap, and the covariant derivative is Diψ ≡
(∂i − i e

c Ai )ψ . We also have the Lagrangian of the conduction
band

Lc = iψ†
α∂tψ

α − Diψ
†
αDiψ

α

2m∗ , (7)

and the coupling of the valence band and conduction band
through interaction with light

Li = e
(
P∗ψ†

αχα
i Ei + Pχ

†
iαψαEi

)
, (8)

023040-2



PROBING THE SPIN STRUCTURE OF THE FRACTIONAL … PHYSICAL REVIEW RESEARCH 3, 023040 (2021)

where P is the strength of the dipole transition between the
conduction and valence bands (it will be related to the pa-
rameter usually denoted as Ep in the literature), and Ei is the
electric field of electromagnetic wave.

We consider the regime of resonant Raman scattering
where the photon energy is close to the gap |ω0 − EG| � EG.
Here, we chose ω0 = ωL+ωS

2 , with ωL (ωS) as the frequency of
the incoming (scattered) photon. In this case, we can write

Ei = Ẽie
−iω0t + Ẽ∗

i eiω0t , (9)

χα
i = χ̃α

i eiω0t , (10)

where Ẽi and χ̃ are slowly varying fields (e.g., fields that vary
with frequencies much smaller than ω0). Substituting into the
action and dropping the rapidly oscillating terms, the action
can be rewritten as (for notational simplicity, we also drop the
tildas in Ẽi and χ̃ )

L = iψ†
α∂tψ

α − Diψ
†
αDiψ

α

2m∗ + e
(
P∗ψ†

αχα
i Ei + Pχ

†
iαψαE∗

i

)
+ iχ†

iα∂tχ
α
i + (EG − ω0)χ†

iαχα
i − χ

†
iλHi jχ

λ
j

+ λ†
α (σ i )αβχ

β
i + χ

†
iα (σ i)αβλβ. (11)

The last two terms are the Lagrangian multiplier for con-
straints in Eq. (2).

Integrating out χ and λ is equivalent to solving the field
equations and the constraints

ePψαE∗
i + (EG − ω)χα

i + (σ i )αβλβ + i∂tχ
α
i − Hi jχ

α
j = 0,

(12)

(σ i )αβχ
β
i = 0. (13)

We will focus on the regime where the photon energy is
not too close to the gap. More precisely, we will assume that
the detuning |ω0 − EG| is still much larger than the distance
between the Landau levels in the bands

ωc ≡ |e|B
mc

� |ω0 − EG| � ω0. (14)

In the FQH regime and holes, the typical momentum scale is
1/�B; one has

H ∼ 1

m
D2 ∼ eB

mc
. (15)

This means that one can solve Eq. (12), ignoring the ∂t and H
terms,

χα
i = − eP

3(EG − ω0)
[2ψαE∗

i + iεi jk (σ j )αβψβE∗
k ]

+ O

(
ωc

|EG − ω0|
)

. (16)

Substituting this solution into the action, we then find the
effective action for ψ alone. In fact, since χ is the saddle
point, an error of the order of O(ωc/|EG − ω0|) translated into
an error O(ω2

c/|EG − ω0|2) in the action; thus, it is justified
to also keep the terms χ†∂tχ and χ†Hχ when we do the
substitution in Eq. (16).

To simplify the result, we assume that the electrons are
fully polarized with spin sz = 1

2 , so

ψα =
(

ψ

0

)
. (17)

We assume the incoming and outgoing photons to have mo-
menta along the z direction, so Ei are independent of x and
y. In this case, the Lagrangian describing the interaction of
the conduction-band electron with the Raman photons has the
form

Iint = Vαβ (E∗)αEβ, (18)

where Vαβ is some operators quadratic over ψ .
The photon spin then points along or opposite to the z

axis, corresponding to the two circular polarizations. We will
distinguish processes in which the direction of the spin of the
photon flips from those in which the photon spin does not
change direction. Introducing the complex coordinates (in the
quantum Hall convention)

z = x − iy, z̄ = x + iy, ∂z = 1
2 (∂x + i∂y),

∂z̄ = 1
2 (∂x − i∂y), (19)

so

Ez = Ex − iEy, Ez̄ = Ex + iEy, (20)

and

Dz = 1
2 (Dx + iDy), Dz̄ = 1

2 (Dx − iDy), (21)

the interaction Lagrangian can be written as

Iint = Vzz(Ez̄ )∗Ez + Vz̄z̄(Ez )∗Ez̄ + Vzz̄(Ez̄ )∗Ez̄ + Vz̄z(Ez )∗Ez.

(22)

The terms responsible for scatterings with a switch in the
photon helicity contain Vzz and Vz̄z̄. Direct calculation yields

Vz̄z̄ = e2|P|2
6(EG − ω0)2

[(γ3 + γ2)Dzψ
†Dzψ

− (γ3 − γ2)Dz̄ψ
†Dz̄ψ], (23)

Vzz = e2|P|2
6(EG − ω0)2

[(γ3 + γ2)Dz̄ψ
†Dz̄ψ

− (γ3 − γ2)Dzψ
†Dzψ]. (24)

Terms proportional to γ3 + γ2 in Vzz and Vz̄z̄ preserve rota-
tional symmetry, while terms proportional to γ3 − γ2 break
the angular momentum conservation by four.

It is convenient to introduce the “kinetic” stress tensor

T kin
zz = 1

m∗ Dzψ
†Dzψ, T kin

z̄z̄ = 1

m∗ Dz̄ψ
†Dz̄ψ,

T kin
zz̄ = 1

2m∗ (Dzψ
†Dz̄ψ + Dz̄ψ

†Dzψ ). (25)

These components are the variation of the kinetic-energy part
of the Hamiltonian over the external metric. This is different
from the full stress tensor which contains also the variation of
the potential energy over the metric. The effective operators
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coupled to the Raman photon (and flip the direction of its spin)
are

Vz̄z̄ = e2|P|2m∗

6(EG − ω0)2
[(γ3 + γ2)Tzz − (γ3 − γ2)Tz̄z̄], (26)

Vzz = e2|P|2m∗

6(EG − ω0)2
[(γ3 + γ2)Tz̄z̄ − (γ3 − γ2)Tzz]. (27)

For details of calculations, see Appendix A. For completeness,
we also write down the operators that do not flip the photon
spin

Vz̄z = e2|P|2
(EG−ω0)2

{[
θ∗ωc− (EG−ω0)

2
+β∗ωc

4

]
ρ

+ (2α∗−β∗+γ ′∗)Tzz̄ + i

2
ψ†∂tψ

}
, (28a)

Vzz̄ = e2|P|2
9(EG−ω0)2

{[
−θ∗ωc−9(EG−ω0)

2
−β∗ωc

4

]
ρ

+ (6α∗−5β∗+5γ ′∗)Tzz̄ + 9i

2
ψ†∂tψ

}
, (28b)

where

α∗ = m∗

2m

(
γ1 + 5γ2

2

)
, γ ′∗ = m∗

m
(γ3 − γ2), (29)

β∗ = m∗

m
γ3, θ∗ = −m∗

m

(
κ + γ3

2

)
. (30)

III. SCATTERING OF CIRCULARLY POLARIZED LIGHT
IN THE FQH REGIME

In this section, we will calculate the Raman scattering on
the FQH state. The magnitude of the effect can be character-
ized by the per-particle differential cross-section

dσλλ′

dωd�
, (31)

where ω is the difference between the energy of the incom-
ing photon ωL and the scattered photon ωS: ω = ωL − ωS ,
d� is the infinitesimal solid angle of the scattered photon,
and λ and λ′ are the indices denoting the polarization of the
incoming and scattered photons. For simplicity, we consider
the case when the incident and reflection light are directed
perpendicularly to the sample. The light can pass through the
sample, or as depicted in Fig. 1, be reflected from the sample.
We will assume that both incident light and scattered lights
have circular polarization, and λ and λ′ can be either + or
−, depending on the projection of the proton spin on the z
axis. For example, for σ++, the incident light is left handed
(in the “classical optics” convention, see, e.g., Ref. [22]), and
so the incident photons have spin pointing along the direction
of their momentum, and the scattered light is right handed, as
in Fig. 1(a), where we have the formula for cross-section per
electron [15,23]

dσ++(ω)

dωd�
= 1

Ne

ωS

ωL
ω2

Sω
2
L

∑
f

|〈 f |Vz̄z|i〉|2δ(ε f − εi − h̄ω)

≈ − 1

ρ̄

ω4
0

π
Im〈V †

z̄zVz̄z〉ω,0, (32)

FIG. 1. Setup experiment for circular polarized light scattering.

with Ne being the total electron number in the conductance
band, ρ̄ is the electron density in the conductance band, ε f , εi

are energies of final and initial states, and

〈A†A〉ω,k ≡
∫

dt dx eiωt−ik·x〈TA(t, x)A†(0, 0)〉. (33)

Thus, we need to calculate the spectral density of the operator
Vz̄z(ω, 0).

Similarly, in the case of setups in Figs. 1(b), 1(c) and 1(d),
we have

dσ−−(ω)

dωd�
= − 1

ρ̄

ω4
0

π
Im〈V †

zz̄Vzz̄〉, (34)

dσ+−(ω)

dωd�
= − 1

ρ̄

ω4
0

π
Im〈V †

zzVzz〉, (35)

dσ−+(ω)

dωd�
= − 1

ρ̄

ω4
0

π
Im〈V †

z̄z̄Vz̄z̄〉. (36)

The intensity of the Raman scattering in these channels is
proportional to the spectral densities of the operators Vzz̄, Vzz,
and Vz̄z̄.

Let us now show that, in the limit of negligible Landau
level mixing, the spectral densities of the operators Vzz̄ and Vz̄z

are zero, implying that the processes depicted in Figs. 1(a) and
1(b) do not happen. For that, we note from Eq. (28) that the
integrals of Vzz̄ and Vz̄z over space are linear combinations of∫

dx ρ,

∫
dx T kin

zz̄ ,

∫
dx iψ†∂tψ. (37)

The first integral is the total number of particles Ne. As this
quantity is conserved, it does not contribute to the spectral
density. From Appendix D, we find the results for N th Landau
level ∫

dx T kin
zz̄ =

(
N + 1

2

)
ωc

2
Ne, (38)∫

dx iψ†∂tψ = 2E −
(

N + 1

2

)
ωcNe, (39)

where E is the total energy. Both integrals reduce to conserved
quantities. Thus, the Raman processes that do not involve
flipping the direction of the photon spin are suppressed.

In previous experiments [11,12], the momentum transfer
to the electron gas is rather small klB � 0.15. This implies
that these experiments mainly probe the transitions where the
photon spin flips sign and effectively measure the spectral
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densities of the traceless components of the kinetic stress
tensor. The picture suggested here is different from the pre-
vious one suggested in Ref. [15], where the main coupling
of the Raman photon to the electron liquids is through the
ψ†ψA2

i term in the Lagrangian. This coupling would lead to a
vanishing Raman scattering at k = 0.

Let us introduce the short-hand notation for the spectral
densities of the off-diagonal components of the stress tensor

− Im
〈
T kin

zz T kin
z̄z̄

〉
ω,0 = I+(ω), (40)

− Im
〈
T kin

z̄z̄ T kin
zz

〉
ω,0 = I−(ω). (41)

These functions should be calculated numerically. The inten-
sity of Raman scatterings can now be expressed as

dσ+−
dωd�

= 1

πρ̄

[
e2|P|2ω2

0m∗

6(E0 − ω0)2

]2

[(γ3 + γ2)2I+(ω)

+ (γ3 − γ2)2I−(ω)], (42)

dσ−+
dωd�

= 1

πρ̄

[
e2|P|2ω2

0m∗

6(E0 − ω0)2

]2

[(γ3 + γ2)2I−(ω)

+ (γ3 − γ2)2I+(ω)]. (43)

In Ref. [24], it was proven that I+(ω) = 0 for the trial
ground states of model Hamiltonians with contact interac-
tions. While there is no argument that I+ should be zero for
more general Hamiltonians, numerically, it was found that
for Coulomb interaction I+ is much smaller than I− for the
Laughlin ν = 1

3 state [20,25].
If one ignores I+ compared with I−, we find the ratio of

scattered light intensity of experiment setups in Figs. 1(c)
and 1(d)

I−+(ω = �)

I+−(ω = �)
= (γ3 + γ2)2

(γ3 − γ2)2
. (44)

The ratio only depends on the Luttinger parameters. More-
over, the fact that I+− will vanish if γ3 − γ2 = 0 suggests
that the signal of I+− is due to rotational symmetry break-
ing. These results confirm that at zero momentum (k = 0),
the magnetoroton excitation has spin 2 in the ẑ direction.
However, in the case of finite momentum, the magnetoroton
excitation will be a mix of modes with spin +2 and spin
−2 in the ẑ direction, which was suggested in the previous
paper [19].

The numerical values for the Luttinger parameters of GaAs
are [26]

γ1 = 6.9, γ2 = 2.1, γ3 = 2.9, κ = 1.2. (45)

Substituting these parameters into Eq. (44) yields the ratio of
intensities

I−+(ω = �)

I+−(ω = �)
≈ 40. (46)

Note that this relies on the assumption that I+ = 0, which
is not expected to hold exactly for the Coulomb interac-
tion. However, if I+ is smaller than I−, one still expects that
I−+ � I+− for ν = 1

3 states. This is also expected for the Jain
states ν = n/(2n + 1), in which the composite fermion theory
implies that the magnetoroton has the same sign of spin as

in the ν = 1
3 state. In the particle-hole conjugate Jain states

ν = (n + 1)/(2n + 1), in contrast, one expects that I−+ �
I+− [27,28].

IV. STRESS TENSOR PROJECTED ON A LANDAU LEVEL

As we have seen from the previous section, to obtain the
cross-section of polarized Raman scattering, we need to cal-
culate the spectral function of the kinetic part of the stress
tensor projected on a specific Landau level (the fractionally
filled one). To enable future numerical calculations of these
spectral functions, we need the expressions for the operators
T kin

i j after the projection to a Landau level. In this section,
we will derive the explicit form of the projected kinetic stress
tensor.

We summarize the result here. For a system of particles
interacting through a two-body isotropic potential V (|x − y|)
on the N th Landau level, the kinetic part of the stress tensor
(at zero momentum) can be written as∫

dx T kin
i j =

∫
q

qiq j

q

∂

∂q
{e−xq [LN (xq)]2}V (q)ρ̄(q)ρ̄(−q),

(47)

where
∫

q ≡ ∫
dq/(2π )2,

xq ≡ q2�2
B

2
, (48)

LN (x) is the Laguerre polynomial, i j can be either zz or z̄z̄,
and ρ̄(q) is the projected density operator in momentum space
[10].

The interpretation of the above equation is rather simple.
Recall that the projected Hamiltonian of the system is

H =
∫

q
e−xq [LN (xq)]2V (q)ρ̄(q)ρ̄(−q), (49)

where the form factor e−xq [LN (xq)]2 arises from the projection
to the N th Landau level. Polarized Raman scattering, as ex-
plained above, has the effect of changing the effective metric
in the kinetic term for the electron (making the effective mass
m∗ anisotropic). This makes the Landau orbit on the N th
Landau level anisotropic, and the effect of that is the operator
(qiq j/q)∂q acting on the form factor.

For N = 0, Eq. (47) reads∫
dx T kin

zz = −�2
B

∫
q

q2
z e−q2�2

B/2V (q)ρ̄(q)ρ̄(−q), (50)

which is exactly the operator considered in Refs. [20,25].
Thus, the spectral densities computed in Refs. [20,25] are
directly related to polarized Raman scattering on FQH states
on the LLL.

For the next-to-LLL N = 1, we have∫
dx T kin

zz = −�2
B

∫
q

q2
z e−xq (1 − xq)(3 − xq)V (q)ρ̄(q)ρ̄(−q).

(51)

The general expression for the kinetic stress tensor in Eq. (47)
has also been found by Yang [29]. The similar spectral
function for generalized pseudopotentials and quantum Hall

023040-5



DUNG XUAN NGUYEN AND DAM THANH SON PHYSICAL REVIEW RESEARCH 3, 023040 (2021)

bilayers was introduced in Refs. [30,31] In the rest of this
section, we provide a derivation of Eq. (47).

A. Preliminaries

We use the complex coordinates in Eq. (19) and the
symmetric gauge Ax = − 1

2 By, Ay = 1
2 Bx. In the complex co-

ordinates,

Az = 1

2
(Ax + iAy) = i

B

4
z̄, Az̄ = 1

2
(Ax − iAy) = −i

B

4
z.

(52)

Then in the symmetric gauge,

Dz = ∂z − ie

c
Az = ∂z − z̄

4
, (53)

Dz̄ = ∂z̄ − ie

c
Az̄ = ∂z̄ + z

4
. (54)

Note that

[Dz, Dz̄] = −eB

2c
= 1

2�2
B

. (55)

The (complex) guiding center coordinates are defined as

Z = z − 2�2
BDz̄ = z

2
− 2�2

B∂z̄, (56)

Z̄ = z̄ + 2�2
BDz = z̄

2
+ 2�2

B∂z, (57)

which satisfy

[Dz, Z] = [Dz, Z̄] = [Dz̄, Z] = [Dz̄, Z̄] = 0, (58)

and

[Z̄, Z] = 2�2
B. (59)

We define another set of coordinates: the relative coordinates
which describe the motion around the guiding center

ζ = 2�2
BDz̄ = z

2
+ 2�2

B∂z̄, (60)

ζ̄ = −2�2
BDz = z̄

2
− 2�2

B∂z, (61)

which commute with Z and Z̄ [Eq. (58)] and have the
commutator

[ζ̄ , ζ ] = −2�2
B. (62)

Then z = Z + ζ , z̄ = Z̄ + ζ̄ . We denote the two-dimensional
(2D) vector whose complex coordinates are Z and Z̄ as R, and
the vector with complex coordinates ζ and ζ̄ as r̃. That means
x = R + r̃.

One defines two sets of creation and annihilation operators.
One set moves between different Landau levels

a =
√

2�BDz̄ = ζ√
2�B

, a† = −
√

2�BDz = ζ̄√
2�B

, (63)

and another set moves within a Landau level

b = 1√
2�B

Z̄, b† = 1√
2�B

Z. (64)

The orbitals are obtained by the acting creation operator on
the lowest state

|M, m〉 = 1√
M!m!

a†Mb†m|0, 0〉, (65)

where

〈x|0, 0〉 ∼ e−|z|2/4�2
B . (66)

B. The kinetic stress tensor on a Landau level

Our task is to find the expression for the kinetic part of
the stress tensor in the theory where the electrons live on
one Landau level. This will be done through a field-theory
formalism. The action describing electrons on the N th Landau
level is

S =
∫

dt dx
[
iψ†∂tψ + χ†

(
2�2

BDzDz̄ψ + Nψ
)

+ (
2�2

BDz̄Dzψ
† + Nψ†

)
χ

]
− 1

2

∫
dt dx dx′ V (x − x′)ψ†(x)ψ†(x′)ψ (x′)ψ (x). (67)

The fields χ and χ† are simply the Lagrangian multipliers
enforcing the constraint

2�2
BDzDz̄ψ + Nψ = 0, (68)

which is simply the condition that ψ lies on the N th Landau
level.

To find the stress tensor, we first rewrite the action by
integration by part

S =
∫

dt dx
[
iψ†∂tψ − 2�2

BDzχ
†Dz̄ψ − 2�2

BDzψ
†Dz̄χ

+ N (χ†ψ + ψ†χ )
] − 1

2

∫
dt dx dx′ V (x − x′)ψ†(x)ψ†

× (x′)ψ (x′)ψ (x), (69)

then the kinetic part of the stress tensor can be calculated from
Noether’s theorem:

T i
j = − ∂L

∂ (∂iφa)
∂ jφa, (70)

where one sums over all fields φa, which in our case encom-
pass ψ , φ†, χ , and χ†. For the polarized Raman experiment
with perpendicularly incoming and outgoing photons, with a
flipping of the photon spin, one only needs the traceless part
of the stress tensor, integrated over space:∫

dx T kin
zz = −�2

B

∫
dx

(
χ†D2

z ψ + D2
z ψ

†χ
)
, (71)∫

dx T kin
z̄z̄ = −�2

B

∫
dx

(
χ†D2

z̄ ψ + D2
z̄ ψ

†χ
)
. (72)

We can expand χ as a sum over Landau levels: χ = χ0 +
χ1 + χ2 + · · · . We recall that, when acting on ψ and χ , Dz

raises and Dz̄ lowers the Landau level index, while when act-
ing on ψ† and χ†, they switch roles. Due to the orthogonality
of wave functions on different Landau levels, only the parts of
χ that are on the (N + 2)th and (if N � 2) (N − 2)th Landau
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levels contribute to the integrals in Eq. (71). We then have, for
N � 2,∫

dx T kin
zz = −�2

B

∫
dx

(
χ

†
N+2D2

z ψ + D2
z ψ

†χN−2
)
, (73)∫

dx T kin
z̄z̄ = −�2

B

∫
dx

(
χ

†
N−2D2

z̄ ψ + D2
z̄ ψ

†χN+2
)
, (74)

and for N = 0 or 1,∫
dx T kin

zz = −�2
B

∫
dx χ

†
N+2D2

z ψ, (75)∫
dx T kin

z̄z̄ = −�2
B

∫
dx D2

z̄ ψ
†χN+2. (76)

The equation determining χ is

0 = δS

δψ†
= i∂tψ + (

2�2
BDzDz̄ + N

)
χ + W (x), (77)

where we denoted

W (x) = −
∫

dx′ V (x − x′)ψ†(x′)ψ (x′)ψ (x). (78)

For n = N , Eq. (77) implies

χn = Wn

n − N
. (79)

Specifically,

χN+2 = 1
2WN+2, (80)

χN−2 = − 1
2WN−2 (N � 2), (81)

and therefore,∫
dx T kin

zz = −1

2
�2

B

∫
dx

(
W †D2

z ψ − D2
z ψ

†W
)
, (82)∫

dx T kin
z̄z̄ = 1

2
�2

B

∫
dx

(
W †D2

z̄ ψ − D2
z̄ ψ

†W
)
, (83)

where we have used the orthogonality of the functions on
different Landau levels to replace WN+2 and WN−2 by simply
W .

Using formulas from Appendix C, we then find∫
dx T kin

zz = −1

2

∫
q
�2

Bq2
z e−xq LN (xq)

[
L2

N (xq) − L2
N−2(xq)

]
×V (q)ρ̄(q)ρ̄(−q),

xq ≡ q2�2
B

2
, (84)

and a similar equation where Tzz is replaced by Tz̄z̄ and qz by
qz̄. Here, LN is the Laguerre polynomial, and L2

N is not the
square of LN but the associated Laguerre polynomial Lk

N with
k = 2, and for the uniformity of the equation, we have defined
L2

−1 = L2
−2 = 0.

These equations can be brought to an alternative form by
using the following identities involving the associated La-
guerre polynomials:

Lk
N (x) = Lk+1

N (x) − Lk+1
N−1(x),

d

dx
Lk

N (x) = −Lk+1
N−1(x).

(85)

One can show that, for N � 2,

L2
N (x) − L2

N−2(x) = LN (x) − 2
d

dx
LN (x), (86)

while one can also check directly that

L0(x)[L0(x) − 2L′
0(x)] = L0(x)L2

0 (x),

L1(x)[L1(x) − 2L′
1(x)] = L1(x)L2

1 (x). (87)

We then can rewrite the kinetic part of the stress tensor for a
general Landau level N as∫

dx T kin
zz = −�2

B

2

∑
q

q2
z e−xq LN (xq)[LN (xq) − 2L′

N (xq)]

×V (q)ρ̄(q)ρ̄(−q), (88)

and another equation with the replacement T kin
zz → T kin

z̄z̄ and
qz → qz̄. This can be further transformed to Eq. (47).

Some remarks are in order. The kinetic part of stress tensor
operators in Eq. (88) for the LLL share the same form as the
spin-2 operators in Ref. [20], in which the authors calculated
the normalized spectral functions. One can employ the same
approach to obtain the spectral density of the stress tensor for
higher Landau levels. The result will provide the estimation
for Raman scattering intensity of a FQH system at higher
Landau levels in our theoretical model. In Appendix E, we
give the expression for the full stress tensor operators, includ-
ing the contribution from the interaction. This can be used to
calculate the spectral function of the LLL stress tensor and
check the sum rules derived in Ref. [19].

V. CONCLUSIONS

In this paper, we have derived the coupling of the elec-
trons in a single Landau level with applied electromagnetic
waves, which effectively captures the essential physics of
Raman scattering on FQH systems. We show that the electron
operator responsible for Raman scattering is not the density
operator, but the “kinetic stress tensor,” and we derive the
expression of the latter after projection to a single Landau
level. We then show that, in the long-wavelength regime, the
light scattering intensity in Raman experiments measures the
spectral function of the kinetic part of stress tensors. Our
calculation explains the scattering intensity peaks at zero mo-
mentum without relying on any momentum-nonconserving
processes.

In addition, we proposed experimental setups to verify the
spin-2 hypothesis of magnetoroton mode in FQH systems
using Raman scattering with circularly polarized light. We
show that, for a magnetoroton with a well-defined sign of
spin, the ratio between light scattering intensities of differ-
ent configurations of circularly polarized Raman experiments
only depends on Luttinger parameters, which are well known.
Measuring those ratios can confirm our theoretical model and
unveil the spin of the magnetoroton excitations in a FQH state.

Using the explicit form of the stress tensor operator derived
in this paper, one can perform the numerical calculation to
obtain the spectral function of the stress tensors. One can then
use the numerical results to verify the LLL sum rules proposed
in Ref. [19] to predict the result of Raman scattering on states
on higher Landau levels.
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Raman scattering may help resolve the question about the
nature of the ν = 5

2 state. In recent experiments [32,33], the
thermal Hall conductance at the edge of the ν = 5

2 state was
determined to be consistent with the PH-Pfaffian state [34],
but not the Pfaffian [8] or the anti-Pfaffian state [35,36],
seemingly contradicting the results of numerical simulations
[37]. Theoretical proposals aiming to explain this discrepancy
include a disorder-stabilized thermal metal phase which is
adiabatically connected to the PH-Pfaffian phase [38–41] and
an incomplete thermalization on the edge [42–45]. Raman
scattering provides a way to probe directly the bulk of the ν =
5
2 state. The magnetoroton in the Pfaffian (Moore-Read) state
[8] must have a spin of the same sign as in the ν = 1

3 Lauglin
state, while in the anti-Pfaffian state [35,36], it must have the
opposite sign. The PH-Pfaffian state [34], in the absence of
Landau-level mixing, is particle-hole symmetric; hence, the
Raman scattering probabilities I+− and I−+ must be the same.
However, it is not clear how significant the effect of Landau
level mixing would be in this case. In the preprint by Haldane
et al. [46], the spectral functions I+, I− for ν = 5

2 states was
calculated numerically. The results support the conclusions in
our paper.

To derive the coupling of the Raman photons to FQH
electron liquid, we have assume that the detuning |ω0 − EG|
is much larger than the cyclotron energy ωc. This allows us
to perform the first step of our “factorization” procedure—
integrating out the holes—without having to think about the
effect of the magnetic field on the conduction-band elec-
trons. We suspect that our final result is valid under a weaker
assumption—that the detuning is larger than the energy scale
of the FQHE, i.e., of the Coulomb interaction between the
conduction-band electrons. A derivation of this result would
need to be a one-step procedure—integrating out the valence
bands and the projecting to one Landau level at the same time.
We defer this to a future paper.
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APPENDIX A: DETAILED DERIVATION OF RAMAN
SCATTERING COUPLING

Here, we present the detailed derivation of the coupling of
the FQH system with a photon. We define the parameters

α = 1

2m

(
γ1 + 5γ2

2

)
, γ ′ = 1

m
(γ3 − γ2), (A1)

β = 1

m
γ3, θ = − 1

m

(
κ + γ3

2

)
. (A2)

After integrating out fields in the valence band,
we derive the effective Lagrangian for the conduction

band

L = iψ†
α∂tψ

α − Diψ
†
αDiψ

α

2m∗ + iχ†
iα∂tχ

α
i − (EG − ω0)χ†

iαχα
i

− χ
†
k′λ

[
αD2 + γ ′ ∑

i

J2
i D2

i − β(J · D)2 − e

c
θJ · B

]
k′k

× χλ
k . (A3)

All terms which contain valence band field χα
i can be consid-

ered as coupling of conduction band field ψα with the electric
field through substitution of Eq. (16). We define

I0 = iχ†
iλ∂tχ

λ
i , (A4)

I1 = −(EG − ω0)χ†
iαχα

i , (A5)

Iα = −αχ
†
kλ

D2χλ
k , (A6)

Iβ = βχ
†
k′λ[(J · D)2]k′kχ

λ
k , (A7)

Iγ ′ = −γ ′χ†
k′λ

∑
i

(
J2

i

)
k′kD2

i χ
λ
k , (A8)

Iθ = θ
e

c

∑
k,k′,λ

χ
†
k′λ(Jk′k · B)χλ

k . (A9)

Consequently, the effective Lagrangian can be rewritten as

Leff = iψ†∂tψ − (Diψ )†Diψ

2m∗ + I0 + I1 + Iα + Iβ

+ Iγ ′ + Iθ . (A10)

Substitution of Eq. (16) for χα
i in Eq. (A5) yields

I1 = − e2|P|2
3(EG − ω0)

(2ψ†ψ |E |2 + iεi jkψ†σ jψE∗
k Ei ).

(A11)

The first term in I1 is the interaction of light with charge
density; the second term is the interaction of light with spin
density. Considering that the electrons in the conduction band,
under strong magnetic field in the ẑ direction, only have the
spin component sz = 1

2 , we can rewrite

I1 = − e2|P|2
3(EG − ω0)

[2EiE
∗
i + i(E∗

2 E1 − E∗
1 E2)]ρ, (A12)

where ρ = ψ†ψ . Since E∗
i is a slow varying field under the

redefinition in Eq. (9), the term with ∂t E∗
i in I0 is smaller than

I1. We then have

I0 = i
e2|P|2

3(EG − ω0)2
[2EiE

∗
i + i(E∗

2 E1 − E∗
1 E2)]ψ†∂tψ.

(A13)

To understand the next interaction terms (the Luttinger
terms), we recall the formula for the kinetic part of the stress
energy tensor

T kin
i j = (Diψ )†Djψ

2m∗ + (Djψ )†Diψ

2m∗ . (A14)

Under above assumption of spin state of electrons in the
conduction band and k3 = 0 (we consider a 2D system in the
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xy plane, and the applied magnetic field is in the ẑ direction), we can rewrite the Luttinger terms as

Iα = α∗e2|P|2
3(EG − ω0)2

[2EiE
∗
i + i(E∗

2 E1 − E∗
1 E2)]

(
T kin

11 + T kin
22

)
, (A15)

Iβ = − β∗e2|P|2
9(EG − ω0)2

{
T kin

11 [5E2E∗
2 + 5E3E∗

3 + 2E1E∗
1 + i(E2E∗

1 − E1E∗
2 )]

+ T kin
22 [5E1E∗

1 + 5E3E∗
3 + 2E2E∗

2 + i(E2E∗
1 − E1E∗

2 )]

− 3T kin
12 (E1E∗

2 + E2E∗
1 ) + i

ωc

2c
[5(E2E∗

1 − E1E∗
2 ) − 4iEaE∗

a − 2iE3E∗
3 ]ρ

}
, (A16)

Iγ ′ = γ ′∗e2|P|2
9(EG − ω0)2

{
T kin

11 [5E2E∗
2 + 5E3E∗

3 +2E1E∗
1 + i(E2E∗

1 − E1E∗
2 )] + T kin

22 [5E1E∗
1 + 5E3E∗

3 + 2E2E∗
2 + i(E2E∗

1 − E1E∗
2 )]

}
,

(A17)

Iθ = iθ∗ωc
e2|P|2

9(EG − ω0)2
[5(E1E∗

2 − E2E∗
1 ) + 4iEaE∗

a + 2iE3E∗
3 ]ρ, (A18)

where we have defined the parameters

β∗ = βm∗, α∗ = αm∗, (A19)

γ ′∗ = γ ′m∗, θ∗ = θm∗, (A20)

and the cyclotron frequency

ωc = − eB

cm∗ = |eB|
cm∗ . (A21)

The effective Lagrangian for the conduction band includes the coupling of the electric field Ei with charge density ρ and
the kinetic part of stress energy tensor T kin

i j . We have the effective interaction of the conduction band with light through
I0, I1, Iα, Iβ, Iγ ′ , and Iθ . We can rewrite the interaction term in the convenient form for the circular polarized light scattering
experiment setup in Fig. 1. In this case, we can consider E3 = 0 and E∗

3 = 0. Going to the complex coordinates in Eqs. (19) and
(20), in which

T kin
zz = 1

4

(
T kin

xx − T kin
yy + 2iT kin

xy

)
, T kin

z̄z̄ = 1
4

(
T kin

xx − T kin
yy − 2iT kin

xy

)
, T kin

zz̄ = 1
4

(
T kin

xx + T kin
yy

)
, (A22)

we can rewrite the interaction terms as

I0 = i
e2|P|2

6(EG − ω0)2
[3Ez̄(Ez̄ )∗ + Ez(Ez )∗]ψ†∂tψ, (A23)

I1 = − e2|P|2
6(EG − ω0)

[3Ez̄(Ez̄ )∗ + Ez(Ez )∗]ρ, (A24)

Iα = α∗ e2|P|2
3(EG − ω0)2

[6Ez̄(Ez̄ )∗ + 2Ez(Ez )∗]T kin
zz̄ , (A25)

Iβ = − β∗e2|P|2
9(EG − ω0)2

{
− 3Ez(Ez̄ )∗T kin

zz − 3Ez̄(Ez )∗T kin
z̄z̄ + [5Ez(Ez )∗ + 9Ez̄(Ez̄ )∗]T kin

zz̄ + ωc

4
[Ez(Ez )∗ − 9Ez̄(Ez̄ )∗]ρ

}
, (A26)

Iγ ′ = γ ′∗e2|P|2
9(EG − ω0)2

{
−3

2
[Ez(Ez̄ )∗ + Ez̄(Ez )∗]

(
T kin

zz + T kin
z̄z̄

) + [5Ez(Ez )∗ + 9Ez̄(Ez̄ )∗]T kin
zz̄

}
, (A27)

Iθ = θ∗ ωce2|P|2
18(EG − ω0)2

[Ez(Ez )∗ − 9Ez̄(Ez̄ )∗]ρ. (A28)

We can easily check that only Iγ ′ violates rotational
invariance.

APPENDIX B: THE DIPOLE-TRANSITION
COEFFICIENT P

Here, we follow Ref. [47] to derive an expression for
the dipole-transition coefficient P through the electron Bloch

wave functions. The first term of Eq. (8) absorbs a photon
and creates a hole in the valence band and adds an electron
to the conductance band. We can rewrite this term in the
Hamiltonian as

−
∫

dx eP∗
i jψ

α†χ i
αE j, (B1)
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with P∗
i j = P∗δi j . Comparing with eq. (11.23) in Ref. [47], we

see that2

−eP∗
i j iωph〈nph−1|Aj |nph〉= − e

m

〈
ψα

k , nph−1|Aj p j |χiα,k, nph
〉
,

(B2)

with m being the free electron mass, and pj is the free electron
momentum operator. Then we have

P∗
i j = − i

mωph

〈
ψα

k

∣∣p j |χiα,k〉, (B3)

where ψα
k is the Bloch wave function of the electron in the

conductance band (s band)

ψα
k = 1√

Nsite

∑
a

eik·xuα
c (x − Ra), (B4)

and χiα,k is the Bloch wave function of the electron in the
valence bands (p band)

χiα,k = 1√
Nsite

∑
a

eik·xuiα
v (x − Ra). (B5)

We have〈
ψα

k

∣∣p j |χiα,k〉 = 1

Nsite

∑
a,b

∫
d3x

[
k j (u

α )∗c (x − Ra)uiα
v (x − Rb)

− i(uα )∗c (x − Ra)∂ ju
iα
v (x − Rb)

]
, (B6)

The first term vanishes due to the orthogonality of the linear
combination of atomic orbitals. The second term can be writ-
ten as〈

ψα
k

∣∣p j |χiα,k〉

= −i
∑
a,b

∫
unit cell

d3x (uα )∗c (x − Ra)∂ ju
iα
v (x − Rb). (B7)

Due to the angular momentum conservation, we have〈
ψα

k

∣∣p j |χiα,k〉

= −iδi j

∑
a,b

∫
unit cell

d3x (uα )∗c (x − Ra)∂kukα
v (x − Rb).

(B8)

Following Ref. [47], we obtain〈
ψα

k

∣∣pi|χiα,k〉 = |ê · �pcv|, (B9)

where ê is any unit vector, and px
cv = py

cv = pz
cv with the

definition

pi
cv = −i

∑
a,b

∫
unit cell

d3x (uα )∗c (x − Ra)∂kukα
v (x − Rb).

(B10)

We also have the relation between |ê · �pcv| and the parameter
Ep often used in the photonics literature [47]

|ê · �pcv|2 = Epm

2
. (B11)

2We use the Coulomb gauge A0 = 0 here.

We then obtain

P∗ = − i

mωph

√
Epm

2
. (B12)

Note that the coupling depends on the frequency of photon.
However, if we rewrite the coupling with electric field to
coupling with gauge potential, there will be no dependence
on the photon frequency. We can rewrite the coupling with
photon in Eq. (8) as

Li = e

√
Ep

2m

(
ψ†

αχα
i Ai + χ

†
iαψαA∗

i

)
. (B13)

APPENDIX C: HOW TO PROJECT TO A LANDAU LEVEL

Here, we provide the detailed calculation for the kinetic
part of the stress tensor in a specific Landau level. The electron
field can be expanded in orbitals

ψ (x) =
∑
Mm

〈x|Mm〉cMm, (C1)

where M labels the Landau level, and m labels the states
within the Landau level. To obtain the kinetic part of the stress
tensor, we need to compute∫

dx W †(x)D2
z ψ (x)

= −
∫

dx dx′ ψ†(x)ψ†(x′)V (x − x′)ψ (x′)D2
z ψ (x). (C2)

Inserting the expansion over modes, and limiting to the N th
Landau level, this becomes

−
∫

dx dx′ ∑
mnm′n′

〈Nm|x〉〈Nm′|x′〉V (x − x′)〈x′|Nn′〉D2
z

×〈x|Nn〉c†
Nmc†

Nm′cNn′cNn. (C3)

Introducing the Fourier transform of the potential

V (x − x′) =
∫

dq
(2π )2

eiq·(x−x′ )V (q), (C4)

the expression becomes

−
∑

mnm′n′

∫
q

V (q)
∫

dx 〈Nm|x〉eiq·xD2
z 〈x|Nn〉

∫
dx′ 〈Nm′|x′〉

× e−iq·x′ 〈x′|Nn′〉c†
mc†

m′cn′cn. (C5)

Now we have∫
dx′ 〈Nm′|x′〉e−iq·x′ 〈x′|Nn′〉 = 〈Nm′|e−iq·x̂|Nn′〉

= 〈N |e−iq·r̃|N〉〈m′|e−iq·R|n′〉,
(C6)

but

〈N |e−iq·r̃|N〉

=
〈
N | exp

[
− i�B√

2
(qza† + qz̄a)

]
|N

〉
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= e−xq/2

〈
N | exp

(
− i�B√

2
qza†

)
exp

(
− i�B√

2
qz̄a

)
|N

〉

= e−xq/2LN (xq), xq = q2�2
B

2
; (C7)

therefore,∑
m′n′

∫
dx′ 〈Nm′|x′〉e−iq·x′ 〈x′|Nn′〉c†

m′cn′ = e−xq/2LN (xq)ρ̄(q).

(C8)

Analogously,∫
dx 〈Nm|x〉eiq·xD2

z 〈x|Nn′〉 = 1

2
〈Nm|eiq·x̂ a†2

�2
B

|Nn〉

= 1

2�2
B

√
(N + 1)(N + 2)〈N |eiq·r̃|N + 2〉〈m|eiq·R|n〉 = −q2

z e−xq/2L2
N (xq)〈m|eiq·R|n〉;

(C9)

therefore, ∑
mn

∫
dx 〈Nm|x〉e−iq·xD2

z 〈x|Nn〉c†
mcn = −q2

z e−xq/2L2
N (xq)ρ̄(−q). (C10)

Finally, we obtain ∫
dx W †(x)D2

z ψ (x) =
∫

dq
(2π )2

q2
z e−xq LN (xq)L2

N (xq)V (q)ρ̄(q)ρ̄(−q). (C11)

Similarly, for N � 2, ∫
dx W †(x)D2

z̄ ψ (x) =
∫

dq
(2π )2

q2
z̄ e−xq LN (xq)L2

N−2(xq)V (q)ρ̄(q)ρ̄(−q), (C12)

while for N = 0 or 1, the expression is obviously zero due
to the presence of two lowering operators Dz̄ acting on ψ .
Equations (C11) and (C12) are used in Sec. IV to obtain
the explicit form of the kinetic part of the stress tensor on a
specific Landau level.

APPENDIX D: iψ†∂tψ AND T kin
zz̄

Here, we derive the explicit form of iψ†∂tψ in the LLL.
The field equation reads

i∂tψ (x) = − 1

m∗ (DzDz̄ + Dz̄Dz )ψ (x)

+
∫

dx′ V (x − x′)ψ†(x′)ψ (x′)ψ (x). (D1)

We then use the constraint equation 2�2
BDzDz̄ψ = −Nψ and

the commutator in Eq. (55). From that, we get

i
∫

dx ψ†∂tψ = I0 +
(

N + 1

2

)
ωcNe, (D2)

with Ne being the total electron number in the conductance
band and

I0 =
∫

dx dx′ V (x − x′)ψ†(x)ψ†(x′)ψ (x′)ψ (x)

=
∫

q
V (q)e−q2�2

B/2ρ̄(q)ρ̄(−q). (D3)

The first term on the right-hand side of Eq. (D2) is twice the
interacting energy, and the second term is the kinetic energy

of electrons.3 We also have∫
dx T kin

zz̄ =
∫

dx
1

2m∗ (Dzψ
†Dz̄ψ + Dz̄ψ

†Dzψ )

=
∫

dx
1

2m∗

(
− 2ψ†DzDz̄ψ − eB

2c
ψ†ψ

)

= ωc

2

(
N + 1

2

)∫
dx ρ

=
(

N + 1

2

)
Neωc

2
, (D4)

where we used the constraint 2�2
BDzDz̄ψ = −Nψ to obtain

the last equality.

APPENDIX E: TWO SUM RULES

This Appendix is not directly related to Raman scattering
but contains some exact sum rules. First, we write down for-
mulas for the full stress tensor. For the model Hamiltonian, at
the long-wavelength regime k ∼ 0, the full stress tensor is the
same as T kin [24]. For the general case, one needs to consider
the potential-energy term in the Lagrangian. When the metric
varies with time (but remains uniform in space), the potential
changes according to

V (x) → V (
√

gi jxix j ), (E1)

3In Ref. [24], we eliminate the second term in the LLL case by
introducing the Landé factor g = 2.
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and so the Fourier transform changes as

V (q) → V (
√

gi jqiq j ). (E2)

Since the stress tensor is given by δS = 1
2

∫
dx Ti jδgi j , the

potential part of the stress-energy tensor is then∫
dx T pot

i j = 1

2

∫
q

qiq j

q
V ′(q)ρ(q)ρ(−q). (E3)

This can be projected to the N th Landau level to become∫
dx T pot

i j = 1

2

∫
q

e−xq [LN (xq)]2 qiq j

q
V ′(q)ρ̄(q)ρ̄(−q). (E4)

It is interesting to compare the formula with that of the kinetic
stress tensor, Eq. (47): the “stretching operator” (qiq j/q)∂q

now acts on the potential V (q) instead of acting on the form
factor. The full stress tensor is the sum of the kinetic stress
tensor, Eq. (88), and the potential stress tensor, Eq. (E4). It
can be written as∫

dx T full
i j = 1

2

∑
q

qiq j

q

∂

∂q

{
e−xq [LN (xq)]2V (q)

}
ρ̄(q)ρ̄(−q).

(E5)

We define the spectral densities [19]

ρT (ω) = 1

N

∑
n

|〈n|
∫

dx Tzz|0〉|2δ(ω − En), (E6)

ρ̄T (ω) = 1

N

∑
n

|〈n|
∫

dx Tz̄z̄|0〉|2δ(ω − En), (E7)

where N is the total number of electrons, |0〉 is the ground
state, the sum is taken over all excited states |n〉 in the lowest
Landau level, and En is the energy of the state |n〉. The two
spectral densities satisfy the sum rules [19]

∫ ∞

0

dω

ω2
[ρT (ω) − ρ̄T (ω)] = s̄

4
, (E8)∫ ∞

0

dω

ω2
[ρT (ω) + ρ̄T (ω)] = S4, (E9)

where s̄ is the “guiding center spin” [18], which is equal to
(S − 1)/2 on the LLL, where S is the shift, and S4 is the
coefficient in front of (k�B)4 in the static structure factor.
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