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Effect of directed aging on nonlinear elasticity and memory formation in a material
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Disordered solids often change their elastic response as they slowly age. Using experiments and simulations,
we study how aging disordered planar networks under an applied stress affects their nonlinear elastic response.
We are able to modify dramatically the elastic properties of our systems in the nonlinear regime. Using
simulations, we study two models for the microscopic evolution of properties of such a material; the first
considers changes in the material strength, while the second considers distortions in the microscopic geometry.
Both models capture different aspects of the experiments including the encoding of memories of the aging history
of the system and the dramatic effects on the material’s nonlinear elastic properties. Our results demonstrate how
aging can be used to create complex elastic behavior in the nonlinear regime.
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I. INTRODUCTION

The inevitable fate of a glass left on its own is to age
and progressively lower its free energy in a rugged energy
landscape [1–4]. As it ages, particles rearrange or bonds break
and form. As a result, the elastic properties evolve, but, due to
enormous relaxation times, the system does not reach equilib-
rium at any accessible timescale. Because preparation into the
initial metastable state can produce desired properties that are
inaccessible in thermal equilibrium, aging is often considered
to be detrimental since it allows the system to evolve away
from this state.

It was recently proposed, however, that stress-induced ag-
ing can be exploited to manipulate an out-of-equilibrium solid
to achieve various desired elastic responses [5]. Thus, im-
posing strain directs the manner in which a solid ages. This
directed aging relies on the fact that straining a disordered
system gives rise to a spatially varying stress pattern that
depends sensitively on the applied deformation. If we con-
sider a disordered network of nodes connected by bonds, an
external force applied on such a network would result in a
different stress at each bond. Each bond evolves (i.e., ages)
at a different rate; in many cases, the bonds under the highest
stress evolve the fastest.

It had previously been shown that pruning the bonds ac-
cording to the stress they feel under an applied deformation
leads to novel and controllable elastic properties [6]. Replac-
ing bond pruning by bond aging under an applied macroscopic
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strain gives rise to similar effects [5]. This aging changes the
corresponding stiffnesses or geometry of the individual bonds
and thereby modifies the system’s elastic moduli. In this way
we have manipulated the elastic response in order to create
auxetic (i.e., negative Poisson’s ratio ν < 0) materials [5,7].
These auxetic materials are not ubiquitous in nature and are
thought to have interesting applications [7–19]. In our simu-
lations using oscillatory training, we have also been able to
direct the aging process to achieve more local responses that
mimic allosteric behavior in proteins [20].

In this paper, we focus on the nonlinear elastic response of
a system as it ages. We find that directed aging can produce
desired complex nonmonotonic behaviors in the nonlinear
elastic response of disordered networks.

We begin with data from aging experiments on physical
networks. Even after the networks age under compression,
they retain a distinct memory of their initial state. This mem-
ory can easily be discerned by measuring the response of
these networks as a function of imposed strain. We show that
elastic properties of these networks can be trained to have
auxetic behavior at one value of strain and normal behavior
at another. Our results demonstrate the power of the directed
aging protocol.

Earlier work has shown that at least two different factors
(material weakening and geometry change) define the aging
process in a disordered system [5] and that both are essen-
tial for fully understanding the process of directed aging.
To isolate these effects, two different models were previ-
ously introduced [5]. One model weakens individual bonds
in the material in response to stress, and the other changes
the network geometry of the bonds. We perform numerical
simulations based on both models and show that while they
produce intriguing differences, they retain a memory of how
the material was trained. These results are in accord with
our experimental findings. These simulation results motivated
further experiments in order to separate the material weak-
ening effects from those of geometrical change; with these
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experiments we were able to accentuate the effects of material
weakening while minimizing any change in geometry.

Finally, we characterize the inherent capacity of a network
to be manipulated as a function of strain, establishing that
the system is more easily trained under compression than ex-
pansion and that networks are more easily trained when they
have a lower coordination number. Taken together, our results
open the possibility of manipulating the elastic properties of a
material far beyond the linear regime.

II. EXPERIMENTS

We have recently shown that aging under various strains
is an effective means of acquiring new elastic responses [5].
One such example is a negative Poisson’s ratio, obtained by
aging under compression (similar to the protocol of Ref. [7]).
In previous work, we focused on how the type of deformation
determines the resulting response. In the present paper we
focus on understanding the role of strain magnitude, aiming
at understanding the nonlinear regime. Nonlinear effects in-
duced by compression were previously studied in Ref. [21].
Here we search for signatures of the aging history in the elastic
response of the aged solid.

A. Methods

We consider quasi-two-dimensional ethyl vinyl acetate
(EVA) foam sheets patterned in a disordered manner using
a laser cutter. Previously we have shown that the qualita-
tive behavior is independent of the precise pattern [5]; here
we select network-like patterns derived from simulations of
jammed packings. The procedure for generating these net-
works is identical to that used in simulations and is described
in Sec. III. Since the dynamics are faster at higher tempera-
tures, we store the networks in a convection oven or air sealed
in a water bath at an ambient temperature of 50 ◦C while
they age. This temperature is high enough that it significantly
accelerates the aging process but not so high so as to damage
the material.

Our experimental protocol is shown as a schematic in
Fig. 1(a). The network is confined in a box with an edge
length of Lbox, which is smaller than the length of the orig-
inal network, Linitial. Our aging strain is therefore given by
ε0

Age = Lbox−Linitial
Linitial

. The “0” superscript in ε0 implies that the
measurements are with respect to the initial unaged system, as
opposed to ε, which is measured with respect to the final aged
system. Since the dimensions of the network change due to
plastic deformations during aging, ε is usually different than
ε0. Our aging protocol is to confine the network in a box and
let it age for a duration of 1 hour at a temperature of 50 ◦C. We
then remove it from the confining box and measure the elastic
response.

B. Results

At the end of the aging process the networks are only
slightly larger in size than the confining box itself. Our mea-
surement protocol is to stretch the aged networks in the x
direction and measure the response in the y direction. The
hallmark of a nonlinear response is a nonlinear functional
relation between x and y strains.

unaged
(b)

(a)

Linitial
Lbox - Linitial Lbox - Lfinal

Lfinal

Linitial
Lbox

Aging: isotropic
compression at 50oC

Measure under
uniaxial extension

Lfinal

Aged network

(c)

0

0

0

FIG. 1. Experiments of aging under isotropic compression.
(a) Schematic of the experimental protocol. Our networks are aged
under compression at an elevated temperature for a duration of one
hour. Once aged, these networks are removed from its confining box
and immediately brought back to room temperature. The aged net-
works are measured under extensional uniaxial strain; ε0 is the strain
measured with respect to the original unaged system, while ε is the
strain of the network measured with respect to its aged size. (b) Aged
networks are measured under uniaxial extension along the x axis.
The gray vertical dashed line corresponds to the unaged size, Linitial.
Networks with data shown in blue (triangle), green (circle), and red
(square) were aged at ε0

Age = −0.1, −0.2, and −0.3, respectively.
(c) Poisson’s ratio of aged networks vs strain for the same networks
as in (b). Note that the strain εx is with respect to the aged system.
Vertical dashed lines in blue, green, and red mark Linitial for data sets
corresponding to ε0

Age = −0.1, −0.2, and −0.3, respectively.

Figure 1(b) shows the response of such networks under uni-
axial extension along x. When stretched along the x axis, the
network initially expands along the y axis but then switches
direction and starts to compress. This transition happens near
ε0

x = 0, which corresponds to the size of the initial unaged
network. The network has a nonmonotonic response with a
peak at ε0

x = 0. This peak in the ε0
y versus ε0

x curve is a
memory of the initial state.

Another way to characterize this response is to measure the
Poisson’s ratio (ν) of aged networks. Poisson’s ratio, ν, is the
negative ratio of the transverse strain, εy to an imposed uniax-
ial strain εx: ν = − εy

εx
. Figure 1(c) shows the Poisson’s ratio

of aged networks versus pulling strain, εx. The vertical lines
correspond to the initial size of the networks. These results
show that aging alters the elastic response in a manner that
imprints a memory of its initial state, and by understanding
this process, we can control the nonlinear strain-dependent
elastic response.

III. MODES OF AGING AND NUMERICAL SIMULATIONS

We deliberately avoid the difficult task of capturing numer-
ically the complex behavior of a real foam used in experiment.
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To understand the experimental results, we take a step back
and consider the simplest possible model of a solid. The me-
chanical properties of solids have long been described within
the harmonic approximation in terms of central-force spring
networks. Each spring, indexed by i, has spring constant, ki,
and a rest length, �i,0. The full aging behavior of our experi-
mental systems depends on additional factors neglected here,
such as the energy cost for varying the angle between adjacent
bonds [22] and the bending and buckling of bonds at large
strains. In this approximation, however, the total elastic energy
is then

U = 1

2

∑

i

ki(�i − �i,0)2. (1)

Here �i is the length of spring i.
A system that is under imposed stress ages in a manner

that will reduce its internal energy [1,2]. It is clear that the
system can accomplish this by varying the spring constants,
ki, and the equilibrium lengths, �i,0. Again in the spirit of
simplicity, we will disentangle these two effects by studying
two models introduced in Ref. [5]. Despite the simplicity of
our models we demonstrate striking qualitative similarity with
the experiments.

k model: This model [5] captures the weakening of the
bonds. We assume that the rate at which a bond becomes
weaker depends on its energy so that it weakens both when
compressed or extended:

∂t ki = −γ ki(�i − �i,0)2. (2)

Here γ ≡ 1
τ0〈�2

i,0〉 , where τ0 is a material-dependent relaxation

time and 〈�2
i,0〉 corresponds to the average of the square

lengths of the bonds before aging. This model is similar in
spirit to the design strategy in which bonds with large stresses
are preferentially removed [6].

Generally, there are multiple ways by which a material’s
stiffness may evolve under stress or strain. It is plausible for
material to get weaker as a result of the stress it experiences,
and our model aims at understanding this effect. However,
there are various examples where a material can also do
the opposite, i.e., get stronger due to stress. Work hardening
is the strengthening of metals or polymers in response to
strain [23]. Bone may undergo remodeling in response to
loads, by increasing the bone mass [24,25]. Frictional con-
tacts increase their contact area over time, strengthening their
interface [26–28].

� model: This model isolates the effects of geometric plas-
tic alterations. We assume that the stress in a bond is reduced
by changing its equilibrium length. The rate of change of
the length depends on a bond’s tension; they elongate under
tension and shorten under compression:

∂t�i,0 = βki(�i − �i,0). (3)

Here β ≡ 1
τ0〈�i,0〉〈ki〉 , 〈�i,0〉 is the average bond length, and 〈ki〉

is the average spring constant. When the rate at which a bond
changes its length is much slower than the time to reach
force balance, this model reduces to the Maxwell model for
viscoelasticity [29]. Each bond consists of a spring, which
describes the rapid elastic behavior, in series with a dashpot,
which at long times accounts for the change in rest lengths

of the spring. Similar dynamics have also been used to ac-
count for junction remodeling in epithelial cells [30,31]. Some
geometrical effects not included in the � model, such as the
bending of bonds in the network, may also play a significant
role.

We note that the two models can be expressed similarly and
combined:

∂t

√
ki = −γ

4

∂U

∂
√

ki
, (4)

∂t�i,0 = −β
∂U

∂�i,0
. (5)

We assume aging is much slower than the time to reach
force balance. The microscopic parameters evolve by steepest
descent to minimize the energy at a rate proportional to the
energy gradient.

We study directed aging and response in each of these
models numerically. To ensure that our networks are initially
rigid, we derive the ensemble of central-force spring net-
works from packings of soft spheres at force balance under
an external pressure [32–34]. The sphere centers define the
locations of the nodes, and overlapping spheres are connected
by springs. The equilibrium spring length is chosen to be the
distance between nodes, guaranteeing that in the absence of
deformation, the system is unstressed and at zero energy. We
characterize the connectivity of the network with the aver-
age coordination number Z = 2Nb

N , where Nb is the number
of bonds and N is the number of nodes. At the jamming
transition, where the particles just touch, Z = Zc = 2d is the
smallest coordination number needed to maintain rigidity in
d dimensions. We use networks that are above the jamming
transition: 	Z ≡ Z − Zc > 0.

A. Aging under isotropic compression

1. Aging protocol and evolution of the energy landscape
in the k model

We begin with an unstressed network and compress it to
the aging strain, ε0

Age. The strain is ε0 ≡ L−Linitial
Linitial

, where L
is the length of the system while Linitial is the length in the
unstrained system. Note that compression corresponds to a
negative strain. To simulate quasistatic dynamics we compress
in small steps, minimizing the energy with respect to the
locations of the nodes at each step. Aging can be neglected
during the measurement itself.

We measure the energy as a function of strain, U (ε),
for isotropic expansion and compression. In linear response,
U (ε) = 1

2V Bε2, where V is the volume and B is the bulk mod-
ulus. The initial network has no internal stresses, so that the
global energy minimum is at zero strain where U (ε0 = 0) =
0. Aging in the k model only changes the spring constants so
the global energy minimum remains at ε0 = 0. Since there is
no difference in size between the unaged and aged system,
ε0

Age = εAge. After the system has been aged at εAge, we allow
the system to return to its original volume and measure the
behavior with respect to ε = 0 as origin.

As noted above, aging reduces the energy at the strain at
which the system has been aged. As shown in Fig. 2(a), the
energy at the strain ε = εAge is reduced after aging compared
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FIG. 2. Left: the k model at 	Z ≈ 1.51. Right: � model at 	Z ≈
0.53. (a), (e) The compression energy versus strain for an unaged
system and a system aged under 5% compression (dashed line). In
the k model the global minimum remains at zero strain, since bond
lengths do not change while in the � model the global minimum
shifts. The difference in the unaged energy versus strain between the
two models is caused by the two different values of 	Z (picked to
allow comparison of the two models at the same range of strains).
(b), (f) The Poisson’s ratio within linear response versus time. In
the � model the curve is nonmonotonic and has a minimum. (c), (g)
The evolution of the Poisson’s ratio as a function of strain. In the k
model, the local minimum occurs near the aging strain, εAge = −0.05
(vertical dashed line). In the � model the minimum corresponds to
the strain needed to undo the volume change that occurred during
aging (dashed lines). (d), (h) The Poisson’s ratio versus strain. For
the k model these are measured at a constant ε2

Aget . The aging strain
is denoted by vertical dashed lines. In the � model, the curves are at
a constant tεAge and the dashed lines denote the strain corresponding
to the unaged system at asymptotic times, −εAge/(1 + εAge). Note
that in (e) the strain is measured with respect to the unaged system,
while for (g) and (h) it is measured with respect to the new global
minimum, which depends on the aging time and εAge.

to the unaged material; the energy landscape has become very
asymmetrical.

Since the state at ε = 0 remains the global minimum with
zero energy, there will be at least two states with low energy
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FIG. 3. In the k model, the Poisson’s ratio at ε = εAge as a func-
tion of scaled time approximately collapses.

ε = 0 and ε = εAge. If εAge is small, the low-energy states
encompass the entire range [0, εAge]; however, if εAge is large,
aging can result in two local energy minima separated by an
energy barrier.

The low-energy state at εAge, is a memory in the landscape
of the conditions under which the system was aged. By mea-
suring the elastic properties, the aging strain can be read out.

2. Results for Poisson’s ratio of k model aged under
isotropic strain

Within linear response for an isotropic material, Poisson’s
ratio, ν is a monotonic function of the ratio of the shear mod-
ulus, G, to the bulk modulus, B: ν = d−2G/B

d (d−1)+2G/B , where d is
the spatial dimension. At larger strains, ν generically depends
on the magnitude of ε. We measure ν by compressing (or
expanding) the system uniaxially, while allowing the system
to relax in the transverse directions. If the system is isotropic,
then the transverse strain, εr is the same in all transverse
directions.

Figure 2(b) shows that the Poisson’s ratio in the linear
response regime, ν(ε → 0) decreases as the network ages
and ultimately may become negative. At long times, ν mono-
tonically decreases with |εAge|. This is consistent with the
system aging in a directed manner [5]; that is, aging under
compression lowers the bulk modulus more than it lowers the
shear modulus.

The relaxation rate has a characteristic dependence on the
imposed strain. The right-hand side of Eq. (2) scales as as
ε2

Age, the energy of the system. To compare different aging
strains, we rescale time in Fig. 2(b) as tε2

Age. In Fig. 3 we
show that ν at ε = εAge approximately collapses as a function
of tε2

Age. The long-time Poisson’s ratios shown in Fig. 2(b) are
not monotonic in the training strain. The reason for this is the
nonlinear effect of aging. Aging affects mostly the strains near
the aging strain, and therefore when the aging strain is large
it has a smaller impact on the linear response. We note that
the Poisson’s ratio within linear response, shown in Fig. 2(b),
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is very different from its value at the aging strain, shown
in Fig. 3.

The nonlinearities in the energy landscape suggest that ν

may have interesting dependence on the strain. We show how
ν(ε) evolves with time in Fig. 2(c). For the unaged systems,
ν depends very weakly on strain even up to 10% strain. As
the system ages, ν(ε) is lowered, especially near εAge. It later
develops a minimum near the aging strain, which deepens
over time.

In Fig. 2(d) we plot ν(ε) for different values of εAge, at the
same scaled time tε2

Age. In all the curves, a minimum appears
in ν(ε) close to ε = εAge (vertical dashed lines). Thus, aging
produces a memory of the strain at which it was prepared,
allowing the aging strain to be read out from the minimum of
the nonlinear Poisson’s ratio.

Aging in the nonlinear regime allows exotic behavior to
be trained into a system. For example, a system can have
a positive ν within linear response but a large negative ν

for larger unixial compression [see the curve for the aging
strain of εAge = −0.05 in Fig. 2(d)]. Therefore, compressing
uniaxialy leads initially to a transverse expansion, which is
then reversed to transverse compression at larger values of
strain.

3. Aging protocol and evolution of the energy landscape
in the � model

In the � model, the rest lengths of bonds, �i,0, evolve as
the system ages under an imposed strain to reduce the stresses
and the elastic energy. We compress the system to the target
strain, ε0

Age and then allow it to age. Since the rest lengths
have evolved, the global energy minimum is no longer at
zero strain. Since the energy minimum shifts, we measure
the elastic properties with respect to the new (aged) global
minimum (ε = 0).

At long times, all the stresses decay to zero and the global
energy minimum shifts to ε0

Age as shown in Fig. 2(e). At
intermediate time, before it reaches that point, the minimum
lies between ε0 = 0 and ε0 = ε0

Age. To find the position of the
minimum, we minimize the energy with respect to the node
locations, as well as the width and height of the box.

Besides the shift of the energy minimum, there are addi-
tional changes to the energy versus strain curves apparent in
Fig. 2(e). First, we note that the curvature at the new global
minimum, which determines the bulk modulus, B, is greatly
reduced. This lowers the Poisson’s ratio, as we will discuss
in detail below. Another feature is the kink in the nonlinear
regime near ε0 = 0, corresponding to unstressed state of the

unaged system (ε0 = 0 corresponds to a strain of ε = − ε0
Age

1+ε0
Age

measured with respect to the aged system). This is a signature
of the history of the strains at which the system was aged.

4. Results for Poisson’s ratio of � model aged under
isotropic strain

We first consider the evolution of the Poisson’s ratio within
linear response, ν(ε → 0), as shown in Fig. 2(f). Aging under
constant compression results in the linear Poisson’s ratio de-
creasing with time. The decay is nonmonotonic, with a local
minimum at intermediate times. At large times it ceases to

evolve, and its asymptotic value depends on ε0
Age. At small

values of |ε0
Age|, ν remains positive. For systems aged at larger

|ε0
Age|, however, ν decreases further and ultimately becomes

negative for sufficiently large aging strain |ε0
Age|. This is simi-

lar to the behavior seen in experiments on aging networks [5].
By contrast to the behavior under compression, aging un-

der a small constant expansion (blue curve) increases the
linear-response Poisson’s ratio, ν only slightly. We believe
that this is a general feature of elastic systems and is due
to mechanical instabilities that occur under compression but
not under expansion. These instabilities reduce the stiffness to
compression significantly, thus lowering ν. Instabilities have
also been shown to give rise to materials with negative Pois-
son’s ratio in periodic structures [35].

The nonlinear Poisson’s ratio versus strain is shown for
different times in Fig. 2(g). These curves have a minimum
at ε > 0 (expansion), and the value of strain grows with time.
The dashed lines in Fig. 2(g) showing the applied strains ap-
proximately match the location of the minima. This suggests
that the minimum is associated with the strain needed to return
to the same volume as the unaged system.

We next consider the nonlinear behavior of the � model
at long aging times. Figure 2(h) shows the Poisson’s ratio
versus strain for the unaged system and for systems aged at
different values of ε0

Age. For the unaged system, ν(ε) decreases
when the system is compressed. At positive strains the aged
systems develop a local minimum that is a memory of the
strain at which they were aged. Unlike in the k model, where
the memory occurs at ε = εAge = ε0

Age, the minimum in this
case occurs near the strain which corresponds to that of the
unaged system (ε0 = 0). Aging under compression reduces
the volume, and to return to the initial volume the system

must be strained by − ε0
Age

1+ε0
Age

. This is indicated by dashed lines

in Fig. 2(h). The memory observed in these simulations is
similar to the experiments discussed in Sec. II, where we see
a memory of initial system in the nonlinear elastic response.

We believe that the microscopic mechanical instabilities,
such as buckling of bonds, play an important role in encoding
these memories. Such instabilities occur when a compressive
strain is applied to the system. Expanding a system that was
aged under compression causes some of these instabilities to
be “undone.” However, once this system is stretched to its
initial size, there are no more of these instabilities left. This
results in the unusual nonlinear response near ε0 = 0.

5. Discussion of simulation results for aging under compression

Our simulations show that the two models evolve the sys-
tem in two distinct ways. In the k model, the equilibrium state
remains unchanged, but the system gains a memory of the
aging strain. On the other hand, the energy minimum in the
� model moves to the aging strain, and the system develops a
memory of its initial state.

The similarity in the experimental results from Sec. II and
the simulation results for the � model imply that our experi-
ments are dominated by the effects of geometry change in the
aged networks. Our simulation results for k model inspired
us to perform further experiments that highlight the effect of
material weakening. We present these results in Sec. IV.
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FIG. 4. Aging under shear. Left: k model. Right: � model. The
system is aged by compressing along the x axis and stretching along
the y axis. (a), (d) The shear stiffness versus measuring strain, ε;
(b), (e) the Poisson’s ratio versus strain. The full line denotes, νx ,
the Poisson’s ratio when the system is strained along the x axis. The
dashed line denotes, νy, measured by straining along the y axis. (c),
(f) The stiffness to uniaxial deformation, Kx and Ky along the x axis
and y axis. Note that after aging, Kx > Ky in k model while Kx < Ky

in the � model.

B. Aging under shear

To test the generality of the nonlinear effects of aging,
we consider systems that are aged under a constant shear
strain rather than under compression. We demonstrate that
the ensuing change in elasticity is more subtle and does not
necessarily follow the intuition gleaned from the case of aging
under compression.

We shear the elastic networks by compressing along the

x axis by ε0
Age and extended along the y axis by − ε0

Age

1+ε0
Age

to preserve volume. As before, we characterize the elastic
behavior by measuring the Poisson’s ratio. However, aging
under shear evolves the system to be anisotropic so that ν

depends on the direction of applied strain. We focus on the
Poisson’s ratio measured by straining either along the x axis
(νx) or y axis (νy), while the system is allowed to relax in the
transverse direction.

1. Results for Poisson’s ratio of k model aged under shear strain

In Fig. 4(a) we show the stiffness to shear, measured from
the elastic energy per unit strain squared, G(ε) = 2UG/V ε2.
In the limit of ε → 0 this corresponds to the linear-response
shear modulus. As expected, aging under shear lowers G(ε).
The strain dependence of G(ε) shows additional features.

In particular G(ε) has a minimum at a value of strain that
depends on the aging strain. The minima occur at a strain that
is slightly different than εAge but appears to be proportional
to εAge. Note that εAge = ε0

Age. These minima also encode
memories of how the system was prepared.

Figure 4(b) shows the Poisson’s ratio as a function of strain
for different aging strains. The full line denotes, νx, the Pois-
son’s ratio when the system is strained along the x axis, while
the dashed line denotes νy, measured by straining along the y
axis. As expected, aging under shear decreases the associated
shear modulus and therefore increases the Poisson’s ratio in
that direction. We also find that for a given value of strain
νx > νy. The difference between the Poisson’s ratio in these
two directions grows with |εAge|. Both decrease for compres-
sion and are peaked at a given strain for expansion. The strain
of the peak in νx depends weakly on the aging strain, while
the strain of the peak in νy grows with the aging strain.

The result νx > νy can be understood as follows in linear
response, where νx = B+G

4Ky
, and νy = B+G

4Kx
, where Ky and Kx

are the stiffnesses to uniaxial compressions along the x axis
and y axis, respectively. The inequality νx > νy implies Kx >

Ky, which is shown in Fig. 4(c).
The difference between Kx and Ky is the result of the asym-

metry between compression and expansion in the nonlinear
regime in which the system is aged. We find that the stiffness
to compression in the nonlinear regime is smaller than for
expansion. Therefore, the stresses along the y axis are larger,
and as a result Ky ages faster and becomes weaker than Kx.
Thus, aging at shear strains in the nonlinear regime can affect
different linear response moduli differently.

2. Results for Poisson’s ratio of � model aged under shear strain

Figure 4(d) shows the stiffness to shear as a function of
the measuring strain, G(ε). For negative strains (i.e., in the
direction which the system was aged) the stiffness grows,
while for large positive strains the stiffness decreases. This
is different from the case of aging under compression, where
stiffness to compression decreases. Similar behavior has been
reported [36] in sheared gels. There the increase in stiffness
was attributed to bonds aligning in a preferential direction
defined by the shear deformation. Prior to shearing, the sys-
tem was isotropic, and each bond angle is equally probable.
The shear deformation, in our case, tends to align the bonds
along the y axis. This increases the uniaxial stiffness in the
y direction, Ky, and reduces the stiffness in the x direction,
Kx [see Fig. 4(f)]. This is consistent with experiments [5] and
explains why in linear response νy > νx, as shown in Fig. 4(e).

The nonlinear behavior of νx and νy has a different depen-
dence on the shear strain, as shown in Fig. 4(e). The slopes
of νx and νy have opposite signs. Interestingly, νy has a peak
at negative values of strain and then falls steeply. We believe,
that as in the case for compression, the sharp drop in νy is
associated with instabilities. The threshold value of strain for
these instabilities decreases with aging strain.

In summary, in both models aging under shear gives rise to
a change in the stiffness to shear. The directions in which these
evolve are not always obvious and also result in nontrivial
nonlinear behavior.
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In real systems, local bond stiffnesses can be weakened
(k model) and local geometry can change (� model). The
differences between the behavior of the k model and � model
could allow one to determine which of the two aging scenarios
that they embody is dominant for a given system at a given
strain. In the case of the k model we find that νx > νy, while
in the � model νx < νy. In addition, the slope of νy at ε = 0
has the opposite sign for the two models.

3. Discussion of simulation results for aging under shear

Reference [5] considered the effect of aging under a con-
stant shear strain in experiments on foam networks, similar to
those used here. There the system was not cycled to minimize
the permanent deformation, and the initially square network
became rectangular. We follow the same notation used for
simulation where shear is performed by compressing along
the x axis while extending along the y axis.

In the unaged system the Poisson’s ratio is virtually inde-
pendent of direction, and ν

unaged
x ≈ ν

unaged
y . After aging the

response becomes highly nonisotropic, with νy > νunaged >

νx [5]. This is consistent with the scenario of aging in the �

model, shown in Fig. 4(e). Though the comparison is only
qualitative, it demonstrates that these models can capture
complex behavior that arises in real materials. It opens the
door to quantitative studies in the nonlinear regime and over a
broader range of parameters.

IV. ADDITIONAL EXPERIMENTS MOTIVATED
BY SIMULATIONS

The distinct results seen numerically for the k model and �

model suggest that it would be enlightening to develop exper-
imental protocols that accentuate either material weakening
(isolated in the k model) or geometrical changes (isolated in
the � model). Note that in Ref. [5] we were able to test the
effects of purely geometrical changes by taking an image of
aged networks and laser cutting a new network with the same
geometry. By this protocol, the effects of aging on spring
constants captured by the k model are eliminated. Here we in-
troduce an experimental protocol that accentuates the physics
captured by the k model.

Relaxational protocol (stiffness-dominated aging): We start
with letting the laser-cut, EVA foam networks age under
isotropic compression at an elevated temperature of 50 ◦C
for an hour, exactly like our previous experiments in Sec. II.
However, instead of bringing them to room temperature im-
mediately afterwards, we let them relax at the same ambient
temperature of 50 ◦C for 1 hour while unconfined. As it re-
laxes, the network returns partway to its original size and
shape. This reverses some of the geometric change that oc-
curred during the aging process. The elevated temperature
causes more rapid relaxation than at room temperature. After
an hour, we bring the network back to room temperature. At
this point, the relaxation dynamics has slowed down consider-
ably and the network does not evolve much further. This is the
limit where the system has had a chance to relax after aging
under stress and has regained most of its original geometry.
The major contributor to the change in material properties in
such a system would be the microscopic “damage” that occurs

unaged

(b)

(a)

Linitial

Lbox

Lfinal

Relax
at 50oC

Aging:
isotropic

compression
at 50oC

Measure
under

uniaxial
compression

(c)

0

0

FIG. 5. Experiments of stiffness-dominated aging under
isotropic compression. (a) A schematic of the experimental protocol.
The networks are allowed to relax after aging under compression.
The aged networks are then measured under compressive uniaxial
strain. (b) Networks are compressed uniaxially along the x axis, and
their response is measured along the y axis. ε is the strain of the
network measured with respect to its aged size. Purple (star) data
correspond to unaged networks. Green (circle) and red (square) data
are from networks aged at two different strains. Vertical dashed lines
in red and green correspond to the physical size to which they were
compressed during aging, Lbox. (c) The Poisson’s ratio versus strain
for the same set of experiments as (b).

in the material. Thus, results from this protocol should be
better described by the k model than the � model.

Figure 5(b) shows εy, the measured strain of the networks
along the y axis, as a function of εx, the applied strain along
x axis. We focus on compressive strains (εx < 0) since that is
the regime the system encounters during aging. Both strains
are measured with respect to the aged system which has a
length Lfinal. The purple curve shows that even the unaged
system is nonlinear in the large strain regime we consider.
We note that the negative slope near εx = 0 implies that the
Poisson’s ratio, ν = −εy/εx is positive.

The aged systems are shown in green (circle) and red
(square) for aging strains of ε0

Age = −0.2 and −0.3, respec-
tively. Since Lfinal < Linitial, they correspond, respectively, to
εAge ≈ −0.09 and −0.18 (represented by vertical dashed
lines). The first feature we point out is that the curves
have a positive slope near εx = 0, which indicates that the
Poisson’s ratio is negative. This is consistent with previous
findings [5,7]. The interesting feature here is the change in
slope as the system approaches the aging strain (vertical
dashed lines). This is a memory of the aging strain visible in
the nonlinear response of the system. This shows that simply
by measuring the strain response in the nonlinear regime, we
are able to deduce the aging strain of the material.

Alternatively, this effect can be seen in Fig. 5(c) as a dip
in Poisson’s ratio near the aging strain. These results are
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qualitatively very similar to the simulation results for the k
model under compression, discussed in Sec. III. A memory of
aging strain was seen in Fig. 2(d), where the Poisson’s ratio
has a minimum very close to the aging strain. The similarity
in these two results shows that we can perform experiments
in a way that accentuates the “microscopic damage” aspect
of aging as opposed to the macroscopic geometry change. We
also learn that our relatively simple simulations of aging under
the k model capture the real effects seen in experiments.

Together with the experiments presented in Sec. II, we
show that the memories seen in the two models of aging exist
in real physical systems. Not only do these memories reveal
the aging history of these networks, but they also provide a
powerful tool for controlling the nonlinear elastic properties
of the system.

V. INHERENT NONLINEAR TUNABILITY OF
THE POISSON’S RATIO

We have shown that aging at finite isotropic or shear
strains, εAge, allows the Poisson’s ratio to be manipulated in
the nonlinear elastic regime as well as in the linear regime.
The ability to manipulate the nonlinear behavior does not
depend entirely on the aging dynamics but is an inherent
property of how forces are transmitted in the network. In the
linear regime, the pruning of bond i leads to a change in the
bulk modulus, 	Bi, that is uncorrelated with the change in
the shear modulus, 	Gi [6,37]. It is this property—the
independence of bond-level response—that allows the linear-
regime Poisson’s ratio to be tuned so successfully by pruning.

To quantify the inherent tunability of the Poisson’s ratio in
the nonlinear regime, we consider the contribution of a single
bond to the modulus [6], which we denote for compression
Bi(ε) = ki(δxB

i )2/ε2, where the extension δxB
i depends on the

amplitude of the imposed strain. Essentially, this is the energy
in a single bond per square unit strain; in the linear regime,
it reduces to the contribution of bond i to the linear bulk
modulus. If Bi is a constant independent of the amplitude of ε

for all i, then the elastic behavior does not depend on εAge; the
aging strain changes only the aging rate. The nonlinear cor-
relations are characterized by comparing the correlations of
Bi(ε) with their corresponding values in linear response. We
use the Pearson correlation function of two random variables,
which is defined as C(y, x) = [〈xy〉 − 〈x〉〈y〉]/σxσy, where σ

is the standard deviation.
Figure 6(a) shows C(Bi(ε), Bi(0)) versus strain for both

compression and expansion. Depending on the coordination
number, 	Z , correlations under compression decay differ-
ently from those under expansion: the correlations are similar
below a threshold value of ε, but then drop much more rapidly
in the case of compression. This threshold, which appears to
vanish in the limit of 	Z → 0, signals the breakdown of linear
response at the level of a single bond. Correlations under
expansion remain significant even for small 	Z .

The ability to tune the nonlinear response to shear strain is
characterized by C(Gi(ε), Gi(0)), as shown in Fig. 6(b). Here
Gi(ε) = ki(δxG

i )2/ε2 is measured at a shear strain of ε. The
correlations decay faster when 	Z → 0. This implies that the
system is more tunable in the nonlinear regime near 	Z → 0.

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1(b)

FIG. 6. Correlation between the elastic response at different
strains for the unaged system. (a) The Pearson correlation function
of Bi(ε) with Bi(0). Expansion is denoted by the full line, and com-
pression is denoted by a dashed line. Correlations for compression
decay more rapidly than for expansion. The different colors are for
different values of 	Z as shown in the legend of (b). (b) Correlations
of Gi(ε) and Gi(0) decay faster for lower coordination number, 	Z .
Since the unaged system is on average isotropic Gi correlations are
equal for positive and negative strains.

We can also characterize the ability in the nonlinear
regime to tune the bulk and shear moduli independently.
Within linear response in two dimensions, the correlation,
C(Bi(ε), Gi(ε)), was found to be small, ≈0.17 [6]. At a finite
compressive strain we find that this correlation becomes even
smaller. Under expansion, the correlations increase but remain
below 0.33.

We note that these correlations provide a measure of the in-
herent ability to tune a given modulus in the nonlinear regime.
They do not depend on the protocol by which the system
evolves under aging. They depend only on the nonlinear elas-
ticity and could be used to identify interactions or geometries
that are particularly amenable to manipulation by aging.

Our experimental results raise many interesting questions
about the nature of aging in these systems. For example, the
time dependence of aging and the effects of multiple aging
cycles are not well understood. These results open up various
avenues for further research that would allow us to understand
the limits to which we can train a material.

VI. DISCUSSION

Minimization of a cost function is a common design
method for achieving certain target properties, such as auxetic
behavior. While this is effective on a computer at sufficiently
small system sizes, minimization is usually not possible to
implement in the laboratory and is not scalable to arbitrarily
large systems. Directed aging evolves a mechanical system
so that the elastic properties of the system change depend-
ing on the imposed deformation and strain. In contrast to
cost-function minimization by computer, directed aging can
be performed on systems of any size both on the computer
and in the laboratory [5]. Here we have shown that directed
aging is highly effective at tuning the Poisson’s ratio even
in the nonlinear elastic regime. This result is important to
many applications, including impact mitigation [16,38] and
filtration [39,40].

We find that directed aging profoundly affects the nonlin-
ear behavior in a way that can be very different from how it
changes the linear response. In some cases the Poisson’s ratio
can be manipulated so that it changes sign as a function of
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strain. This could allow a designer to manipulate the energy
landscape and create material with desired properties that vary
as a function of the amplitude of deformation. More complex
energy landscapes could clearly be achieved by varying the
strain as the system ages.

Remarkably, the behavior in our minimal models is very
similar to the aging experiments we conduct in foam samples.
In both cases there is a memory of the strain to which they
are aged, and it can be read out from the minimum of the
Poisson’s ratio. We note, however, that our models neglect
effects such as the energy cost for varying the angle between
adjacent bonds [22] and the bending and buckling of bonds
at large strains. In addition, the dynamics during aging are
far more complex in real systems, involving a broad range of
timescales [5]. Nevertheless, the striking similarity between
the experimental results and our numerical ones suggests that
the governing principles by which a material ages are of
broader generality and independent of the precise interactions
and geometry.

Our results are also similar to the behavior seen in other
more complex materials, such as rubbers [41], solid foams [7],
and actin networks [36]. In the Mullins effect, a variety of
rubbers undergo softening when they are strained [41–43].
Softening occurs up to the strain to which they were deformed,
similar to behavior in the k model. Sticky colloidal gels and
glasses also exhibit shear softening [44,45]. The behavior we
find for aging under compression in the � model is consis-
tent with the scenario proposed by Lakes [7] to explain the
transformation of solid foams, which yields a negative Pois-
son’s ratio. Furthermore, the stiffening under shear of fibrillar
networks [36,46] is similar to our finding in the � model;
such stiffening has been explained in terms of the change in
the network geometry, consistent with the underpinnings of
the � model. Thus, the effects we discuss here could apply
more broadly to other disordered soft matter systems, where
structure is sensitive to strain.

A key finding of our experiments that is also seen in
our simulations is that aging imprints a memory of strain
at which the system was prepared. In the k model the min-
imum of the Poisson’s ratio marks the aging strain. In the
� model the system remembers the strain that corresponds
to the initial state. The difference between these behaviors
could provide an experimental test to distinguish the dominant
effects. We note that in both models, memory is inherently
a nonlinear effect, as it is measured from the strain de-
pendence of response functions. This memory is another
example of the broad range of memories that occur in out-of-
equilibrium disordered systems [47–52]. The insights gleaned
from the models studied here could be relevant in those
situations.

Finally, we have extended the theoretical understanding of
tunability for linear response [6,37] to the nonlinear regime.
The ability to train a response that depends on strain requires
that stresses at different strains become uncorrelated. This
is quantified by measuring correlation in Bi(ε) and Gi(ε)
with their corresponding value in linear response. We find
that reducing the coordination number towards the minimum
threshold for mechanical stability increases the ability to tune
the system, and that it is much easier to tune the system under
compression than under expansion.
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