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Neural-network-based algorithms have garnered considerable attention for their ability to learn complex
patterns from very-high-dimensional data sets towards classifying complex long-range patterns of entanglement
and correlations in many-body quantum systems, and towards processing high-dimensional classical data sets.
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and
very large classical data sets. A particularly interesting class of algorithms, the quantum convolutional neural
networks (QCNNs) could learn features of a quantum data set by performing a binary classification task on
a nontrivial phase of quantum matter. Inspired by this promise, we present a generalization of QCNN, the
“branching quantum convolutional neural network,” or bQCNN, with substantially higher expressibility. A
key feature of bQCNN is that it leverages midcircuit (intermediate) measurement results, realizable on several
current quantum devices, obtained in pooling layers to determine which sets of parameters will be used in the
subsequent convolutional layers of the circuit. This results in a “branching” structure, which allows for a greater
number of trainable variational parameters in a given circuit depth. This is of particular use in current-day noisy
intermediate-scale quantum devices, where circuit depth is limited by gate noise. We present an overview of the
Ansatz structure and scaling and provide evidence of its enhanced expressibility compared with QCNN. Using
artificially constructed large data sets of training states as a proof of concept, we demonstrate the existence of
training tasks in which bQCNN far outperforms an ordinary QCNN. We provide an explicit example of such
a task in the recognition of the transition from a symmetry protected topological to a trivial phase induced by
multiple, distinct perturbations. Finally, we present future directions where the classical branching structure and
increased density of trainable parameters in bQCNN would be particularly valuable.
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I. INTRODUCTION

In recent years, the scope and complexity of tasks that
classical machine learning can address have grown consid-
erably [1]. Concurrently, noisy intermediate-scale quantum
(NISQ) devices have become more useful and accessi-
ble [2–4], paving the way for an intersection of these fields.
With the exponential growth of the Hilbert space with system
size in quantum systems, high-dimensional machine learning
tasks serve as an early use case for near-term quantum com-
puters [5–7]. Recent efforts to realize a quantum advantage in
machine learning have inspired the creation of many novel
variational Ansätze [8–17] for use in applications such as
autoencoders [18,19] and many-body physics [20], quantum
chemistry [21–23], and image recognition [24]. These vari-
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ational Ansätze contain parameters that are trained through
repeated feedback and optimization with a classical com-
puter. That is, the quantum device evaluates the circuit for
a particular parameter set; the classical computer adjusts the
parameters, which are then fed back into the quantum de-
vice; and this process is repeated until optimal parameters are
found [25,26]. While irrefutable “quantum advantage” has yet
to be demonstrated via any particular machine learning task,
as NISQ devices continue to improve, it is of fundamental as
well as technological interest to explore possible advantages
of near-term quantum devices in this context.

A circuit Ansatz of particular interest is the quantum con-
volutional neural network (QCNN), introduced by Lukin and
co-workers [27], a quantum analog of classical convolutional
neural networks (CNNs). The stacking of convolution and
pooling layers in classical CNNs allows for larger and larger
features to be extracted from the data, eventually resulting
in a classification output. In the quantum domain, QCNNs
use a similar structure, with convolutional filters replaced by
entangling gates and pooling layers replaced by controlled
rotations and discarding of qubits. Both types of layers contain
trainable parameters, which are optimized using a classical
optimizer. As the number of parameters grows the classical
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optimization step becomes more difficult. However, with suf-
ficiently many parameters, QCNNs are in principle capable of
performing interesting classification tasks, such as quantum
phase recognition and image recognition [28]. Quantum phase
recognition, in particular, remains an active and important
subject of research across condensed matter and statistical
physics [29], towards creating robust phase diagrams and dis-
covering new many-body quantum phenomena in previously
unknown parts of phase diagrams.

Typically a portion of the total number of qubits is dis-
carded at each pooling layer in the QCNN, though they need
not be measured beforehand. Instead, we can simply replace
the midcircuit measurements and subsequent classically con-
trolled rotation gates with quantum controlled rotation gates.
This replacement is necessary in the majority of existing
quantum devices, which do not currently possess the abil-
ity to measure qubits midcircuit, or to condition subsequent
operations on these measurement results. However, some de-
vices [30–32] do currently offer this ability, and other devices
are likely to introduce it in the near future. With the realiza-
tion of midcircuit measurements, it is interesting to ask how
NISQ algorithms can benefit from this feature, classical con-
ditioning, and control flow. Extensive work has been done on
measurement-based quantum computing [33], which makes
maximal use of this approach. However, measurement-based
quantum computing requires very large numbers of qubits to
perform nontrivial operations. Therefore, in this paper, we ask
a pertinent and timely question: Can we incorporate midcir-
cuit measurement into variational quantum machine learning
(QML) Ansätze in order to take full advantage of the current
capabilities of quantum devices, with their limitations on fi-
delity and circuit depth?

In this paper, we generalize the structure of QCNNs, heav-
ily using midcircuit measurement capabilities, which gives the
circuit a classical branching structure where different mid-
circuit measurement outcomes dictate which convolutional
layers will subsequently be executed. This allows for a greater
number of trainable parameters than standard QCNN in a
circuit of a fixed gate depth, and therefore a greater level
of expressibility (a notion we define more specifically in
Sec. II C). This is important for the current generation of quan-
tum devices, in which circuit depth is limited by gate noise.
We call this QCNN variant “branching” QCNN (bQCNN) in
reference to the classical branching. By comparing the states
generated by random QCNN and bQCNN circuits with states
from the Haar distribution, we show that the bQCNN is more
expressive than a QCNN of the same width and depth (where
we do not count midcircuit measurements towards circuit
depth). By applying reversed, randomly generated bQCNN
circuits to product states, we generate training tasks in which
the bQCNN significantly outperforms the standard QCNN. To
demonstrate a specific instance of bQCNN’s advantage, we
then compare the performance of the bQCNN and QCNN in
learning to recognize the topological phase transition from
the Z2 × Z2 symmetry protected topological (SPT) phase
induced by two distinct types of perturbations to the par-
ent Hamiltonian. Looking ahead, the successful experimental
demonstration of a (b)QCNN for classification of quantum
phases on a quantum device will pave the way for develop-
ment and implementation of novel hybrid quantum machine

learning algorithms, which will likely leverage intermediate
measurement capabilities of trapped-ion architectures.

II. QCNN VERSUS bQCNN

A. Quantum convolutional neural networks

The quantum convolutional neural network, introduced in
Ref. [27], is a variational quantum machine learning Ansatz
that combines unitary convolutional layers with pooling lay-
ers. In the pooling layers, a portion of the data qubits are
removed and single-qubit rotation gates are performed on
the remaining qubits, conditioned on the states of adjacent
qubits. Equivalently, this conditioning can be implemented by
performing midcircuit measurements of the to-be-discarded
qubits, with subsequent rotation gates dependent on the mea-
surement outcomes. Convolution and pooling layers are both
parametrized by rotation angles that are adjusted by repeated
use of a classical optimizer (see Sec. A 2 of the Appendix
for details on the optimizer we use). The circuit terminates
in some number of qubits Nout < Nin, whose measurement
outcomes correspond to classifications of the input data. As
parameter training progresses, the probability distribution of
the output qubits’ measurements more closely reproduces the
desired classification of the training data.

The QCNN was inspired by the structure of classical con-
volutional neural networks [34], where spatial “filters” are
repeatedly applied to data, whose dimensionality is then re-
duced at a pooling layer. The essential, long-ranged features of
the input data are distilled by the combination of the filters and
the pooling, eventually resulting in a small number of such
features that can be used for a classification or recognition
task. The same principles hold in the QCNN. The filters in the
convolutional layers are multiqubit, entangling, parametriz-
able unitary operators. These serve to disentangle long-range
correlations in the input state. A pooling layer is then applied
to the qubits. Here, we select a subset of the qubits to use as
controls for controlled rotations that serve to correct single-
qubit errors (to use language from quantum error correction)
in the other qubits. These control qubits are then discarded,
and the circuit proceeds to the next, smaller convolutional
layer. We repeat the convolution-pooling pattern until we are
left with a number of qubits suited to provide classifications
for the task at hand—e.g., one qubit for a binary classification
task, two qubits for a four-category classification task, etc.

B. bQCNN: Leveraging midcircuit measurements

As noted previously [27], the pooling layers in QCNNs
can be equivalently implemented either by controlled rotation
gates or by midcircuit measurements followed by classically
conditioned operations on the remaining qubits. However,
these operations only make use of local information. That
is, a midcircuit measurement of one qubit is used only to
influence the rotation gate on a nearest-neighbor qubit. We
would like to make use of the global measurement outcomes
of all of the qubits that are measured at the pooling layer. This
could allow for improved detection of long-range correla-
tions. We thus introduce the branching quantum convolutional
neural network (bQCNN; see Fig. 1), which takes full advan-
tage of the results of measurements at the pooling layers by
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FIG. 1. An example of an L-qubit bQCNN. The blue boxes
denote parametrized SU(4) two-qubit gates (though one could use
many-qubit parametrized gates depending on the problem at hand).
The green boxes are controlled single-qubit SU(2) operations and,
along with the measurements, constitute the pooling layers. At each
pooling layer, the controlled rotations are applied to the qubits that
will move onto the next layer, a fraction of the qubits are measured
and discarded (2/3 of them in this case), and the remaining qubits
proceed to the subsequent convolutional layer. Which convolutional
layer we proceed to (i.e., which branch) is determined by the mea-
surement outcomes of the previous pooling layer. In this example,
since we measure 2L/3 qubits at the first pooling layer, there is a
choice of up to 22L/3 distinct convolutional layers that can be applied
next, each containing its own set of parametrized gates. This pattern
of convolution, pooling, branching, and convolution is repeated until
we are left with a small number of qubits, at which point we execute
a small, fully connected layer of gates, as in Ref. [27], and measure
the designated output qubit(s).

conditioning the subsequent multiqubit convolutional layers
on the pooling layer measurement outcomes.

As a concrete example, consider a Nin = 4 and Nout = 1
QCNN. In the first convolutional layer, the four input qubits
are entangled by parametrizable gates in both the QCNN
and bQCNN. At the first pooling layer, we measure qubits
2 and 4. In the original QCNN architecture, a measurement
result of 1 on qubit 2 would prompt the application of a
parametrized rotation gate on qubit 1, and a 1 measurement
on qubit 4 would yield a rotation on qubit 3. Measurements
of 0 result in no conditioned rotations. In both approaches,
qubits 1 and 3 then move on to the second convolutional layer,
where more parametrized entangling gates are applied. In the
bQCNN, however, we consider all four possible measurement
outcomes of qubits 2 and 4. Each of the four outcomes—00,
01, 10, and 11—sends the remaining qubits 1 and 3 into one of
four different convolutional layers—different branches—with
distinct trainable parameters. Since only two qubits remain in
the second convolutional layer, there is no need to apply a

FIG. 2. A four-qubit bQCNN containing 111 trainable parame-
ters (see the Appendix for details on gates). Note the dotted box
connected to the measurements by classical double-lined rails. This
dotted box indicates the presence of multiple (in this case four)
distinct convolutional layers, which are chosen based on the mid-
circuit measurement outcomes. The corresponding standard QCNN
contains 66 parameters and looks the same, though it lacks any
midcircuit measurements and has only a single branch after the first
pooling layer.

second pooling layer, and we can proceed directly to mea-
surement of qubit 0, the classification qubit in both QCNN
and bQCNN. In a larger circuit, however, we would repeat the
convolution-pooling pattern until we reach a small number
of output qubits. Even in this four-qubit example, though,
the bQCNN splits into four distinct branches, each with their
own convolutional layer after the first pooling layer. The
branching is denoted by the dashed box around the second
convolutional layer in Fig. 2. The upshot of this is that the
four-qubit bQCNN contains 111 trainable parameters, while
the equivalent QCNN contains only 66, despite both having
the same overall circuit depth.

We have observed and rigorously evaluated that the clas-
sical branching structure of the bQCNN allows for a greater
density of trainable parameters over a standard QCNN. De-
pending on the choice of specific circuit structure (depth of
each convolutional layer and fraction of qubits to keep at each
pooling layer), a bQCNN may have orders of magnitude more
parameters than the QCNN of the same depth. For example,
a 16-qubit bQCNN in which half of the qubits are discarded
at each pooling layer, and which has only a single layer of
entangling gates in its convolutional layers, could have over
50 000 trainable parameters. Meanwhile its QCNN counter-
part would have only about 400 parameters, with the same
overall circuit depth. Of course, training 50 000 parameters
with a classical optimizer is likely impractical, but we need
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not use every single branch in bQCNN in order to achieve a
much more expressive Ansatz than QCNN.

This increased density of parameters is potentially very
useful in the NISQ era, as two-qubit gate errors still present a
significant limitation on the fidelity of deep circuits (for exam-
ple, see Ref. [30] for recent data on error rates in Honeywell’s
trapped-ion device, which lists average two-qubit gate error
rates at 8 × 10−3). Again, we emphasize that this increase in
parameter count is achieved with no additional circuit depth.
If errors related to midcircuit measurements are not large,
bQCNNs can in principle express a greater range of operations
for a given circuit depth compared with standard QCNNs, a
point we explore in more detail in the next section.

C. Expressibility of QCNN versus bQCNN

The motivation for making use of information gained from
midcircuit measurements is to increase the expressibility of a
parametrized, QCNN-like circuit without incurring significant
error costs due to increased circuit depth and gate count. That
is, given an N-qubit parametrized hybrid circuit Ansatz Û (θ),
we seek to increase the volume of the full N-qubit Hilbert
space accessible by applying Û (θ)—for some set of parame-
ters θ—to the all-zero state, |0〉⊗N . To consider two extremes,
a circuit Û consisting of only single-qubit gates will be unable
to represent the majority of the Hilbert space, since it cannot
generate entanglement from the all-zero product state. On the
other hand, a circuit Ansatz that can represent an arbitrary state
in the Hilbert space would require up to 22N − 1 parameters
[the dimension of SU(2N )] and is therefore impractical for use
as an Ansatz in a hybrid quantum-classical algorithm beyond
very small system sizes.

Practical Ansätze for hybrid algorithms lie somewhere be-
tween the exponentially large, fully parametrized circuit and
the trivial single-qubit gate circuit in their expressibility. Here,
we show, using the specific notion of circuit expressibility
introduced in Ref. [35], that the bQCNN is more expressive
than the standard QCNN of the same circuit depth. This, in
principle, should allow for more complex classification tasks
to be performed without increasing circuit depth and thus
incurring significant errors from two-qubit gates.

We emphasize that in an actual application of bQCNN we
are not interested in creating states from the all-zero state.
Rather, we are interested in disentangling input states in such
a way as to induce a desired output probability distribution
on the classification qubit. However, learning about the types
of states that bQCNN and QCNN, respectively, can create
is directly related to this question. If the circuit can create a
particular state from the trivial all-zero state, then it is capable
of disentangling that state to create a desired output. In order
to maintain an entangled state after executing a full bQCNN
and for ease of computation, we replace measurements and
classical conditioning with multiqubit controlled gates. How-
ever, this is equivalent to the midcircuit-measurement-based
version of bQCNN from the perspective of the classification
qubit, albeit with much greater circuit depth. (Alternatively,
one could consider the space of mixed states to represent
bQCNN, which would include all of the midcircuit measure-
ment outcomes and their associated branches.)

FIG. 3. Top: a histogram of fidelities for states generated by
eight-qubit random QCNN circuits. Bottom: The same for eight-
qubit bQCNN circuits. In both cases the Haar fidelity distribution
is superimposed as an orange line. The histograms visibly differ only
slightly (the QCNN fidelities are more strongly peaked at 0), but the
bQCNN is more than twice as expressive as the QCNN, according to
the KL divergence.

We calculate the expressibility of a particular parametrized
circuit Ansatz Û (θ) by randomly generating many pairs of pa-
rameter sets, θ,φ, and then calculating the fidelity between the
states generated by applying the corresponding parametrized
circuits to the all-zero state,

F = |〈0|Û †(θ)Û (φ)|0〉|2. (1)

We sample over many random sets of parameters for both
the bQCNN and the standard QCNN to obtain a probability
distribution over the fidelities, P(b)QCNN(F ).We then, using
the Kullback-Leibler (KL) divergence, compare the sampled
distributions to the Haar random fidelity distribution

PHaar (F ) = (2N − 1)(F − 1)2N −2. (2)

Computing the KL divergence of these two distributions
yields a measure of the circuit Ansatz in question, Û (θ),
dubbed the expressibility:

Expr = DKL(P(b)QCNN(F )||PHaar (F )). (3)

The lower the value of (3) for a particular circuit, the
more expressive that circuit is. In Fig. 3 we compare these
distributions for eight-qubit QCNN and bQCNN circuits. We
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sample 4500 random pairs of circuits for each Ansatz and es-
timate the resulting expressibility (using 500 histogram bins)
of the bQCNN to be 0.0072, while that of the standard QCNN
is 0.0163, significantly higher and therefore less expressive.
Given that the eight-qubit bQCNN contains 914 trainable
parameters, while the QCNN only contains 182, it is unsur-
prising that the bQCNN can more closely mimic the Haar
distribution. This is despite requiring no additional circuit
depth on a quantum device with midcircuit measurement ca-
pabilities.

While this measure of expressibility by no means captures
the full range of the differences between QCNN and bQCNN,
it is an established metric that suggests that there are cor-
ners of the four-qubit Hilbert space more easily accessible to
bQCNN. This is of great potential benefit to QML tasks, espe-
cially considering the lack of increased circuit depth incurred.

III. ARTIFICIAL TRAINING TASKS

To demonstrate that this added expressibility is of use, we
can start by creating artificial training tasks. We can generate
perfectly classifiable states using a four-qubit bQCNN with
random parameters by applying the inverse of (a particular
branch of) the bQCNN to the complete set of product states in
the computational basis (e.g., all 16 binary states for the four-
qubit circuit; |0000〉, |0001〉, |0010〉, etc.), corresponding to
every measurement outcome of the qubits after being passed
through the forward circuit. If we use the zeroth qubit as the
classification qubit, the span of the images of the set of states
with 1 or 0 in the zeroth position under the inverted bQCNN
corresponds to the two classes of states we are attempting
to distinguish. Since these states are generated by running
the bQCNN circuit with random parameters in reverse, a
bQCNN of the same structure should in principle be able to
learn to classify these randomly generated states without prior
knowledge of the random parameters used to generate them.
Indeed, this is what we find. In Fig. 4 we compare the training
performance of a bQCNN and an ordinary QCNN on a set
of four-qubit bQCNN-generated training data. The bQCNN
performs significantly better, with the correctness at 0.900 and
0.838 after 500 generations of training for the bQCNN and the
QCNN, respectively.

We can consider an alternative demonstration of express-
ibility, in which we generate training data using a backwards
QCNN and then train both a QCNN and a bQCNN on these
data. However, by setting all bQCNN branches to be equal
to the single branch of the QCNN, we can trivially see that
the bQCNN will always perform as well as QCNN, if not
better, on a task that QCNN can in principle perform perfectly.
Concerns about overfitting may arise when the bQCNN is
used for tasks where QCNN performs very well; however, we
do not address out-of-training-sample testing performance in
this paper, and we leave this as a future question to pursue.

IV. DETECTING AN SPT PHASE TRANSITION

In earlier work [27], the authors demonstrate the abil-
ity of a QCNN to recognize the phase transition between
the Z2 × Z2 symmetry protected phase, which contains the
one-dimensional (1D) cluster state, and a trivial (either anti-

FIG. 4. The correctness [1 minus the mean absolute error
(MAE)] of the best circuit in a generation vs training generation
for a four-qubit bQCNN (blue) and standard QCNN (orange) when
training on bQCNN-generated data. To generate the data, a bQCNN
circuit was created with a set of 111 random parameters. The com-
plete set of 16 binary basis states (|0000〉, |0001〉, |0010〉, etc.) was
then passed through the circuit in reverse, and the resulting 16 states
were used as training data. The binary label of the zeroth qubit before
being passed through the inverted bQCNN, of course, served as the
states’ corresponding training labels. The above data were averaged
over three training sessions on different randomly generated data
sets.

ferromagnetic or paramagnetic) insulator phase. Specifically,
the authors used as training data the ground states of the clus-
ter Hamiltonian with a uniform magnetic field perturbation

H = −
∑

i

Zi−1XiZi+1 − h1

∑

i

Xi (4)

with varying values of the field strength, h1. The trained
QCNN was tested on the ground states of the same Hamil-
tonian, with the addition of an XX Ising term,

H = −
∑

i

Zi−1XiZi+1 − h1

∑

i

Xi − h2

∑

i

XiXi+1, (5)

and was able to detect the phase transition for nonzero values
of h2, despite all of the training data having h2 = 0. The
QCNN excelled at this task because, for sufficiently small h1

and h2, the perturbations to the ground state induced by the
magnetic field and the Ising term can be viewed as single- or
two-site, local bit-flip errors applied to the cluster state. The
QCNN pooling layer was able to learn to detect and correct
these local errors, until they were strong enough to change
the value of the string order parameters and result in a phase
transition.

Towards diversifying the classification tasks well suited
to the bQCNN, we observe that the classical information
obtained at the bQCNN pooling layers is global, and the
decision of which branch to activate is based on the aggregate
of measurement results of all of the discarded qubits. Thus it is
reasonable to conjecture that the bQCNN may be superior to
QCNN at correcting nonlocal or multisite errors. In addition,
the presence of multiple branches suggests that the bQCNN
might outperform QCNN when presented with a more diverse
set of training data, with qualitatively different types of states
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within each class. Combining these two intuitions, we com-
pare the training performance of bQCNN and QCNN in the
phase recognition task using the ground states of the following
Hamiltonian with open boundary conditions on four sites:

H = −
∑

i

Zi−1XiZi+1 − h
∑

i

Xi − g
∑

i

Xi−1XiXi+1, (6)

for various values of the field strengths, h and g. Specifically,
one-half of the training data set consists of the ground states
of (6) with g = 0, h ∈ [0, π

2 ), and the other consists of the
ground states of (6) with h = 0, g ∈ [0, π ). To diagnose the
phase transition, we use the simple string order parameter

Ô = Z1Y2Y3Z4, (7)

obtained by taking the dot product of the two ZXZ stabi-
lizer operators (for a larger system of N qubits we can use
Ô = Z1Y2[

∏
i∈[3,N−2] Xi]YN−1ZN ). The expectation value of

this order parameter is 1 in the SPT phase and 0 in the trivial
phase. Because of the small system size, the phase transition is
smooth rather than abrupt, and the order parameter value de-
creases smoothly as we increase either g or h, so we designate
the point at which 〈O〉 = 0.5 to be the phase transition. States
with higher order parameter values are considered topological
(denoted by a 0 measurement at the end of the circuit), while
those with lower values are trivial (denoted by a 1 measure-
ment). Using the ground states from (6) and their associated
phase labels, we can proceed to train the circuits.

We train a four-qubit bQCNN containing 111 free parame-
ters and a QCNN of the same width containing 66 parameters.
The results of a 500-generation training session, in which
we use a genetic algorithm (described in Sec. A 2 of the
Appendix) to minimize a mean absolute error cost function,
are depicted in Fig. 5.

Importantly, we note again that both circuits, when exe-
cuted on a quantum device, have the same quantum circuit
depth. Though the bQCNN contains midcircuit measurements
and immediate classical feedback—a potential source of cir-
cuit error and latency—a traditional QCNN constructed with
sufficient circuit depth to achieve the same parameter count
as the bQCNN would incur much larger two-qubit gate error
costs for a sufficiently wide circuit.

V. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a variational circuit
Ansatz for hybrid quantum machine learning applications.
This Ansatz, the branching QCNN, takes advantage of the
emerging classical control flow capabilities of quantum
devices—that is, their ability to perform midcircuit measure-
ments and then decide which subsequent quantum operations
to execute based on measurement results. Though the bQCNN
has the same overall circuit depth as the original QCNN
Ansatz, it can contain many more trainable parameters, poten-
tially increasing the range of QML tasks that can be performed
on NISQ devices, where circuit depth is inherently limited
by gate errors. We quantify the effect of increasing parameter
count by numerically estimating the expressibility of an eight-
qubit bQCNN, finding it to be significantly more expressive
than its QCNN counterpart. Convinced of bQCNN’s enhanced
potential, we generate artificial training tasks in which a

FIG. 5. The training correctness (1 minus the mean absolute
error cost function) for 500 generations of training of a four-qubit
bQCNN (blue) and four-qubit QCNN on the diverse data set. This
training data set features independent X and XXX perturbations in
the Hamiltonian (6) as a means of driving the phase transition. The
relatively-long-range perturbation introduced by the XXX terms, as
well as the diversity of the perturbed states in the training set, allows
for superior training performance in the bQCNN, which very rapidly
approaches its ultimate maximum correctness of 0.743. Meanwhile,
the QCNN slowly reaches a final correctness value of 0.706, approx-
imately 5% less than the bQCNN correctness, and after many more
iterations of the genetic algorithm.

four-qubit bQCNN demonstrates considerable advantage over
QCNN. We then provide an example of a specific, physical
training task in which bQCNN beats out QCNN and speculate
about the general class of training tasks for which this is true.

Beyond introducing the bQCNN Ansatz, we emphasize
the utility of midcircuit measurement in near-term quantum
applications. While we have used simple classical information
processing to augment quantum operations—namely, using a
classical computer to decide which branch to execute after
obtaining midcircuit measurement results—we envision more
elaborate hybrid quantum-classical approaches in future. For
example, we could imagine an approach in which classical
information obtained from midcircuit measurements is used
to train classical machine learning methods, and the quantum
and classical methods are used in conjunction to arrive at a
result. Many other configurations of classical and quantum
computing resources are conceivable. In any case, the ability
to extract some classical information from a quantum algo-
rithm via midcircuit measurement should be tremendously
useful in taking full advantage of near-term quantum devices.

As a direct extension of this work, it would be useful to
train and test bQCNN on larger systems, perhaps with the
help of tensor network algorithms (e.g., Ref. [36]). Related to
this, so-called “barren plateaus” occur in the cost functions
of many variational Ansätze as the parameter space grows
large [37], leading to questions about scalability of hybrid
quantum-classical variational algorithms. There is some evi-
dence to suggest that standard QCNNs avoid this issue [38].
It would be interesting to see whether this is true for bQCNNs
and other midcircuit-measurement-based hybrid algorithms.
While the increase in parameter count relative to circuit
depth does bode well for expressivity of the Ansatz, it could
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potentially make training more difficult. We have introduced
the general structure of the Ansatz as an invitation for further
study into its scalability and trainability. It may turn out that
bQCNNs are indeed more difficult to train than QCNNs of
equivalent depth, but their increased parameter density may
allow for shallower circuits to be effective for certain training
tasks. The question of trainability thus warrants future work.

A more detailed study of the training tasks for which
bQCNN—or other midcircuit-measurement-based Ansätze—
is well suited is warranted based on our results. In addition
to the randomly generated data, we presented one such spe-
cific example here, but it would be interesting to know more
about the general classes of problems that one can and can-
not solve by employing midcircuit measurements. It is likely
that certain learning tasks are better suited for more stan-
dard architectures, where the different branches’ parameters
may converge to the same values. Indeed, the similarity
of the branches after training convergence could potentially
tell us whether or not a particular task requires branching.
It would also be useful to know about the general class
of multiscale entanglement renormalization Ansatz (MERA)-
like states generated by our random backwards circuits. In
recent works, machine learning algorithms—both quantum
and classical—have been used as Ansätze for quantum states
with interesting entanglement structure [39].

VI. OUTLOOK

There is a major opportunity in extending other Ansätze
for hybrid quantum algorithms with the use of midcicuit
measurements. Some recent works have explored this di-
rection. In particular, in Ref. [40], the authors extend the
length of a matrix product state Ansatz via the use of mid-
circuit measurement and demonstrate the viability of this
approach experimentally. Here, we have modified a single
such Ansatz—QCNN—to make use of midcircuit measure-
ments. This brings many other questions to the forefront:
Are other circuit architectures amenable to similar modifi-
cations? Can we build hybrid variational Ansätze from the
ground up using midcircuit measurements and classical con-
trol flow? Are there measurement-based quantum computing
approaches to hybrid variational algorithms that could shed
light on these questions? This last question has been ex-
plored in some recent works (e.g., Ref. [41]). In some sense,
gate-based variational Ansätze augmented by midcircuit mea-
surements and classical control flow can be viewed as a
hybrid of a fully gate-based and a fully measurement-based
protocol, if one views the the unitary gates preceding mea-
surements as changes of measurement basis. For bQCNN and
other variational circuits involving midcircuit measurements
to be of use in near-term devices, it is vital to understand
their performance in realistic noisy environments. Today, only
a small number of quantum devices offer midcircuit mea-
surement and classical feedback (e.g., Ref. [30]), and to the
authors’ knowledge, most of these devices are trapped-ion
quantum computers. In the course of a midcircuit measure-
ment, scattered fluorescent photons from the detection process
can result in bit flips of far-away qubits, yielding a cross-talk
error. Other errors can occur in the process of midcircuit
measurement, and some amount of qubit idling occurs as

classical information is processed after a measurement and
before the subsequent branching. To understand the utility of
bQCNN, we must know when the two-qubit errors that would
be incurred in a similarly expressive QCNN circuit (which
will be deeper overall) outweigh the errors incurred by the
measurements in a bQCNN.

Going forward, as midcircuit measurement is made avail-
able on more hardware, it will be productive to consider
expanding the scope of the hybrid quantum-classical com-
putation paradigm to make full use of existing quantum
resources. This will mean allowing high-performance (soon
exascale) classical computation to play a greater role in in-
termediate processing of data after midcircuit measurements,
in addition to executing classical optimization routines. The
authors of Ref. [40] demonstrated that we can faithfully
simulate a large quantum system using very few qubits by
taking advantage of midcircuit measurement. Some physical
problems in condensed matter physics and materials science
do not require the storage or manipulation of maximally
entangled, Page-like states; they often need only be entan-
gled over a short range. This means that the combination
of intermediate-scale quantum devices and midcircuit mea-
surement capabilities could open the door to a new range of
physical problems.
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APPENDIX

1. Circuit structure and implementation

Any universal two-qubit SU(4) gate (depicted in blue in
Fig. 1) can be generally decomposed using at most three
CNOT gates [42], appropriately composed with single-qubit
rotations. For bQCNN simulations we utilize the gate decom-
position shown in Fig. 6, which would be appropriate for
implementation on a hardware system with CNOT as its native
entangling gate (e.g., a superconducting qubit system). The

FIG. 6. Gate decomposition for the general two-qubit SU(4) ro-
tation applied to qubits i and j using CNOT gates.
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FIG. 7. Gate decomposition for the general two-qubit SU(4) rotation applied to qubits i and j using trapped-ion native gates, where s = ±1
depending on the laser tuning of the device.

input θ is an array of 15 rotation angles that fully parametrizes
the two-qubit rotation.

Equivalently, we could decompose an SU(4) rotation
into Mølmer-Sørensen (MS) gates for implementation on a
trapped-ion device as depicted in Fig. 7. Since trapped-ion
devices are the only current providers of midcircuit measure-
ment capabilities, this decomposition would be more useful in
a near-term implementation.

2. Genetic algorithm parameter optimization

Due to the variational nature of the QCNN, a proper train-
ing procedure for the parametrized circuit is necessary. We opt
for a genetic algorithm rather than a gradient-based method
due to the large number of parameters, and the poor scala-
bility of gradient-based methods as this number continues to
grow [37]. The genetic algorithm trains many generations of
angle sets to slowly minimize a cost function. In our case, we
use the following mean absolute error cost function:

MAE =
∑

α

| f (α) − 〈 f (α)|Û (θ)|α〉|, (A1)

where α is the label of a state |α〉 in our training set, f (α) is
the classification—either 0 or 1—of |α〉, Û (θ) is our circuit
Ansatz (which is not unitary in the case of bQCNN, so this is
an abuse of notation), and | f (α)〉 is the state on qubit 0 that
represents the correct classification outcome of |α〉.

The genetic algorithm consists of the creation of successive
generations, which successively improve based on the suc-
cesses of the previous generations. Each generation consists
of a population of parameter sets to fit the circuit. During
each training cycle, the cost function is evaluated by running
a predetermined number of shots and recording the classical
measurement outcomes. Each rotation angle in each parame-
ter set is then binarized into a single bit string and arranged
based on cost function performance. Some percentage of the
best-performing parameter sets immediately move on to the
next generation, and the remaining spots are filled through
crossover between randomly chosen individuals, weighted by
performance.

Crossover is defined by the following: Given two parent bit
strings a and b of length l , they will produce two children bit
strings each of length l:

a0a1 · · · al −→ a0a1 · · · akbk+1 · · · bl ,

b0b1 · · · bl −→ b0b1 · · · bkak+1 · · · al ,

where k is the crossover point, chosen at random but only be-
tween parameters. Additionally, we specify a rate of mutation,
which randomly swaps individual bits following crossover,
introducing slight changes to angle values. The choice of these
hyperparameters (population size, carryover rate, mutation
rate) in the genetic algorithm can significantly impact the
training performance, so brief calibration of the hyperparam-
eters was performed before any given training task.
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