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Transport across twist angle domains in moiré graphene
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Many experiments in twisted bilayer graphene (TBG) differ from each other in terms of the details of their
phase diagrams. Few controllable aspects aside, this discrepancy is largely believed to arise from the presence
of a varying degree of twist angle inhomogeneity across different samples. Real-space maps indeed reveal TBG
devices splitting into several large domains of different twist angles. Motivated by these observations, we study
the quantum mechanical tunneling across a domain wall (DW) that separates two such regions. We show that
the tunneling of the moiré particles can be understood by the formation of an effective step potential at the
DW. The height of this step potential is simply a measure of the difference in twist angles. These computations
lead us to identify the global transport signatures for detecting and quantifying the local twist angle variations.
In particular, using Landauer-Büttiker formalism, we compute single-channel conductance (dI/dV ) and Fano
factor for shot noise (ratio of noise power and mean current). A reduction in the low-energy conductance and
a zero-bias sub-meV gap in the conductance are observed which scale with the twist angle difference. One
of the key findings of our work is that transport in presence of twist angle inhomogeneity is “noisy,” though
sub-Poissonian. In particular, the differential Fano factor peaks near the van Hove energies corresponding to the
domains in the sample. The location and the strength of the peak are simply a measure of the degree of twist
angle inhomogeneity.
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I. INTRODUCTION

Temperature, pressure, doping, etc. are among the most
innate tuning parameters which can fundamentally transform,
thereby help us understand, many condensed matter systems.
As a result of the discovery of correlated insulation [1] and
superconductivity [2] in twisted bilayer graphene (TBG), a
twist angle has been envisaged as a conspicuously novel con-
trol parameter that can allow various layered van der Waals
materials to host myriads of intriguing phases [3–7].

Various scenarios were soon proposed in order to un-
derstand the nature of these, seemingly strongly correlated,
phases. However, in doing so, addressing the role of elec-
tronic interaction has been a major challenge for theorists and
experimentalists alike. Attempts to control the insulating or
superconducting states by controlling interaction [8–10], or
otherwise [9,11–19], have led to a surprisingly large number
of dissimilar phase diagrams of TBG. In fact, even the number
of insulating regions and that of the superconducting domes
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in these samples (under almost equivalent external circum-
stances) has been widely different. Such discrepancies in the
phase diagrams from one sample to another have created a
major bottleneck in understanding these newly discovered
states.

Recent developments in real-space imaging of TBG sam-
ples [13,20,21] have made it clear that what makes each moiré
device unique is the presence of a large amount of spatial
inhomogeneity in twist angles, which is both undesirable
and uncontrollable. In fact, other than direct images, indirect
evidences of twist angle inhomogeneity have always lurked
even in the first set of TBG samples. For instance, the pres-
ence of Fraunhofer oscillation in critical current varying with
normal field [1,2,11,12] signals formation of superconducting
domains coexisting with the normal state. Several devices also
show variable transport characters depending on the lead loca-
tion [11]. All these naturally hint at an inherent inhomogeneity
in the TBG samples. Hence, a careful analysis of this new type
of disorder—henceforth to be dubbed as “twist disorder”—is
inevitable for a complete understanding of the phase diagram
of TBG.

In this work, we study the transport properties of “moiré
electrons” (low-energy quasiparticles in moiré materials) in
TBG with twist disorder. In particular, we analyze the quan-
tum mechanical tunneling of these quasiparticles across two
(or more) domains, each with a different twist angle. We refer
to this as “moiré tunneling.” Although a realistic TBG device
possesses multiple twist angle domains (TADs) of various
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FIG. 1. Schematic of the system. (Left) A TBG sample with two different twist angles (θL, θR) across a domain wall along the y axis. We
analyze tunneling characteristics of incident moiré electrons from the left, with momentum �k measured from the M point and incident angle
φk . In TBG, there always exist two evanescent modes, eL,R, near a DW. Moiré electrons can tunnel when there also exist propagating modes,
pL,R. In general, the MBZs of sizes 2KθL,R can tilt by ϕL,R angles with respect to the DW. (Middle) Using the Bistritzer–MacDonald model,
the low-energy moiré dispersion (θ = 1.18◦) is obtained along the cut (green lines) shown in the left panel. The inset compares this with the
effective dispersion obtained in Eq. (4). (Right) For a BZ cut transverse to the zone boundary (K-K ′ line), the dispersion (black curve) is
gapless at the Dirac points (ky = ±Kθ ) but is maximally gapped (gray curve) at the M point (ky = 0).

shapes and sizes [21], for analytic tractability, we confine our
study to tunneling across a single, or a few, one-dimensional
domain walls (DWs) separating two semi-infinite TADs.

We analyze moiré tunneling for various scenarios differing
in four free parameters, two of which characterize the TADs
and the other two characterize the moiré electrons. A TAD is
described by two fixed angles: twist angle (θ ) and tilt angle
(ϕ). The relative orientation of the DW with respect to the
zone edge (K-K ′ line) of the moiré Brillouin zone (MBZ)
is referred here as a tilt angle, see Fig. 1. In real space, this
corresponds to the angle at which the edges of two domains
meet at the DW. The remaining two parameters, that describe
a moiré electron, are its momentum and energy. In presence
of a DW, translation symmetry is broken along the direction
transverse to the DW, though not along the longitudinal direc-
tion. We denote this conserved component of momentum as
ky since the DW is aligned along the y axis. Note that one can
also choose the incidence angle (φ) as an equivalent control
variable. Lastly, we tune the energy (ε) of the incident electron
and obtain tunneling as a function of ε. This simple single
particle analysis of moiré electrons help us uncover many
intriguing aspects of TBG.

Summary

Irrespective of the value of twist angle (as long as it is of
about 1◦), two of the most robust features of the moiré band
structure of TBG [22–24] are the band touching at the K point,
or the charge neutral point (CNP), and the presence of a van
Hove singularity (vHS) at the M point. Our tunneling study is
in fact mostly focused near these two high-symmetry points.
The key features of moiré tunneling near these points are the
following.

K point. In the absence of bias or doping, the physics is
largely dominated by the low-energy electrons near the K (or
K ′) point. In the presence of a potential barrier, the dispersion
being linear near the K point, many of the moiré tunneling
characters resemble those observed in pristine graphene [25],
e.g., Klein tunneling [26–28]. However, we show that Klein
tunneling cannot occur for tunneling across a twist angle DW.
In fact, one can easily establish that Dirac particles can never

tunnel to the other side of the DW. This is simply because the
bandstructure ensures that a Dirac particle on one side of the
DW always encounters a gap on the other side. Therefore, if
the energy is not sufficiently high, the tunneling is completely
prohibited, resulting in a vanishing tunneling probability. Two
important consequences of this fact are (a) due to the absence
of low-energy tunneling states, conductance contribution from
moiré tunneling does not posses a minimum; and (b) since
tunneling cannot resume until the gap is overcome, this drives
a zero-bias gap in conductance.

We provide an additional discussion on the recipe to
resurrect Klein tunneling in TBG-like systems. We show
that if one forms a DW joining two materials featuring
linear dispersions with differing slope of the cones (or Dirac
speeds), one can achieve not only Klein tunneling but also an
electronic equivalent of Snell’s law of refraction. This follows
simply from the conservation of energy and momentum. We
also show these results to remain impervious to any amount
of titling of the TADs.

M point. Close to half-filling of the moiré unit cell, one
can access the electrons near the M point. When the energy
is close to the vHS, due to the enhanced density of states
(DOS), instabilities can surface even for weak interactions.
This can give rise to new phases of matter. Indeed, the most
interesting correlated phases in TBG are seen around the half-
filling point. One of the central results of our work is that we
show tunneling of the high-energy moiré electrons near the
M point is analogous to the tunneling of nonrelativistic elec-
trons across a step potential. Here, the height of the effective
step potential turns out to be proportional to the difference in
twist angles across the DW. Using this analogy, we also estab-
lish that no matter the number of the DWs (arranged in paral-
lel) normal tunneling of moiré electrons is dictated only by the
twist angle of the first and the last domain. In fact, if they hap-
pen to be the same, the tunneling probability becomes identity.

We present all these results in the following manner. In
Sec. II, we introduce the effective model that is used for all
our computations. In Sec. III, we describe the method for
computing moiré tunneling. We then divide our analysis into
two parts. In Sec. IV, we study tunneling across a DW that is
parallel to the K-K ′ zone boundary, called longitudinal DW,
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and in Sec. V, we extend this study to include the effects of
any finite tilt angle. Various tunneling scenarios, such as the
presence of multiple DWs, or when the DW has a finite width,
are detailed in the subsections therein. In Sec. VI, we compute
the mesoscopic conductance of moiré electrons and discuss
its key features in presence of TADs. Here we also compute
the Fano response and propose that this could be used as
a simpler experimental tool, as compared to more involved
local measurements, to diagnose twist disorder in TBG. We
summarize all our findings and conclude our discussions in
Sec. VII.

II. EFFECTIVE TWO–BAND MODEL

For twist angles O(1◦), TBG can be described using a
host of continuum models [22–24,29–32]. A key common-
ality in all these models, topological aspects aside, is that
they describe the two graphene layers via their low-energy
Dirac descriptions at a particular chosen valley and then turn
on an interlayer coupling through a moiré potential. Upon
increasing the moiré potential the lowest energy branches start
developing saddle points near the M point, accompanied by a
gap opening which isolates these bands from the high-energy
branches. For small twist angles [25,33], Ref. [34] obtains a
minimal model from the low-energy continuum model that
captures these essential features of the lowest two bands (near
the K valley of the original Brillouin zone)

H0 = m0

[
0 (k̂†)2 − (�K†)2

(k̂)2 − �K2 0

]
. (1)

Here, m0 ≡ 2v2
F/15t̃⊥ and vF ≈ 106 m/s is the velocity of

the Dirac electrons in pristine graphene. The mass scale m0

has a mild twist angle dependence via the interlayer cou-
pling, t⊥ ≈ 0.27 eV. However, for small twist angles, it can
be approximated [23] to a constant, t̃⊥ � 0.4t⊥. Henceforth,
we fix m0 = 1. We define k̂ = k̂x + ik̂y, with k̂i = −i∂i and
the complex momenta in the moiré Brillouin zone (MBZ)
are defined as k = kx + iky = |k|eiφk , with the origin at the M
point of the MBZ. Interchanging k̂ with k̂† (the Hermitian con-
jugate of k̂) results in a theory near the K ′ valley. The above
matrix is written in the basis corresponding to the sublattices
A and B of layers 1 and 2, respectively. The Dirac points in
the MBZ are located at k = ±�K , which are obtained by
twisting the Brillouin zones of the top graphene layer by an
angle θ , thus �K = Kθei(ϕ+π/2), where 2Kθ = 2K sin(θ/2) is
the size of the MBZ. K = 4π/3a0 and a0 ≈ 0.25 nm are the
momentum-space and real-space lattice constants of pristine
graphene, respectively. The phase arising due to a finite tilt
angle ϕ does not have any observable consequence in absence
of a DW. Due to the hexagonal symmetry of the MBZ, we
restrict the value of the tilt angle to |ϕ| � π/6.

The energy dispersion obtained from the effective Hamil-
tonian in Eq. (1) takes the form

ε2(k) = εvK2
θ + 2εv|k|2 cos(2φ − 2ϕ) + εv|k|4, (2)

where εv = m0K2
θ = ε(0) is the saddle point energy corre-

sponding to a logarithmic van Hove singularity (vHS) at
the M point [22], see Eq. (A3). It is important to stress
here that this model, though rudimentary, correctly captures

the presence of the vHS (with respect to the Dirac point).
In monolayer graphene (MLG) or in Bernal stacked bilayer
graphene (BLG), the vHS lies far away from the Dirac point,
thus, rendering them difficult to gate. However, the proximity
of the vHS to the CNP in TBG allows one to move the Fermi
surface close to the vHS with ease [35]. This enhances the
density of states, thereby amplifying the interaction, leading
to various instabilities and a host of different phases.

III. TUNNELING COMPUTATION

We now place a one-dimensional (1D) DW at x = 0 in the
above theory and proceed to compute the tunneling across
it. In this section, we present the method to obtain tunneling
across two TADs that are tilted at an arbitrary angle ϕ with
respect to the DW.

Due to the presence of a DW, translation symmetry is now
broken along the x direction. To the left (right) of this DW
there is a TBG with a twist angle θL (θR) and a tilt angle ϕL

(ϕR), see Fig. 1. We will assume |θL − θR| < 1◦ so that we
can work with a simple one-dimensional DW. Formally, the
system can be described using Heaviside 	 function as

HDW = H0(ϕL, θL) 	(−x) + H0(ϕR, θR) 	(x) . (3)

Note that HDW still has translation symmetry along the y direc-
tion. Therefore we can reduce the problem to a 1D eigenvalue
problem after replacing kx with −i∂x in Eq. (1),

ε2
 = (
∂4

x − a∂2
x − ib∂x + c

)

. (4)

The parameters appearing in the above eigenequations are
position (x-axis) dependent step functions since they depend
on the twist and the tilt angles,

a(θ, ϕ) = 2
(
K2

θ cos 2ϕ + k2
y

)
,

b(θ, ϕ) = 4kyK2
θ sin 2ϕ,

c(θ, ϕ) = k4
y + K4

θ − 2k2
y K2

θ cos 2ϕ. (5)

The values abruptly switch from aL ≡ a(θL, ϕL) to aR ≡
a(θR, ϕR) and similarly, {bL, cL} to {bR, cR} across the DW.
The full solution to HDW is obtained by solving the ordinary
differential equation in Eq. (4) with appropriate boundary
conditions (see Appendix B for details) to obtain the tunneling
coefficients.

Let us first consider the uniform eigenequation
H0(θ, ϕ)
 = ε
, before placing the DW. A generic solution
takes the form


k(r) = Fs(η) eik·r, Fs(η) = 1√
2

(
1

seiη

)
. (6)

Here, 
k is a two-component wave function in the pseudo-
spin basis where the components correspond to the sublattice
A of layer 1 and sublattice B of layer 2. s = sign (εk) = ±1
corresponds to the band index. Without loss of generality we
will fix the band index to s = +1 since in our case, unlike
in the presence of a potential barrier, the chemical potential
never passes through two different bands as one moves across
the DW (thereby excluding the presence of any p-n or n-p
junction). Henceforth, we also denote F+ ≡ F .

The dependence of 
k on θ, ϕ enters through the phase
difference between the two components, η ≡ Arg(k2 − �K2),
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which can be obtained by using Eq. (6) in Eq. (4). It is
worth noting here that the wave function 
k(r) formally
resembles the wave function of the low-energy electrons in
MLG and BLG; except, the phase difference η = φk for MLG
and η = 2φk for BLG, where tan φk = ky/kx is the angle of
propagation. Thus, after a full rotation around a Dirac point,

k(r) obtains a Berry phase of π and 2π for MLG and BLG,
respectively [36]. This plays a crucial role in understand-
ing tunneling characteristics of electrons in graphitic systems
[37,38]. In fact, as we will see, for low-energy moiré electrons
(the ones near the CNP) the phase difference simplifies to
η = ϕ + π/2 + φq, which gives rise to a Berry phase of π

for a closed orbit. This will be useful in understanding the
low-energy scattering discussed in Appendix C.

We now compute the transmission and reflection coeffi-
cients for a single DW and an array of DWs (along the x
direction). Due to the translation symmetry along the y axis,
ky is still a good quantum number, however kx value switches
from kL on the left to kR on the right of the DW. The incidence
angle is thus, tan φL = ky/kL, while the outgoing angle is
tan φR = ky/kR. The most general (L2-normalizable) solution
for Eq. (4) can be written in terms of the wave function in
Eq. (6) as

x < 0 : 
L(r) = [p+
L F (η+

L )eixkL + p−
L F (η−

L )e−ixkL

+ eL F (−i ln χ+)exκL ]eiyky , (7a)

x � 0 : 
R(r) = [p+
R F (η+

R )eixkR + p−
R F (η−

R )e−ixkR

+ eR F (−i ln χ−)e−xκR ]eiyky . (7b)

Here, p+
j (p−

j ) correspond to the amplitudes of the propagat-
ing modes moving to the right (left) on the j = L, R side
of the DW. Unlike in MLG, there always exists a pair of
exponentially decaying solutions in BLG [26] which is why
we include the evanescent modes of amplitude eL,R. For the
case of a single domain, assuming no incidence from the right,
we would set p−

R to zero. Thus p+
L can also be be normalized to

one. The phase difference between the two pseudo-spins can
be obtained by solving the eigenvalues of H0,

η±
j = Arg

[
(±k j + iky)2 − �K2

θ j

]
,

χ± = −sgn
[
(±κL,R + ky)2 + �K2

θL,R

]
. (8)

Here, Arg(z) is the principal valued argument of a com-
plex number z, and sgn(z) = z/|z|. When ϕL,R = 0, one
obtains χ± = −1 and η±

j = −η∓
j ≡ η j . The wave vectors cor-

responding to all the modes can be obtained by solving the
characteristic equation of Eq. (4). Being a fourth-order equa-
tion it admits four solutions. The real solutions, kx = ±kL,R,
correspond to the momentum of the propagating modes and
the imaginary solutions, kx = ±iκL,R, correspond to the wave
vectors of the evanescent modes. Instead of writing their cum-
bersome general solution, we explicate their dependence on
(θ, ϕ, ky) in relevant sections.

In order to solve the amplitudes of the various modes in
Eq. (7), we impose the matching conditions (at x = 0) ob-
tained in Eq. (B6),


L(0, y) = ξ
R(0, y), (9a)

∂x
L(0, y) = ξ∂x
R(0, y) + ζ
R(0, y), (9b)

where ξ = aL/aR and ζ = iξ (bR/aR − bL/aL)/2. Using these
equations, we eliminate the amplitudes of the evanescent
modes and obtain the transfer matrix M from(

p+
R

p−
R

)
= M

(
p+

L

p−
L

)
. (10)

The full form of M is obtained in the Appendix D. Most of
our discussion will concern the simple case of ϕL,R = 0, for
which, as mentioned before, χ± = −1, η±

j = −η∓
j ≡ η j , and

ζ = 0. The normalized transfer matrix takes the form

M = M0

[
1+eiηL

1+eiηR

(
1 + kL

kR

)
1+e−iηL

1+eiηR

(
1 − kL

kR

)
1+eiηL

1+e−iηR

(
1 − kL

kR

)
1+e−iηL

1+e−iηR

(
1 + kL

kR

)
]
. (11)

Here, M0 is the normalization constant that is fixed by requir-
ing | det M|2 = 1. From this, we obtain the reflection (R) and
tunneling coefficients (T ) as

R =
∣∣∣∣M21

M22

∣∣∣∣
2

= (kL − kR)2

(kL + kR)2
, (12)

T =
∣∣∣∣ 1

M22

∣∣∣∣
2

= 4kLkR

(kL + kR)2
= 1 − R. (13)

It must be noted here that the above expressions are similar
to those for tunneling across a step-potential, the reason for
which will be evident from the section below. Also, note that
the tunneling expression above is real even when there are
only evanescent modes (imaginary kL,R) on either sides of
the DW. One must reject these spurious solutions, which arise
simply due to the quartic nature of the squared dispersion.

Though not manifest, T and R are dependent on θ, ϕ

through the x-axis momenta, kL,R. We analyze this depen-
dence, first, in case of a longitudinal DW and then for a tilted
DW—when there is a finite tilt angle between the DW and the
K-K ′ zone boundary of the MBZ.

IV. LONGITUDINAL DOMAIN WALLS

For ϕ = 0, the wave vectors are obtained to be

k2
j = −k2

y − K2
θ j

+
√

ε2 + 4k2
y K2

θ j
,

κ2
j = k2

y + K2
θ j

+
√

ε2 + 4k2
y K2

θ j
,

(14)

the spinor phases simplify to η±
j = η j and χ± = −1. In this

section, we analyze tunneling of gapped (high-energy) moiré
states, which are closer to the M point or of energy of the
order of εv. We postpone our discussion on tunneling of the
(low-energy) moiré states near the CNP to the subsequent
section, since, as we will see, their tunneling characteristics
are independent of the value of the tilt angle. We first focus
on normal tunneling, then we discuss oblique tunneling. Inde-
pendent of the tilt angle, as can be seen from Eq. (2), normally
incident quasiparticles are maximally gapped (= 2εv). For
particles incident obliquely, this gap reduces. We will see this
effective gap for a given θ j, ky, play a crucial role in con-
trolling tunneling across the DW. We conclude the section by
extending our discussion on tunneling in presence of multiple
DWs and in case of a smooth DW.
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FIG. 2. Normal tunneling. (Top) Electronic dispersions for ky =
0 and ϕL,R = 0 with θL < θR. An electrons (green dot) can tunnel
across the DW only when the Fermi level (εF ) is greater than the
largest among the two energy minima, max(εL

v , εR
v ). The blue region

delineates the classically forbidden (R = 1) region, though this can
contribute to tunneling if another TBG with θ < θR is placed to its
right (see inset in the lower panel). The gray region does not allow
any propagating modes to exist. The tunneling problem considered
here can be understood through formation of an effective step poten-
tial of height, �step = |εR

v − εL
v |. (Bottom) Normal tunneling across

a DW as a function of chemical potential, with θL = 1.1◦ < θR (see
legends) and ϕL,R = 0. For reasons discussed above, T is finite only
when ε > ε1.1◦

v + �step (legends). Clearly, the larger the difference in
twist angles, the larger is the tunneling gap, �step. (Inset) We place
another DW parallel but far away from the first one. The twist angles
from left to right are θ1 = 1.1◦, θ2 = 1.2◦, θ3 (see legend). When
θ3 > θ2 the effective �step increases otherwise it decreases. For the
case θ1 = θ3, resonant tunneling occurs since the entire blue region
is now allowed to tunnel, see Sec. IV C for details.

A. Normal incidence: step potential

In this section, we analyze the tunneling expression in
Eq. (13) for electrons near the M point for normal tunneling.
Strictly speaking, normal incidence refers to vanishing (trans-
verse) group velocity, vy = ∇kyεk = 0. For our dispersion, this
occurs for ky = 0 and |k| = Kθ j , which traces a circle centered
at the M point traversing through the two neighboring Dirac
points. For brevity, we will refer to ky = 0 only as “normal
tunneling” and we treat the other case as an instance of oblique
tunneling in Sec. IV B.

Using Eq. (14) in Eq. (13), we obtain the tunneling
probability for normal incidence, which is plotted in the bot-
tom panel of Fig. 2. The switching behavior of T can be
understood from its top panel, which shows the electronic dis-
persion across the DW, in particular, for the case θR > θL. For

FIG. 3. Oblique Incidence for (θL, θR ) = (1.1◦, 1.2◦). The left
panel shows a polar plot of tunneling amplitude as a function of
quasiparticles incidence angle. The curves are obtained by numer-
ically solving Eq. (13) for various energies (measured in the units
of εL

v ). All four quadrants in the polar plot are symmetric. The
polar spread of the curves decreases with decreasing energy. This
is explained through the top right panel. The allowed value of inci-
dence angle or ky momentum for propagating states decreases as one
approaches the Dirac point. Note, for a given value of φ, there can be
more that two real propagating modes, especially for ε � εv. (Bottom
right) plotting the tunneling as a function of energy demonstrates the
ky dependence of the �step.

energy in the gray region, 0 < ε < εL
v , there are no propagat-

ing modes on either side of the DW, thus tunneling is prohib-
ited. Here, εL,R

v are the band minima of the left and right sides,
respectively. For ε > εR

v , for every propagating state on the
left there is a propagating state available on the right, thus tun-
neling is perfect (T � 1). However, in the blue region, εL

v <

ε < εR
v , just the left side has a propagating mode, hence it can

only contribute to (perfect) reflectivity. This difference in the
vHS energies across the DW, �step = |εL

v − εR
v |, is precisely

what offers an effective realization of a step-potential [see
Eq. (13)] of height �step. This naturally manifests as a gap in
tunneling, which grows with increasing twist angle difference.
As ε overcomes this gap, tunneling rapidly switches to one.

It must be noted that, for the case of θR < θL, the step
potential essentially switches to a down-hill potential. Since
incidence still remains from the left, as long as ε > εR

v there
will always be tunneling. In order to obtain tunneling behavior
for this case, one simply needs to interchange kL and kR.
This yields tunneling curves similar to those in Fig. 2 except
reflected around the ε = εL

v line.

B. Oblique incidence: reduced step size

We show the numerically obtained tunneling probability
for oblique incidence in Fig. 3. Note that, first of all, for a
given energy, the value of ky (hence, that of the incidence
angle) cannot be arbitrarily large. This can be understood from
the following relation:

k2
y = sin2 φ[− cos 2φ ± (ε2 − sin2 2φ)1/2]. (15)
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In fact, for a finite ky, tunneling can be finite only when
ε > εR

v − k2
y . Thus the larger the ky, for a given set of θL,R,

the smaller is the energy required to tunnel. In other words,
since an obliquely incident moiré particle experiences a re-
duced �step, its tunneling is enhanced as compared to that
of the normally incident particle. Secondly, the tunneling at
φ = 0 (normal incidence) is strongly dependent on the value
of incident energy, in fact it can range anywhere from 0 to 1 by
suitably adjusting the energy. This is markedly different [26]
from the case of MLG (where it is always 1), or from BLG
[39] (where it is always zero), and thus a unique characteristic
of TBG based barriers.

C. Array of DWs: resonant tunneling

Now let us consider tunneling across two consecutive DWs
separating three TADs of twist angles θ1, θ2, θ3, ordered from
the left to the right. Accordingly, we denote the incident x-
axis momenta as k1,2,3 and the spinor phases as η1,2,3. For
simplicity, we fix the tilt angles in all three domains to be zero.
We show that the quantum tunneling in the (blue) classically
forbidden region discussed in Fig. 2 can now resume with the
help of the evanescent modes in the middle domain.

By assuming the DWs are significantly far away from each
other on a moiré lattice scale, we apply the transfer matrix
formalism discussed previously to obtain

T = 1 − K − 4k1k2
2k3

K + 4k1k2
2k3

,

K = (
k2

1 + k2
2

)(
k2

2 + k2
3

) + (
k2

1 − k2
2

)(
k2

2 − k2
3

)
cos(η1 − η3).

(16)

The phase mismatch term, cos (η1 − η3), between the first and
the last domains plays a crucial role. When this is equal to
identity, tunneling simplifies to

T |η1=η3 = 4k1k3

(k1 + k3)2
. (17)

Clearly, this does not depend on k2 and thus is independent
of the twist angle of the intermediate domain. There are two
important scenarios in which this can be achieved. For normal
tunneling, since η1 = η3 = 0, see Eq. (8). Also, when the
twist angle of the leftmost and rightmost regions are the same,
irrespective of θ2 and ky, we have, following Eqs. (8) and (14),
k1 = k3 and η1 = η3. In fact, this reduces the above tunneling
expression to T = 1, an instance of resonant tunneling. This
is depicted in the inset of Fig. 2. Such resonant tunneling
occurs since for θ1 = θ3 [hence, ε (1)

v = ε (3)
v ] evanescent modes

corresponding to any energy (the entire blue region in Fig. 2)
participate in tunneling. For DWs of finite width, T = 1 may
receive some correction.

We now generalize the above result to an array of n DWs.
Multiplying all the n transfer matrices corresponding to each
of the DW, we obtain T . When the pseudospin phases of all the
domains match, such as for normal incidence, we inductively
establish

T |η1=η2···=ηn+1 = 4k1kn+1

(k1 + kn+1)2
. (18)

Thus tunneling of normally incident moiré electrons is de-
cided only by the first and the last twist angles. Although
this result is obtained for the case of an array of longitudinal
DWs, one can generalize this to any orientation of the MBZ. In
Sec. V, we will show this for a tilted MBZ, that is, tunneling
of normally incident electrons is marginally affected by the
tilt angle. Thus, irrespective of the orientation of the MBZ in
all the domains and independent of the twist angles in all the
intermediate domains, the above conclusion remains robust.

D. Smooth DW: exponential suppression

The DWs we have considered so far can often be of certain
thickness. In other words, two TADs of twist angles θL,R

may contain an intermediate region where θL smoothly, as
opposed to abruptly, changes to θR. In this section, we discuss
tunneling across such a smooth DW.

Before proceeding to compute tunneling, first we compare
the various length scales and their relevance in the prob-
lem. For a TBG with θ ≈ 1◦, the moiré periodicity is λ =
13 nm, which is about 50 times the lattice constant of pristine
graphene, a0 = 0.25 nm. Therefore, since |K − K ′| ∼ λ−1 

a−1

0 , different valleys of the original graphene layers are de-
coupled. Within a single valley, the minibandwidth is of the
order of 10 meV [20,24,29]. Hence, the Fermi wavelength of
the moiré electrons is at least, λF � 12 nm. This means umk-
lapp processes involving inter-mini-valley scatterings should
be feasible [40,41]. In order to exclude such processes in out
study, we avoid getting closer to the zone center of the MBZ
where λF is the smallest, i.e., ∼λ.

When a DW is of width w and w 
 λF then it is sufficient
to treat the DW as a sharp boundary. This is especially more
reasonable for low-energy quasiparticles, say near charge neu-
trality (unless one fabricates a junction of several a0 between
two TBG devices). On the other hand, as the quasiparticle
energy increase, or λF gets shorter, one must take the fi-
nite width of the DW into account. In a recent experiment
[21], a spatially varying θ (r) was observed to have ∂xθ =
(0.02◦–0.05◦)/μm (that is about 2%–5%/μm). This reflects a
1% change in twist angle in about every 10–15 moiré periods.
Thus, unless one is near charge neutrality, it is worth consid-
ering the perturbation for wide DWs. For simplicity we will
do so near the M point by setting ky = 0.

Consider a DW of width, w � λ, over which the twist
angle between the two regions changes smoothly, θ (x). Again,
this is smooth in the scale of λ or K−1

θ . In the limit of a slowly
varying θ (x) we can still work with our original Hamiltonian,
H0, and define Kθ (x) � θ (x). We start by writing the equation
of motion for the two sublattice wave functions as

∂2
x ψB − K2

θ (x)ψB + εψA = 0, (19a)

∂2
x ψA − K2

θ (x)ψA + εψB = 0. (19b)

Like before, we will be interchangeably using Kθ (x)2 and
εv(x), a position dependent band minimum. The above sys-
tem of equations can be decoupled by rotating the basis to
ψ± = (ψA ± ψB)/

√
2 and have[−∂2
x + εv(x)

]
ψ± = ±εψ±. (20)
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This is similar to the equation of motion for a Schrödinger
particle (or hole) in a potential generated by εv(x). We can
define an effective momentum for such particles as p2

±(x) =
±ε − εv(x), and write the above equation as −∂2

x ψ± = p2
±ψ±.

Clearly, p2
− is always negative for any positive value of ε.

Thus, being an evanescent mode, ψ− never contributes to
tunneling. The same is true for ψ+ unless ε > max[εv(x)]. For
a generic profile of θ (x), one could always solve the above
equation in the semiclassical limit,

ψ+(x) � c±√
2p+(x)

e±γ (x), γ (x) =
∫ x

0
p+(y)dy. (21)

For instance, one could take the experimental θ (x) and convert
it into the p±(x) above. The tunneling probability can then
be obtained using the Wentzel–Kramers–Brillouin (WKB) ap-
proximation [42,43]

T � e−2γ (w) . (22)

There are two things to be noted here: firstly, the upper limit of
integration above is w, which we have assumed to be a turning
point. Otherwise, for a turning point at x < w, ε would have
to satisfy ε < εv(x), in which case there would not be any
tunneling. Second, the WKB expression above is valid only
when γ itself is large (or T 
 1), in other words, this requires
the domain to be very wide, wkF � 1. Thus the above expres-
sion is applicable strictly when ε starts overcoming �step and
tunneling slowly ramps up from zero. The wider a domain, the
larger is γ and the smaller is T , or it increases with a much
slower rate.

We demonstrate the above conclusions by explicitly (and
exactly) evaluating tunneling for a linearly changing θ (x). In
fact, for simplicity, we approximate the corresponding vHS
energy to be

εv(x) � K2θ̄ (θ̄ + 2x∇θ )/4, θ (x) = θ̄ + x ∇θ, (23)

with (θ̄ ,w∇θ ) = 1
2 (θR ± θL). For such a linear profile we can

solve the eigenequation (20) exactly, similar to the case of a
triangular potential well,

ψ±(x) = α± Ai(z±(x)) + β± Bi(z±(x)),

z±(x) = εv(x) ∓ ε

(K2θ̄∇θ/2)2/3
. (24)

Here, Ai(z) and Bi(z) are the Airy functions of first and second
kind, respectively. Note, equations of motion corresponding
to θ (x) as higher order polynomials can also be solved simi-
larly using parabolic cylinder functions, Dν (z), [44]. With the
wave functions above, we repeat the transfer matrix method
discussed in Sec. III and obtain the tunneling probability. The
results are plotted in Fig. 4(b). Indeed, as the width of the
DW increases, wK → ∞, it becomes exponentially harder
for the moiré electrons to tunnel across two TADs. Similar
suppression due to widening of an otherwise sharp potential
step is also seen for Klein tunneling [42].

V. TILTED DOMAIN WALLS

In this section, we study tunneling across a DW that is
at a finite angle with respect to the zone boundary of the
MBZ. In particular, we study the effect of a finite ϕ on normal

FIG. 4. Corrections to normal tunneling: (a) for finite ϕ j , T re-
ceives a perturbatively corrected. This result is obtained in Eq. (27).
The solid (blue) curve is for a longitudinal DW and the dashed (gray)
curve is for a tilted DW. (b) When the DW is considered to be of
small but finite width, tunneling receives a decremental correction,
see Sec. IV D. The widths (w) of the DWs are indicated in units of
inverse Dirac momentum. The inset, drawn for different energy slices
of the (θL, θR ) = (1.1◦, 1.3◦) curve, shows that tunneling probability
decreases rapidly with increasing width of the DW.

tunneling near the M point. Although the exact treatment is
rather tedious, we can perturbatively understand its effects for
the desired range of ϕ which may be as large as 30◦.

For normal incidence, we have

k2
x = −K2

θ cos 2ϕ ±
√

ε2 − ε2
v sin2 2ϕ , (25)

which is always real for ε > εv. Therefore, for this energy
window, there exists a pair of propagating modes which may
contribute to tunneling. Setting ky = 0 while keeping the tilt
angle ϕ j finite, we expand Eqs. (8) and (25) up to O(ϕ4

j ) and
obtain

χ j � −1 + 2iϕ j ε̃ j + 2ϕ2
j ε̃

2
j , eiη± � 1 + 2iε̃ jϕ j − 2ε̃ jϕ

2
j ;

k j � k0
j (1 + ε̃ jϕ

2), κ j � κ0
j

(
1 − ε̃ jϕ

2
j

)
.

(26)

Here, ε̃ j ≡ ε
j
v/ε, k0

j ≡ (ε − ε
j
v )

1/2
and κ0

j ≡ (ε + ε
j
v )

1/2
. We

note here that at order O(ϕ4
j ), the above expressions are fairly

accurate for |ϕ j | � 30◦. In fact, due to the sixfold symmetry
of the MBZ it is sufficient to consider |ϕ j | � 30◦.

Using the above expressions we re-evaluate the transfer
matrix in Eq. (D2). This obtains the tunneling probability to
be

T

T (0)
� 1 +

√
R(0)

[
ϕ2

Rε̃R − ϕ2
Lε̃L + κ0

L − κ0
R

κ0
L + κ0

R

(ϕLε̃L−ϕR ε̃R)2

]

+ O
(
ϕ3

j

)
. (27)

Here, R(0) and T (0) are the reflection and tunneling coefficients
for the ϕ = 0 case, as obtained in Eqs. (12) and (13) using k0

j ,
respectively. We note the following about the above expres-
sion. Firstly, the correction term is proportional to T (0)

√
R(0).

Recall, R(0) quickly vanishes as the Fermi level moves above
the gap, �step, see Fig. 4(a). And, when the Fermi level is
inside the gap T (0) vanishes. Therefore the effect of the cor-
rection term can never be significant. This is indeed what we
observe, see Fig. 4(a). Secondly, analyzing the terms inside
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the square bracket above, we note that, though negligible, the
evanescent modes also contribute to tunneling in case of a
tilted MBZ. Lastly, we note that the correction term is invari-
ant under the operation (ϕL, ϕR) → (−ϕL,−ϕR ). In fact, this
is the same operation as reflecting either of the MBZs, for
fixed ϕ j , about the x axis. For normally incident electrons,
this is clearly a symmetry of the theory as can also be seen
in Eq. (2). This explains the absence of any O(ϕ j ) correction
term in the above expression.

For finite ϕ j , solutions to oblique tunneling could be
cumbersome. however, one may qualitatively understand tun-
neling using similar arguments as before—tunneling will
switch on once the chemical potential crosses the band mini-
mum (depending on ky, see Fig. 1, and ϕL,R) on either sides of
the DW.

VI. TRANSPORT ACROSS DOMAIN WALLS

In this section, we compute the mesoscopic conductivity of
a TBG device and discuss how it is affected by the presence
of a DW. We then compute the Fano factor for shot noise and
show how the peaks in its response can be used for diagnosing
twist disorder.

A. Conductivity

In low-temperature systems with very few impurities, such
as in graphene based materials, the mean free path of the
charge carriers can be as large as the size of the sample,
giving rise to ballistic transport. In this limit, one can invoke
quantum mechanical properties of charge carriers to describe
their conduction. In particular, when transport is coherent
(single wave function extending from one lead to another),
the exclusion principle has no effect on conductivity and it
can be described using Landauer-Büttiker formalism [45];
see also Refs. [46–49]. The differential conductance in this
mesoscopic limit becomes

dI

dV
= G0W

∫
d

dε
f (ε − eV ) dε

∫
dky

2π
T (ky, ε)

� G0W
∫

dky

2π
T (ky, eV ) ≡ G(V ). (28)

The last simplification was done taking the zero tempera-
ture limit [V � (eβ )−1, with β as the inverse temperature]
which reduces the Fermi function, f (ε), to a step function.
We have also set εF = 0, thereby focusing only on the CNP.
G0 = ge2/h, where g = 4 is a symmetry (valley and spin
degeneracies) factor. W is the width of the sample, which,
for the applicability of the above formula, should not be
much larger than the Fermi wavelength of the moiré electrons,
λF ∼ O(100 nm). In Fig. 5(a), we plot the dimensionless
conductivity, G(V )/W G0, as a function of bias voltage V at
the CNP.

We note the following features of the above dI/dV char-
acteristic. At a finite voltage, the differential conductance
reduces as the twist angle difference increases. Much like in
a semi-metal [50], conductivity vanishes as the bias voltage
goes to zero. In particular, close to zero bias, G(V ) vanishes
linearly. This is unsurprising since the DOS also vanishes lin-
early as one approaches the CNP, see Eq. (A2) in Appendix A.

FIG. 5. Quantum transport using Landauer-Büttiker formalism:
(a) irrespective of the twist disorder, since there are no tunneling
states for zero energy, conductance vanishes at zero bias. In presence
of twist disorder, a transport gap appears (magnified in the inset) that
scales with �step. The location of the inflection point (gray dashed
line), at ε = εL

v + �step ≡ ε∗, characterizes the strength of the twist
disorder. (b) Due to the absence of tunneling, Fano factor at V = 0
assumes a much larger constant, though � 1; we do not obtain this
value here due to reduced numerical stability. As tunneling increases,
F reduces and ultimately vanishes for high bias potential (since for
high energies, T = 1). A peak appears at ε∗, the height of which
scales with �step.

The corrections from the higher order terms in the DOS in-
deed manifest in the G(V ) for higher energies. However, with
increasing twist disorder a transport gap appears in the dI/dV
plot. This gap is a manifestation of the height of the step po-
tential, �step. Therefore, for θL = 1.1◦, the gap for θR = 1.3◦
is the largest in Fig. 5(a), whereas that for θR = 1.11◦ is nearly
zero. Taking the finite width of the DW into account, or with
addition of more TADs, this gap can grow further. A similar
transport gap is also observed in tunneling across stacking
domains in BLG [51].

In the low-energy region, for a fixed θL and V , the value
of G gets smaller with increasing θR − θL. This is reasonable
since with increasing disorder or �step (recall the effective
step potential picture) tunneling gets suppressed. Eventually,
for ε � εv, the curves collapse to a linear plot with a much
smaller slope. Clearly, this “inflection point” is itself the sad-
dle point energy, εv/ε

1.1◦
v , hence dependent on the strength of

twist disorder. The collapsing of plots is expected since the
DOS for high-energy moiré electrons is independent of the
twist angle, see Eq. (A4).

When comparing the above G(V ) with experiments, one
needs to be careful about two things: first, transport in TBG
near magic angle is dominated by strong correlation. Hence,
our noninteracting conductivity may not match well with the
experimental conductivity of magic angle samples. However,
depending on the strength of the twist disorder, the transport
gap mentioned above will cause the V-shaped differential
conductance to become a U-shaped curve. Secondly, unlike
the case of MLG, conductivity contribution from twist dis-
ordered transport does not have a nonvanishing minimum
value [52,53]. This is because in MLG, Klein tunneling ren-
ders it highly transparent (T ≈ 1). However, tunneling across
TADs is not transparent, especially for low-energy particles.
This can be understood by the following argument. Momenta
ky ≈ KθL correspond to particles near the gapless Dirac point
on the left domain. However, since ky is conserved, when-
ever θL �= θR, this value of ky would be far away from the
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Dirac point in the right domain, i.e., at ky = KθR . In fact, as
can be seen from the right panel in Fig. 1, this difference
amounts to opening of a gap on the right side. Therefore, for
low energies, the gapless particles on the left cannot scatter
into the gapped particles on the right (see Appendix C for a
discussion on some interesting consequences of when such
tunneling is allowed), leading to vanishing tunneling. Hence,
the experimentally observed minimum conductance of TBG
cannot be shifted by the presence of twist disorder, although
conventional disorder can do so [54,55].

B. Fano response

In absence of a tunneling barrier, one expects only thermal
noise. This is simply a measure of the temperature of the
system. However, in systems where current is partitioned,
such as in p-n junctions [56,57] or in our case, transport is
expected to be noisy even at zero temperature (see Appendix E
for a pedagogical introduction to noise in quantum transport).
At zero temperature, noise power (per volt) corresponding to
low-frequency (of the order of 100 MHz) shot noise is

dS

dV
= ge

h

∫
dky T (ky, eV )R(ky, eV ). (29)

Combining this with Eq. (28), one can obtain the ratio of noise
power per mean current, or the differential Fano factor,

F (V ) = 1

2e

dS

dV
/

dI

dV
= 1

2e

dS

dI

= G0

egG(V )

∫
dky T (ky, eV )R(ky, eV ). (30)

Note the differential Fano factor should not be confused with
the average Fano factor,

∫ I
0 F (i)di/i. Although for very large

voltage, V � (eβ )−1, the above factor does approach the aver-
age Fano factor [58]. F provides crucial information regarding
the nature of the dominant scattering process [43,47]. In par-
ticular, a large Fano factor, F ∼ 1, signals noisy and diffusive
transport. On the other hand, F = 0 characterizes a noise-free
ballistic transport.

Fano factor is obtained in Fig. 5(b) by numerically eval-
uating Eq. (30). Most importantly, sharp peaks appear in the
differential Fano factor which are located at energy equal to
εL

v + �step. Note that such sharp peaks may get smeared at
finite temperature. Further, the height of the peak is larger
for bigger �step. In other words, the larger the twist disorder,
noisier is the transport. For very high bias potential, the Fano
factor vanishes, because for very high energy the DWs are
transparent (T ≈ 1). On the contrary, for very low tempera-
ture, since tunneling probability is very low (due to the step
potential), transport becomes noisy. Clearly, in the absence
of twist disorder, all such features are absent and F ≈ 0.
Therefore we propose differential Fano factor measurement
[59,60] could be used as a concrete tool to probe the strength
of twist disorder.

We finally note that MLG samples with large aspect ratio
exhibit a universal maximum value of F = 1/3 [46,47,59,61].
For the existence of such a universal factor, it is critical to have
Dirac dispersions on either side of a boundary. However, as we
have discussed previously, since in our case, a Dirac particle

on one side of the DW must become a gapped moiré particle
on the other side (for the same ky), transport across TADs do
not exhibit this maximum.

VII. CONCLUSION

We showed that tunneling of moiré electrons across TADs
can be understood by the formation of an effective step poten-
tial. In general, the height of this step, �step = |εR

v − εL
v |, is a

function of the angle of incidence (or ky) and the tilt angle of
the MBZ. For normally incident particles, �step is maximized.
For ballistic transport, �step results in a gap for low-energy
moiré particles. In addition, we argue that the existence of
such a low-energy gap indirectly ensures the conductance
minimum of a sample is not altered by the presence of twist
disorder. We propose that a peak in the differential Fano factor
can be used as a diagnostic tool for twist disorder.

In order for our results to be strictly applicable to a TBG
device, one might have to account for various realistic correc-
tions. For instance, the DWs in a TBG would always be of
finite length and width, hence it might be very hard to achieve
perfect reflection, since the electrons can always “go around”
the DW. Nevertheless, a careful engineering of semi-infinite
twist-angle-domains can lead to interesting device applica-
tions. For instance, one can design novel ultralow voltage
[O(� 1 meV)] switches by the interplay of twist-DWs and the
application of a step potential by means of metallic contacts
[43,53].

In a certain sense, the problem we have considered here is
not very different from a tunneling problem in semiconducting
2D heterostructures. Across such junctions, the band gap and
the band mass change abruptly as a result of variable doping
[62,63]. However, the key difference here, which drives many
of the intriguing results we obtain, lies in the details of the
band structure. For instance, the presence of a vHS in TBG
provides an important scale that controls many important
tunneling characteristics. Also, the ability to switch from a
gapless linear dispersion to a gapped quadratic dispersion is
quite unique to TBG.

In light of the above discussion, it is also worth examining
the limitations of our two-band model. This effective model
clearly does not affix any special significance to any particular
twist angle such as the magic angle. This should not be alarm-
ing since, in a way, by eliminating the higher remote bands
from the full continuum model, we have essentially removed
the criterion to define flat bands—the bands with very small
bandwidth compared to the band gap. Therefore strong corre-
lation aspects aside, our results are equally applicable to the
magic angle or other angles alike. In fact, later theoretical and
experimental studies indeed observe interesting physics for a
broad range of twist angles around the magic angle [6,64–
66]. On this note, we also point out that, strictly speaking,
the two-band model used here is valid for 2◦ < θ 
 10◦ only.
This can be shown [33] by demanding εv to be a much smaller
than the band minimum (≈15t̃/2) of the upper band in the full
Hamiltonian [34]. On the other hand, the lower bound on the
twist angle can be obtained by simply requiring a non-negative
renormalized Fermi velocity.

Our conclusions in this paper are significantly reliant on
the definition of the effective band parameters in Eq. (5).
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However, these parameters may receive corrections from
realistic considerations, such as lattice relaxation, layer cor-
rugation, electronic interaction, and others. Therefore a more
prudent vantage could be to not view these parameters as
simple functions of the twist angle or tilt angle but as phe-
nomenological parameters that simply control the one-body
band structure. Here we briefly comment on how these factors
can affect our conclusions, see Ref. [64] for discussion from
a first-principles perspective. In fact, instead of considering
them individually, we address their effects by means of chang-
ing bandwidth, van Hove energy, or Dirac speed.

Bandwidth. Having a finite bandwidth is a key requirement
in our calculation. Had we used a minimal model that features
perfectly flat bands, such as the chiral symmetric model [32],
many of the tunneling phenomena we observe will cease to
exist due to the lack of tunneling states. On the contrary, the
bandwidth often gets enhanced by including lattice relaxation
effect [29], which, thus, makes tunneling easier, thereby en-
hancing interdomain conductance.

van Hove energy. Most important corrections to the van
Hove energy (εv) comes from various interaction effects
[67–69]. This may not only alter the value of εv but also
displace the vHS in the k space. The value of the van Hove
energy is central in controlling when the tunneling coefficient
switches from zero to a finite value. εv also sets the scale
for �step. Moving the vHS away from the M point may have
important consequences that warrants further investigation.

Dirac velocity. In our theory, it is K2
θ that essentially plays

the role of Dirac velocity (vF). Of course, vF is not such a
simple function of θ and, in addition, it also heavily depends
on various realistic parameters [29,64,65]. As can be seen
from Eq. (8), or Eq. (14), this factor plays a critical role in
matching the phases of the waves on either sides of the DW.
Therefore modulations in the Dirac velocity may switch a
tunneling state to a reflecting one, or the other way around.
We discuss this in greater detail in Appendix C.

Finally, we conclude by posing a few questions for future
investigations. The DWs may provide an interesting platform
to understand and manipulate various topological phases ob-
served [70,71] or proposed [72–74] in TBG based systems
the TBG system. It would also be interesting to understand
the transport characteristics of a sample containing many
(randomly distributed) domain walls [75,76] or a random dis-
tribution of Fermi velocities [77]. One can then ask whether a
metal to insulator transition can be driven by increasing the
number of DWs (or the strength of twist-disorder). In our
entire discussion, we have not considered the effects of inter-
action on DW transport. By including such effects, one can,
for instance, study transport across a DW that separates a nor-
mal and a superconducting phase, which is known to further
modulate the noise response [78]. The two-band Hamiltonian
we consider in this work [Eq. (1)] bears a lot of similarities to
the effective theory for the nematic transition of the interacting
Bernal graphene [79,80], merging transitions of Dirac cones
in 2D crystals [81,82], layered antiferromagnetic states in
chirally stack multilayer graphene [83]. Thus exploring the
role of DWs in such systems could also be interesting. Given
the recent developments in moiré materials made of multilayer
graphitic systems [84,85], or transition metal dichalcogenide
bilayers [7,86,87], it would be worthwhile to understand the

effect of twist angle or strain domains on the electronic and
excitonic physics of these materials as well.
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APPENDIX A: THE DENSITY OF STATES

Here we compute the density of states (DOS) correspond-
ing to the dispersion considered in this work, i.e., Eq. (2),

ρ(ε) ∝
∑

k

δ(εk − ε) =
∑

k

εk δ
(
ε2

k − ε2
)

(for ε � 0)

=
∫

d2k
4∑
i

δ(k − ki )∣∣∂k ε2
k

∣∣ (
for ε2

ki
= ε2

)

=
∫ π/2

−π/2
dφ

ε√
ε2 − ε2

v sin2(2φ − 2ϕ)

= 2K
(
ε2

v/ε
2
)
. (A1)

The last integral is the complete elliptic integral of the first
kind, K (z). We simplify this in three limits of interest. For
low energies, this becomes

lim
|ε|
εv

ρ(ε) ∼ |ε|
εv

+ |ε|3
4ε3

v

+ · · · . (A2)

The linear ε dependence of the leading order term is a remnant
of the fact that the low-energy dispersion of the model is a
Dirac dispersion.

The logarithmic vHS in the DOS can also be observed
following the expansion:

lim
ε≈εv

ρ(ε) ∼ − ln

∣∣∣∣ε2
v

ε2
− 1

∣∣∣∣ + · · · . (A3)

Lastly, for very high energies, the DOS becomes

lim
|ε|�εv

ρ(ε) ∼ π. (A4)

APPENDIX B: SELF-ADJOINT MATCHING CONDITIONS

In order to obtain the correct set of boundary conditions
at the DW, we may view our system analogous to a semi-
conductor heterojunction (such as GaAs/AlGaAs), where
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one typically has a band mass that abruptly changes across
the junction. The Schrödinger equation describing coherent
transport in such systems must be solved with appropriate
junction conditions that takes this discontinuity in the mass
into account [49,62,88–90]. It is important to realize that the
wave functions in such effective band theories are not true
wave functions (which are always continuous), rather, these
are slow-varying envelope functions multiplied with (rapidly
fluctuating) Bloch waves. A priori, there is no reason why
such envelope functions would be continuous, exploiting that
one can obtain a class of boundary conditions which respects
self-adjointness of the Hamiltonian operator. We derive these
conditions following [91]. In view of the eigenequation in
Eq. (4), consider the following operator:

D = ∂4
x − a∂2

x − ib∂x + c (a, b, c) ∈ R, (B1)

where a, b, c are defined in Eq. (5). It can be explicitly ver-
ified that D is formally self-adjoint, D = D†. However, as
one crosses the DW at x = 0, the values of (a, b, c) change
abruptly rendering the domains of D and D† unequal. We will
distinguish these parameters from their left-right counterparts
using L, R subscripts. In case of semiconducting hetero-
junctions, typically, have aL,R = m∗

L,R (band masses) and
b = 0 = c.

For an arbitrary pair of normalizable wave function u, v ∈
L2[x1, x2], D is truly self-adjoint when∫ x2

x1

[u∗(Dv) − (Du)∗v] dx ≡ Q(u, v)|x2
x1

= 0, (B2)

In order this to be true for any value of x1,2 on the entire space,
it is sufficient to ensure continuity of Q(u, v) near the DW at
x = 0, Q(uL, vL) = Q(uR, vR), where vL,R ≡ v(0±), v′

L,R ≡
∂xv(x)|x=0± . Q can be explicitly evaluated using integration
by parts,

Q(u, v) = ibu∗v + a(u∗∂xv − ∂xu∗v) + Q0 , (B3)

where all the boundary terms corresponding to the ∂4
x term,

and c are collectively denoted by Q0. Since these terms remain
invariant over the entire space, they match trivially at the DW.
For obtaining the most general class of matching conditions
for the wave functions, we first write

¯̄vL = V ¯̄vR, V ≡
(

p q
r s

)
, (B4)

where ¯̄v j ≡ (v j, v
′
j )

T . A similar condition for the wave func-
tion u(x) can be written as ¯̄uL = U ¯̄uR. By matching the first
two terms in Eq. (B3) for left and right waves, Q(uL, vL) =
Q(uR, vR ), we first constrain U . Then since such a matching
must hold for an arbitrary set of wave functions u, v, we
demand U = V . All these simplify to (along with ps − qr =
aR/aL)

q∗ = q, s∗ = s + ibL

aL
q, p∗ = p − ibR

aR
q,

r∗ = −
(

ibL

aL
p + bLbR

aLaR
q + r − i

ibR

aR
s

)
. (B5)

For simplicity, we fix q = 0; evaluating a, b for the left and
right sides, we have

uL = aL

aR
uR, u′

L = aL

aR
u′

R + i

2

(
bR

aR
− bL

aL

)
aL

aR
uR. (B6)

For ky = 0 or for ϕL,R = 0, they boil down to a simple diago-
nal constraint. Particularly for the later case,

K2
θL

uL = K2
θR

uR, K2
θL

u′
L = K2

θR
u′

R. (B7)

A discontinuous boundary condition that is purely diagonal
[in the basis of (u, u′)] may be disregarded for the purpose
of computing tunneling. This is since the transfer matrix,
MuL = uR, would simply absorb such a factor and tunneling
remains invariant under such a redefinition of M.

APPENDIX C: DW IN ARTIFICIAL GRAPHENE:
SNELL’S LAW

This section concerns a relatively tangential scenario. Here
we discuss tunneling of low-energy Dirac particles across a
DW in an artificial graphene, which separates two regions
with differing Dirac speeds. As discussed in the main text,
since a Dirac particle on one side always tunnels to a gapped
particle on another side of the DW in a TBG system, the
below discussion is not applicable to DWs in TBG. However,
such a scenario may be realized in DWs in cold atom based
“synthetic” graphene [92–94].

The Hamiltonian describing Dirac fermions (in the pseu-
dospin basis) with a relative phase or tilting ϕ with respect
to the DW can be obtained for ε 
 εv by linearizing H0 in
Eq. (1),

H0 � 2

(
0 q̄�K̄

q�K 0

)
, (C1)

where q = k − �K = qx + iqy. The eigensolutions of this
Hamiltonian are (s = ±)


s = 1√
2

[
1

sie−i(ϕ+φq )

]
eiq·r, ε2

q = 4K2
θ |q|2. (C2)

We will view 4K2
θ as the “Dirac speed” and we continue

using the parameter θ as a proxy for tuning the speed (by
means of tuning the lattice constant or the hopping param-
eter). Note that had we worked with any other continuum
model [23,24,29,30,32] we would have arrived at a similar
low-energy Hamiltonian. Except, the parameters playing the
role of the Dirac speed would be different.

Using the energy expression in Eq. (C2) one can write the
following constraint for tunneling across the DW:

4K2
θL

(
q2

L + q2
y

) = ε2 = 4K2
θR

(
q2

R + q2
y

)
. (C3)

This allows us to write the y-axis momentum as 2qyKL,R =
ε sin φL,R. Since momentum (qy) and energy (ε) are conserved
during the tunneling process, irrespective of the value of tilt
angle (ϕ), we obtain

λL sin φL = λR sin φR, (C4)

much in the spirit of Snell’s law of refraction, see Fig. 6(a).
Here, φL,R are incidence and transmission angles, respec-
tively, and λL,R = 2π/3KL,R are lattice periodicities of
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FIG. 6. (a) Cartoon rendition of Snell’s law for Dirac electrons.
When θR > θL, for particles incident at an angle larger than a critical
angle, φL > φc

L, there is perfect reflection (gray line). The orange
(dashed) line in (b) demonstrates this for (θL, θR ) = (1.1◦, 1.2◦). For
θR < θL tunneling persists for all incidence angle, see the blue (solid)
curve in (b) for (θL, θR ) = (1.1◦, 0.7◦). Both curves are obtained for
ε = 0.1ε1.1◦

v , however, as evident from Eq. (C8), the dependence
of T (φL ) on energy (when finite) is extremely weak. For normal
incidence (qy = 0), irrespective of the tilt angle, T = 1 for the gap-
less (ε = 0) particles. For low-energy gapped particles, T = T ⊥

0 is a
constant in energy. The inset in (b) shows how T ⊥

0 decreases from 1
with increasing difference in twist angles.

“graphenes” on the left and right. It is worth emphasizing that
the existence of such Snell’s law solely depends on the fact
that the low-energy dispersion is linear. Of course, for MLG
this cannot be realized since the Dirac speed in MLG fixed.

An immediate consequence of this property is, for θR >

θL (hence, φR > φL), as one increases φL after some crit-
ical incidence angle, φc

L, φR will become π/2. For any
φL > φc

L, irrespective of ϕ j , since there are no propagating
modes on the right side, the electrons will simply reflect
back much like total internal reflection. The associated crit-
ical angle can be obtained using λL sin φc

L = λR sin π/2 as
φc

L = sin−1 (λR/λL). Of course, such a phenomenon would
not exist for θR < θL.

In order to demonstrate the above phenomena, we explic-
itly compute the low-energy tunneling. When there is a DW
along the y axis, we replace qx → −i∂x and solve the wave
functions,

−∂2
x 
 +

(
q2

y − ε2

4K2
θ

)

 = 0. (C5)

The solutions of this second-order equation are ±Xj , where
4K2

θ j
(X 2

j + q2
y ) = ε2. Therefore Xj is either real or imaginary

(unlike for the gapped moiré states which can admit both real
and imaginary solutions simultaneously). The wave functions
on the two sides of the DW are


L =
[(

α+
L

β+
L

)
eiqLx +

(
α−

L
β−

L

)
e−iqLx

]
eiyqy , (C6a)


R =
(

α+
R

β+
R

)
eiqRxeiyqy . (C6b)

Here, q2
j = −q2

y + ε2/2ε
j
v , and tan φ j = qy/q j , so φL is

incidence-angle and φR is transmission-angle. Since incidence
is only from the left we will set |α+

L |2 + |β+
L |2 = 1. For the

operator in Eq. (C5), comparing it with Eq. (B1), we have

aL,R = K2
θL,R

and bL,R = 0. Thus, following the matching con-
ditions in Eq. (9), we obtain tunneling to be

T = |α+
R |2 + |β+

R |2 = 4qLqR

(qL + qR)2
. (C7)

Clearly, when ε = 0, independent of qy, the tunneling reduces
to T = 1, an incarnation of Klein tunneling [26,38,95]. We
also note that Eq. (C7) does not depend on ϕ. In other words,
tunneling of Dirac electrons is never affected by how the BZ
is tilted with respect to the DW. Next, in order to understand
the energy dependence of T , since ε 
 ε

j
v , we perform the

following energy expansion (for a fixed nonzero value of qy):

T � 1 − 1

4

�2
step

(2qy)4

(
ε2

εL
v εR

v

)2

+ O(ε6). (C8)

The energy dependence of T enters at O(ε4), thus T (ε) ≈ 1
for most values of energy. The correction term, which is
equal to the reflectance, is proportional to �2

step = (εL
v − εR

v )2.
This is natural since the probability of tunneling across a
DW must reduce with increasing twist angle difference. For
qy = 0, the tunneling probability reduces to a constant, T =
4εL

v εR
v /(εL

v + εR
v )2 ≡ T ⊥

0 . In the inset of Fig. 6(b), we plot the
θL,R dependence of T ⊥

0 .

1. Born scattering

We now try to understand the above results, qualitatively,
by re-formulating the tunneling problem in guise of an exer-
cise in quantum mechanical scattering [37]. In fact, we will
show that, using this formalism, one can corroborate the tun-
neling properties discussed above with those of MLG, BLG,
TBG for potential barriers.

Consider a chiral particle of dispersion, |k|J , such as quasi-
particles in a J-layered graphene. The Hamiltonian and the
wave functions describing such particles are [36]

ĤJ =
[

0 (k̂†)J

k̂J 0

]
, 〈r|ψk〉 = eik·rRJ (φk )Fs(0),

RJ (φk ) = exp
(
−i

J

2
φkσz

)
. (C9)

Note that, due to the presence of the J/2-spin-rotation op-
erator, RJ (φk ), state |ψk〉 gains a Berry phase of Jπ after
encircling a closed contour (φk′ − φk ≡ δφ = 2π ) in momen-
tum space. When such particles scatter off of a potential,
V̂ (r), such as by impurities or potential barriers, the angular
distribution of scattering cross-section can be obtained using
first order Born approximation,

�kk′ ∝ |〈ψk′ |V̂ (r)|ψk〉|2 ∼ |V̂kk′ |2 cos2 Jδφk

2
. (C10)

Since intravalley processes are prohibited in our model V̂ (r)
does not act on the sublattice space, and remains diagonal.
For backscattering from a barrier localized along the ky axis,
that is, for k′

x = −kx or φk′ = π − φk , scattering probability
becomes sin2 Jφk for odd J , such as in MLG. Thus, for normal
incidence backscattering is zero, or T = 1. This is simply
Klein tunneling [26,38]. For even J , this becomes cos2 Jφk ,
hence, backscattering is optimal for normal incidence, as is
seen in BLG [26,39]. Although in reaching this conclusion,
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with the use of Eq. (C10), we implicitly assumed the strength
of V̂ (r) to be small compared to the electron energy, one
can still establish this result nonperturbatively for arbitrary
strength of the barrier. This is done by performing an exact
summation of the full Born series [37]. Alternative compu-
tations [27,53,96] and experiments indeed confirm this result
[97,98].

Before proceeding to apply the Born approximation to the
tunneling in artificial graphene, we note that Eq. (C10) is valid
only for low-energy scatterers, ε 
 |V̂ |. As we had shown
before, the strength of the potential, V̂ (r), is determined by
�step ∼ O(εv). Therefore the following discussion will be
restricted to the states closer to the CNP and not to those near
the vHS. In order to compute �kk′ for TBG, we recast the
moiré wave function in Eq. (6) by using the rotation operator
in Eq. (C9). Effectively, this amounts to replacing Jφk by
the sublattice phase ηk . For low-energy quasiparticles, k →
q + �K , thus, ηk � φq + ϕ + π/2. Using this, we evaluate

�D
kk′ ∝ |V̂ |2 cos2 1

2 (ηk′ − ηk ) ∼ �2
step cos2 1

2 (φq′ − φq).

(C11)

Firstly, �D
kk′ , hence tunneling, is independent of ϕ. Second,

the amplitude of �D
kk′ scales with �2

step. This is in agreement
with what we had evaluated in Eq. (C8). Lastly, for backscat-
tering, like in the case of monolayer graphene, �D

kk′ vanishes
for normal incidence and T = 1. In other words, low-energy
transport in a TBG with a (weak) potential barrier, or for a
Dirac particle in artificial graphene, is identical to that in a
single layer graphene. This is consistent with the conclusions
of [25] as well.

APPENDIX D: OBTAINING THE TRANSFER MATRIX

In order to obtain the transfer matrix, we first recast the
matching conditions of Eq. (9) in a different basis

R1

(
p+

R
p−

R

)
= E1

(
eL

eR

)
+ L1

(
p+

L
p−

L

)
, (D1a)

R2

(
p+

R
p−

R

)
= E2

(
eL

eR

)
+ L2

(
p+

L
p−

L

)
. (D1b)

Our goal here is to eliminate the evanescent modes, (eL, eR )T ,
and express the outgoing modes in terms of the incoming
modes only. This obtains the transfer matrix as(

p+
R

p−
R

)
= M

(
p+

L
p−

L

)
,

M = (
R2 − E2E−1

1 R1
)−1(

L2 − E2E−1
1 L1

)
. (D2)

The matrices appearing above are

E1 =
(

1 −ξ

χ+ −ξχ−

)
, E2 =

(
κ+ ξκ− − ζ

κ+χ+ (ξκ− − ζ )χ−

)
,

L1 =
(

1 1
eiη+

L eiη−
L

)
, L2 = ikL

(
1 −1

eiη+
L −eiη−

L

)
,

R1 = ξ

(
1 1

eiη+
R eiη−

R

)
, R2 = iξkR

(
1 −1

eiη+
R −eiη−

R

)
+ ζ

ξ
R1.

(D3)

Independent of the transfer matrix formalism, one could
also obtain tunneling coefficients by making use of the (prob-
ability) current operator (for ϕ = 0),

Jx = −i
†

(
0 ∂x + 2ky

∂x − 2ky 0

)

 + H.c. (D4)

APPENDIX E: TUNNELING AND QUANTUM NOISE

Electric current inside a conductor is proportional to the
density of charge carriers ne. If temperature is high enough
this number fluctuates following Boltzmann distribution,
δn = ne − 〈ne〉 �= 0. This manifests in the linear response
function or conductance, due to fluctuation-dissipation the-
orem, where fluctuation in the current is δI = I − 〈I〉. This
is regarded as the thermal noise, which, in some sense, does
not carry more information than the steady state conductance
itself, 〈I〉, since it simply is a measure of temperature.

For our discussion, we are interested in the so-called shot
noise, that originates from quantum mechanical fluctuations
in charge carriers. This can be used, unlike thermal noise, to
probe the transport or nonequilibrium states of a conductor,
even at zero temperature. Consider, for instance, the tunnel-
ing problem across a barrier or a DW. We can characterize
the incident state by an occupation number ni (zero or one).
Similarly, occupation for the reflection state and tunneling
state are nr and nt , respectively. If we repeat the tunneling ex-
periment several times, 〈ni〉 = 1, 〈nr〉 = R, 〈nt 〉 = T . Not for
finite temperature, all of them get multiplied with the Fermi
function, f (ε). Since in every instance of this experiment a
particle is either reflected or transmitted, we have, 〈nt nr〉 = 0.
Using similar arguments, one can obtain the correlation be-
tween the transmitted and the reflected beams as 〈δntδnr〉 =
−T R, and 〈δn2

t 〉 = 〈δnr〉2 = T R. These two-point functions
are called partition noises as the barrier essentially partitions
the incident beam into either a reflected or a tunneled beam.
Clearly, partition noise is maximum for T = 1/2 and vanishes
for T = 1 or R = 1.

A natural formulation of the above quantities (noises)
pertaining to transport measurements can be done through
currents in different channels,

Ic = e

h

∫
nc(ε)dε (c = i, r, t ), (E1)

〈Ic〉 = e

h

∫
f (ε)Ncdε (Ni,r,t = 1, R, T ). (E2)

The aforementioned noises can thus be measured (strictly
speaking for low frequency fluctuations) by the correlation
function 〈δIc1δIc2〉. A quantity of experimental interest is the
current “noise power” defined for a pair of channels as

Sc1c2 = ge〈δIc1δIc2〉 = ge

h

∫
〈δnc1δnc2〉dε, (E3a)

Stt = ge

h

∫
T f (1 − T f )dε, (E3b)

Srr = ge

h

∫
R f (1 − R f )dε, (E3c)

Srt = −ge

h

∫
T f R f dε. (E3d)
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Here, g is a symmetry factor; for spin-1/2 particles g = 2.
We will use g = 4 since we also have valley symmetry. The
above expression for Stt can also be derived using a Poissonian
distribution of time intervals between the arrival times of the
particles at the barrier. When Stt approaches its maximum
value, ge〈I〉 ≡ S0

tt , called Poisson noise or Schottky noise, it
signals an uncorrelated arrival at the barrier. In order to mea-
sure whether the transport is maximally noisy (Poissonian)
or not (sub-Poissonian), naturally, one can make use of their
ratio,

F = Stt

S0
tt

=
∫

T f (1 − T f )dε∫
T f dε

� 1. (E4)

This is the Fano factor, see also Eq. (30). Note that it is
the (1 − T f ) factor that essentially drives the system from

noisy to noise-free transport. For instance, in ballistic systems
(T = 1) the tunneling shot noise will vanish as temperature
approaches zero, thus F ≈ 0. With increasing temperature,
the thermal noise may dominate over the shot noise; however,
for very high temperature, since 1 − f ≈ 1, Poisson noise is
recovered, F ≈ 1. On the other hand for a diffusive system ac-
companied by very small transparency (T 
 1) the tunneling
noise could be Poissonian even for zero temperature, F ≈ 1.
Thus F provides key insight into the possible mechanism of
transport in a conductor.

In summary, at zero temperature F = 1 means transport is
noisy and diffusive (such as in a disorder-free metal). If F <

1 there are open quantum channels which can allow ballistic
transport (such as a disordered metal [99]). Of course, F = 0
is a noiseless ballistic transport, such as the classical dynamics
of Dirac fermions.
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