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Stability of dissipatively-prepared Mott insulators of photons
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Reservoir engineering is a powerful approach for using controlled driven-dissipative dynamics to prepare
target quantum states and phases. In this work, we study a paradigmatic model that can realize a Mott insulator
of photons in its steady state. We show that, while in some regimes its steady state approximates a Mott-insulating
ground state, this phase can become unstable through a nonequilibrium transition towards a coherent yet
nonclassical limit-cycle phase, driven by doublon excitations. This instability is completely distinct from the
ground-state Mott-insulator to superfluid transition. This difference has dramatic observable consequences and
leads to an intrinsic fragility of the steady-state Mott phase: a fast pump compared to losses is required to sustain
the phase, but also determines a small critical hopping. We identify unique features of the steady-state Mott phase
and its instability that distinguish them from their ground-state counterpart and can be measured in experiments.
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I. INTRODUCTION

Dissipation engineering offers a promising avenue for the
control of quantum devices and simulators, and is actively
being explored as a strategy for stabilizing entangled resource
states and phases of matter [1–5]. While many physical plat-
forms have been considered, superconducting circuit QED
systems [6–8] are particularly ideal for engineering tailored
reservoirs. Reservoir engineering has been widely employed
in these systems, including for quantum-state preparation
[9–15] and autonomous quantum error correction [16–22].
These approaches could be combined with the ability to
wire up superconducting circuits into arrays, providing new
avenues for photonic quantum simulators enjoying strong
nonlinearities and long lifetimes [23,24].

A recent breakthrough experiment [25] succeeded in dis-
sipatively preparing the first Mott insulator of photons,
potentially enabling the realization of correlated quantum
fluids of light [26]. In this experiment, a Bose-Hubbard lat-
tice was realized using an array of transmon qubits, which
was then pumped by a reservoir, at a rate faster than lattice
losses and that is structured in energy, providing an effective
chemical potential for microwave photons [27–30]. The ex-
periment demonstrated that the steady state of the dynamics
was a low-entropy incompressible state with integer filling
approximating a ground-state Mott insulator [31]. Despite
this achievement, many basic properties of this dissipatively-
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prepared Mott insulator remain unexplored even at the level
of theory. This includes its spectral properties and the nature
of phase transitions out of the Mott state.

In this paper, we identify a new mechanism by which
the steady-state Mott phase can become unstable. While the
pumping stops autonomously once the Mott steady state is
reached at small values of hopping, thanks to its finite band-
width and to the gapped nature of the phase [25], beyond a
critical hopping an instability takes place, characterized by
a sudden proliferation of doublon excitations, leading to the
onset of a limit-cycle phase, destroying the Mott order. This
latter phase is coherent, yet inherits nonclassical features from
the Mott phase.

The nonequilibrium transition we unveiled is completely
distinct from the ground-state Mott-superfluid one, and has
a qualitatively different phase diagram. In particular, we find
that a fast pump compared to losses, that is required to sustain
the Mott steady state, translates into a small critical hop-
ping, determining a trade-off between fidelity and stability
of this phase. Furthermore, we identify unique features of
the steady-state Mott phase and its instability, such as am-
plification gain, a proliferation of doublon excitations and a
diverging susceptibility at their energy, that distinguish them
from their ground-state counterpart and could be measured in
experiments.

Our work differs from previously identified instabilities of
steady-state Mott phases. In [32,33] a different limit-cycle
instability is predicted, driven by hole excitations, forming
due to an inefficient pumping scheme. This is similar to the
ground-state transition of hard-core bosons which is driven
solely by an incommensurate filling [34,35], rather than by a
competition between kinetic term and local repulsion, that in-
stead characterizes the transition we identify here. A pumping
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scheme similar to our manuscript was considered instead in
Ref. [29], but this reference did not predict the nonequilibrium
instability we find here, but rather one similar to the ground-
state Mott-superfluid transition.

We also note that limit-cycle instabilities of driven-
dissipative bosons were also discussed elsewhere [36–38], but
these works did not consider steady-state Mott insulators.

II. RESULTS

A. The model

We consider a lossy Bose-Hubbard lattice, incoherently
pumped by a structured reservoir, providing a source of in-
coherent excitations within a finite energy window: This will
generate an effective chemical potential for the lattice. The
reservoir mimicks the essential features of experimental pro-
tocols such as in Ref. [25]. A minimal model for the system is
given by the Lindblad equation

∂t ρ̂ = −i[Ĥ , ρ̂] + κ
∑

j

D[â j]ρ̂ + rκ
∑
j,ω

S(ω)D[Â†
j (ω)]ρ̂,

(1)
where D[Ô]ρ̂ = (Ôρ̂Ô† − {Ô†Ô, ρ̂}/2) is a standard Lind-
blad dissipator. Ĥ is the Bose-Hubbard Hamiltonian

Ĥ =
∑

i

U

2
n̂i(n̂i − 1) − J

z

∑
〈i j〉

(â†
i â j + H.c.), (2)

where each lattice site hosts a single bosonic mode with
annihilation operator âi (and n̂i = â†

i âi), with an oscillator
frequency ω0 that has been gauged away from the Hamil-
tonian by a rotating frame transformation, U is the on-site
interaction, J is the hopping rate between nearest-neighbor
sites and z the lattice coordination.

The first dissipator in Eq. (1) describes linear, Markovian
on-site losses at rate κ . The second instead describes the
coupling to the structured reservoir, with a pump rate rκ ,
such that r is the ratio between pump and loss rates. The
jump operators Â†

j (ω) = ∑
ε′−ε=ω �̂(ε′)â†

j�̂(ε) connect the
manifolds of eigenstates of the Hamiltonian differing by one
particle, and with energy difference ε′ − ε = ω (of order ω0

assumed positive and large), where �̂(ε) is the projector to
the manifold with energy ε. S(ω) is the spectral function of
the reservoir [39] for which we use the simple form

S(ω) = θ (μeff − ω) (3)

with μeff representing the maximum energy of reservoir exci-
tations [in the rotating frame of Hamiltonian (2)].

The master equation (1) can lead to a steady state that
approximates a ground-state Mott insulator. In fact, the struc-
tured reservoir with spectral function (3) approximates the
detailed balance relation characterizing a system in contact
with an equilibrium reservoir with chemical potential μeff

[29] (see also Appendix A): It therefore imposes an effective
chemical potential. The pump/loss ratio r plays the role of
an inverse temperature, meaning that the ground-state cor-
responds to r → ∞. In practice, the larger r, the better the
fidelity of the steady state with the Mott ground state; this was
also as numerically verified by Ref. [29].

In the limit of disconnected sites J = 0, one can also cal-
culate the steady state analytically (as shown in Appendix A)

and check that it corresponds, for large r, to the ground state
of the Hamiltonian with an equilibrium chemical potential
μ = μeff , namely, a Fock state |N〉 with filling set by the
chemical potential as

N − 1 <
μeff

U
< N. (4)

B. Instability of the steady-state Mott phase

Although for weak J the steady state well approximates
a ground-state Mott insulator, the instability of this phase at a
critical hopping turns out to be qualitatively different from the
equilibrium case.

A simple way to capture this instability is to solve the
dynamics with a time-dependent Gutzwiller mean-field ansatz
ρ(t ) = ∏

i ρi(t ), that neglects both quantum and classical cor-
relations between sites while capturing the local physics. This
corresponds to solving a single-site problem with an effective
Hamiltonian HMF = Un(n − 1)/2 + φ†(t )a + φ(t )a†, where
φ(t ) = −J〈a(t )〉, where we dropped the site index assuming
also a homogeneous-in-space state and in the thermodynamic
limit of infinitely-many sites. Figure 1(b) shows that below
a critical hopping J < Jc the order parameter, that is the
average bosonic field 〈a(t )〉, features damped oscillations
and eventually vanishes in the steady-state Mott phase. At
a critical hopping Jc this develops limit-cycle oscillations at
a critical frequency ωc, 〈a(t → ∞)〉 = |a|eiωct+iφ , that ac-
quire a stationary and finite amplitude |a| for J > Jc. This
is shown in panel (c); note that for J > Jc, the frequency is
renormalized with respect to that for J = Jc [36]. We antic-
ipate that this second-order dissipative phase transition is a
genuine nonequilibrium instability, distinct from the ground-
state Mott-superfluid transition: Here the onset of limit-cycles
corresponds to a spontaneously broken time-translation sym-
metry, along with the U(1) symmetry of (1) for âi → âieiθ ,
something that cannot happen for ground-state transitions
[40–42].

The phase boundary can be found by the condition that
the lattice susceptibility to an applied weak coherent field
diverges at the instability. We compute this quantity using
a strong-coupling Keldysh field theory approach (detailed in
Appendix B 2). This in principle allows to describe the ex-
citations of the Mott phase, but not of the superfluid phase
[43], and to formulate a critical theory of the Mott-superfluid
transition [31,36]. It gives the same critical point as Gutzwiller
mean-field (as shown in Appendix B 1), that follows from

0 = − 1

π
ImGR

0 (ωc), (5)

1/Jc = −ReGR
0 (ωc), (6)

where GR
0 (ω) = −i

∫∞
0 dteiωt 〈[â(t ), â†(0)]〉0 is the Fourier

transform of the local steady-state susceptibility, evaluated
at J = 0 corresponding to disconnected sites. Note that here
homogeneity in space is a result of calculations, rather than an
assumption.

Equation (5) determines the Fourier mode that becomes
unstable, identified by the critical frequency ωc. It represents a
zero net-damping condition: on any given lattice site, the rest
of the lattice (viewed as a bath) does not produce any net gain
or loss. As we discuss later, thermal equilibrium in the grand-
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FIG. 1. (a) Schematic: A lossy Bose-Hubbard lattice is coupled to a structured reservoir, imposing an effective chemical potential
μeff . [(b) and (c)] Gutzwiller mean-field (MF) dynamics of the order parameter: For a hopping smaller than a critical value J < Jc (b) it
features damped oscillations towards the incoherent (〈a〉 = 0) Mott steady state, while for J > Jc, (c) it develops finite-amplitude oscillations
corresponding to a coherent limit-cycle phase; the initial state is a coherent state |α〉 with α = 0.01, and Jc/U = 0.094. (d) The steady-state
phase diagram in MF: The Mott phase appearing in “lobes” with J < Jc with approximately integer filling N ; the ground-state Mott-superfluid
phase diagram is plotted for comparison, as well as “ground-state-like” transition, assuming a static order parameter. (e) As the pump/loss
ratio r increases, Jc decreases and the critical frequency ωc approaches the energy ωdoub to create a doublon excitation. κ/U = 10−3 in (a) and
(c) and κ/U = 10−5 in (d) and (e). μeff/U = 1/2 and r = 100 where relevant.

canonical ensemble would require ωc = μeff , corresponding
to an unbroken time-translational symmetry. A violation of
this condition can only occur out of equilibrium. Equation (6)
instead determines the critical hopping Jc from the real part of
the susceptibility evaluated at ωc.

The steady-state phase boundary is plotted in Fig. 1(d),
showing that the regimes of stable Mott phases form “lobes”
in the hopping-chemical potential plane. Each distinct lobe
corresponds to a chemical potential range (4) where there
is an approximate integer filling of the lattice. One imme-
diately sees that their shape is dramatically altered in the
steady-state case, as compared to the standard ground-state
Mott-superfluid transition (also plotted). We discuss later
how those difference arise, highlighting first the main con-
sequences. An expected result is that dissipation suppresses
phase coherence in parts of the phase diagram, as we see small
regions that would be superfluid in the ground state turned into
Mott insulators in the steady state. Conversely, it is remarkable
that for many values of μeff in the plot the Mott steady state is
unstable at a smaller critical hopping Jc.

An important results is that the critical hopping Jc strongly
depends on the pump/loss ratio r, and decreases when in-
creasing r, as Fig. 1(e) shows. This implies a trade off between
the fidelity of the steady state to a ground-state Mott insu-
lator, which requires a fast pump compared to losses (i.e., a
large r) to sustain an integer filling, as discussed earlier in the
manuscript and verified numerically in [29], and the stability
of this phase at finite hopping.

Finally, Fig. 1(e) also shows that the critical frequency (5)
approaches for large r the energy (using h̄ = 1 units) to create
a doublon excitation, namely to add one particle to the steady
state, ωc ∼ ωdoub, that in a single-site picture is

ωdoub = UN, (7)

where N is the filling of the Mott state.
To give more insights on the instability, in Fig. 2(a), we

plot the susceptibility GR
0 (ω) that controls it via (5) and (6).

Its imaginary part shows two peaks, from left to right re-

spectively at the energy of hole and doublon (7) excitations,
corresponding to Mott-Hubbard bands separated by a gap U .
We see that the critical frequency (dashed line) is indeed
close to the bottom of the upper Hubbard band, around the

FIG. 2. Local susceptibility for μeff/U = 1/2 for (a) the single-
site problem and (b) in DMFT, on a Bethe lattice with coordination
z = 20 and at Jc,dmft/U = 0.086. The critical frequency ωc is marked,
both in MF and DMFT and for the ground-state transition (dotted-
gray), identifying a region of negative density of states (NDoS) in
between. (c) Dynamics of Fock states populations pn(t ) = 〈n|ρ(t )|n〉
and density 〈n(t )〉 in the limit-cycle phase in MF: At the onset of
limit cycles (for tκ ≈ 6), the doublons (p2) and the density suddenly
increase. (d) Wigner function of the limit-cycle state at tκ = 8.3 in
MF: Lack of rotational symmetry signals phase coherence. The neg-
ative peak signals a nonclassical state. For all panels μeff/U = 1/2,
κ/U = 10−3, and r = 100 as in Figs. 1(a) and 1(c).
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doublon energy. We can also understand from this figure the
related behavior of ωc and Jc = −1/ReGR

0 (ωc) as functions of
r already discussed: The real part becomes larger if evaluated
at a critical frequency closer to ωdoub (7); in Appendix E,
we trace this back to the Kramer-Kronig relations of suscep-
tibilities. Physically, ωc ∼ ωdoub reflects into the instability
being characterized by a sudden generation of doublons in
the dynamics for J > Jc, accompanied by an increase in the
density: This is shown in Fig. 2(c). This also corresponds to
the onset of phase coherence, which is confirmed by Fig. 2(d)
showing the Wigner function of the limit cycle state: It is
not circularly symmetric. It nonetheless possesses a strong
nonclassical character, signalled by the negative peak of the
Wigner function near the origin, reminiscent of the Mott
phase.

Another aspect of the local susceptibilities is important to
remark. Their imaginary part (with a minus sign), is a local
probe of the density of states (DoS). Our instability requires
the system to exhibit a negative DoS (NDoS) at frequencies
ω > μeff , something that is directly connected with the ability
to generate amplification gain and that cannot occur in equi-
librium conditions [37,44]. This happens for μeff < ω < ωc in
our case as indicated in Figs. 2(a) and 2(b) by the dashed and
dotted lines (though its amplitude is not appreciable with the
scale used). The local NDoS directly reflects in a diverging
lattice susceptibility at zero momentum and at the critical
point (5) and (6). The NDoS, the diverging susceptibility at
ωc ∼ ωdoub and the increase in time of doublons and den-
sity [Fig. 2(c)] are unique properties of the steady-state Mott
phase, that distinguish it from a ground-state Mott insulator.
These can be probed in experiments by measurements of
transmission/reflection and density (see, e.g., Refs. [25,45]).

C. Comparison with ground-state Mott-superfluid transition

For comparison, note that the ground-state Mott-superfluid
transition is also described by Hamiltonian (2), up to a rotating
frame transformation equivalent to a standard grand-canonical
Hamiltonian with equilibrium chemical potential μeff . Also,
the critical point equations (5) and (6) hold as well for the
ground-state transition: One simply replaces the steady-state
susceptibility with the analogous ground-state quantity.

The main difference is that in the ground-state case, only
a static order parameter can form, since time-translation
symmetry cannot be broken spontaneously [40–42]. This con-
straints the critical frequency to take the equilibrium value
ωc = μeff (in the rotating frame of (2)). Accordingly, Eq. (5)
for the ground state is guaranteed to be satisfied at this fre-
quency [44]. Note that the μeff dependence of ωc gives rise to
the typical “round” Mott lobes. Ground-state calculations are
reported in Appendix A.

In a nonequilibrium scenario instead, ωc is not a priori
known: In our case, this must be found from (5). This pre-
dicts a very different value from equilibrium: In particular
ωc strongly depends on the pump/loss ratio r, approaching
the doublon frequency (7) for large r as previously shown in
Fig. 1(e); also it does not depend on μeff within one lobe, and
thus Jc also does not, giving rise to the “flat” lobes.

Eventually, the large difference of the steady-state phase
diagram compared to the ground state one [Fig. 1(d)] is

due to the critical hopping equation (6) being evaluated at a
very different critical frequency from equilibrium [the dashed
rather then dotted line in Figs. 2(a) and 2(b)]. Indeed, if the
equilibrium frequency is assumed, this yields a phase diagram
that only differs perturbatively in the dissipation strength from
the ground-state one: The dotted line in Fig. 1(d).

A similar result if found in Ref. [29], that making a similar
assumption of a static transition for a similar problem, finds
a ground-state-like phase diagram. Our theory is therefore
consistent with Ref. [29]. Also, we expect our instability, pre-
dicted in the thermodynamic limit, to be absent in the steady
state of a finite-size system like in Ref. [29], as the limit-cycle
would likely become a long-lived metastable state in this case,
with a lifetime that only diverges in the thermodynamic limit.

We remark that the μeff -independent lobes are actually
an artifact of our theoretical approaches, relying on the so-
lution of a single-site (J = 0) Lindblad equation: This can
only capture a stepwise dependence on μeff (more details
in Appendix B 3). While we expect some μeff dependence
beyond those approaches, the steady-state phase diagram will
still retain its characteristic dependence on pump/loss ratio
r, remaining distinct from the ground-state one. Preliminary
evidence also suggests that at very large r, but still weak
overall dissipation, a Lindblad equation might not be accurate
(1). Finally, correlations due to dimensionality beyond our
approaches, especially in 1D and 2D, might also introduce
corrections to the predicted phase diagram.

D. Benchmark of main results

While we considered a square bath spectral function (3)
and a Lindblad master equation (1), our results do not depend
on these choices: In Appendixes D and C, similar results are
found with a different spectral function and with a Redfield
equation.

Here instead we confirm our results going beyond the
previous Gutzwiller and Keldysh approaches to the lat-
tice problem using dynamical mean-field theory (DMFT)
[37,46,47], with an impurity solver based on the noncrossing
approximation [48,49]. For bosons [50–53], DMFT captures
nonperturbatively the leading 1/z corrections to Gutzwiller,
where z is the lattice connectivity. In particular, we predicts
the local susceptibility and critical point beyond previous
approaches [37]. The local susceptibility at finite hopping
GR(ω, J ) = −i

∫∞
0 dteiωt 〈[â(t ), â†(0)]〉 is shown in Fig. 2(b),

where one notices the formation of bands replacing the single-
site resonances of panel (a). We assumed for simplicity a
Bethe lattice [52,54] and a homogeneous phase, therefore
dropping the site index. Similar critical point equations to (5)
and (6) exist in DMFT (reported in Appendix B 4), involving
now the J-dependent local susceptibility: solving those we
confirm our instability, with a critical frequency ωc at the
bottom of the doublon band (marked in Fig. 2).

III. CONCLUSIONS

We identified a new instability of a dissipatively-prepared
Mott insulator, driven by doublon excitations. This is phys-
ically different from the ground-state Mott-superfluid tran-
sition and is characterized by a dependence on the pump
strength that reveals an intrinsic trade-off between the fidelity
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of the steady state with a Mott state and its stability to finite
hopping. We connected the steady-state Mott phase and its
instability to peculiar features of the dynamics and suscep-
tibilities that can be measured in experiments. Our results
are relevant to the dissipative preparation of gapped phases
of matter that can be achieved with similar protocols [25],
beyond the specific case of a Mott phase studied here, see,
for example, Ref. [55].

The data (code) to reproduce the results of the manuscript
will provided by the author under request.
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APPENDIX A: EQUILIBRATION, SINGLE-SITE PROBLEM
AND COMPARISON WITH THE GROUND-STATE CASE

The master equation (1), in the regime considered through-
out the paper of large pump/loss ratio r 	 1 but weakly
coupled environment κ, rκ 
 U, J , and for U 
 J , approxi-
mates the dynamics of equilibration with a bath at chemical
potential μ = μeff and zero temperature T = 0: As a con-
sequence, its steady state is expected to approximate the
ground state of a grand-canonical Hamiltonian. The equilib-
rium dynamics is in fact characterized by the detailed balance
relation, stating that given two eigenstates of the Hamilto-
nian |ψ〉 and |φ〉, the ratio of the transition rates for going
from one state to the other equals the ratio of their equil-
brium probabilities, their Boltzmann weights, at temperature
T and chemical potential μ: T eq

ψ→φ/T eq
φ→ψ = e(μ−εφ+εψ )/T . The

master equation (1) defines the following transition rates be-
tween eigenstates differing by 1 particle: If |ψ〉 has 1 particle
less than |φ〉, then Tψ→φ/Tφ→ψ = rθ (μeff − εφ + εψ ), that
for r 	 1 approximates the detailed balance relation at zero
temperature T → 0 and for μ = μeff . A similar discussion is
reported in Ref. [29]. We remark that this partial detailed bal-
ance relation does not guarantee an equilibrium steady state,
as Eq. (1) does not guarantee thermalization within each fixed
particle-number subspace. Further, in the presence of spectral
degeneracies, the master equation will couple populations and
coherences. Nonetheless, the expectation of an equilibrium
state is expected to hold if one is deep in the Mott phase, as it
becomes rigorous at zero hopping.

For a single-site problem (J = 0) the steady state can be
calculated analytically and shown to correspond, for large
r, to the Bose-Hubbard-site ground state with chemical po-
tential μ = μeff . Note that a collection of independent sites
is also representative of a Mott insulating phase in the
Gutzwiller approximation. For the single-site problem, the
jump operators entering (1) become simply A†(En+1 − En) =
〈n + 1|a†|n〉|n + 1〉〈n| (omitting the site index), describing
transitions between two Fock states, the single-site eigen-
states, differing by one boson with energy difference En+1 −
En = Un. The master equation (1) reduces to a simple rate
equation for Fock states populations. Therefore the detailed
balance argument discussed above becomes rigorous and the
steady state for large r must correspond to the single-site
ground state. The single-site master equation takes the form:

∂t ρ̂ = −i[Ĥ , ρ̂] + κD[â]ρ̂

+ rκ
∞∑

n=0

S(nU )D[
√

n + 1|n + 1〉〈n|]ρ̂ (A1)

where the bath spectral function is still given by (3),
S(ω) = θ (μeff − ω), and is evaluated at the single-site energy
differences.

In the steady state, one finds that only eigenstates with
En − En−1 = nU < μeff are populated and that the popula-
tions are given by pn = rn(1 − r)/(1 − rN+1)θ (N − n) where
N is the last populated Fock state satisfying (4). For r 	 1 the
steady state approaches the pure state |N〉, as pn ≈ δn,N , with
N obeying (4).

This corresponds to the ground state of a Bose-Hubbard
site with an equilibrium chemical potential μ = μeff , i.e.,
Ĥ0 = −μn̂ + Un̂(n̂ − 1)/2 [31,56]. The ground-state single-
site susceptibility can also be easily computed through a
spectral decomposition and reads

GR
0,gs(ω) = N + 1

ω − ω
gs
doub + iη

− N

ω − ω
gs
hol + iη

(A2)

where η is a positive infinitesimal. Like its steady-state coun-
terpart plotted in Fig. 2, it has two peaks at the energies of
doublons ω

gs
doub and holon ω

gs
hol excitations (corresponding to

adding and removing a particle from the ground-state), which
are given by

±ω
gs
doub(hol) = ±(EN±1 − EN ) = −μ + U

(
N − 1

2 ± 1
2

)
(A3)

Going to a rotating frame in which the chemical potential is
removed from the Hamiltonian like in the main-text Hamilto-
nian (2) these energies are shifted by μ, and coincide with the
steady-state expression (7) reported in the main text.

The ground-state Gutzwiller mean-field phase diagram is
given by the main text critical point equations (6) and (5),
where the steady-state susceptibility is replaced with the
ground-state one (A2). Since the ground-state transition is
static, those equations must be evaluated at ωc = 0 with the
susceptibility (A2) [or equivalently at ωc = μ in the rotating
frame of (2)]. Note that (5) is always satisfied at such a fre-
quency for equilibrium states such as ground states (see, e.g.,
Ref. [44]). The critical hopping is then given by Eq. (B14)
yielding the well known Mott lobes in the μ-J plane, plotted
in Fig. 1 with μ = μeff for comparison with the steady-state
phase boundary.
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APPENDIX B: DETAILS ON THE MOTT PHASE
INSTABILITY

Here we discuss how to obtain the critical point equa-
tions (5) and (6) for the phase transition out of the Mott phase.
We first discuss how to obtain it from the Gutzwiller dynamics
and then using the strong-coupling RPA Keldysh field theory.
Finally, we discuss how these equations are modified within
dynamical mean-field theory.

1. Time-dependent Gutzwiller

Within the Gutzwiller ansaz made in the main text, the
linear response to a small symmetry-breaking field φ(t ) reads

〈a(t )〉 =
∫ −∞

∞
dτGR

0 (t − τ )φ(τ )

= −J
∫ −∞

∞
dτGR

0 (t − τ )〈a(τ )〉, (B1)

where in the last step we have used the Gutzwiller
self-consistency condition φ(t ) = −J〈a(t )〉. Translating the
above condition in frequency domain, we obtain 〈a(ω)〉 =
−JGR

0 (ω)〈a(ω)〉. For a given ω such that a(ω) �= 0, this equa-
tion gives the critical point equations (5) and (6):

1/J + GR
0 (ω) = 0. (B2)

The smallest J and the corresponding ω satisfying this condi-
tion define the critical point (Jc, ωc).

The same condition can be recovered in a strong-coupling
Keldysh field theory [43], as we show in the following.

2. Strong-coupling RPA in the Keldysh path integral

We make a strong-coupling RPA (random phase approx-
imation) [36,43], formulating the problem in the language
of Keldysh field theory. The Keldysh action, in terms of the
coherent fields ai, āi reads

S =
∫
C

dt

(∑
i

āii∂t ai − H

)
+
∑

i

(Sl,i + Sμeff ,i ), (B3)

where
∫
C is an integral on the Keldysh contour, H is the

expectation value of the Hamiltonian on coherent states

H =
∑

i

(
ω0āiai + U

2
āiāiaiai

)
−
∑
〈i j〉

J

z
(āia j + H.c.)

(B4)
and Sl,i describes the Markovian losses, corresponding to the
loss dissipator

Sl,i = −iκ
∫ ∞

−∞
dt

(
āi−ai+ − 1

2
āi+ai+ − 1

2
āi−ai−

)
. (B5)

Finally, Sμeff ,i describes the coupling to the structured reser-
voir. For a bath of noninteracting bosons, this can be
integrated out explicitly, yielding

Sμeff ,i = −i
∫
C

dt
∫
C

dt ′rκ
∑

i

āi(t )C(t − t ′)ai(t
′), (B6)

where C(t − t ′) is the bath correlation function, with Keldysh
indices implicit in the time variables. The fourier transform of
the lesser component of this function is S(ω) defined in the
main text (3).

We then do a Hubbard-Stratonovich transformation on the
hopping term, by introducing the auxiliary bosonic fields ψi

by a Gaussian integral

exp

⎛
⎝−i

∫
C

dt
∑

i j

āiJi ja j

⎞
⎠ = 1

N

∫ ∏
i

D[ψ̄iψi] exp

⎧⎨
⎩i

∫
C

dt

⎡
⎣∑

i j

ψ̄iJ
−1
i j ψ j +

∑
i

(ψ̄iai + ψiāi )

⎤
⎦
⎫⎬
⎭, (B7)

where J−1
i j is the inverse hopping matrix and N is a normalization coming from Gaussian integration. By plugging this in the

action (B3), we can formally integrate on the ai, āi fields

Z =
∫ ∏

i

D[āi, ai]e
iS[{āi,ai}] = 1

N

∫ ∏
i

D[ψ̄i, ψi]e
i
∫
C dt

∑
i j ψ̄iJ

−1
i j ψ j

∫ ∏
i

D[āi, ai]e
iSloc ei

∫
C
∑

i (ψ̄iai+ψi āi )

= 1

N

∫ ∏
i

D[ψ̄i, ψi]e
iSeff [{ψ̄i,ψi}] (B8)

obtaining the effective action for the fields ψi, ψ̄i alone

Seff =
∫
C

dt

⎛
⎝∑

i j

ψ̄iJ
−1
i j ψ j +

∑
i

�[ψ̄i, ψi]

⎞
⎠, (B9)

where the second term represents the generating functional
of the bosonic Green functions of isolated sites, �[ψ̄i, ψi] =
−i ln〈TCei

∫
C dt (ψ̄iai+a†

i ψi )〉0.
We stress that the latter average is taken on the single-site

problem, therefore the many-body problem has been formally

reduced to calculating the single-site problem cumulants. We
remark that only at this stage we use the description of the
reservoir with a Lindblad equation (1), that therefore only
depends on the spectrum of the single-site problem and can
be evaluated in practice.

To obtain the strong-coupling RPA, we then truncate the
effective action at the Gaussian level obtaining

Seff =
∫
C

dt
∫
C

dt ′ ∑
i j

ψ̄i
(
J−1

i j + G0(t − t ′)
)
ψ j, (B10)
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where G0(t − t ′) = −i〈TCai(t )a†
i (t ′)〉 is the contour-ordered

Green function of the single-site problem. A second-order
phase transition is then signalled by a vanishing retarded com-
ponent of the effective action, corresponding to a diverging
susceptibility at the critical point, which in frequency and
momentum space reads 0 = 1/Jq − GR

0 (ω) with Jq the lattice
dispersion. For a hypercubic lattice, Jq = −2J/z

∑d
α=1 cos qα

and the first unstable mode is the q = 0 mode (assuming
ReGR

loc(ωc) < 0), leading to the critical point equations (5)
and (6) of the main text:

0 = ImGR
0 (ωc), (B11)

1

Jc
= −ReGR

0 (ωc). (B12)

The single-site susceptibility GR
0 (ω) is finally obtained nu-

merically from the single-site Lindblad equation (A1).

3. Absence of Mott-lobes dependence on effective chemical
potential

It is important to note that in the single-site Lindblad
equation (A1) the reservoir spectral function (3), S(ω) =
θ (μeff − ω), is evaluated at the transition energies of the
single-site Hamiltonian En+1 − En = nU , that don’t depend
on μeff (or on J). Therefore the single-site problem simply
depends in a stepwise manner on μeff , by steps of U . This
reflects the blockade effect of the nonlinearity U , that is the
incompressibility of the Mott state, already at single-site level.
Though, note that this also implies that, not only single-site
populations, but any quantity computed from (A1) depends
in the same stepwise manner on μeff . Further, since all the
many-body techniques we use (including DMFT) eventually
reduce the lattice problem to the single-site problem (A1), also
any lattice quantity eventually depends on μeff in the same
stepwise way. This includes the critical hopping Jc, resulting
in the flat lobes.

The perfectly flat Mott lobes are in fact an artifact of our
methods. There is two ways of introducing a more nontrivial
μeff dependence of the critical hopping going beyond those
methods. The first is going beyond a Lindblad equation (A1)
to model the structured reservoir for the single-site problem
[or also at lattice level (1)]. In fact, that the bath spectral
function is evaluated only at the excitation energies of the bare
system En+1 − En = nU , is ultimately a result of the Born-
Markov approximation. The second is to use approaches to the
lattice problem that don’t reduce to the single-site problem. In
fact, in the Lindblad equation for the lattice problem (1), the
hopping J enters (together with μeff ) in the dissipator, as this is
evaluated at the transition energies of the lattice Hamiltonian,
rather than single-site one: this would introduce a nontrivial
dependence of Jc on μeff .

While we expect some μeff dependence beyond our ap-
proaches, we also expect that ωc will still depend strongly on
the pump/loss ratio r and be different from its ground-state
value.

4. Dynamical mean-field theory

The phase boundary condition can be obtained within
DMFT using a similar procedure, as discussed in detail in
Ref. [37]. The key difference with respect to Gutzwiller/RPA
is that the self-consistent symmetry breaking field takes con-
tributions both from the coherent neighboring sites, as in
Gutzwiller, as well as from the incoherent neighbors through
the self-consistent DMFT bath. Assuming a Bethe lattice, the
critical point equations (5) and (6) becomes in DMFT [37]

Im GR(ωc, Jc) = 0, (B13)

1

Jc
+ Re GR(ωc, Jc) + Jc

z
[Re GR(ωc, Jc)]2 = 0 (B14)

in terms of the local susceptibility GR(ω, J ) =
−i

∫∞
0 dteiωt 〈[â(t ), â†(0)]〉. We remark that the critical

frequency ωc is still the zero of its imaginary part. On
the other hand, the local susceptibility here depends on
the hopping and therefore the two equations are coupled,
differently from equations (5) and (6) where we could
determine ωc from the first equation alone.

APPENDIX C: RESERVOIR WITH LORENTZIAN
CORRELATIONS

In the main text, we considered a structured reservoir with
a simple square-shaped correlation function (3), acting as a
chemical potential. Here we show that our conclusions do not
depend on this specific choice, by considering instead a reser-
voir with a Lorentzian spectral function, which is qualitatively
more similar to the experimental realization of Ref. [25]. We
assume the Lorentzian to be centered at ωres = U correspond-
ing to the transition from 0 to 1 photon in a Bose-Hubbard site
with energy difference E1 − E0 = U and to have a lifetime γ

(corresponding to the lifetime of reservoir excitations):

SR(ω) = rκ
(γ /2)2

(ω − ωres)2 + (γ /2)2
. (C1)

Figure 3 shows in panels (a) and (b) that upon increasing
the pump/loss ratio the single-site steady state approximates
the Bose-Hubbard-site ground state with unit filling, and in
panels (c-d) that we get a similar instability of the steady-state
Mott phase with a similar behavior of ωc and Jc as shown in
Figs. 1(d) and 1(e).

We also remark that the Markovian assumption, requiring
that the timescale for the decay of the bath spectral func-
tion is shorter than the bath-induced system timescales, is
strictly speaking not satisfied for the square-shaped correla-
tion functions of the reservoir used in the main text [29].
For the Lorentzian function used here instead the Markovian
assumption is justified for our choice of parameters satis-
fying κ, rκ 
 γ , ωres, showing that our conclusions are not
affected.

APPENDIX D: REDFIELD MASTER EQUATION

In Ref. [29], the same system considered in this paper
is modelled using a Redfield master equation, rather than
the Lindblad equation (1), which includes nonsecular terms
and Lamb-shift contributions to the Hamiltonian. In this
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FIG. 3. For a reservoir with Lorentzian spectral function (C1),
the driven-dissipative single-site steady-state average population 〈n〉,
purity tr(ρ2), critical hopping Jc and frequency ωc as a function of the
pump-to-loss ratio r (the doublon frequency is indicated by ωp here).
The same qualitative behavior found for the square-shaped reservoir
spectral function of the main text is found. Parameters: k/U = 10−6,
γ /U = 10−3, and ωstab/U = 1.

Appendix, we show that our conclusions do not change con-
sidering such a Redfield equation. This reads

∂t ρ̂ = −i[Ĥ , ρ̂] + κ
∑

j

D[â j]ρ̂ + D̂stab. (D1)

The structured reservoir dissipator in this case reads

D̂stab = rκ
∑

i

(a†
i ρãi + ã†

i ρai − aiã
†
i ρ − ρãia

†
i ), (D2)

where the “filtered” operators ãi = ∑
m,n SR(εn −

εm)〈ψm|ai|ψn〉|ψm〉〈ψn| are defined in terms of the eigenstates
|ψn〉 and eigenvalues εn of the Bose-Hubbard Hamiltonian (2)
and

SR(ω) = 1

2
θ (μeff − ω)θ (ω + ω0) + i

2π
ln

∣∣∣∣μeff − ω

ω0 + ω

∣∣∣∣ (D3)

whose imaginary part leads to a Lamb-shift term contributing
to the Hamiltonian which is negligible in our results (for
which the dissipation is small and staying away from the
points in which this function is singular), but we kept it in
the results of this Appendix.

Using such a Redfield equation (D1), the main results
presented in the main text are recovered in Fig. 4, showing
a similar phase diagram and a similar behavior of Jc and ωc at
small 1/r as in Fig. 1. The main difference is that the critical
hopping is much smaller than in the Lindblad case and the
exponent with which the critical hopping Jc and the frequency
difference ωdoub − ωc decrease as a power law with 1/r is
larger in absolute value compared to the Lindblad case.

In Secs. E 1 and E 2, we report perturbative calculations
showing that this quantitative difference is due to the fact
that a crucial contribution to the doublon resonance, that
mainly determines the critical point, appears at first order in
perturbation theory in the dissipation strength in the Redfield
case, while for the Lindblad equation it only appears at higher
orders in perturbation theory.

FIG. 4. Steady-state Mott instability using the Lindblad (1) vs
Redfield (D1) equation for the same parameters in Fig. 1. (Left)
Steady-state phase diagram, where the ground-state Mott-superfluid
phase diagram is plotted for comparison. (Right) Critical hopping
Jc and frequency difference ωdoub − ωc as a function of the inverse
pump/loss ratio. For the same parameters, the critical hopping is
smaller in the Redfield case, as a feature of the doublon resonance
that is crucial for the critical point appears at first order in perturba-
tion theory in the dissipation strength in the Redfield case, while only
at higher orders in the Lindblad case.

We also remark that the Gutzwiller mean-field dynamics
using the Redfield equation becomes unphysical in the limit-
cycle phase, yielding negative probabilities, contrarily to the
case of the Lindblad equation (1) considered in the main text.

APPENDIX E: THE DOUBLON RESONANCE
AND THE STEADY-STATE INSTABILITY

The observation that a zero of the imaginary part of the
single-site susceptibility GR

0 (ω) forms close to its doublon
peak [see the discussion of Fig. 2(a)] allows to better un-
derstand the mathematical origin of the steady-state Mott
instability. We find that for κ, κr 
 U, J , where the peaks are
well resolved, such a zero emerges due to an “anti-Lorentzian”
contribution to ImGR

0 (ω) [44] making the doublon peak asym-
metric, as Fig. 5 shows plotting GR

0 (ω) in the case of the
Redfield equation (D2) for which this behavior is particularly
pronounced (though for a Lindblad equation the same con-
clusions are true): In zoom (a) on the doublon resonance the
imaginary part is clearly asymmetric, while the same asym-
metry is not present in zoom (b) showing the holon resonance,
whose imaginary part is almost even around the peak center.

In the following, we discuss this anti-Lorentzian contri-
bution and how it can lead to the steady-state instability,
while in Sec. E 1, we use first-order perturbation theory in
the Redfield dissipator to capture this contribution analytically
and in Sec. E 2, we show that the same effect is not captured
at first-order in perturbation theory in the Lindblad case (but
appears at higher orders), explaining why the instability is
somehow less pronounced in this case.

The retarded Green function (susceptibility) GR
0 (t ) =

−itr{[â(t ), â†(0)]ρ̂}θ (t ) of a problem described by a Marko-
vian master equation ∂t ρ̂ = L̂ρ̂ can be decomposed in terms
of the right r̂α and left l̂α eigenstates of the Lindblad superop-
erator L̂ and its eigenvalues λα in its Lehmann representation
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FIG. 5. Solid lines: Single-site susceptibility for r = 103 for the
Redfield master equation (D1) and for μeff/U ∈ [0, 1], κ/U = 10−5,
obtained numerically. [(a) and (b)] Zooms respectively around the
right dobulon and left holon peak. The doublon peak is strongly
asymmetric due to an “anti-Lorentzian” contribution whose mag-
nitude increases with the pump/loss ratio r. The dotted lines are
obtained using the first order perturbation theory in the dissipator,
where the doublon peak is approximated by keeping only the cor-
responding term (E11) in the Lehmann representation, showing that
the zero of the imaginary part is correctly captured.

(see, e.g., Refs. [44])

GR(ω) =
∑

α

wα

ω + Im λα − iReλα

(E1)

with wα = tr(âr̂α ) tr(l̂†
α[â†, ρ̂]). It is important to notice that

the weights wα are in general complex, differently from the
case of closed systems. The imaginary part takes the form

ImGR(ω) =
∑

α

RewαReλα

(ω + Imλα )2 + (Reλα )2

+ Imwα

Reλα

Reλα (ω + Imλα )

(ω + Imλα )2 + (Reλα )2
(E2)

with both Lorentzian and “anti-Lorentzian” contributions cor-
responding to the first and second term. Note that in the limit
of vanishing dissipation, where Reλα → 0 and Imwα → 0,
the amplitude of the anti-Lorentzian contribution Imwα/Reλα

can still be finite.
An important observation is that, in the regime of small

dissipation κ, κr 
 U, J considered in the paper, the peaks
stemming from different contributions in the sum are well
separated in frequency, and therefore both the zero of the
imaginary part and the critical hopping mostly originate solely
from a single peak, the doublon peak (as we show in Fig. 5).
This can be parametrized by

f (ω) = b
1 − iγ a

ω + iγ
(E3)

with imaginary part

Im f (ω) = −b

(
γ

ω2 + γ 2
+ a

ωγ

ω2 + γ 2

)
(E4)

The latter has a zero at ω = −1/a, that we identify with the
deviation of the critical frequency from the doublon energy

−1/a ≈ ωc − ωdoub. The critical hopping is then given by
Jc = −1/ReGR(ωc), that is by the real part of the f (ω)

Re f (ω) = b

(
ω

ω2 + γ 2
− γ 2a

ω2 + γ 2

)
(E5)

yielding Jc ∝ −1/Re f (−1/a) = 1/(ab). Therefore we get
the proportionality ωdoub − ωc ∝ Jc, explaining why those
quantities vanish simultaneously for large r, as shown in
Figs. 1(c) and 1(d). Another way to understand this propor-
tionality is that the real and imaginary part of the susceptibility
are related by the Kramers-Kronig relations [57].

1. Perturbation theory for the Redfield equation

We now show, using perturbation theory, that a strong
anti-Lorentzian contribution proportional to r indeed arises
in correspondence of the doublon peak, giving rise to a zero
of ImGR

0 (ω) setting the critical frequency (5), and not in
correspondence of other resonances of the Green function.
In order to capture this feature, we evaluate the Lehmann
representation (E1) using first-order perturbation theory in the
dissipators to approximate the eigenstates and eigenvalues of
the Liouvillian. We define L = −i[H, •] + D and we perturb
in the second term, as for example in Ref. [44]. The unper-
turbed eigenstates and eigenvalues are λ(0)

n,m = −i(En − Em),
r (0)

n,m = l (0)
n,m = |n〉〈m|. First-order perturbation theory gives the

following corrections to eigenvalues and eigenstates:

λ(1)
α = tr

[(
l (0)
α

)†D
(
r (0)
α

)]
r (1)
α =

∑
β �=α

tr
[(

r (0)
β

)†D
(
r (0)
α

)]
λ

(0)
α − λ

(0)
β

r (0)
β

l (1)
α =

∑
β �=α

tr
[(

l (0)
β

)†D†
(
l (0)
α

)]
λ

(0)∗
α − λ

(0)∗
β

l (0)
β (E6)

with α = (n, m).
The term tr(arn,m) in the Green function weights wn,m

selects only the eigenstates/values with m + 1 = n, thus we
compute only those eigenvalues/states, obtaining

rn+1,n ≈ |n + 1〉〈n| + i
κ

U

√
(n + 1)n|n〉〈n − 1|

− i
rκ

U

√
(n + 2)(n + 1)[SR

+−(En+1 − En)

+ SR
+−(En+2 − En+1)∗]|n + 2〉〈n + 1|, (E7)

ln+1,n ≈ |n + 1〉〈n| + i
κ

U

√
(n + 2)(n + 1)|n + 2〉〈n + 1|

− i
rκ

U

√
(n + 1)n[SR

+−(En+1 − En)

+ SR
+−(En − En−1)∗]|n〉〈n − 1|, (E8)

λn+1,n ≈ −i(En+1 − En) − κ

2
(2n + 1)

− rκ[SR
+−(En+2 − En+1)∗(n + 2)

+ SR
+−(En+1 − En)(n + 1)]. (E9)
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To determine the amplitude of the anti-Lorentzian contribution given by Imwn+1,n/Reλn+1,n, we first compute

Imwn+1,n = √
n + 1

[
κ

U
(n + 2)

√
n + 1(pn+1 − pn+2) − rκ

U

√
(n + 1)n(ReSR(En+1 − En)∗

+ ReSR(En − En−1))(pn−1
√

n − pn

√
n + 1)

]
+ (pn − pn+1)

√
n + 1

[
κ

U
n
√

n + 1

− rκ

U

√
n + 1(n + 2)(ReSR(En+1 − En) + ReSR(En+2 − En+1)∗)

]
. (E10)

Then we check for which values of n (i.e., in correspondence of which resonance of the Green function) Imwn+1,n/Reλn+1,n

is of order r. We use that the spectral function of the reservoir SR(En − En−1) = 1
2θ (σ − |En − En−1|) (D3) (we neglect its

imaginary part here) vanishes for n > N . In Imwn+1,n all the terms proportional to r vanish for n > N , while Reλn+1,n has no
terms proportional to r for n > N − 1. Then for n = N and only in this case the ratio ImwN+1,N/ReλN+1,N is proportional to
r. The contribution for n = N corresponds to the doublon resonance, that therefore acquires an anti-Lorentzian contribution
proportional to r that eventually leads to a critical point [Eqs. (5) and(6)].

Eventually, we can approximate the Green function peak for n = N with the expression

GR
N+1,N (ω) =

(√
N + 1 + iκ

U

√
(N + 1)N

)(
pN

√
N + 1 − i rκ

U pN (N + 1)
√

N
)

ω − (EN+1 − EN ) + iκ
2 (2N + 1)

, (E11)

where we also used that pn �=N ≈ 0 for r 	 1. In Fig. 5, we
plot this single-peak approximation as a dashed line for the
doublon peak [panel (a)] and show that it correctly captures
the anti-Lorentzian, thus the critical frequency ωc and hopping
Jc. The dashed line in panel (b) instead approximate the hole-
like resonance using the full Green function in perturbation
theory.

We remark that the precise square shape of the reservoir
spectral function is not important, as long as this function
strongly suppress transitions above a certain energy. Indeed,
the same behavior is observed here for a reservoir with
Lorentzian spectral function.

2. Perturbation theory for the Lindblad equation

The perturbation theory using the Lindblad equation (1)
instead of Redfield (D1) is very similar, and one only needs to
discard the nonsecular terms that are present in the latter case
but not in the former. Discarding those terms yields the same

first-order corrections for the eigenvalues of the Liouvillian
(E9) as in Redfield, while all the eigenstates corrections in
(E7) and (E8) coming from the pump term (proportional to
rκ) correspond to nonsecular terms and thus vanish. There-
fore the spectral function weights wn+1,n (depending on the
eigenstates) also do not depend on r for all n and, eventually,
the amplitude of the anti-Lorentzian contributions given by
the ratio Imwn+1,n/Reλn+1,n is never proportional to r.

Note though that the same behavior of the critical fre-
quency ωc approaching the doublon energy ωdoub increasing
the pump/loss ratio r is observed for the Lindblad case
[Fig. 1(e)], therefore a similar anti-Lorentzian contribution to
the doublon resonance proportional to r is expected to arise
from higher-order terms in perturbation theory.

This difference between the Redfield and Lindblad pertur-
bation theories explains why the dissipative-Mott instability
is more pronounced in the former case, with a smaller critical
hopping, while both equations give qualitatively the same
predictions.
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