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Nonlinear bosonization of Fermi surfaces: The method of coadjoint orbits
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We develop a method for bosonizing the Fermi surface based on the formalism of the coadjoint orbits. This
allows one to parametrize the Fermi surface by a bosonic field that depends on the spacetime coordinates and on
the position on the Fermi surface. The Wess-Zumino-Witten term in the effective action, governing the adiabatic
phase acquired when the Fermi surface changes its shape, is completely fixed. As an effective field theory the
action also involves a Hamiltonian, which contains, beside the kinetic energy and the Landau interaction, terms
with arbitrary number of derivatives and fields. We show that the resulting local effective field theory captures
both linear and nonlinear effects in Landau’s Fermi liquid theory. The approach can be extended to incorporate
spin degrees of freedom and the charge-2 fields corresponding to the BCS order parameter.
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I. INTRODUCTION

Understanding gapless phases of matter is an important
problem of condensed matter physics. Among the gapless
phases, those with a Fermi surface present a particularly
difficult challenge for theoretical approaches. These phases
include Fermi liquids and presumably a nonempty set of
so-called “non-Fermi liquids”—gapless phases with a well-
defined Fermi surface, but around which there are no
well-defined fermionic quasiparticles. One concrete example
where a non-Fermi liquid should appear is the problem of a
half-filled Landau level of electrons with short-range interac-
tion, which is dual to composite fermions interacting through
an emergent U(1) gauge field. Currently, there is no systematic
understanding of the gapless phases with a Fermi surface, or
at least one cannot claim to understand these phases as well as,
e.g., the Wilson-Fisher fixed points of the Ising and the O(N )
models.

One of the difficulties is the lack of a field-theoretical
language to describe these phases. Philosophically, Landau’s
Fermi liquid theory (LFLT) [1] could be called one of the
first low-energy effective theories—in proposing it, Landau
took a modern view that the low-energy dynamics can be
written down without a complete knowledge of the physics
in the ultraviolet. Ideological similarities notwithstanding, the
original, and still standard, formulation of Landau’s Fermi
liquid theory is far in form from what one would now call
an effective field theory (EFT). The central object of Lan-
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dau’s Fermi liquid theory is not an effective action, but a
kinetic equation satisfied by the phase-space distribution of
the quasiparticles. While this kinetic equation allows one to
compute certain response functions to leading order at low
momenta, the standard machinery of effective field theory,
which should allow a systematic calculation of any physical
quantity, theoretically to any order in momentum expansion
[2], is lacking. This translates into the lack of an understand-
ing of non-Fermi liquid “fixed points” at same level of detail
as our understanding of fixed points in relativistic quantum
field theory.

At zero temperature, the structure of the Landau kinetic
theory can be simplified by considering quasiparticle distri-
bution functions that have a jump from 1 to 0 at a Fermi
surface. LFLT is thus a theory describing the evolution of
the shape of the Fermi surface in space and time. In non-
Fermi liquids it is believed that the Fermi surface continues
to be sharp—although the physics around it is governed by a
theory different from Fermi liquid theory. Understanding how
to parametrize the Fermi surface in terms of field-theoretic
degrees of freedom is thus likely a necessary first step toward
understanding non-Fermi liquids.

Important work aiming at a reformulation of Landau Fermi
liquid theory in a form more similar to a EFT has been
made in the past. Polchinski [3] and Shankar [4], carefully
analyzing the scaling near the Fermi surface, came up with a
field-theoretical way of understanding why only the forward
scattering of quasiparticles, parametrized by the Landau pa-
rameters, need to be kept—these can be thought of exactly
marginal interaction terms. The BCS channel in this picture
corresponds to the only other marginal (but now not exactly
marginal) interaction. The approach taken by Polchinski and
Shankar is however unwieldy as their theories are formu-
lated in momentum space. Another approach known under
the name “bosonization” has the goal of arriving at a local
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quantum field theory where the degree of freedom would be
a field that lives not only in space but also on the Fermi
surface [5–7]. One can write down effective field theories
that reproduce the linear response of fermionic systems to
long-wavelength external probes, giving answers identical to
those of the Landau Fermi liquid theory.

In this paper, we propose an approach to writing down
an effective field theory of the Fermi surface. The approach
is based on the mathematical formalism of coadjoint orbits,
developed by Kirillov and others as a tool to understand rep-
resentations of Lie groups [8], and in particular on actions on
coadjoint orbits [9,10]. A technical advantage of our approach
is its simplicity and straightforwardness: for example, it dis-
penses with the need to divide the Fermi surface into patches,
which is a necessary nuisance of previous approaches. But
more importantly, the coadjoint-orbit method allows us to
encode, in a simple and transparent manner, the nonlinear
effects of LFLT. We recall here that Landau’s Fermi liquid
theory allows one to compute nonlinear response, which in
perturbation theory corresponds to graphs with one fermion
loop and an arbitrary number of current insertions. Previous
papers on bosonization have focused on reproducing the linear
response, or two-point functions, while nonlinear response
encoded in higher-points functions have received relatively
scant attention. These nonlinear effects are expected to an
play important role in the infrared behavior of non-Fermi
liquids—diagrams that are important in the infrared involve
fermion loops with multiple insertions of the critical boson
(see e.g., Ref. [11]). In our approach, these fermion loops map
to tree-level vertices in a local effective field theory of the
bosons. The subtle cancellation observed in the diagrammatic
calculation of the fermion-loop diagrams [12] is reproduced
by straightforward power counting in the bosonic theory.

Recently, Else, Senthil, and Thorngren proposed to charac-
terize Fermi liquids (and possibly non-Fermi liquids) in terms
of an emergent loop group symmetry LU (1) with an ’t Hooft
anomaly [13]. This anomaly is closely related to the linearized
algebra of densities commonly used in bosonization [5–7]. As
we will see, both the LU (1) anomaly and this bosonization al-
gebra are linearized approximations to a non-Abelian algebra
that controls the nonlinear structure of Fermi liquids.

Coadjoint orbits have been considered in connection with
1d Luttinger liquids [14–17], and to a certain extent in higher
dimensions [18]; our paper shows that, beyond an elegant
mathematical formulation, coadjoint orbits provide a power-
ful practical tool for systematic perturbative studies of Fermi
liquids.

II. CANONICAL TRANSFORMATIONS

The fundamental degree of freedom in Landau’s Fermi liq-
uid theory is the quasiparticle distribution function f (t, x, p).
Let us restrict ourselves to free fermions for the moment and
turn to the general Fermi liquid case later. Given a disper-
sion relation ε(p), the dynamics of this free Fermi gas in
external potential V (x) can be entirely described by a kinetic
equation—the Boltzmann, or Liouville, equation

∂t f + ∇pε(p) · ∇x f − ∇xV · ∇p f = 0. (1)

Our task is to derive an action that would yield Eq. (1). We
will do that with the help of a mathematical formalism that
involves the group of canonical transformations. The impor-
tance of canonical transformations is related to the fact that
Eq. (1) describes the evolution of a “swarm” of particles, each
of which moves in phase space according to the Hamiltonian
equation of motion. But Hamiltonian evolution is a continu-
ous sequence of canonical transformations. To make this idea
concrete, we need to develop the formalism of the coadjoint
orbits of canonical transformations.

We note here in passing the analogy of our problem with
incompressible hydrodynamics, which can be thought of as a
dynamical system on the group of volume preserving diffeo-
morphisms [19].

A. Group and algebra of canonical transformations

The single-particle phase space is a 2d-dimensional space
with the coordinates xi, pi, where i = 1, 2, . . . d . The Lie
algebra of canonical transformations g is a space of functions
on phase space F (x, p), which vanish at infinity. We will use
uppercase letters for elements of g. An element of g that
corresponds to a function F (x, p) generates an infinitesimal
canonical transformation

x → x′ = x − ε∇pF, (2)

p → p′ = p + ε∇xF. (3)

It is straightforward to verify that this is indeed a canonical
transformation: x′ and p′ still have canonical Poisson brackets.
Equation (2) is the Hamiltonian evolution under the Hamilto-
nian F during an infinitesimal time interval ε.

The commutator of two such coordinate transformations,
parametrized by functions F and G is a transformation
parametrized by the Poisson bracket in phase space [20].

{F, G} = ∇xF · ∇pG − ∇pF · ∇xG. (4)

We thus define the Lie bracket in g as

[F, G] ≡ {F, G}. (5)

From here onwards, we will use curly braces {, } to denote the
Lie bracket in g, which is otherwise conventionally denoted
by square brackets [,].

The group of canonical transformations is obtained from
the algebra by exponentiation: U = exp F transforms (x, p)
into new phase-space coordinates (x′, p′) that are the result
of time evolution under the Hamiltonian F during unit time
(exponentiation of the elements of the algebra should not be
confused with the exponential of the function eF (x,p)). This
group will be denoted by G.

B. The dual space

The dual space g∗ of the Lie algebra is the space of linear
functionals on g, i.e., linear maps from g to R

f : F ∈ g �→ 〈 f , F 〉 ∈ R, (6)

so that 〈 f , αF + βG〉 = α〈 f , F 〉 + β〈 f , G〉. The symbol
〈 f , F 〉 will be called the scalar product of f and F .
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In the case of the algebra of canonical transformations, the
elements of g∗ are functions f (x, p), denoted by lower case
letters, on the phase space. The scalar product is defined as

〈 f , F 〉 ≡
∫

dd xdd p

(2π )d
F (x, p) f (x, p). (7)

We will interpret an element F (x, p) of the Lie algebra
as an observable (more precisely, a one-particle observable),
while an f (x, p) of the dual space will be interpreted as the
phase-space distribution function characterizing a state. The
scalar product 〈 f , F 〉 is interpreted as the expectation value
of the observable F in the state given by f . Equation (7)
is similar to the expression for the expectation value of an
operator Â in a state given by a density matrix ρ̂ in quantum
mechanics: 〈A〉 = Tr(ρ̂Â). (A difference is that the “trace” of
f is not 1 but the total number of particles.)

Alternately, one can think of the Lie algebra elements as
linear functionals on g∗, which act on g∗ in the following way:

F [ f ] ≡ 〈 f , F 〉. (8)

C. Adjoint and coadjoint action

Here we introduce a few further mathematical notions.
Lie algebra adjoint action. The adjoint action of a Lie

algebra element G on another Lie algebra element F is given
simply by the Lie bracket

adGF = {G, F }. (9)

This adjoint action furnishes a representation of the Lie
algebra on itself,

adG adH − adH adG = ad{G, H}. (10)

Group adjoint action. The group adjoint action of a group
element U = exp G ∈ G on a Lie algebra element F is given
by

AdU F = eadG F = F + {G, F } + 1

2!
{G, {G, F }} + · · · .

(11)
The group adjoint action forms a representation of the group
on its Lie algebra

AdUV = AdU AdV . (12)

For convenience, we will sometimes denote the adjoint action
as matrix conjugation

AdU F = UFU −1. (13)

This form of notation is useful as it immediately allows us
to use the intuition developed in quantum mechanics, but is
strictly speaking not necessary and will be avoided when it
may lead to confusion.

Lie algebra coadjoint action. The adjoint action of the Lie
algebra on itself also defines a coadjoint action of g on the
dual space g∗ by mapping f ∈ g∗ to ad∗

F f ∈ g∗ defined by
requiring

〈ad∗
F f , adF G〉 = 〈 f , G〉. (14)

In the case of canonical transformations, We see that the Lie
algebra coadjoint action maps the distribution f to

ad∗
F f = {F, f }, (15)

which takes the same form as that for the Lie algebra
elements.

Group coadjoint action. This is the exponentiation of the
Lie algebra coadjoint action, and defined the action of group
elements on the dual algebra

Ad∗
exp F f = f + {F, f } + 1

2!
{F, {F, f }} + · · · . (16)

The distinction between the Lie algebra g and its dual space
g∗ may appear pedantic at this moment, but it will turn out to
be useful later.

D. Boltzmann equation for free particles
as Hamiltonian evolution

Consider a system of particles with dispersion ε(p) in an
external field V (x). The Hamiltonian for free fermions is an
element of g,

H = ε(p) + V (x) ∈ g. (17)

The Boltzmann equation

∂t f + ∇pε(p) · ∇x f − ∇xV (x) · ∇p f = 0 (18)

can be rewritten as

∂t f − ad∗
H f = 0, (19)

and can therefore be thought of as a dynamical system on the
Lie group of canonical transformations [21].

Going beyond free particles, one can generalize the Hamil-
tonian above to a nonlinear functional H [ f ] of g∗. Since
the functional derivative δH /δ f naturally lives in g, one can
use its action on f to generalize the equation of motion (19)
to a nonlinear equation of motion (see Appendix E1 for an
example). In this paper, we will mostly work with the effective
action, rather than the equation of motion. Nonlinear actions
for Fermi liquids will be studied systematically in Sec. III D.

III. FERMI LIQUIDS AS A COADJOINT ORBIT

While the collisionless Boltzmann equation describes the
time evolution for any and all distributions f (x, p), not all
of these are relevant for the system at hand. At zero tem-
perature, a generic state of a Fermi liquid is described by a
closed Fermi surface in momentum space of arbitrary shape
and fixed volume (Fig. 1). The distribution f (x, p) takes the
value 1 inside the Fermi surface and 0 outside. Thanks to
Liouville’s theorem, time evolution under the collisionless
Boltzmann equation preserves this form of the distribution and
only changes the shape of the Fermi surface. So we need to
restrict our space of states further from all of g∗.

Another way to motivate this restriction is to look at the
entropy of the system

S =
∫

dx dp
(2π )d

[− f ln f − (1 − f ) ln(1 − f )]. (20)

If one restricts oneself to zero-entropy states, then f at any
given point on the phase space can be only 0 or 1. Such zero-
entropy states can be characterized by the surface separating
the phase-space region with f = 0 from that with f = 1. In
principle, this surface may not be connected or may have
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FIG. 1. Fermi surface states from canonical transformations.

nontrivial topology, but for simplicity we will not consider
that situation and assume that the Fermi surface is connected
and is topologically equivalent to Sd−1 × Rd .

The condition f = 0 or f = 1 can be concisely written as

f 2 = f . (21)

This form bears resemblance to the condition in quantum
mechanics for a density matrix ρ̂ to correspond to a pure state:
ρ̂2 = ρ̂.

A. Coadjoint orbits

Given the coadjoint action of the group G on the dual
space g∗, we can define the coadjoint orbit O f0 of any element
f0 ∈ g∗ as the set of all elements f ∈ g∗ that can be obtained
by the coadjoint action of canonical transformations on f0,

O f0 = { f | ∃U ∈ G : f = Ad∗
U f0}. (22)

In Fermi liquids, any state is a droplet in momentum space
of arbitrary shape and fixed total volume. Any such state can
be obtained by the coadjoint action of a canonical transforma-
tion on the spherical, translationally invariant droplet

f0(p) = 	(pF − |p|). (23)

Therefore, the relevant space of states is the coadjoint orbit
O f0 of the spherical Fermi surface. This is our desired restric-
tion of the space of states. The description of the Fermi liquid
will not depend on the specific seed state f0 used to generate
the coadjoint orbit. However, we will often be interested in
the small fluctuations around the ground state, which for an
isotropic Fermi liquid takes the form (23), and more generally
(say, in metals) can be a more complicated function f0(p).
The theory of these fluctuations of course depend on the state
around which one is expanding.

Multiple canonical transformations can map f0 to the same
state f = Ad∗

U f0, since if we consider any group element V
that stabilizes f0,

Ad∗
V f0 = f0, (24)

then right multiplication of U by V preserves f ,

Ad∗
UV f0 = Ad∗

U Ad∗
V f0 = Ad∗

U f0 = f . (25)

Such group elements V form a subgroup H, called the stabi-
lizer subgroup of f0. The coadjoint orbit O f0 is thus the left
coset space G/H.

B. Parametrizing the coadjoint orbit

In order to parametrize the coadjoint orbit, we write the
canonical transformation in terms of a Lie algebra element
φ(x, p),

U = exp (−φ). (26)

Recall that the exponent map used above is not the exponent
of the function φ(x, p), but rather the exponentiation of the
Lie algebra element φ. The minus sign in the exponent is a
convention, which we find more convenient for later formu-
las. A state parametrized by φ has the following distribution
function,

f = f0 − {φ, f0} + 1

2
{φ, {φ, f0}} − 1

3!
{φ, {φ, {φ, f0}}} + · · ·

= 	(pF − |p|) + δ(|p| − pF )nθ · ∇xφ + · · · , (27)

where nθ ≡ p/|p| is the unit vector normal to the Fermi sur-
face, see Fig. 1. We have expanded around a spherical Fermi
surface (23), as we will focus on the study of fluctuations
around spherical Fermi surfaces. However, our formalism can
be straightforwardly adapted to fluctuations around Fermi sur-
faces of arbitrary shapes, by expanding around the appropriate
f0(p). The object φ(x, p) will be the bosonized degree of free-
dom, in terms of which the effective field theory is formulated.

As discussed above, one can multiply U by any element V
of the stabilizer group H and the new group element UV still
corresponds to the same state. This corresponds to a gauge
equivalence between different φ(x, p) configurations: First,
we parametrize an element in H as exp α where α ∈ h. This
condition translates to

ad∗
α f0 = {α, f0} = 0

⇒ nθ · ∇xα||p|=pF = 0. (28)

Equivalence under right multiplication by H leads to the iden-
tification

exp(−φ) ∼ exp(−φ) exp α

⇒ φ ∼ φ − α + 1
2 {φ, α} + · · · . (29)

where the Baker-Campbell-Hausdorff formula has been used.
By imposing a gauge-fixing condition, one can pick one
representative from the equivalence class. For example, one
convenient parametrization is to require that φ(x, p) depend
only only on the direction of the vector p, but not its magni-
tude,

φ = φ(x, θ ). (30)

The angles θ parametrize the Fermi surface. To linear order,
any function φ(x, p) can be brought to the form (30) by a
gauge transformation (29) by choosing α to be the difference
between φ and its value at the Fermi surface

α = φ(x, p) − φ(x, θ, |p| = pF ). (31)

One can check that {α, f0} = 0. Equation (30) is by no means
the only possible gauge-fixing condition. One can impose,
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e.g.,

φ = g

( |p|
pF

)
φ(x, θ ), (32)

with any function g(x), which satisfies the condition g(1) = 1.
To linear order one can again easily find an α that would
bring an arbitrary φ(x, p) into the form (32). Any of the
gauge-fixing choice reduces the bosonized degree of freedom
to functions living on the Fermi surface; different choices will
lead to equivalent EFTs for φ, which differ by field redefini-
tions.

C. Wess-Zumino-Witten term and Fermi liquid action

To write down the action for a Fermi liquid, one needs one
more mathematical ingredient: the Kirillov-Kostant-Souriau
(KKS) symplectic form on the coadjoint orbit. This symplec-
tic form is defined via its action on two tangent vectors at a
point in O f0 , which are naturally identified as elements of g∗.
Consider two such tangent vectors g, h at the point f in the
coadjoint orbit. Being tangents to the coadjoint orbit, there
must exist two Lie algebra elements G, H ∈ g such that

g = ad∗
G f , h = ad∗

H f . (33)

G and H are not unique, but rather representatives of equiv-
alence classes. Given two such representatives, the action of
the coadjoint orbit symplectic form on the two tangents g and
h is given by

ω(g, h) = 〈 f , {G, H}〉. (34)

The statement of the KKS theorem is that (i) ω is independent
of the choice of representatives G and H and (ii) ω is closed.
The proof of (i) is rather simple. Consider two different Lie
algebra elements G and G′ such that

g = ad∗
G f = ad∗

G′ f . (35)

Their difference is an element of the stabilizer of f , i.e.,

ad∗
G−G′ f = 0. (36)

Therefore the difference between the two possible right-hand
side expressions is

〈 f , {G′, H}〉 − 〈 f , {G, H}〉
= 〈 f , adG′−GH〉 = 〈ad∗

G−G′ f , H〉 = 0. (37)

The same holds for different possible H’s as well and the KKS
form is hence well defined. The closedness of the KKS form
will be illustrated in our construction of the WZW action.

The KKS symplectic form allows us to write down the first
of the two parts of the effective action: the WZW term, which
encodes the adiabatic phase acquired when a Fermi surface
evolves in time. To write this term, one adds an extra di-
mension, parametrized by a variable s, which takes values on
the unit interval [0,1] and extrapolates our degree of freedom
f (t, s) into the extra dimension such that

f (t, 0) = const, f (t, 1) = f (t ). (38)

The Wess-Zumino-Witten term has the form

SWZW =
∫

dt
∫ 1

0
ds ω

(
∂ f

∂t
,
∂ f

∂s

)
. (39)

To write this term more explicitly, we use the definition of the
symplectic form. Given that f = Ad∗

U f0, it is easy to show
that

∂t f = ad∗
∂tUU −1 f , ∂s f = ad∗

∂sUU −1 f , (40)

which tells us that

ω(∂t f , ∂s f ) = 〈 f , {∂tUU −1, ∂sUU −1}〉
= 〈 f0, {U −1∂tU,U −1∂sU }〉. (41)

At this point, one can again check that the KKS symplectic
form is independent of how one chooses to parametrize points
on coadjoint orbit by group elements: If one make a small
gauge transformation U → U (1 + εα), with α ∈ h, then the
change of ω is zero by the virtue of ad∗

h f0 = 0. Also, the KKS
form is closed (and even exact) because, for any coordinate
system xi on the coadjoint orbit, one can write

{U −1∂iU, U −1∂ jU } = −∂i(U
−1∂ jU ) + ∂ j (U

−1∂iU ). (42)

This allows us to express, up to boundary terms,

SWZW =
∫

dt〈 f0,U −1∂tU 〉. (43)

The total action will also involve a Hamiltonian part. This
Hamiltonian part is in general a functional of the distribution
function

SH = −
∫

dtH [ f ], (44)

and will be studied in detail in Sec. III D. For the free fermion,
the Hamiltonian is

H [ f ] = 〈 f , ε(p)〉 = 〈 f0,U −1ε(p)U 〉. (45)

The action for the free Fermi gas then takes the form

S =
∫

dt〈 f0,U −1[∂t − ε(p)]U 〉. (46)

This action can be expanded order by order in φ by writing
U = exp(−φ). Let us see how the Boltzmann equation arises
as the equation of motion for this action. We vary our degree
of freedom U as follows:

U → U ′ = exp α · U, (47)

where α(t, x, p) ∈ g is the variation. To linear order in α, we
have

δ[U −1∂tU ] = U −1∂tαU, δ[U −1εU ] = U −1{ε, α}U, (48)

so that the variation of the action is

δS =
∫

dt〈 f0,U −1[∂tα − {ε, α}]U 〉

=
∫

dt〈 f , ∂tα − {ε, α}〉

= −
∫

dt〈∂t f + { f , ε}, α〉. (49)

The equation of motion is then the Boltzmann equation with
no external potential

∂t f + { f , ε} = ∂t f + ∇pε(p) · ∇x f = 0. (50)
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The action for a coadjoint orbit can be thought of as a
special case of the CCWZ coset construction for nonlinearly
realized symmetries [22,23], where the order parameter is
adjoint valued (or rather coadjoint valued). For this class of
“symmetry-breaking patterns”, there always exists a nontriv-
ial element of the relative Lie algebra cohomology H2(g, h)
(see e.g., [24] for its definition), which provides a WZW
2-form; this is the KKS form.

Coadjoint orbits for the group of canonical transformation
are also relevant in the study of quantum Hall phases [25–27].

D. Systematic higher-order corrections to the EFT

So far we have considered only free fermions. Interactions
between fermions can also be accounted for by appropriate
modifications of the Hamiltonian functional H [ f ]. The ef-
fective field theory approach is to consider the most general
form for such a Hamiltonian functional, as an expansion in
δ f (x, p) = f (x, p) − f0(x, p) and its derivatives. These terms
can be systematically organized into a double expansion in
derivatives and nonlinearities

H [ f ] =
∫

x,p
ε(p) f (x, p)

+
∫

x,p,p′
F (2,0)

int (p, p′)δ f (x, p)δ f (x, p′)

+ F(2,1)
int (p, p′) · ∇xδ f (x, p)δ f (x, p′) + . . .

+
∫

x,p,p′,p′′
F (3,0)

int (p, p′, p′′)δ f (x, p)δ f (x, p′)

× δ f (x, p′′) + . . . , (51)

where F (m,n)
int (p1, . . . , pn) are Wilsonian coefficients (or rather,

functions) for terms involving m powers of δ f with n
derivatives, and parametrize our ignorance of the underlying
microscopics. For simplicity we have assumed that the system
is translationally invariant, so that the coefficients in the EFT
do not depend on x. An additional source of higher gradient
terms that are of similar importance as the F (m,n�1)

int above
come from corrections to the semiclassical limit that produced
the Poisson algebra (5) to leading order in gradients, see
Appendix E.

The full action is then

S = SWZW −
∫

dtH [ f ]. (52)

It does not contain terms with extra time derivatives, as these
can be removed using the leading equations of motion with
field redefinitions. Equation (52) is the most general EFT
describing Fermi liquids. It captures known Fermi liquid
phenomenology—as will be studied at length in the remainder
of this paper—and parametrizes all possible corrections to
Fermi liquids through a tower of irrelevant interactions. It
can be written in terms of the distribution function f , and
its form is therefore independent of the background f0 that
one expands around. Although it is not manifest, the WZW
term can also be shown to be independent of f0 [this is clear
from the equation of motion (50), which only depends on f ].
When studying fluctuations around a given background, say
the spherical Fermi surface (23), it is convenient to write the

action in terms of δ f = f − f0, and expand in φ, as will be
done in the following sections.

In Sec. IV B, this action will be linearized in fields.
To leading order in derivatives, we will find that among
all the terms in the EFT above, only vF (θ ) ≡ ∂pε(pF (θ ))
and F (2,0)

int (pF (θ ), pF (θ ′)) appear in this Gaussian action—
these are the familiar Fermi velocity and Landau pa-
rameters of LFLT. The cubic action, studied in Sec. V,
involves several additional parameters to leading or-
der in derivatives: ∂2

pε(pF (θ )), ∂pF (2,0)
int (pF (θ ), pF (θ ′)) and

F (3,0)
int (pF (θ ), pF (θ ′), pF (θ ′′)). To our knowledge, the latter

two have not appeared previously in the literature. Like the
Landau parameters, they are nonuniversal observable param-
eters characterizing a Fermi liquid; they affect its nonlinear
response, contributing in particular to the three-point function
of charge density.

A nonlinear action for Fermi liquids of the form (46) ap-
peared previously in Ref. [18], albeit without its completion
into an EFT (51) capturing general interacting Fermi liquids.
However, the nonlinearities were not properly treated in that
paper [28].

E. Coupling to background gauge fields

The EFT (52) has a number of global symmetries, whose
currents may be coupled to background gauge fields. In this
section, we focus on the global U (1) symmetry leading to
conservation of particle number, and couple more general
symmetries to background gauge fields in Appendix A.

The global U (1) symmetry simply acts through constant
functions λ(x, p) = const ∈ g. To gauge it (or rather couple
the theory to background fields), we would like to make the
action invariant under spacetime dependent transformations
λ(t, x). Let us start with time-independent gauge transforma-
tions: these manifest themselves as a subgroup of canonical
transformations, namely the transformations generated by
functions λ(x) ∈ g, that are independent of momentum p.
Under such canonical transformations, elements F (x, p) of
the Lie algebra transform to

(Adexp λF )(x, p) = F (x, p + ∇xλ). (53)

Under the time-dependent version of this subgroup of canon-
ical transformations, characterized by Lie algebra elements
λ(t, x), the distribution changes to

f → Ad∗
exp λ f . (54)

This amounts to the following transformation on the coset
element U or equivalently the field φ,

U → exp λ · U,

φ → φ − λ + 1
2 {λ, φ} + · · · . (55)

Defining W = exp λ, under the transformation U → WU , the
nonlinear action (46) transforms to

S′ =
∫

dt〈 f0,U −1∂tU + U −1[W −1∂tW − W −1ε(p)W ]U 〉.
(56)

The action is evidently not invariant under this transformation.
In order to make it gauge invariant we need to couple it to a
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background field Aμ(t, x), which transforms like

δλAμ(t, x) = ∂μλ. (57)

To figure out how to couple the action to the background
fields, we observe that

W −1∂tW − W −1ε(p)W = ∂tλ − ε(p − ∇λ). (58)

Therefore the action, when coupled to a background gauge
field is given by

S =
∫

dt〈 f0,U −1[∂t − A0 − ε(p + A)]U 〉. (59)

It is easy to see that this action is invariant under the gauge
transformation

U → exp λ · U, Aμ → Aμ + ∂μλ. (60)

The general interacting action (51) can also similarly be
gauged by writing it in a slightly different form. While f
transforms covariantly under the gauge transformation U →
exp λ · U , δ f does not. We rewrite the interacting Hamiltonian
as an expansion in f instead of δ f with different Wilson
coefficients F̃ (m,n)

int (p1, . . . pn),

H [ f ] =
∫

x,p
ε(p) f (x, p)

+
∫

x,p,p′
F̃ (2,0)

int (p, p′) f (x, p) f (x, p′)

+ F̃(2,1)
int (p, p′) · ∇x f (x, p) f (x, p′) + · · · , (61)

Since the gauge transformation exp λ acts on f and its gradi-
ents as

f (x, p) → (Ad∗
exp λ f )(x, p) = f (p + ∇xλ),

(∇x f )(x, p) → (∇x f )(x, p + ∇xλ) + {∇xλ, f }(x, p + ∇xλ),
(62)

its effect can be canceled by simply replacing the modified
Wilson coefficients with

F̃ (m,n)
int (p1 + A, . . . pn + A), (63)

as well as making the gradients covariant

∇x f → Dx f ≡ ∇x f − {A, f }, (64)

where Dx is the covariant derivative. The gauge invariant
Hamiltonian is then

HA[ f ] =
∫

x,p
ε(p + A) f (x, p)

+
∫

x,p,p′
F̃ (2,0)

int (p + A, p′ + A) f (x, p) f (x, p′)

+
∫

x,p,p′
F̃(2,1)

int (p + A, p′ + A) · Dx f (x, p) f (x, p′)

+ · · · . (65)

The interacting, gauge invariant action is finally

S =
∫

dt〈 f0,U −1[∂t − A0]U 〉 −
∫

dt HA[ f ]. (66)

In the case of free fermions, the equation of motion
obtained from the gauge invariant action is the gauged Boltz-
mann equation. One can see this as follows: vary first the
action using U → exp δα · U :

δS = −
∫

dt 〈∂t f + { f , ε(p + A) + A0}, δα〉 + O(δα2),

(67)

which leads to the equation of motion

∂t f + { f , ε(p + A) + A0} = 0. (68)

Expanding the Poisson bracket, we find that the equation of
motion takes the form

∂t f + vp · ∇x f − vi
p∂ jAi∂

j
p f + ∇xA0 · ∇p f = 0, (69)

where we have defined vp = ∇pε(p + A).
This is not yet the Boltzmann equation, because it involves

the canonical momentum p instead of the gauge-invariant one
p + A. In order to reduce it to the usual form, recall that the
distribution that goes into the gauged Boltzmann equation is
gauge invariant. Our distribution f , however, is not, since it
transforms nontrivially under canonical transformations W =
exp λ with λ(t, x) independent of p. This explains the explicit
appearance of the gauge field in the above equation—the
equation is invariant under the simultaneous transformation
f → Ad∗

W f and Aμ → Aμ + ∂μλ, but not under either of
those separately.

A gauge invariant distribution is obtained from f (t, x, p)
via a field redefinition. Defining k = p + A as the gauge
invariant momentum, the gauge invariant distribution, which
we will denote by fA, is defined as

fA(t, x, k) = f (t, x, k − A(t, x)). (70)

Equation (69) implies that the equation of motion for fA is

∂t fA + vk · ∇x fA + (
E · ∇k + Fi jv

i
k∂

j
k

)
fA = 0, (71)

where vk = ∇kε(k) is the gauge invariant group velocity. The
above is the usual form of the gauged Boltzmann equation,
with the third term being the Lorentz form term in general
dimension.

IV. LINEARIZED APPROXIMATION

The action (52) provides a nonlinear effective field theory
for Fermi liquids, in terms of a continuous family of bosonic
fields φ(t, x, θ ) labeled by a point on the Fermi surface θ . The
main novelty of this paper is to properly and systematically
treat these nonlinearities. Before studying some of their con-
sequences in Sec. V, we show in this section that in the linear
approximation, our approach reduces to the one commonly
used in multidimensional bosonization [5–7], and therefore
reproduces the well-known linear response of Fermi liquids.

A. Linearized algebra of densities

One common starting point in multidimensional bosoniza-
tion is the algebra of densities [6,29]

[ρ(x, θ ), ρ(x′, θ ′)] = −i
pd−1

F

(2π )d
nθ · ∇δd (x − x′)δd−1(θ − θ ′),

(72)

033131-7



DELACRÉTAZ, DU, MEHTA, AND SON PHYSICAL REVIEW RESEARCH 4, 033131 (2022)

where the square bracket is the usual commutator of operators.
In d = 1 spatial dimension, it reduces to the familiar algebra
of a Luttinger liquid or chiral boson, which are discussed in
detail in Appendix B. In higher dimensions d > 1, the dimen-
sionful factor of pd−1

F indicates that this algebra is a linearized
approximation: A nonlinear theory of a Fermi surface would
have a dynamical pF (x, θ ), for the same reason that ρ(x, θ )
is dynamical. The c number in the right-hand side of (72)
is really the expectation value of a dynamical field. In this
section, we show how the algebra (72) arises in our approach
as a linearized approximation to the algebra g of canonical
transformations.

In the coadjoint orbit construction, densities are elements
of the algebra ρ(x̄, θ̄ ) ∈ g. Representing elements of g as
functions in phase space as in Sec. II, the densities are

ρ(x̄, θ̄ ) = δd (x − x̄)δd−1(θ − θ̄ ) ∈ g. (73)

It will be more useful to represent the densities as operators
acting on the Hilbert space of the EFT. The density can be

expanded in terms of the dynamical field φ by evaluating it in
the state fφ ≡ ad∗

eφ f0 ∈ g∗ :

ρ[φ](x̄, θ̄ ) ≡ 〈 fφ, ρ(x̄, θ̄ )〉

=
∫

dd xdd p
(2π )d

fφ (x, p)δd (x − x̄)δd−1(θ − θ̄ )

=
∫

pd−1d p

(2π )d
fφ (x̄, p, θ̄ ). (74)

Expanding fφ in terms of φ around a spherical Fermi surface
f0 as in Eq. (27), one finds

ρ[φ](x, θ ) = pd
F

d (2π )d
+ pd−1

F

(2π )d
nθ · ∇φ + · · · (75)

where the ellipses denote nonlinear terms O(φ2).
The commutator of two densities, viewed as operators on

the EFT Hilbert space, is inherited from their Lie bracket in g,

[ρ[φ](x̄, θ̄ ), ρ[φ](x̄′, θ̄ ′)] = i〈 fφ, {ρ(x̄, θ̄ ), ρ(x̄′, θ̄ ′)}〉 = i
∫

dd xdd p
(2π )d

fφ (x, p){δ(x − x̄)δ(θ − θ̄ ), δ(x − x̄′)δ(θ − θ̄ ′)}

= i∇x̄δ
d (x̄ − x̄′) ·

∫
dd p

(2π )d
∇p fφ (x̄, p)δd−1(θ − θ̄ )δd−1(θ − θ̄ ′)

− iδd (x̄ − x̄′)
∫

dd p
(2π )d

∇x̄ fφ (x̄, p)δd−1(θ − θ̄ )∇pδ
d−1(θ − θ̄ ′), (76)

where in the last step we integrated by parts. Expanding
the right-hand side in φ and keeping only the constant
term fφ (x̄, p) � f0(p) = 	(pF − p) leads to the linearized
bosonization algebra, Eq. (72).

B. Gaussian action

The action (52) can be expanded in terms of the dynamical
field φ, similar to how the densities were expanded above. Let
us start with the Wess-Zumino-Witten term,

SWZW =
∫

dt 〈 f0,U −1∂tU 〉

=
∫

dt

〈
f0,−φ̇ + 1

2
{φ̇, φ} + · · ·

〉
. (77)

The linear term is a total time derivative. The quadratic term
can be computed by evaluating the Poisson bracket—after
integration by parts it is

SWZW = 1

2

∫
dtdd xdd p

(2π )d
φ̇∇xφ · ∇p f0(p) + · · ·

= − pd−1
F

2

∫
dtdd xdd−1θ

(2π )d
φ̇ nθ · ∇φ + · · · , (78)

where we again expanded around a spherical Fermi surface
f0(x, p) = 	(pF − p).

We now turn to the Hamiltonian part of the action (52).
We start by only considering the term linear in fφ , and then

generalize. This term is

SH = −
∫

dt 〈 f0,U −1εU 〉

= −
∫

dt

〈
f0, ε + {φ, ε} + 1

2
{φ, {φ, ε}} + · · ·

〉
, (79)

Here ε(p) is an arbitrary function—we will see that the co-
efficients of its Taylor expansion around the Fermi surface
ε′(pF ), ε′′(pF ), etc., will become Wilsonian coefficients in
the EFT. For free fermions, ε(p) corresponds to the single
particle dispersion relation. Let us study the terms in the
expansion in (79): The O(φ0) term is a constant contribution
to the action, which we ignore. The O(φ1) term is a total
spatial derivative, since

{φ, ε} = ∇xφ · ∇pε = ε′(p)nθ · ∇φ. (80)

The leading term is therefore the quadratic term, which may
be written

SH = 1

2

∫
dt 〈{φ, f0}, {φ, ε}〉 + · · · . (81)

Since

{φ, f0} = ∇xφ · ∇p f0 = −δ(p − pF )nθ · ∇φ, (82)

we obtain the quadratic term in SH

SH = − pd−1
F

2

∫
dtdd xdd−1θ

(2π )d
ε′(pF )(nθ · ∇φ)2 + · · · . (83)

Notice that only vF ≡ ε′(pF ) enters the quadratic action.
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FIG. 2. The density two-point function, which involves a loop in
the fermion description, is captured by a tree level diagram in the
boson description.

Finally, let us generalize to include the remaining terms
in the EFT (52). Since δ fφ = fφ − f0 is already linear in φ,
only terms that are quadratic in δ fφ will contribute here; these
are denoted by F (2,n)

int in (51). Furthermore, to leading order
in gradients only F (2,0)

int contributes. Expanding again around a
spherical Fermi surface one finds that the most general Gaus-
sian action for a Fermi liquid to leading order in gradients is

S(2) = − pd−1
F

2

∫
dtdd xdd−1θ

(2π )d
nθ · ∇φ

(
φ̇ + vF nθ · ∇φ

+ vF

∫
dd−1θ ′F (2,0)

int (θ, θ ′) nθ ′ · ∇φ′
)

, (84)

with φ = φ(t, x, θ ) and φ′ = φ(t, x, θ ′). The interaction term
in (51) has been rescaled to be dimensionless, and is evaluated
at the Fermi surface: F (2,0)

int (θ, θ ′) ≡ F (2,0)
int (pF (θ ), pF (θ ′));

these are the usual Landau parameters. This action first ap-
peared in [5], and has been widely used since, see e.g.,
Ref. [7].

C. Landau damping

One computational advantage of a bosonized description is
that fermion loops are reproduced by tree diagrams in terms
of the boson field. A simple observable that illustrates this is
the density two-point function (Fig. 2). To linear order in φ,
the density operator can be obtained from (75) and is

ρ(t, x) = − pd−1
F

(2π )d

∫
dd−1θ nθ · ∇φ(t, x, θ ) + · · · . (85)

Using the scalar two-point function from (84) (we are setting
the Landau parameters to zero for simplicity)

〈φφ′〉(ω, q) = i
(2π )d

pd−1
F

δd−1(θ − θ ′)
nθ · q(ω − vF nθ · q)

(86)

one therefore finds that the density two-point function is

〈ρρ〉(ω, q) = i
pd−1

F

(2π )d

1

vF

∫
dd−1θ

cos θ1

− ω
vF |q| + cos θ1

= i
pd−1

F

(2π )d

1

vF

πd/2

�(d/2)

2 − δd,1

1 + |s|

×
(

2F1

(
1,

d + 1

2
, d,

2

1 + |s|
)

− 2F
1

(
1,

d − 1

2
, d − 1,

2

1 + |s|
))

, (87)

where 2F1 is a hypergeometric function [30] and s ≡ ω
vF q ,

with q = |q|. The d + 1 loop integrals in the fermion descrip-

FIG. 3. The density three-point function in the fermionic and
bosonic descriptions.

tion (one frequency integral and d momentum integrals) have
been replaced by d − 1 integrals over the boson “species”,
parametrized by the angles θi. In d = 1 this reduces to the
density two-point function of a Luttinger liquid

〈ρρ〉(ω, q) = i
1

π

vF q2

−ω2 + v2
F q2

. (88)

In higher dimensions d > 1 Eq. (87) has a branch cut for
|ω| < vF q due to the particle-hole continuum. One recovers
well-known expressions in d = 2 spatial dimensions,

〈ρρ〉(ω, q) = i
pF

2π

1

vF

⎛
⎝1 − |ω|√

ω2 − v2
F q2

⎞
⎠, (89)

and in d = 3

〈ρρ〉(ω, q) = i
p2

F

2π2

1

vF

(
1 + 1

2

|ω|
vF q

log
|ω| − vF q

|ω| + vF q

)
, (90)

see, e.g., Ref. [31].

V. NONLINEAR RESPONSE

A conspicuous aspect of the EFT (52) is its unavoidable
nonlinear structure coming from the WZW term. While non-
linearities in the action also arise from the Hamiltonian (51),
e.g., through nonlinear terms in the dispersion ε(p) familiar
from one-dimensional bosonization, the nonlinearities in the
WZW term have no counterpart in d = 1; they are tied to the
geometry and, in particular, the curvature of the Fermi surface.

That such terms are necessary to reproduce even free
fermion physics in d > 1, but not in d = 1, can be anticipated
as follows: in d = 1, cancellations in fermion loops [32] lead
to the vanishing of connected density n-point functions with
n > 2 for linearly dispersing fermions, making possible the
representation of a relativistic fermion as a free boson. Non-
linear response only arises when the fermions have nonlinear
dispersion relations ε(p); this introduces interactions in the
bosonic description (see Appendix B). In higher dimensions,
these cancellations are only approximate, and even linearly
dispersing fermions exhibit connected density higher-point
functions.

The approximate cancellations in fermion loops in d > 1
render scaling analyses of Fermi liquids difficult [33,34]. In
Sec. V B, we show how the correct scaling of density n-point
functions is immediately captured in our approach. Next, as a
quantitative check of the nonlinearities in the EFT, we com-
pute the density three-point function by expanding the action
up to cubic order in the field φ—the diagrams contributing are
shown in Fig. 3.
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The connection between nonvanishing of fermion loops
and nonlinearities in the bosonized description was antici-
pated in Ref. [35]. In the approach followed there, the two
are tied because an effective action for a bosonic degree of
freedom is obtained by coupling the fermion densities to
Hubbard-Stratonovich fields and integrating the fermions out;
a drawback of that approach is that the resulting effective
action need not be local, so that a systematic generalization
of the form (51) is not possible and one is limited to studying
systems for which the fermion loop can be evaluated directly.
In contrast, we derive a local effective action (52) from general
principles and show that it correctly reproduces nonlinear
response.

A. General scaling of n-point functions

The action (52) has the following schematic expansion in
fields

S ∼ pd−1
F

∫
t,x,θ

φ̇

(
∇φ + 1

pF
(∇φ)2 + 1

p2
F

(∇φ)3 + · · ·
)

+ vF ∇φ

(
∇φ + 1

pF
(∇φ)2 + · · ·

)
, (91)

where the two terms come from the expansion of the WZW
term and Hamiltonian respectively. We have set all dimension-
ful parameters to vF or pF and dropped O(1) numerical factors
for the purposes of this section. Some terms may also involve
derivatives with respect to the angles θ [see Eq. (107) for an
example], or nonlocal terms in θ like the Landau parameters in
Eq. (84), but these will not affect the scaling argument below.
Finally, we have dropped higher gradient corrections [such
as F (2,1)

int in (51)]; these will only give q/pF -suppressed cor-
rections to observables, whereas the nonlinear terms in (91)
give the leading contribution to certain nonlinear observables.
For the purposes of scaling it is useful to define a canonically
normalized field as φc ≡ φ/p(d−1)/2

F so that

S ∼
∫

t,x,θ

φ̇c

(
∇φc + (∇φc)2

p(d+1)/2
F

+ (∇φc)3

pd+1
F

+ · · ·
)

+ vF ∇φc

(
∇φc + (∇φc)2

p(d+1)/2
F

+ · · ·
)

. (92)

Like any EFT, S is an expansion around a Gaussian theory
in terms of irrelevant operators suppressed by the UV cutoff,
here pF . The density operator similarly has an expansion

ρ ∼ p(d−1)/2
F

∫
θ

∇φc + (∇φc)2

p(d+1)/2
F

+ (∇φc)3

pd+1
F

+ · · · . (93)

The scalar propagator has the form

〈φcφ
′
c〉(ω, q) ∼ δd−1(θ − θ ′)

nθ · q(ω − vF nθ · q)
. (94)

Several diagrams contribute to the n-point function at tree
level (see Fig. 3 for n = 3); using Eqs. (92)–(94) one finds

that they all scale as

〈ρ(ω1, q1)ρ(ω2, q2) · · · ρ(ωn, qn)〉

= pd+1−n
F

vn−1
F

gn({ωi/ω j, vF qi/ω j}), (95)

where gn is a function of dimensionless ratios of frequencies
and momenta (we have removed the momentum conserving
delta function on the right-hand side). This result holds to
leading order in qi/pF and ωi/(vF pF ); higher-order terms
will be sensitive to higher-gradient corrections in the EFT.
The scaling agrees with the two-point function (n = 2) found
earlier (87).

Note that this scaling is also transparent from the kinetic
theory approach to computing nonlinear response, discussed
in Appendix F. In contrast, this scaling is highly non-obvious
from a fermionic approach: taking fermionic propagators
〈ψψ†〉 ∼ 1

ω−vF q‖
and only scaling momentum towards the

Fermi surface ω ∼ q‖, with q⊥ ∼ 1, the fermion loop is es-
timated as

〈ρ(ω1, q1)ρ(ω2, q2) · · · ρ〉

∼
∫

dωdq‖dd−1q⊥〈ψψ†〉n ∼ pd−1
F

qn−2
‖

. (96)

This only agrees with (95) for n = 2. For n = 3, the fact
that (96) overestimates the three-point function by a fac-
tor of ∼1/q comes from the approximate cancellations in
fermion loops after antisymmetrization of external legs, see,
e.g., Ref. [34]. Our scaling result (95) shows more generally
that n-point functions have n − 2 such cancellations.

Finally, the structure of the EFT makes it clear that, for free
fermions, the dimensionless function gn only depends on the
first n − 1 derivatives of the dispersion relation ε(p) evaluated
at the Fermi surface:

gn = gn(ε′(pF ), ε′′(pF ), · · · , ε (n−1)(pF )). (97)

This follows from the fact that terms in the Hamiltonian that
involve n powers of φ have at most n − 1 derivatives on ε(p)
(the case n = 3 is treated in detail below). For interacting
Fermi liquids, the n-point function will depend on the addi-
tional Landau-like parameters discussed in Sec. III D.

B. Cubic action

Let us expand the action (46) up to cubic order in the field
φ. The WZW term is

SWZW =
∫

dt 〈 f0,U −1∂tU 〉

=
∫

dt

〈
f0,

1

2
{φ̇, φ} − 1

3!
{{φ̇, φ}, φ} + · · ·

〉
, (98)

where we dropped the constant piece. The quadratic term was
computed in Sec. IV B; the cubic term is

S(3)
WZW = − 1

3!

∫
dt 〈{φ, f0}, {φ̇, φ}〉. (99)

Now

{φ, f0} = ∇xφ · ∇p f0 = −δ(p − pF )nθ · ∇φ, (100)
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and

{φ̇, φ} = ∇xφ̇ · ∇pφ − ∇xφ · ∇pφ̇

= 1

p
si
θ · ∇φ̇∂θ iφ − 1

p
si
θ · ∇φ∂θ i φ̇, (101)

so that

S(3)
WZW =− pd−1

F

3!

∫
t,x,θ

1

pF
nθ · ∇φ

(
si
θ · ∇φ∂θ i φ̇ − si

θ · ∇φ̇∂θ iφ
)
,

(102)

with
∫

t,x,θ
≡ ∫

dtdd xdd−1θ
(2π )d . The si

θ , with i = 1, . . . , d − 1,
are d − 1 unit vectors that are tangent to the Fermi
surface. For example, parametrizing the sphere Sd

with θ1, . . . , θd−2 ∈ [0, π ], θd−1 ∈ [0, 2π ], and nθ =
(cos θ1, . . . , sin θ1 · · · sin θn−2 cos θn−1, sin θ1 · · · sin θn−1),
one can choose si

θ = 1
sin θ1··· sin θi−1

∂θ i nθ . In these coordinates,

the Jacobian is dd−1θ = sind−2 θ1 · · · sin θd−2dθ1 · · · dθd−1.
For d = 2 one simply has nθ = (cos θ

sin θ

)
and sθ = (− sin θ

cos θ

)
.

We turn to the Hamiltonian term in (46),

SH = −
∫

dt 〈 f0,U −1εU 〉

= −
∫

dt

〈
f0,

1

2
{φ, {φ, ε}} + 1

3!
{φ, {φ, {φ, ε}}} + · · ·

〉
,

(103)

where we again dropped a constant contribution to the action.
The cubic term can be written as

S(3)
H = 1

3!

∫
dt 〈{φ, f0}, {φ, {φ, ε}}〉. (104)

Using Eq. (100) and

{φ, {φ, ε}} = {φ, ε′nθ · ∇φ}
= ∇xφ · ∇p(ε′nθ · ∇φ) − ∇pφ · ∇x(ε′nθ · ∇φ),

(105)

one finds, after several integrations by parts,

S(3)
H = − pd−1

F

3!

∫
t,x,θ

1

pF

(
d − 1

2
ε′ + ε′′ pF

)
(nθ · ∇φ)3.

(106)

Collecting these results, the full action up to cubic order is

S = SWZW + SH ,

SWZW = −pd−1
F

∫
t,x,θ

1

2
φ̇(nθ · ∇φ)

+ 1

3!

1

pF
(nθ · ∇φ)

(
si
θ · ∇φ∂θ i φ̇ − si

θ · ∇φ̇∂θ iφ
)

+ · · · ,

SH = −pd−1
F

∫
t,x,θ

1

2
ε′(nθ · ∇φ)2

+ 1

3!

1

pF

(
d − 1

2
ε′ + ε′′ pF

)
(nθ · ∇φ)3 + · · · .

(107)

The density can be similarly expanded. After removing the

constant piece ρ = pd
F

(4π )d/2�(1+ d
2 )

+ δρ [see Eq. (75)], one finds

δρ =
∫

dd p
(2π )d

δ f ≡ ∇ · d,

d = pd−1
F

(2π )d

∫
dd−1θ nθφ + 1

pF

1

2
si
θ ∂θ iφ(nθ · ∇φ) + · · · .

(108)

Notice that δρ can be written as a total divergence δρ = ∇ · d
as above to all orders in φ, since

δQ =
∫

x
δρ =

∫
x,p

f − f0 = 0, (109)

where the last step follows from the fact that the phase space
integral of a Poisson bracket vanishes after integration by
parts,

∫
x,p{A, B} = 0.

C. Density three-point function

The cubic action (107) can be used to obtain the density
three-point function. The scalar propagator is

〈φθφθ ′ 〉(ω, q) = i
(2π )d

pd−1
F

1

qn

1

ω − vF qn
δd−1(θ − θ ′), (110)

where we use the shorthand notation qn = nθ · q. We will
often write p = (ω, q) below.

a. The S(3)
H piece. Start by considering the “star” diagram

coming from the a single insertion of the cubic Hamiltonian
term in (107) iS(3)

H :\vskip-2pt

〈ρ(p)ρ(p′)ρ〉S(3)
H

= −i

(
pd−1

F

(2π )d

)3

qnq′
n(q + q′)n

× 〈(
iS(3)

H

)
φ(p)φ(p′)φ

〉
= − pd−2

F

(2π )d

(
ε′′ pF + d − 1

2
vF

)

×
∫

dd−1θ
qn

ω − vF qn

q′
n

ω′ − vF q′
n

× (q + q′)n

ω + ω′ − vF (q + q′)n
. (111)

This is the only contribution proportional to ε′′.
b. The ρ (2) piece. Let us now consider the “triangle”

contributions—these come from the nonlinear part of the den-
sity ρ (2) in (108). This diagram is given by

〈ρ(p)ρ(p′)ρ〉ρ (2) =
(

pd−1
F

2π

)3
1

2pF

∫
dθ1,2,3

(
iqn1

)(
iq′

n2

)(−i(q + q′)si
3

)[−iqn3〈φ3φ1〉(p)∂θ i
3
〈φ3φ2〉(p′)

] + 5 perm

= − pd−2
F

2(2π )d

∫
dd−1θ

qn(q + q′)si

ω − vF qn
∂θ i

(
1

ω′ − vF q′
n

)
+ 5 perm. (112)
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The total of six permutations are obtained by rotating the diagram by 2π/3 and 4π/3, i.e., sending {p → p′, p′ → −p − p′}
once and twice respectively, and then for each three terms, adding the same term with p ↔ p′.

c. The S(3)
WZW piece. Finally, the star diagram with the WZW cubic vertex gives

〈ρ(p)ρ(p′)ρ〉S(3)
WZW

= i

(
pd−1

F

(2π )d

)3

qnq′
n(q + q′)n

∫
θ1,2,3

〈(
iS(3)

WZW

)
φ1(p)φ2(p′)φ3

〉

= i
pd−2

F

3!

(
pd−1

F

(2π )d

)3 ∫
θ,θ1,2,3

q2
nq′

nq′
si (q + q′)n(ω + 2ω′)〈φ1φ〉(p)〈φ2φ〉(p′) · ∂θ i〈φ3φ〉(−p − p′) + 5 perm.

= pd−2
F

3!(2π )d

∫
dd−1θ

qn

ω − vqn

q′
si

ω′ − vq′
n

∂θ i
ω + 2ω′

ω + ω′ − v(q + q′)n
+ 5 perm. (113)

d. Comparison to kinetic theory. Density n-point functions
for free fermions were computed in Refs. [36,37] by directly
evaluating the fermion loop integral, for the special case of a
dispersion relation ε(p) = p2/2m, i.e., ε′′ = pF ε′ in the for-
mulas above. This approach features substantial cancellations
upon symmetrizing over diagrams, after which the scaling
(95) is obtained [37,38]. To compare our results for a general
dispersion relation ε(p), we computed instead the general
three-point function using kinetic theory in Appendix F. The
piece proportional to ε′′ is simplest to compare, see Eqs. (111)
and (F12). The remaining part is more difficult to compare, but
can be also shown to match, namely,

(111) + (112) + (113) = (F12). (114)

VI. FURTHER APPLICATIONS AND EXTENSIONS

A. An alternative approach to NFL

The nonlinear effective field theory (46) provides an al-
ternative formulation of Fermi liquids, and therefore offers
a new starting point to study deformations of Fermi liquids
by relevant interactions. In analogy with the solution to the
Schwinger model from bosonization [39], one may expect
that nonlinear bosonization in higher dimensions simplifies
the study of Fermi liquids coupled to a gapless boson. This
possibility was already explored in the early days of multi-
dimensional bosonization, in particular in Refs. [18,40,41],
using the Gaussian approximation to the Fermi liquid EFT
(84); as will be reviewed below, in this approximation one
finds that the free bosonized description sums a class of di-
agrams in the fermion description corresponding to the RPA
approximation, leading in particular to the dynamic critical
exponent z = 3. The important cancellations in fermion loops
discussed in Sec. V suppress corrections to the RPA approx-
imation, pointing to the advantage of the bosonized approach
to address non-Fermi liquids (NFLs) [42].

a. Non-Fermi liquid in the Gaussian approximation. Let us
couple the Fermi liquid EFT, in the Gaussian approximation
(84), to a bosonic field �(t, x); setting d = 2 and turning off
Landau parameters for simplicity one has

L = −
[

pF

8π2

∫
θ

nθ · ∇φ(φ̇ + vF nθ · ∇φ)

]

−
[

1

2
∇�2 + 1

2
k2

o�
2

]
+

[
λ�

pF

4π2

∫
θ

(nθ · ∇ )φ

]
.

(115)

An irrelevant kinetic term (∂t�)2 was omitted. The bare mass
ko will be tuned to make the field � gapless—this field could
be an emergent gauge field, or an order parameter tuned to
criticality. We have assumed for simplicity that it couples
to the fermion density ρ � pF

4π2

∫
dθ nθ · ∇φ, but one can

straightforwardly generalize: For example, a field coupling to
the spin-� harmonic of the Fermi surface would instead have

Lint = λ�

∫
dθ ei�θnθ · ∇φ + c.c.. (116)

Since the entire theory (115) is Gaussian, correlators can be
readily obtained; the � propagator is given by

〈��〉(ω, q) = i

q2 + k2
o − iλ2〈ρρ〉0(ω, q)

, (117)

with the bare density two-point function 〈ρρ〉0 given by (89).
In the limit ω � q, this expression is only singular as ω,

q → 0 if one tunes the bare boson mass to

k2
o = − pF

2πvF
λ2. (118)

The boson correlator then becomes

〈��〉(ω, q) � 1

q2 − i pF λ2

2πv2
F

|ω|
|q|

, (ω � vF q) (119)

and produces z = 3 from Landau damping as anticipated.
b. Thermodynamic properties. The Gaussian theory (115)

has a specific heat cV ∝ T 1/z = T 2/3 [43]. This can be seen by
computing the thermal partition function

Z (β ) =
∫

DφD� e−SE , (120)

where Euclidean action can be obtained from (115) by rotating
t = −iτ with τ ∈ [0, β]. The partition function can be evalu-
ated by first integrating over φ, then �,

Z = det [nθ · q(−iωn + vF nθ · q)]−1/2

×
∫

D� e− ∑
n

∫
q

1
2 {q2+k2

o−iλ2〈ρρ〉0 (iωn,q)}|�q,n|2

= det [nθ · q(−iωn + vF nθ · q)]−1/2

× det

⎡
⎣q2 + λ̃2 |ωn|√

ω2
n/v

2
F + q2

⎤
⎦

−1/2

, (121)
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where ωn = 2πT n are Matsubara frequencies and λ̃2 ≡
pF

2πv2
F
λ2. The free energy, or pressure, is therefore a sum of

a Fermi liquid contribution and a Landau-damped boson con-
tribution

P = T

V
log Z

= −1

2
T

∑
n

∫
q

∫
θ

log [nθ · q(−iωn + vF nθ · q)]

− 1

2
T

∑
n

∫
q

log

⎡
⎣q2 + λ̃2 |ωn|√

ω2
n/v

2
F + q2

⎤
⎦. (122)

The Fermi liquid free energy will be discussed further in
Sec. VII; here we focus on the contribution from the Landau-
damped boson, which dominates at low temperatures. The
integrals and Matsubara sum are dominated at low tempera-
tures by the region where vF q � ωn ∼ q3. The integral over
q can therefore be simplified to∫

q
log

(
q2 + λ̃2 |ωn|

q

)
= λ̃4/3 |ωn|2/3

2
√

3
, (123)

where a temperature-independent UV divergence was
dropped. The Matsubara sum is also divergent. Cutting it off
at n � N and using

N∑
n=0

n2/3 = HN,− 2
3

= 3

5
N5/3 + 1

2
N2/3 + ζ

(− 2
3

) + O(1/N1/3),

(124)

one obtains a UV divergent contribution to the zero temper-
ature pressure and entropy density; removing these one is
left with a finite thermal piece leading to the expected NFL
specific heat [note that ζ (− 2

3 ) < 0],

P = −ζ
(− 2

3

)
4
√

3
λ̃4/3T 5/3

⇒ T
ds

dT
= T

d2P

dT 2
= −5ζ

(− 2
3

)
18

√
3

λ̃4/3T 2/3. (125)

Note that this NFL contribution to the specific heat may be
difficult to observe in models where an instability— supercon-
ducting or other—arises at a similar scale as NFL fluctuations
[44].

c. Nonlinear terms. Within the perturbative expansion in
the fermionic patch theory description [45,46], the dynamic
critical exponent of a NFL is expected to deviate from the RPA
value z = 3 at four loops [11]. The corresponding diagram
only involves two loops in the nonlinear bosonized descrip-
tion; moreover the transparent scaling of fermion loops in this
approach (see Sec. V) may make an evaluation of z − 3 more
tractable. The importance of accounting for nonlinearities in
the bosonization approach in this context was emphasized in
Ref. [47]. We leave this for future work.

B. Spinful Fermi surfaces

a. Coadjoint orbit. The formalism of coadjoint orbits
can be extended to describe Fermi surfaces with spin. In

addition to the charge distribution function f (x, p), the low-
energy degrees of freedom also involve the spin distribution
function—for free fermions this is related to fermion bilinears

f i(x, p) ∼ i
∫

dd y ψ†
(

x + y
2

)
Tiψ

(
x − y

2

)
eip·y, (126)

where Ti = 1
2σi acts on the spin indices. We focus here on

SU (2), but more general internal groups can accommodated
for with minor changes. The algebra g and corresponding
coadjoint orbits is now enlarged: for free fermions it is the
low-momentum limit of the algebra of fermion bilinears ψ†ψ ,
ψ†Tiψ—it is derived from this perspective in Appendix E.
Here instead we derive it directly in the semiclassical limit.
The elements of the algebra can be parametrized as

F a(x, p) ∈ g, a = 0, 1, 2, 3, (127)

with F 0 corresponding to an element of the (spinless) Poisson
algebra. Consider the infinitesimal action of this algebra on
a function O(x, p) of phase space, that transforms in some
representation of the SU (2) group,

x → x′ = x − ∇pF 0(x, p), (128a)

p → p′ = p + ∇xF 0(x, p), (128b)

O(x, p) → O′(x′, p′) = (1 + F i(x, p)Ti )O(x, p). (128c)

The commutator of two such transformations is

[F, G]0 = {F 0, G0}, (129a)

[F, G]k = {F 0, Gk} + {F k, G0} − F iGj fi j
k, (129b)

where {·, ·} still denotes the Poisson bracket and fi j
k are the

structure factors of su(2).
We parametrize the state again as an element of the dual

space f a(x, p) ∈ g∗. The ground state is

f 0
0 (x, p) = 	(pF − p), f i

0(x, p) = 0. (130)

The degree of freedom of the EFT is the coadjoint orbit,

fφ (x, p) = U −1 f0U

� f0 + [φ, f0] + 1
2 [φ, [φ, f0]] + · · · , (131)

where U = e−φ . As in the spinless case [Eq. (29)], the phase
is an equivalence class: one identifies φ ∼ φ + α for α an
element of the stabilizer of f0. Using the algebra (129), one
finds that [α, f0] = 0 implies

0 = {αa,	(p − pF )} = nθ · ∇αa(x, p)δ(p − pF ). (132)

Each component αa, a = 0, 1, 2, 3 therefore satisfies the same
constraint as in the spinless case (28), and one can use the
redundancy φ ∼ φ + α to chose the following representatives:

φa(x, θ ), a = 0, 1, 2, 3. (133)

The EFT will therefore contain three additional low-energy
degrees of freedom compared to a spinless fermi surface. That
these degrees of freedom constitute the low-lying excitations
of spinful Fermi surfaces is well known in the conventional
Fermi liquid approach (see, e.g., [48]), but appears to be less
well appreciated in the bosonization literature [7].
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b. Effective field theory. To obtain the general EFT for
Fermi liquids with spin, one proceeds as in Secs. II and III,
using instead the algebra (129). The free fermion part of the
action reads again

S =
∫

dt 〈 f0,U −1(∂t − ε)U 〉, (134)

the only difference with the spinless case being the algebra.
For the Hamiltonian to commute with the stabilizer h, we need

εa(x, p) = δa
0ε(p). (135)

Equation (134) should be supplemented with nonlinear terms
in f a as in Eq. (51), which will in particular contain spin-
asymmetric Landau parameters. We leave a more general
analysis including these terms for future work, and focus on
the action (134) in this section.

Let us expand (134) to study the dynamics of the theory,
following Secs. IV and V. Consider first the quadratic action:
the WZW term gives

S(2)
WZW = 1

2

∫
dt 〈[φ, f0], φ̇〉 = − pd−1

F

2

∫
t,x,θ

φ̇anθ · ∇φa,

(136)

with
∫

t,x,θ
≡ dtdd xdd−1θ

(2π )d . In the last step, we used (129), which
implies

[φ, f0]a = −nθ · ∇φaδ(p − pF ). (137)

The Hamiltonian piece gives

S(2)
H = 1

2

∫
dt 〈[φ, f0], [φ, ε]〉

= − pd−1
F

2
ε′(pF )

∫
t,x,θ

(nθ · ∇φa)2. (138)

The last step follows from (137) and

[φ, ε]a = nθ · ∇φaε′(p). (139)

The quadratic action is therefore simply the sum of four copies
of the spinless action, and all fields have the same propagator

〈
φa

θ φ
b
θ ′
〉
(ω, q) = i

(2π )d

pd−1
F

δd−1(θ − θ ′)δab

nθ · q(ω − vF nθ · q)
. (140)

Let us now turn to cubic terms in the action. The WZW term
is

S(3)
WZW = 1

3!

∫
dt 〈[φ, f0], [φ̇, φ]〉

= pd−1
F

3!

∫
t,x,θ

1

pF
∇nφ

0(∇sφ̇
0∂θφ

0 − ∇sφ
0∂θ φ̇

0)

+ 1

pF
∇nφ

i(∇sφ̇
0∂θφ

i − ∇sφ
i∂θ φ̇

0

+ ∇sφ̇
i∂θφ

0 − ∇sφ
0∂θ φ̇

i ) − ∇nφ
iφ̇ jφk fi jk . (141)

The terms in the first two lines are similar to the WZW
term for spinless Fermi liquids, see Eq. (107). However the
last term is different: it arises from a non-Abelian algebra
( fi jk �= 0) and has a different scaling in derivatives. The
Hamiltonian can be shown not to have such a cubic term.

Similar nonlinearities however appear in the spin density op-
erators. Writing

ρa(t, x) =
∫

dd p
(2π )d

f a
φ

=
∫

dd p
(2π )d

f a
0 + [φ, f0]a + 1

2
[φ, [φ, f0]]a + · · · ,

(142)

and evaluating the commutators using (129), one finds that the
spin densities have the expansion

ρ i = − pd−1
F

(2π )d

∫
θ

∇nφ
i − fi jkφ

j∇nφ
k + · · · . (143)

The nonlinear term has one less gradient compared to the one
in the charge density (108).

c. Nonlinear response. The enhanced scaling of nonlin-
earities in the spin sector [Eqs. (141) and (142)] leads to a
different scaling of spin density n-point functions than the
one found in Sec. V for charge densities. The quadratic action
[Eqs. (136) and (138)] leads to the scaling ω ∼ q and

φa(t, x, θ ) ∼ q(d−1)/2. (144)

Since the linear part of the densities is ρ ∼ qφ, the spin
density two-point function scales as

〈ρiρ j〉(ω, q) ∼ δi j, (145)

as for charge density. In fact, since the entire quadratic action
is unchanged, the two-point function for spin density is identi-
cal that of charge density (87). The new non-Abelian vertices
scale as fi jkq(d−1)/2. The three-point function only involves a
single such vertex (see Fig. 3), so that

〈ρi(ω, q)ρ j (ω
′, q′)ρk〉 ∼ fi jkq(d−1)/2q3〈φφφ〉 ∼ 1

q
. (146)

The triangle diagram coming from the nonlinear term in the
density produces the same scaling. Barring cancellations, we
find that 〈ρρρ〉 ∼ 1/q.

We now generalize to higher point functions. Contributions
to n-points function from diagrams involving only cubic ver-
tices have n − 2 such vertices, so that

〈ρi1 (ω1, q1)ρi2 (ω2, q2) · · · ρin〉

∼ f n−2
i jk q(n−2)(d−1)/2qn〈φ · · · φ〉 ∼ 1

qn−2
. (147)

Higher-point vertices do not change this scaling. Indeed, every
additional commutator [φ, ·] has at most one derivative fewer
than in the spinless case, where commutators are Poisson
brackets. Therefore, using for example a four-point vertex
once or a three-point vertex twice produces the same scaling.

The scaling (147) of spin density n-point functions is per-
haps less surprising than that of charge density (95). Indeed,
the scaling (147) could be guessed from a fermion description,
see Eq. (96). The subtle cancellations in the fermionic ap-
proach to computing charge density n-point functions, arising
upon antisymmetrization of external legs in the fermion loop
and which invalidate the guess (96) for charge density n-point
function, do not occur here due to the non-Abelian nature of
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spin density. The scaling (147) also controls gluon n-point
functions in dense QCD [49,50].

C. Charged operators, BCS, and large momentum processes

In one-dimensional bosonization, charged operators—
including fermions—are realized by vertex operators eiαφ .
Their correlation functions are therefore entirely fixed from
those of the phase φ. An effort to mirror this correspon-
dence in higher dimensions is often made in multidimensional
bosonization [7], although, ultimately, a bosonic theory (with-
out a Chern-Simons field) cannot produce fermion statistics in
dimensions larger than one. However, one may be interested in
studying the bosonic charged operators of the theory, which in
a fermion description would include ψ (x)ψ (y), ψ†(x)ψ†(y),
etc. These can be captured in our formalism by extending
the algebra, similarly to how spinful Fermi surfaces were
studied in Sec. VI B. It is particularly interesting to focus on
the charge ±2 operators shown above, as these form a closed
algebra with ψ†(x)ψ (y), leading to a simple extension of the
Poisson algebra, see Appendix E. The degrees of freedom will
now include, in a addition to the distribution function f 0(x, p),
the charged distribution functions

f 2(x, p), f −2(x, p). (148)

One difference with the spin extension discussed in Sec. VI B
is that the stabilizer of the state f c

0 (x, p) = δc
0	(pF − p) is not

enlarged. As a result, the quotient space consists of the entire
functions of phase space f ±2(x, p), in addition to φ(x, θ ). The
Hamiltonian (51) should be generalized to a functional of all
distributions H = H[ f , f 2, f −2]; the first new term is

H[ f , f2, f−2] =
∫

x,p
ε(p) f (x, p)

+ 1

2

∫
x,p,p′

VBCS(p, p′) f2(x, p) f−2(x, p′) + · · · .

(149)

One can obtain an equation of motion for the charged distri-
bution functions (see Appendix E1 for details)

ḟ2(x, p, t )=−2iε(p) f2(x, p, t ) + i
∫

p′
f2(x, p′, t )VBCS(p′, p).

(150)

Integrating this equation over x produces the well-known
equation of motion for a Cooper pair, leading to the Cooper
instability (see [51] for a textbook treatment).

We finally briefly mention another interesting extension
of the Poisson algebra. The Poisson algebra was used in
this paper to obtain an EFT for the low-energy and low-
momentum dynamics of Fermi liquids. Fermi liquids also
have low-energy particle-hole excitations at large momentum
q ∼ kF (as long as q < 2kF , for a spherical Fermi surface).
At these high momenta, the higher gradient terms in (51)
become important, and perturbative control in the EFT is lost.
However, correlation functions of high momentum operators
can be obtained in a different approach: one considers a dis-
tribution function fP(x, p) for momentum P + p particle-hole
pairs (with P ∼ pF and p � P). Extending the algebra as in
Appendix E, these will become additional degrees of freedom

similar to f ±2 above; their equation of motion can be used
to capture low-energy correlators with large momentum P.
This approach makes it clear that these correlators will not be
uniquely fixed in terms of the Wilsonian parameters appearing
in (51), since the Hamiltonian can involve new terms ∼ fP f−P
similar to the BCS interaction in (149).

VII. CONCLUSIONS

To summarize, in this paper we have used the algebra of
canonical transformations and its coadjoint action to con-
struct a nonlinear effective field theory of Fermi liquids in
terms of bosonized degrees of freedom. In this approach, the
states of a Fermi liquid form a coadjoint orbit of the group
of canonical transformations; and the dynamical degrees of
freedom parametrize the shape of the Fermi surface at each
spacetime point. For free fermions, the resulting equation of
motion coincides with the collisionless Boltzmann equation,
restricted to configurations with a sharp Fermi surface. More
generally, the effective action (52) describes interacting Fermi
liquids: it contains Landau parameters as well as further inter-
actions that can be systematically organized in an expansion
in gradients and fluctuations. Fluctuations around a ground
state f0 can be studied by expanding the action in f − f0, or,
more conveniently, φ(t, x, θ ); this is done up to cubic order
in (107). Our approach reduces to standard constructions of
bosonized Fermi liquids [5–7] upon linearization.

As a check of the nonlinear structure of the theory, we
showed in Sec. V that the density three-point function of
a Fermi gas is reproduced. Even for a free Fermi gas, this
calculation is substantially simpler to perform in a bosonized
description, either using the EFT as in Sec. V, or in kinetic the-
ory as in Appendix F. The general scaling of density n-point
functions, which is obscured in a fermionic description and
plays an important role in the study of non-Fermi liquids, is
entirely manifest in the EFT. Thus we hope that the formalism
will be useful for the understanding of non-Fermi liquids.

While fermion loops are reproduced by tree level diagrams
in the bosonized description, we have not discussed loop
corrections in the bosonized theory itself. These are expected
to give suppressed but interesting nonanalytic corrections to
Fermi liquids correlation functions [31]. One troubling aspect
of the Fermi liquid EFT is that it features UV/IR mixing: cer-
tain UV divergences in loop diagrams come with nonanalytic
IR structures and cannot be absorbed with counterterms. A
related issue arises when computing the specific heat of the
Fermi liquid [the first line in Eq. (122)]: the coefficient of
the linear in T specific heat involves a cutoff ∼kF . We leave
a more careful study of these issues for future work. Note
however that they may not be important for studies of non-
Fermi liquids; for example, the T 2/3 specific heat obtained in
Eq. (125) is not UV sensitive.
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APPENDIX A: BACKGROUND GAUGE FIELDS
FOR CANONICAL TRANSFORMATIONS

In Sec. III E, we saw how to couple the nonlinear theory to
a background U (1) gauge field by identifying gauge transfor-
mations as a subset of canonical transformations and making
the action invariant under that subset.

We can in fact push further and make the action in-
variant under all time dependent canonical transformations
λ(t, x, p) ∈ g. Let W = exp λ be the corresponding group
element. One can show that the coadjoint transformation of
a dual space element f (x, p) takes the form

(AdW f )(x, p) = f (xW , pW ), (A1)

where xW and pW are transformed coordinates

xW = x + W ∇pW −1,

pW = p − W ∇xW −1. (A2)

These are the nonlinear versions of Eq. (2). In order to make
any arbitrary function invariant under such a transformation,
we turn on background gauge fields (Ax(t, x, p), Ap(t, x, p))
in phase space (with position and momentum components)
and consider the new function

fA(x, p) = f (x − Ap, p + Ax). (A3)

We will often refer to these phase space gauge fields collec-
tively as AI , using a phase space index I = (x, p). One can see
that fA is invariant under canonical transformations if we also
demand that AI transforms in the following way:

AI → ÃI =W −1(AI − ∂I )W =AI
(
t, xW −1

, pW −1) − W −1∂IW,

(A4)

since the canonical transformation of fA supplemented by the
transformation of the gauge fields is now

fA(x, p) → fÃ(xW , pW )

= f (xW − Ãp(xW , pW ), pW + Ãx(xW , pW )), (A5)

where we have suppressed the time dependence of the gauge
field for notational simplicity. Using the fact that

ÃI (xW , pW ) = W ÃI (x, p)W −1 = AI (x, p) − ∂IWW −1, (A6)

we can see that

xW − Ãp(xW , pW ) = xW − Ap(x, p) + ∇xWW −1

= x − Ap(x, p),

pW − Ãx(xW , pW ) = pW + Ax(x, p) − ∇pWW −1

= p + Ax(x, p), (A7)

so the transformation of the phase space gauge fields cancels
the canonical transformation.

These phase space gauge can be viewed as semiclassi-
cal limits of noncommutative gauge fields in phase space. It
is a known fact that noncommutative gauge transformations
in the limit of small noncommutativity (which in our case
would be h̄) reproduce infinitesimal canonical transformations
of the noncommutative space [52]. The transformation law,
Eq. (A4), is just the nonlinear version of these under finite
canonical transformations.

The modified coordinates

X = x − Ap, P = p + Ax, (A8)

will be referred to as covariant coordinates from here onwards.
The distribution function fA(x, p) evaluated on these covariant
coordinates is invariant under all canonical transformations
supplemented by the transformations in Eq. (A4). Finally, we
also turn on a time component for this gauge field A0(t, x, p),
which transforms in a similar manner,

A0 → W −1(A0 − ∂0)W, (A9)

to make terms with time derivatives invariant.
Equipped with these gauge fields, we can make the free

fermion action invariant under all time-dependent canonical
transformations. The Wess-Zumino-Witten term gets modi-
fied to

SWZW =
∫

dt〈 f0,U −1[∂t − A0]U 〉, (A10)

and the free fermion Hamiltonian gets modified to

SH = −
∫

dt〈 fA, ε(p)〉 = −
∫

dt〈 f0,U −1ε(p − Ax)U 〉.

(A11)

One can see that both terms are separately invariant under time
dependent canonical transformations W = exp λ

U →WU, A0 →W −1(A0 − ∂0)W, AI →W −1(AI − ∂I )W.

(A12)

The total free fermion action is

S[φ, Aμ] =
∫

dt〈 f0,U −1[∂t − A0 − ε(p − Ax)]U 〉, (A13)

where Aμ = (A0, Ax) refers to the space-time components of
the phase-space gauge field. The momentum components Ap
do not enter the action for free fermions since the dispersion
relation is translationally invariant.

Gauging the interacting theory (51) also follows from the
above considerations. Since f transforms covariantly under
the transformation U → WU , while δ f does not, we instead
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expand the interacting Hamiltonian in f to obtain an expres-
sion of the form

H [ f ] =
∫

x,p
ε(p) f (x, p)

+
∫

x,p,p′
F̃ (2,0)

int (p, p′) f (x, p) f (x, p′)

+ F̃(2,1)
int (p, p′) · ∇x f (x, p) f (x, p′) + . . .

+
∫

x,p,p′,p′′
F̃ (3,0)

int (p, p′, p′′) f (x, p) f (x, p′) f (x, p′′)

+ . . . , (A14)

with modified Wilson coefficients F̃ (m,n)(p1, . . . , pm), which
can be straightforwardly related to those in Eq. (51) by rear-
ranging the expansion.

While f transforms covariantly under canonical transfor-
mations, its phase space gradient ∂I f does not. However, one
show that the covariant derivative

DI f ≡ ∂I f − {AI , f } (A15)

does, i.e.,

(DI f ) → Ad∗
W (DI f ). (A16)

Hence, to make the interacting Hamiltonian invariant, we re-
place partial derivatives of f by covariant derivatives, and then
evaluate the distribution function and its covariant derivatives
on covariant coordinates

[DI . . . DJ f ](x, p) → [DI . . . DJ ] f (x − Ap(t, x, p), p + Ax(t, x, p)) (A17)

where the expression [DI . . . DJ f ] stands for any number of covariant derivatives acting on f . The gauged Hamiltonian is then

HA[ f ] =
∫

x,p
ε(p) f (x − Ap, p + Ax) +

∫
x,p,p′

F̃ (2,0)
int (p, p′) f (x − Ap, p + Ax) f (x − A′

p, p′ + A′
x)

+
∫

x,p,p′
F̃(2,1)

int (p, p′) · Dx f (x − Ap, p + Ax) f (x − A′
p, p′ + A′

x) + . . . , (A18)

where we have written A′
x and A′

p as shorthand for Ax(t, x, p′)
and Ap(t, x, p′) respectively. Note that unlike for the free
fermion case, the momentum components Ap of the phase
space gauge field do enter the action through the nonlinear
terms. The “maximally gauged” action is then

S[φ, Aμ] = SWZW[φ, A0] −
∫

dt HA[ f [φ]]. (A19)

1. Ward identity

Coupling the action to background gauge fields for canon-
ical transformations naturally comes with a Ward identity. To
derive it we look at the linearization of the transformation
Eq. (A4) in λ,

δλAM = ∂Mλ + {λ, AM} + O(λ2). (A20)

where the index M stands for time, space and momentum
components. The variation of the action under this transfor-
mation must take the form

δλS = −
∫

dt〈J M, δλAM〉. (A21)

This equation defines the current J M for canonical transfor-
mations. Its components are given by

J 0 = −δSWZW

δA0
= f ,

J xi = δHA

δAxi

= f
∂

∂ pi
ε(p − Ax) + . . . , J pj = 0 + . . . ,

(A22)

where the ellipses denote terms form the variation of the
nonlinear-in- f terms in the Hamiltonian (A18). Consequently,
the Ward identity takes the form

∂MJ M + {J M, AM} = 0. (A23)

This is not a continuity relation in the usual sense, because
the index M runs over both spacetime t, xi and momen-
tum pj indices. Even in the absence of background fields
AM = 0, one can therefore not in general define conserved
charges by integrating this equation over space, because
∂pjJ pj

is not a total spatial gradient. One exception is for
free fermions, where J pj = 0 (A22)—the conserved charges
Q(p) = ∫

dd x J 0(t, x, p) are then the occupation numbers
at each wavevector. Interestingly, in this situation one can
linearize the covariant conservation law with background
sources (A23) around the finite density state 〈J 0〉 = f0 to
obtain approximate Ward identities that resemble anomaly
equations, as we discuss further below. In 1 + 1d , we find
chiral symmetries at every Fermi point (see Appendix B) and
in 2 + 1d , the linearization results in the loop group symmetry
of [13] (see Appendix C).

APPENDIX B: (1+1)D LUTTINGER LIQUID

In this Appendix we show that the coadjoint orbit formal-
ism reproduces the bosonized theory of Luttinger liquids, at
both the linear and nonlinear level. In particular, the mixed
anomaly between the emergent chiral U (1) symmetries at
the Fermi points can be understood as a linearization of the
nonanomalous covariant conservation law (A23).
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Luttinger liquids have been extensively studied in the lit-
erature, see in particular Refs. [14–17,53] for constructions
using coadjoint orbits.

1. Linearized action

We begin with a review of the construction of the
bosonized action for Luttinger liquids from the algebra of
densities. Fermi “surfaces” in 1+1 dimensions are a collection
of discrete points in momentum space. Assuming that the
dispersion relation ε(p) is an even function that monotonically
increases with positive momentum, the Fermi surface consists
of exactly two points at momentum values p = ±pF . Each
Fermi point hosts a chiral mode whose chirality is given
by sgn[∂pε]. Denoting the chiral modes at the points +pF

and −pF by the subscripts R and L (for “right” and “left”)
respectively, the particle number densities obey the following
equal time commutation relations [see Eq. (72)]

[ρR(x), ρR(x′)] = − i

2π
∂xδ(x − x′),

[ρL(x), ρL(x′)] = i

2π
∂xδ(x − x′),

[ρR(x), ρL(x′)] = 0. (B1)

The so-called Schwinger terms on the right-hand side of the
first two lines are indicative of the chiral anomalies carried by
each chiral fermion. ρR,L are the charge densities correspond-
ing to two copies of U (1) symmetry, which we will refer to as
U (1)R and U (1)L. The chiral algebra can be realized in terms
of bosonic fields φR,L by defining the densities as

ρR = 1

2π
∂xφR, ρL = − 1

2π
∂xφL. (B2)

The commutators of the densities with the bosonic fields are
then

[φR(x), ρR(x′)] = −iδ(x − x′),
[φL(x), ρL(x′)] = −iδ(x − x′),

(B3)

which tells us that the U (1)R.L symmetries are nonlinearly
realized on the bosonic fields as

φR → φR − λR, φL → φL − λL. (B4)

An action that produces the algebra (B3) is

S = 1

2

∫
dtdx φ̇RρR + φ̇LρL

= − 1

4π

∫
dtdx ∂xφRφ̇R − ∂xφLφ̇L. (B5)

The factor of 1
2 in the first line comes from the fact this is a

constrained system: using the appropriate Dirac brackets one
recovers the commutation relation (B3) as desired.

This action corresponds to the WZW term in the coadjoint
orbit construction. Consider Eq. (78) for d = 1: the integral
over the Fermi surface angle θ becomes a sum over two points
θ = 0, π , so that one finds

SWZW = − 1

4π

∑
σ=±

σ

∫
dtdx ∂xφσ φ̇σ

= − 1

4π

∫
dtdx ∂xφRφ̇R − ∂xφLφ̇L, (B6)

in agreement with (B5). Nonlinearities in the WZW term—
present for any d > 1, see Eq. (107)—entirely vanish in d =
1. These nonlinearities are associated with the curvature of
the Fermi surface, which are absent in one dimension. For
the same reason, the relation between ρ and φ (B2) does not
receive nonlinear corrections.

In d = 1, all nonlinearities in the bosonized description of
a Luttinger liquid come from the Hamiltonian, in particular
from nonlinearities in the dispersion relation. These will be
discussed in Appendix B 3. The Hamiltonian part of the action
also produces a term in the quadratic action: taking again d =
1 in (84) one obtains

S(2) = − 1

4π

∑
σ=±

∫
dtdx ∂xφσ (σ φ̇ + vF ∂xφ)

= − 1

4π

∫
∂xφR(∂0φR + vF ∂xφR)

− ∂xφL(∂0φL − vF ∂xφL ), (B7)

which is the well-known Gaussian action for a Luttinger
liquid.

2. Chiral anomaly as a linear approximation

When coupled to background gauge fields, both chiral
symmetries are anomalous with opposite anomalies. If AR

μ and
AL

μ are the background fields for the two global symmetries,
the anomalous conservation laws are

∂μ jμR = − 1

4π
εμνF R

μν,

∂μ jμL = 1

4π
εμνF L

μν. (B8)

In the coadjoint orbit formalism, the chiral anomalies ap-
pear as a linearized approximation to the invariance of the
maximally gauged action (A13) under all canonical transfor-
mations. To see this, we begin with the Ward identity (A23)
for free fermions, that have Jpj = 0 [see (A22)]:

∂μJ μ + {J μ, Aμ} = 0. (B9)

Turning off Ax for simplicity, the conservation law takes the
form

∂0J 0 + ∂xJ x + ∂xJ 0∂pA0 = ∂pJ 0∂xA0. (B10)

Recall that J 0 is simply the phase space distribution f . Hence,
it has a nonzero expectation value in the ground state

〈J 0〉 = f0. (B11)

If we now linearize the equation around the two Fermi points
by writing

J 0 = f0 + δJ 0, J x = δJ x, (B12)

and treat A0(t, x, p) to be of the same order as δJ μ, we find
that the equation takes the form

∂0δJ 0 + ∂xδJ x = (
∂xAL

0

)
δ(p + pF ) − (

∂xAR
0

)
δ(p − pF ).

(B13)
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Integrating over either p > 0 or p < 0 and using the expres-
sions for the chiral density and current

ρR =
∫ ∞

0

d p

2π
δJ 0, jR =

∫ ∞

0

d p

2π
δJ x,

ρL =
∫ 0

−∞

d p

2π
δJ 0, jL =

∫ 0

−∞

d p

2π
δJ x,

(B14)

we find that the Ward identity takes the form of the anomalous
conservation laws for the chiral anomalies

∂tρR + ∂x jR = − 1

2π
∂xAR

0 ,

∂tρL + ∂x jL = 1

2π
∂xAL

0 . (B15)

The equivalent version with Ax not set to zero can also be
obtained by performing a field redefinition similar to Eq. (70).

The chiral anomaly is therefore a linear approximation to
the non-Abelian Ward identity (A23), or a covariant conserva-
tion law, around a state with nonzero charge density 〈J 0〉 �= 0
[54].

3. Density three-point function

We have seen that nonlinearities in Luttinger liquids only
arise from the Hamiltonian, and not the WZW term. In the
special case of free fermions, these will come from the dis-
persion relation ε(p). Setting d = 1 in the cubic action (107)
gives

S = − 1

4π

∑
σ=±

∫
dtdx ∂xφσ (σ φ̇σ + vF ∂xφσ )

+ 1

3
ε′′(∂xφσ )3 + · · · , (B16)

where ε′′ is the second derivative of the dispersion relation,
evaluated at p = pF . See Ref. [55] for an early discussion of
this action.

This nonlinear term in the action produces nonlinear re-
sponse: d = 1 is a simple special case of three-point function
computed for general dimension in Sec. V C, where only the
first diagram in Fig. 3 contributes. Setting d = 1 in Eq. (111),
one finds that it gives

〈ρ(ω, q)ρ(ω′, q′)ρ〉 = − ε′′

2π

∑
σ=±

σ
q

ω − vF σq

q′

ω′ − vF σq′

× q + q′

ω + ω′ − vF σ (q + q′)
. (B17)

One can verify that this result agrees with the low frequency
and momentum limit ω, vF q � vF kF of the density three-
point function obtained from a free fermion description by
computing a fermion loop [32,56,57]. When density n-point
functions are studied in the fermion description, the disper-
sion relation is typically taken to have a simple form, e.g.,
ε(p) = p2/2m. Our approach shows that at low frequencies
and momenta, only n − 1 first derivatives of the dispersion
relation at the Fermi surface, ε′, ε′′, · · · , ε (n−1), can enter in
the n-point function.

APPENDIX C: LU (1) ANOMALY AS A
LINEAR APPROXIMATION

Else, Thorngren, and Senthil recently proposed [13] that
Fermi liquids (and possibly non-Fermi liquids) in 2+1 di-
mensions possess an emergent LU (1) symmetry with an ’t
Hooft anomaly, mirroring the 1+1d chiral anomaly for the
emergent U (1)L × U (1)R symmetry in Luttinger liquids (see
Appendix B).

The LU (1) symmetry corresponds to conservation of par-
ticle number at each point on the Fermi surface. Coupling
the symmetry to background gauge fields AM (t, x, θ ) with
M = t, x, θ , the anomalous conservation law for the LU (1)
current jM (t, x, θ ) is

∂M jM = κ

8π2
εABCD∂AAB∂CAD. (C1)

Since this symmetry is emergent, its associated background
field can get activated against one’s will. This is in fact what
happens for Fermi liquids, where [13]

AM (t, x, θ ) = δi
M pFi(θ ). (C2)

The angular component Aθ corresponds to the Berry con-
nection in momentum space, which we will set to zero for
simplicity.

We start by showing how the linearized density algebra
(72) familiar in bosonization follows from the anomaly. A
similar derivation appeared in [58]. Differentiating Eq. (C1)
with respect to At ,

i〈T {∂A jA(t, x, θ )ρ(t ′, x′, θ ′)}〉
= δ(t − t ′)

κ

4π2
εAtCD∂A(δ(θ − θ ′)δ2(x − x′))∂CAD. (C3)

The correlator is time ordered. Integrating this equa-
tion

∫ t ′+ε

t ′−ε
dt and taking ε → 0 gives

i〈[ρ(x, θ ), ρ(x′, θ ′)]〉
= κ

4π2
εAtCD∂A(δ(θ − θ ′)δ2(x − x′))∂CAD, (C4)

where we have suppressed the dependence on time, since all
operators and fields are now evaluated at equal time t ′. The
background (C2) will now play an important role. In addition,
one can also consider a background magnetic field B = ∇ ×
�A. Taking both of these into account, this leads to the algebra

〈[ρ(x, θ ), ρ(x′, θ ′)]〉

= iκ

4π2

(
∂θ pF

i (θ )εi j∂ j + B∂θ

)
δ(θ − θ ′)δ2(x − x′). (C5)

This form of the algebra holds for Fermi surfaces of arbitrary
shapes. For a circular Fermi surface pF

i = pF n̂i(θ ), it reduces
to (72) (setting d = 2 there).

As explained in Sec. IV A, the algebra (C5) is only a
linearized approximation to the full, necessarily nonlinear,
density algebra (76)—it is this full non-Abelian algebra that
gives Fermi liquids a unique nonlinear structure, studied in
this paper. Similarly, the LU (1) anomaly (C1) arises in our
approach from the covariant conservation law (A23) after
linearizing. We show this below, proceeding analogously to
the one-dimensional case discussed in Appendix B 2.
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We start from the Ward identity for canonical transforma-
tions, Eq. (A23), in 2+1 dimensions, for free fermions,

∂μJ μ + {J μ, Aμ} = 0 (C6)

with J 0 = f . Turning off Ax for simplicity, the Ward identity
reduces to

∂tJ 0 + ∂iJ i + ∂xiJ 0∂pi A0 = ∂piJ 0∂xi A0, (C7)

where A0(t, x, p) is the time component of the phase space
gauge field. Linearizing this equation around the circular
Fermi surface

J 0 = f0 + δJ 0, J i = δJ i, (C8)

and treating A0 to be of the same order as δJ μ, the Ward
identity reduces to

∂tδJ 0 + ∂xiδJ i = −δ(|p| − pF )(nθ · ∇xA0). (C9)

To turn this into the anomalous LU (1) conservation law, we
simply integrate over the radial component of the momentum
p = |p| and identify the LU (1) current and gauge field in the
following way:

j0(t, x, θ ) =
∫

d p

4π2
p δJ 0(t, x, p),

ji(t, x, θ ) =
∫

d p

4π2
p δJ i,

A0(t, x, θ ) = A0(t, x, p)||p|=pF . (C10)

The linearized Ward identity then becomes

∂μ jμ = − 1

4π2
pF (nθ · ∇xA0), (C11)

which agrees with Eq. (C1) with κ = −1.
Paralleling the 1 + 1d chiral anomaly discussed previ-

ously, the 2 + 1d LU (1) anomaly is a linearized approxima-
tion to the Ward identity (A23) for free fermions. However,
in more general situations including Fermi liquids, the Ward
identity has a right-hand side −∂pjJ pj

that is not a total spatial
derivative. These systems therefore do not have, a priori, an
extended set of conserved charges [of course, the Gaussian
theory (84) that captures their linear approximation does cer-
tainly have such an extended set of charges].

Reference [13] explored the “kinematic” consequences of
the anomaly (C1), which must hold for any dynamics realizing
it. The Gaussian bosonized action (84) is a preferred (non-
linear) realization of the LU (1) symmetry and its anomaly,
but this does not exclude the interesting possibility of other
realizations of this symmetry. At the nonlinear level, one
could more generally study consequences of the covariant
Ward identity (A23), which may hold in states beyond Fermi
liquids.

APPENDIX D: BOOST SYMMETRY IN THE EFT

Invariance under Galilean boosts is known to constrain the
dispersion relation of free fermions to be quadratic in momen-
tum, as well as relate the effective mass of quasiparticles in
the interacting theory to Landau parameters. In this section,
we show how these constraints arise in our approach. Galilean
boosts are implemented on the one-particle phase space as a

time-dependent canonical transformation W = exp Bv , where
the Lie algebra element Bv , parametrized by a boost velocity
v is defined as

Bv = v · (pt − mx). (D1)

The action of the boost on elements of g and g∗ can be shown
to take the following form

F (x, p) → (AdW F )(x, p) = F (x − vt, p − mv),

f (x, p) → (Ad∗
W f )(x, p) = f (x − vt, p − mv). (D2)

Let us illustrate how to implement invariance under
Galilean boosts in the example of the free theory. Recall that
the action is given by

S = −
∫

dt〈 f0,U −1(∂t − ε)U 〉. (D3)

The boost acts on U as U → WU . Under this transformation,
the action changes to

S → −
∫

dt[〈 f0,U −1∂tU 〉 + 〈 f ,W −1(∂t − ε)W 〉]. (D4)

Boost invariance of the action then relies upon the following
constraint;

〈 f ,W −1(∂t − ε)W 〉 = −〈 f , ε〉, (D5)

for every state f in the coadjoint orbit. This is only possible if

W −1∂tW = W −1εW − ε. (D6)

Using the fact that W −1εW = ε(p + mv) and the expansion
for W −1∂tW , the above equation, for infinitesimal boost ve-
locity, reduces to

v · p = mv · ∇pε. (D7)

Stripping off the factor of v, we can integrate the equation to
find that the dispersion relation must be quadratic

ε(p) = p2

2m
+ const. (D8)

The constant term gives a constant contribution to the Hamil-
tonian, which does not affect the dynamics. We stress that
(D8) is a constraint on the whole function ε(p). Viewing
the derivatives of the dispersion relation at the Fermi surface
ε′(pF ), ε′′(pF ), etc. as Wilsonian coefficients, these are all
fixed by boost invariance, for the case of free fermions. In
the interacting case, one similarly obtains an infinite tower of
constraints relating ε (n)(pF ) and the other interaction terms in
(51). We derive the leading constraint in this tower below.

Let us now consider the interacting case, limiting ourselves
to the leading order in gradients and to terms up to O(δ f 2) in
the action, i.e., we consider the constraints of boost invariance
on the leading quadratic interaction F (2,0)

int (p, p′) in (51). Re-
call that this function contains the Landau parameters, so we
expect to obtain the quasiparticle effective mass as a result of
the boost constraint.

Since the free theory with quadratic dispersion is al-
ready invariant under boosts, boost invariance reduces to the
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invariance of the shifted Hamiltonian

H̃ [ f ] =
∫

x,p

(
ε(p) − p2

2m

)
f (x, p)

+
∫

x,p,p′
F (2,0)

int (p, p′)δ f (x, p)δ f (x, p′) + O(δ f 3)

(D9)

under the transformation

f (t, x, p) → (Ad∗
W f )(t, x, p) = f (t, x − vt, p − mv).

(D10)

The ellipses in H̃ denote the higher-order terms. For in-
finitesimal boosts, the linearization of this transformation in
v suffices

f → f + {Bv, f } = f − tv · ∇x f − mv · ∇p f . (D11)

The fluctuation δ f = f − f0 transforms nonlinearly

δ f → δ f − tv · ∇xδ f − mv · ∇pδ f − mv · ∇p f0. (D12)

We therefore see that the transformation can either leave the
number of δ f ’s in a given term unchanged, or at most reduce
it by one. Under this transformation, the shifted Hamiltonian
(D9) transforms to the following:

H̃ [ f ] → H̃ [ f ] − mv ·
∫

x,p

(
ε − p2

2m

)
∇p f0

+ mv ·
∫

x,p

(
∇pε − p

m

−2
∫

p′
F (2,0)

int (p, p′)∇p′ f0(p′)
)

δ f (x, p)

+ O(δ f 2). (D13)

In particular, terms with ∇xδ f vanish by virtue of being total
derivatives. The O(δ f 3) that we have not kept track of in
(D9) have become O(δ f 2) due to the nonlinear transformation
(D12). The first line above vanishes due to rotational invari-
ance. The second line gives us a new constraint that relates the
dispersion to the quadratic interaction

∇pε = p
m

+ 2
∫

p′
F (2,0)

int (p, p′)∇p′ f0(p′), for |p| = pF .

(D14)

This equation is evaluated at |p| = pF because δ f is localized
on the Fermi surface. This can be simplified by using the ex-
pression for f0(p′), and by using rotation symmetry to expand
F (2,0)

int as

F (2,0)
int (p, p′) = 4π2vF

p2
F

∑
l�0

Fl cos[l (θ − θ ′)], (D15)

where θ and θ ′ are the angles that p and p′ respectively make
with the px axis in momentum space (we have set d = 2 for
simplicity). Equation (D14) simplifies to

∇pε = p
m

− vF F1nθ , for |p| = pF . (D16)

Finally, evaluating the above at the Fermi surface |p| = pF ,
and defining the effective mass as ∇pε||p|=pF ≡ pF /m∗, we

find

1

m∗ = 1

m
− F1

m∗ , (D17)

which gives us the quasiparticle effective mass

m∗ = (1 + F1)m, (D18)

as expected.
Keeping higher-order terms O(δ f 3) above leads to a tower

of additional constraints, relating higher derivatives of the dis-
persion relation to Landau parameters and higher interaction
terms such as F (n,0)

int in (51).
Constraints from the underlying Galilean boost invariance

of the system can also be implemented in the fermionic EFTs
for Fermi liquids [3,4], see Ref. [59]. For relativistic systems,
Lorentz invariance should similarly constrain the Wilsonian
coefficients in (51)—this is less straightforward to implement
in our nonrelativistic approach, so we leave it as an interesting
extension for future work. See Refs. [60,61] for a discussion
of constraints from Lorentz boost symmetry on Fermi liquids.

APPENDIX E: ALGEBRAS FROM FERMION BILINEARS

The Poisson algebra g used throughout the paper, and de-
rived semiclassically in (2), can also be obtained from a free
fermion description as the low momentum limit of the algebra
of fermion bilinears

O(x, y) ≡ ψ†(x)ψ (y). (E1)

Using the free fermion algebra

{ψ (x), ψ†(y)} = δ(x − y), (E2)

one finds that the bilinears satisfy

[O(x, y),O(x′, y′)]

= δ(y − x′)O(x, y′) − δ(x − y′)O(x′, y). (E3)

Consider a Wigner-like transform [14]

OW (q, y) ≡
∫

x
O

(
x + y

2
, x − y

2

)
eiqx. (E4)

(this is really the Fourier-transform of the usual Wigner func-
tion). Physically, x is the center of mass coordinate, so q is
the total momentum of the operator. We will be interested in
low momentum operators with small point splitting, so that
qy � 1. These operators satisfy the algebra

[OW (q, y),OW (q′, y′)]

= −2i sin 1
2 (q′y − qy′)OW (p + p′, y + y′). (E5)

In the limit yq � 1, this realizes the Poisson algebra,

[OW (q, y),OW (q′, y′)] � −i(q′y − qy′)OW (q + q′, y + y′).

(E6)

To connect with a more familiar representation (4) of the Pois-
son algebra, Fourier transform twice to obtain the following
basis of generators:

T (x, p) = i
∫

qy
eiqxeipyOW (q, y), g = span{T (x, p)}, (E7)
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the factor of i makes T (x, p) anti-Hermitian, to match with
our conventions in the main text. These satisfy the algebra

[T (x, p), T (x′, p′)]

= (∂x∂p′ − ∂p∂x′ )[δ(x − x′)δ(p − p′)T (x, p)]. (E8)

A general element of the algebra F = ∫
xp F (x, p)T (x, p) then

satisfies

[F, G] =
∫

xp
{F, G}(x, p)T (x, p), (E9)

with the Poisson bracket defined as usual as

{F, G} = ∂xF∂pG − ∂pF∂xG. (E10)

If one instead used the algebra (E5) without taking the small
momentum limit, one would have obtained (E9) with instead
the Moyal bracket

{F, G}Moyal = 2 F (x, p) sin 1
2 (

←
∂x

→
∂p −

←
∂p

→
∂x )G(x, p). (E11)

This will lead to higher derivative corrections ∼ 1
kF

∂x to the
EFT (52), and in particular to the WZW term [15,18], which
adds to the other higher gradient corrections mentioned in
Sec. III D. In this paper, we focus on observables to leading
nontrivial order in q/kF , so mostly do not make use of these
higher derivative corrections.

a. Including spin. This approach can be straightforwardly
extended to obtain the appropriate algebra for Fermi surfaces
with spin, discussed in Sec. VI B. One now considers the
following fermion bilinears:

Oa(x, y) ≡ ψ†
σ (x)Taψσ ′ (y). (E12)

The matrices Ta are defined as Ta = 1
2σa for a = 1, 2, 3 and

T0 = 1. Using the fermion algebra

{ψσ (x), ψ†
σ ′ (y)} = δσσ ′δ(x − y), (E13)

one finds that the Wigner transforms OW
a (q, y) ≡ ∫

x Oa(x +
y
2 , x − y

2 )eiqx satisfy

[
OW

a (q, y),OW
a′ (q′, y′)

] = −
(

[Ta, Ta′ ]σσ ′
cos

qy′ − q′y
2

+ i{Ta, Ta′ }σσ ′
sin

qy′ − q′y
2

)
OW

σσ ′ (q + q′, y + y′). (E14)

In the semiclassical limit these become[
OW

0 (q, y),OW
0 (q′, y′)

] � −i(q′y − qy′)OW
0 (q + q′, y + y′), (E15a)[

OW
0 (q, y),OW

i (q′, y′)
] � −i(q′y − qy′)OW

i (q + q′, y + y′), (E15b)[
OW

i (q, y),OW
j (q′, y′)

] � i fi jkOW
k (q + q′, y + y′). (E15c)

One can verify that this truncation of the Taylor expansion
of the commutator still satisfies the Jacobi identity. This will
induce an algebra on the distribution functions fa(x, p), which
can be thought of as an extension of the Poisson bracket.
Taking Ta(x, p) = i

∫
qy eiqxeipyOW

a (q, y) as before and letting
F ≡ ∫

xp F a(x, p)Ta(x, p), with similar expressions for G, H ,
one finds

[F, G] = H, (E16)

with

H0 = {F 0, G0}, (E17a)

Hk = {F 0, Gk} + {F k, G0} − F iGj fi j
k, (E17b)

where {·, ·} still denotes the Poisson bracket. This agrees
with the algebra found directly in the semiclassical limit in
Eq. (129).

b. Including charge ±2 bilinears. Finally, a similar exten-
sion of the algebra can be used to study charge ±2 operators

O2(x, y) ≡ ψ†(x)ψ†(y),

O−2(x, y) ≡ ψ (x)ψ (y) = −O†
2 (x, y). (E18)

If a higher charge operators were included (say O4 ∼
ψ†ψ†ψ†ψ†), all even charge operators would have to be
included for the algebra to close; instead, the charge ±2 op-
erators above form a closed algebra with the charge neutral
bilinear (E1). The Poisson/Moyal algebra is linearly realized

on these operators as

[
OW

0 (p, y),OW
2 (p′, y′)

] = e
i
2 (py′−p′y)OW

2 (p + p′, y + y′)

+ e− i
2 (py′+p′y)OW

2 (p + p′, y′ − y),[
OW

0 (p, y),OW
−2(p′, y′)

] = −e
i
2 (p′y−py′ )OW

−2(p + p′, y + y′)

− e
i
2 (py′+p′y)OW

−2(p + p′, y′ − y),
(E19)

where we have taken the Wigner transform as before. The
remaining nontrivial commutator is

[
OW

2 (p, y),OW
−2(p′, y′)

] = e− i
2 (p′y+py′ )OW (p + p′, y − y′)

− e− i
2 (p′y−py′ )OW (p + p′, y + y′)

− e
i
2 (p′y−py′ )OW (p + p′,−y − y′)

+ e
i
2 (p′y+py′ )OW (p + p′, y′ − y)

− δ(p + p′)(δyy′ − δy,−y′ ). (E20)

For the purposes of obtaining the long-wavelength dynamics
of the charge 2 distribution function in Appendix E 1, it will
be sufficient to take the strict small momentum limit of the
commutators above, taking e

i
2 (p′y+py′ ) � 1, etc. In this limit,
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the Fourier transformed generators satisfy

[T0(x, p), T0(x′, p′)] � 0, (E21a)

[T0(x, p), T±2(x′, p′)] � ±iδ(x − x′)(δ(p − p′) − δ(p + p′))T±2(x, p), (E21b)

[T2(x, p), T−2(x′, p′)] � iδ(x − x′)
(
δ(p + p′) − δ(p − p′)

)(
T0(x, p) + T0(x,−p) − 1

)
. (E21c)

1. Equation of motion for Cooper pair

As discussed in Sec. VI C, the algebra in Eq. (E21) above
can be used to extend the EFT to capture the dynamics of
charge ±2 operators. The algebra (E21) is the direct sum of
three parts that have the dimensionality of phase space, and a
1-dimensional central extension

g + g2 + g−2 + u(1)c. (E22)

A state in the dual space is therefore labeled by three phase
space functions, and a number

f = { f 0(x, p), f 2(x, p), f −2(x, p), f c}. (E23)

The ground state has

f 0
0 = 	(pF − p), f ±2

0 = 0, f c
0 = 1. (E24)

In a fermion picture, this can be obtained by evaluating the
operators ψ†ψ, ψ†ψ†, ψψ and 1 in the Fermi sea state. The
stabilizer of this state is h + u(1), where h ⊂ g is the usual
stabilizer of the Fermi surface, see Eq. (28). The degrees
of freedom in the coadjoint orbit are therefore φ(x, θ ) [or
f 0(x, θ )], and f ±2(x, p). The Hamiltonian can now be a gen-
eral functional

H = H[ f 0, f 2, f −2]. (E25)

We could obtain the equation of motion for f ±2 by writing out
the entire action, including the WZW term, which now also
involves f ±2. Here we will show another equivalent method,
which only requires the Hamiltonian. First note that function-
als can be “differentiated” to obtain elements of the algebra

δG

δ f
≡

∫
xp

δG

δ fα (x, p)
Tα (x, p), (E26)

where the summation runs over α = 2, 0,−2. This allows one
to define the Lie-Poisson structure of two functionals [8,19]

[F, G]LP ≡
〈

f ,

[
δF

δ f
,
δG

δ f

]〉
. (E27)

One can show that the equation of motion of another func-
tional of f is

Ḟ = [F, H]LP, (E28)

where H is the Hamiltonian. Taking say F = f2(x, p), one can
obtain the equation of motion for the distribution function.
Consider for example the Hamiltonian

H[ f , f2, f−2] =
∫

xp
ε(p) f (x, p)

+ 1

2

∫
xpp′

VBCS(p, p′) f2(x, p) f−2(x, p′).

(E29)

One has

δH

δ f
=

∫
xp

ε(p)T (x, p) + 1

2

∫
xpp′

VBCS(p, p′)

× (T2(x, p) f−2(x, p′) + f2(x, p)T−2(x, p′)). (E30)

The equation of motion for the charge-2 distribution function
is therefore

ḟ 2(x, p, t ) =
〈

f ,

[
T2(x, p),

δH

δ f

]〉

= −2iε(p) f 2(x, p, t )

− i
(

f 0(x, p, t ) + f 0(x,−p, t ) − 1
)

×
∫

p′
f 2(x, p′, t )VBCS(p′, p). (E31)

This nonlinear equation describes the dynamics of Cooper
pairs, or the charge-2 distribution function, coupled to a dy-
namical Fermi surface. Linearizing, i.e., setting f 0(x, p, t ) →
f 0
0 (p) = 	(p − pF ) in the right-hand side and choosing p >

pF gives

ḟ 2(x, p, t ) = −2iε(p) f 2(x, p, t )

+ i
∫

p′
f 2(x, p′, t )VBCS(p′, p). (E32)

APPENDIX F: NONLINEAR RESPONSE
FROM KINETIC THEORY

Nonlinearities in the effective field theory (52) are crucial
to capture nonlinear response of Fermi liquids, as illustrated
through the density three-point function in Sec. V. Nonlin-
ear response even occurs for free fermions, where it can be
studied in kinetic theory. This section presents this alternative
approach, inspired by the derivation of hard dense loops from
kinetic theory [62] (following a similar result for hard thermal
loops [63,64]), as a consistency check of the results in Sec. V.
This approach to computing density n-point functions in a
Fermi gas is substantially simpler than the direct evaluation
of a fermion loop with n insertions [36,37].

We consider a free Fermi gas, described by the collisionless
Boltzmann equation. In order to generate correlation functions
of densities ρ(x, t ), we turn on an arbitrary background field
A0(x, t ). The Boltzmann equation then reads

0 = d

dt
f (x, p, t ) = (

∂t + vi(p)∂xi + Ei∂pi

)
f (x, p, t ). (F1)

We take the distribution function f to be given by a sharp but
fluctuating Fermi surface

f (x, p, t ) = 	(pF (x, t, θ ) − p), (F2)
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and expand around a spherical Fermi surface pF (x, t, θ ) =
pF + δpF (x, t, θ ). The density is given by

ρ(x, t ) =
∫

dd p

(2π )d
f (x, p, t ) = Sd−1

d (2π )d
pd

F + δρ(x, t ), (F3)

using (F2) one finds that it is related to δpF (x, t, θ ) as

δρ(x, t ) = pd−1
F

(2π )d

∫
dd−1θ

(
δpF + 1

pF

d − 1

2
(δpF )2 + · · ·

)
.

(F4)

We wish to compute n-point functions 〈ρ(x1, t1) · · · ρ(xn, tn)〉,
limiting ourselves to n = 2, 3 here. We will expand the fluc-
tuations in terms of their response to the background A0(t, x)
as

δρ = δρ (1) + δρ (2) + · · · , δpF = δp(1)
F + δp(2)

F + · · · ,

(F5)

with δρ (n), δp(n)
F = O((A0)n). Inserting (F2) in the kinetic

equation leads to(
∂t + vi(pF + δpF , θ )∂i + E · ŝi

pF + δpF
∂θ i

)
δpF = E · n̂, (F6)

which will govern nonlinear response. To leading order, we
find

δp(1)
F (ω, q, θ ) = n̂ · q

ω − vF n̂ · q
A0(ω, q). (F7)

We therefore obtain the density two-point function by differ-
entiating with respect to A0,

〈ρρ〉(ω, q) = −i
pd−1

F

(2π )d

∫
dd−1θ

n̂(θ ) · q

ω − vF n̂(θ ) · q
. (F8)

This agrees with what was found from the EFT (87), where
the remaining integral over angles was evaluated. Let us now
obtain δp(2)

F to determine the three-point function 〈ρρρ〉. The
O((A0)2) terms in the kinetic equation (F1) are

(∂t + vF n̂ · ∇ )δp(2)
F + ε′′(pF )δp(1)

F n̂ · ∇δp(1)
F + E · ŝi

pF
∂θ iδp(1)

F

= 0. (F9)

We see that there are two sources of nonlinearities—one from
the curvature of the dispersion relation [which vanishes for
a relativistic fermion, and equals ε′′(pF ) = v′(pF ) = 1

m for a
nonrelativistic fermion], and one from the last term, which is
always there. Let us start by setting ε′′(pF ) = 0. Solving (F9)
for δp(2)

F we have

δρ (2) = pd−1
F

(2π )d

∫
dd−1θ

(
δp(2)

F + 1

pF

d − 1

2
(δp(1)

F )2

)

= pd−2
F

(2π )d

∫
dd−1θ

d − 1

2

(
n̂ · ∇

∂t + vF n̂ · ∇ A0

)2

− 1

∂t + vF n̂ · ∇ ŝi∇A0∂θ i

(
n̂ · ∇

∂t + vF n̂ · ∇ A0

)
. (F10)

Differentiating with respect to A0 leads to the response func-
tion

〈ρ(ω, q)ρ(ω′, q′)ρ〉 = pd−2
F

(2π )d

∫
dd−1θ

1

ω + ω′ − vF n̂ · (q + q′)

[
ŝi · q′∂θ i

(
n̂ · q

ω − vF n̂ · q

)
+ (ω, q ↔ ω′, q′)

]

− (d − 1)
n̂ · q

ω − vF n̂ · q

n̂ · q′

ω′ − vF n̂ · q′ . (F11)

This manifestly vanishes when q or q′ = 0 as required by charge conservation; although it is not manifest it also vanishes when
q = −q′. In fact it is possible (but tedious) to show that after integration over θ , the integral satisfies the permutation symmetry
of the correlator, generated by {ω, q} ↔ {ω′, q′} and {ω, q} → {−ω − ω′,−q − q′}. The contribution proportional to v′(pF ) can
be obtained in a similar manner. One finds

〈ρ(ω, q)ρ(ω′, q′)ρ〉 = (F11) − pd−1
F

(2π )d
ε′′

∫
dd−1θ

n̂ · (q + q′)
ω + ω′ − vF n̂ · (q + q′)

n̂ · q

ω − vF n̂ · q

n̂ · q′

ω′ − vF n̂ · q′ , (F12)

which manifestly satisfies permutation symmetry and charge conservation.
The (partial) static limit limω′→0 of the three-point function is related to the dependence of the two-point function on a

background static potential μ(x). If one further takes the subsequent limit limq′→0, it is then related to the variation of the
two-point function under δμ = vF δpF :

lim
q′→0

lim
ω′→0

〈ρ(ω, q)ρ(ω′, q′)ρ〉 = −i

vF

∂

∂ pF
〈ρ(ω, q)ρ〉, (F13)

which provides an additional consistency check of the three-point function. Taking this limit of Eqs. (F11) and (F12) one finds
indeed

lim
q′→0

lim
ω′→0

〈ρ(ω, q)ρ(ω′, q′)ρ〉 = pd−2
F

(2π )dvF

∫
dd−1θ

[
(d − 1)

n̂ · q

ω − vF n̂ · q
+ ε′′ pF

(
n̂ · q

ω − vF n̂ · q

)2]

= 1

vF

∂

∂ pF

[
pd−1

F

(2π )d

∫
dd−1θ

n̂ · q

ω − vF (pF )n̂ · q

]
= −i

vF

∂

∂ pF
〈ρ(ω, q)ρ〉. (F14)
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