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Grover’s quantum search algorithm provides a quadratic quantum advantage over classical algorithms across
a broad class of unstructured search problems. The original protocol is probabilistic, returning the desired result
with significant probability on each query but, in general, requiring several iterations of the algorithm. We present
a modified version to return the correct result with certainty without having user control over the quantum search
oracle. Our deterministic, two-parameter “D2p” protocol utilizes generalized phase rotations replacing the phase
inversions after a standard oracle query. The D2p protocol achieves a 100% success rate in no more than one
additional iteration compared to the optimal number of steps as in the original Grover’s search enabling the same
quadratic speedup. We also provide a visualization using the Bloch sphere for enhanced geometric intuition.
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I. Introduction. An efficient algorithm to search a large
unstructured search space has a wide range of applications.
Whereas the time complexity of a classical search algorithm
scales linearly with the size of the space, Grover’s quantum
search algorithm [1] provides a quadratic speedup. Although
the quantum advantage is not exponential as in some quantum
algorithms it can be applied very broadly to any problem
whose result can be verified efficiently. The search is per-
formed by an “oracle,” a quantum algorithm that the user
may not have access to. The oracle could be a quantum
random access memory [2,3] to access an unstructured classi-
cal or quantum database. Alternatively, the oracle could be
a quantum version of a one-way function, such as a hash,
symmetric key encryption, or number theory conjecture, etc.
Given a space with N unsorted inputs and quantum oracle
that identifies M marked states, Grover’s search algorithm is
guaranteed to produce better than 50% success probability
with O(

√
N/M ) oracle queries, whereas a classical algorithm

needs on average N/(2M ) interrogations.
Grover’s algorithm is composed of two steps—the oracle

query, which flips the phase of the marked states, and the
application of the diffusion operator (also known as the re-
flection or inversion operator) that amplifies the amplitude of
the marked states. In the original protocol [1], both steps use
a phase-flip operator that restricts the evolution of the initial
superposition state in a way that the success is probabilistic. A
family of nondeterministic Grover-type searching algorithms
has also been found to provide similar quadratic speedup [4].
One can achieve the target state with certainty by controlling
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the phases of the phase flip and diffusion operators when the
ratio λ = M/N is known [5,6]. Other works aim to improve
the success rate for an unknown λ (with a modest guess of
the lower bound) by performing multiphase matching [7–9].
However, these protocols require one to control the phase of
the oracle, which might not always be plausible as the user
may not have knowledge of or access to the oracle. Practi-
cally, the search oracle should be treated as a fixed unitary
determined by some physical process with no user-tunable
parameters.

In this Letter, we present an algorithm to find a marked
state deterministically with the constraint that the user does
not have control over the oracle phase. We show that only two
phase parameters for the consecutive diffusion operators are
sufficient to find a target state with certainty by making kopt =
� π

4 sin−1
√

λ
− 1

2� oracle queries for a given λ.
II. Overview of Grover’s algorithm. The original Grover’s

algorithm constitutes successive application of the oracle and
diffusion operators on the initial equal-superposition state
(containing mostly unmarked states) that is transformed into
a superposition of mostly marked states. Assuming N = 2n

as the number of total states, one can prepare an equal-
superposition state |ψ0〉 by applying a Walsh-Hadamard
transformation individually to all the qubits initiated to |0〉. In-
stead of using the full 2n-dimensional Hilbert space, it is more
convenient to map the system to a two-dimensional subspace
spanned by the orthogonal vectors |T 〉 and |R〉, where |T 〉(|R〉)
represents the equal superposition of all marked (unmarked)
states |t j〉(|r j〉),

|T 〉 = 1√
M

M∑
j=1

|t j〉, (1a)

|R〉 = 1√
N − M

N−M∑
j=1

|r j〉. (1b)
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FIG. 1. Trajectory of the state vector on a Bloch sphere spanned by the equal superposition of marked states |T 〉 (south pole) and unmarked
states |R〉 (north pole). (a) The initial equal superposition state |ψ0〉 (solid green arrow) makes a polar angle θ determined by the ratio of marked
to unmarked state counts λ. The plane containing the vectors |ψ0〉 and |R〉 is assumed to be the ZX plane of the Bloch sphere. The generalized
oracle operator S0(α) [see Eq. (3)] rotates the state vector about the z axis by an angle α. Similarly, the generalized reflection operator Sr (β )
[see Eq. (4)] performs a rotation of the state vector about the direction of |ψ0〉 by an angle β. The oracle in the original Grover’s algorithm
with α = ±π flips the phase of |T 〉 resulting in the dashed green vector and then the reflection operator (with β = ±π ) inverts the state with
respect to |ψ0〉 leading to the brown vector when starting from |ψ0〉. As a result, a single Grover iterate effectively rotates the state vector by
2θ about the y axis in each iteration. (b) Consequently, the trajectory of the state vector is always confined on the ZX plane, perpendicular to
the y axis (dashed magenta line) in the original Grover’s algorithm and the final state (red arrow) does not always end up along the south pole
after an integer number of steps. (c) The protocol in Ref. [5] achieves zero theoretical failure rate by rotating the state vector on a plane such
that it always lands along the south pole. The corresponding axis of rotation (dashed magenta line) is carefully chosen and does not lie along
the y axis in general. In this case, the user is assumed to have control over both the oracle and the reflection operator steps so that one can set
α = β = θ0 [see Eq. (6)].

Then the initial state can be expressed in the new basis
|R〉 = (1

0) and |T 〉 = (0
1) as

|ψ0〉 = √
1 − λ|R〉 +

√
λ|T 〉 =

(√
1 − λ√

λ

)
. (2)

The evolution of |ψ0〉 can be visualized as a moving unit vec-
tor on the Bloch sphere spanned by |R〉 (north pole) and |T 〉
(south pole) as shown in Fig. 1(a). The initial state (solid green
arrow) lies on the ZX plane making an angle θ = 2 sin−1

√
λ

with the z axis. The oracle is a unitary operator,

So(α) = I − (1 − eiα )|T 〉〈T | =
(

1 0
0 eiα

)
(3)

representing a generalized controlled-phase gate—rotation of
the vector about the z axis by an angle α with I being the
identity operator. The special case of So(π ) on |ψ0〉 can be
simply thought as a reflection with respect to the vertical axis.

Next, we define the generalized Grover’s reflection follow-
ing the convention used in Ref. [8] (up to a global phase),

Sr (β ) = eiβ [I − (1 − e−iβ )|ψ0〉〈ψ0|]

=
(

1 − (1 − eiβ )λ (1 − eiβ )
√

λ(1 − λ)
(1 − eiβ )

√
λ(1 − λ) 1 − (1 − eiβ )(1 − λ)

)
, (4)

which represents a rotation of the state about |ψ0〉 by an angle
β [see Fig. 1(a)]. The product of the oracle and the reflec-
tion operator is often called the Grover’s iterate G(α, β ) =
−Sr (β )So(α). The original Grover’s iterate with α = ±π and
β = ±π rotates the state vector by 2θ about the y axis [dashed
pink line in Fig. 1(b)], restricting the trajectory on the ZX

plane. Since the angular distance of |ψ0〉 from the south pole is
π − θ , the number of steps needed to reach |T 〉 becomes (π −
θ )/(2θ ), which is, in general, a fractional number. Therefore,
the optimal number of steps for the original Grover’s search
becomes the nearest integer [5],

k′
opt =

⌊
π

2θ
− 1

2

⌉
=

⌊
π

4 sin−1
√

λ
− 1

2

⌉
. (5)

In general, the final-state vector [red arrow in Fig. 1(b)] will
not always align with the south pole providing a maximum
success probability of sin[(k′

opt + 1/2)θ ]2. This situation of
undershooting (overshooting) the target state is often called
“undercooking (overcooking).” One can, however, cleverly
choose a different plane of rotation so that the final state
always lands on the south pole in k � kopt steps as shown in
Fig. 1(c). The corresponding Grover’s iterate needs α = β =
θ0 with [5]

θ0 = 2 sin−1

[
1√
λ

sin
( π

4k + 2

)]
, (6)

which corresponds to an axis of rotation [dashed pink line in
Fig. 1(c)] not parallel to the y axis, in general.

III. The deterministic two-parameter protocol. The success
of the protocol in Ref. [5] relies on the fact that the oracle is
user controllable which might not be always feasible. In this
Letter, we explore the possibility of a deterministic outcome
using a fixed oracle. In particular, we consider the standard
phase-flip operator with α = π . We show that, interestingly
enough, only two phase parameters are needed to obtain a zero
failure rate, i.e., we apply Grover iterates G(π, θ1) = Gd (θ1)
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FIG. 2. The D2p Grover’s search protocol. (a) The state vector is rotated about two axes (cyan and brown dashed lines), alternatively, by
amounts θ1 and θ2. One can always find parameters {θ1, θ2} such that the final state (red arrow) ends up along the south pole providing zero
failure rate for λ � 1/4 when the number of iterations is k � kopt . (b) The values of θ1 (cyan curve) and θ2 (brown curve) are plotted as a
function of λ obtained by numerically solving Eqs. (8) when kopt is even and similar equations when kopt is odd (see Appendix B). A plot of
θ0 (magenta curve) is also shown for reference. (c) Comparison of success rates between the original Grover’s search (dashed green curve)
and our D2p protocol (solid green line). The corresponding query complexity kopt of the D2p protocol is shown (purple curve) which is at
maximum one extra step compared to the optimal number of steps k′

opt for the original Grover’s search.

and G(π, θ2) = Gd (θ2), alternatively, to the initial-state |ψ0〉
until kopt oracle queries are made. We call it the deterministic
two-parameter (D2p) Grover’s search algorithm. The require-
ment of only two phase parameters can be very intuitively
understood from the fact that one needs only two noncollinear
axes of rotation to span the full SU (2) space. An example of
the resulting trajectory for λ = 0.005 is illustrated in Fig. 2(a).

The goal of this protocol then reduces to determining the
phases that will ensure landing of the final state along the
south pole. We first consider the case when the number of
queries k is an even number so that the final state is

|ψ f 〉 = [Gd (θ2)Gd (θ1)]k/2|ψ0〉. (7)

Imposing the condition 〈R|ψ f 〉 = 0 leads to the following two
equations (see Appendix A):

1 + 4λ(1 − 2λ) sin

(
θ1

2

)
sin

(
θ2

2

)
tan(kφ)

sin(φ)
= 0, (8a)

(1 − 4λ) tan

(
θ1

2

)
+ tan

(
θ2

2

)
= 0, (8b)

where

cos(φ) = cos

(
θ1 + θ2

2

)
+ 8λ(1 − λ) sin

(
θ1

2

)
sin

(
θ2

2

)
.

(9)
These equations can always be solved for {θ1, θ2} when k �
kopt and λ � 1/4.

When k is odd, the final state is

|ψ f 〉 = Gd (θ1)[Gd (θ2)Gd (θ1)]�k/2	|ψ0〉, (10)

and one can find two equations similar to Eqs. (8) that can
be solved to obtain the optimal phase parameters (see Ap-
pendix B for explicit equations). Figure 2(b) plots θ0, θ1, and
θ2 as a function of λ with k = kopt. The sharp jumps occur
when the query complexity kopt changes by one as depicted in
Fig. 2(c). Note that the phase parameters θ1 � −θ2 � θ0 for
sufficiently small λ. A comparison of the success probabilities

between the standard Grover’s search (green dashed line) and
the D2p protocol (solid green line) is also shown in Fig. 2(c).
One can always choose more than two phase parameters to
obtain determinism, but any additional phase does not provide
extra degree of freedom (as the reduced Bloch sphere has only
two dimensions) and, thus, reaching the target state faster than
kopt steps is not possible.

The D2p protocol can be generalized to quantum amplitude
amplification [10–13] where we prepare a random initial state
|ψ ′

0〉 = A|0〉 instead of the equal-superposition state |ψ0〉.
Here, A could be any unitary as long as |ψ ′

0〉 has a finite
overlap with marked state |T 〉. Similar to Eq. (2), one can use
the basis |T 〉 and |R′〉 to express

|ψ ′
0〉 = √

1 − λ′|R′〉 +
√

λ′|T 〉 =
(√

1 − λ′√
λ′

)
, (11)

where |R′〉 is now consists of a generic (normalized) superpo-
sition of unmarked states. The reflection unitary in Eq. (4) will
be similarly modified to

S′
r (β ) = eiβ [I − (1 − e−iβ )|ψ ′

0〉〈ψ ′
0|]. (12)

An identical analysis can be performed by replacing λ and
|ψ0〉 with λ′ and |ψ ′

0〉 to arrive at Eqs. (8). However, note that
the knowledge of overlap λ′ = |〈ψ ′

0|T 〉|2 is still required to
achieve determinism.

Next, we turn to the circuit implementation of the D2p
protocol as depicted in Fig. 3(a). Hadamard gates are ap-
plied to individual qubits (initialized to |0〉) to prepare the
equal-superposition state |ψ0〉. The modified Grover’s iterates
Gd (θ ) are applied, alternatively, with θ = θ1 and θ = θ2 for
kopt times. The last iterate is Gd (θ1(2)) if kopt is an odd (even)
number, and the final state becomes an equal superposition
of the marked states guaranteeing a success when a projective
measurement is performed. Each Grover iterate Gd (θ ) is com-
posed of two generalized multiply controlled-phase gates and
Hadamard gates as shown in Fig. 3(b). A generalized multiply
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FIG. 3. Circuit implementation of the D2p Grover’s search protocol without any ancillary qubit. (a) A schematic of the quantum circuit
showing alternate application of the Grover iterate Gd (θ ) on the equal-superposition state |ψ0〉 obtained by applying Walsh-Hadamard
transformation on individual qubits initialized to |0〉. After kopt iterations a final projective measurement is performed to retrieve one of the
marked states with certainty. (b) Decomposition of one Grover iterate using a generalized multiply controlled-phase gate and Walsh-Hadamard
gates. It consists of the standard oracle operator So(π ) and the generalized reflection operator Sr (θ ). (c) A method to construct the generalized
multiply controlled-phase gate using multiply controlled-NOT (CNOT) gates and single-qubit Z rotations. The matrix in the bottom panel
represents the shifting phase of the |1〉 component by θ . (d) Break down of the generalized two-qubit phase gate using CNOT gates and
single-qubit rotations up to a global phase.

controlled-phase gate involving n qubits can be deconstructed
using two generalized multiply CNOT gates involving n qubits
and one generalized multiply controlled-phase gate involving
(n − 1) qubits along with two single-qubit phase gates as
displayed in Fig. 3(c). This decomposition can be inductively
applied to construct the target gate using O(n2) CNOT gates
and single-qubit rotations [14]. The final two-qubit general-
ized controlled-phase gate in this decomposition method can
be constructed using two two-qubit gates and three single-
qubit Z rotations as shown in Fig. 3(d).

IV. Conclusion. We have presented a modified version of
Grover’s search algorithm to find the correct answer with zero
failure rate without having user control over the oracle imple-
mentation. The main advantage of our D2p protocol is that
it requires only two phase parameters to be used in the gen-
eralized multiply controlled-phase gates whereas providing
quadratic speedup. The phases can be numerically determined
for any marked-to-total number of states ratio λ � 1/4. For
1/4 < λ < 1/2, one can use a single query of the standard
Grover’s search [1] (nondeterministic) or any classical al-
gorithm as there is no significant quantum advantage. The
visual representation of this protocol using the Bloch-sphere
picture makes it very intuitive and can be adapted to other
phase-matching protocols [7–9].

The D2p protocol can be readily applied to any frame-
work where the quantum amplitude amplification [11–13,15],
a generalization of Grover’s search algorithm, is used includ-
ing a search using qudits. A few examples include element
distinctness problem [16,17], minima finding [18,19], and
collision problems [20]. Other interesting directions worth
pursuing would be to investigate the range of (fixed) phases in
the oracle compatible with the D2p protocol (see Appendix C)
and explore deterministic variants of the generalized Grover-

type searching algorithms [4]. One drawback is, however, the
requirement of accurate knowledge of λ, which is true for
other deterministic search algorithms as well [5]. There are
attempts to bound the failure rate when λ is unknown by using
multiple phase matching [8] albeit at the expense of using
more oracle queries than the standard optimal number kopt and
having control over the oracle operator. Another extension of
our protocol would be to address the possibility of achieving
similar fixed-point behavior without user-controlled oracles.
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APPENDIX A: EXPONENTIATION OF THE GROVER
ITERATES

If a matrix M can be expressed as

M = cos (φ) I + sin (φ)
∑

j=x,y,z

n jσ j, (A1)

where σx,y,z are the standard Pauli matrices and
∑

j |n j |2 = 1,
then the kth power of M becomes

Mk = cos (kφ) I + sin (kφ)
∑

j=x,y,z

σ jn j . (A2)

In order to remove a global phase (inconsequential) we choose

M = e−i(θ1+θ2 )/2 Gd (θ2)Gd (θ1), (A3)
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FIG. 4. Numerically computed values of phase parameters
{θ1, θ2} (cyan and brown lines, respectively) as a function of oracle
phase α for λ = 2−4 to achieve zero failure rate. Note that any θ

mod 2π is a valid solution. The α values at which query complexity
(purple line) jumps is dependent on the value of λ.

leading to

cos(φ) = cos

(
θ1 + θ2

2

)
+ 8λ(1 − λ) sin

(
θ1

2

)
sin

(
θ2

2

)
,

(A4a)

nx = 2
√

λ(1 − λ)

sin(φ)
sin

(
θ1 − θ2

2

)
, (A4b)

ny = 4(1 − 2λ)
√

λ(1 − λ)

sin(φ)
sin

(
θ1

2

)
sin

(
θ2

2

)
, (A4c)

nz = − (1 − 2λ)

sin(φ)
sin

(
θ1 + θ2

2

)
. (A4d)

When kopt is even, we compute the final state as

|ψ f 〉 = Mkopt/2|ψ0〉, (A5)

otherwise,

|ψ f 〉 = Gd (θ1)M (kopt−1)/2|ψ0〉. (A6)

Setting the real and imaginary components of 〈R|ψ f 〉 sepa-
rately to zero we obtain the relevant equations for the phase
parameters.

APPENDIX B: EQUATIONS WHEN kopt IS ODD

2λ + (1 − 2λ) cos(θ1) − (1 − 2λ) sin

(
θ1

2

)

×
[

sin(θ1) cos

(
θ2

2

)
+ [1 + 4λ − 8λ2 + (1−8λ+8λ2)

× cos(θ1)] sin

(
θ2

2

)]
tan(kφ)

sin(φ)

= 0, (B1a)

(1 − 2λ) sin(θ1) +
{

(1 − 2λ)

[
8λ(1 − λ) sin

(
θ1

2

)]

× sin(θ1) sin

(
θ2

2

)
− cos(θ1) sin

(
θ1 + θ2

2

)

− 2λ sin

(
θ1 − θ2

2

)}
tan(kφ)

sin(φ)

= 0. (B1b)

APPENDIX C: OTHER ORACLE PHASES

The D2p protocol can be applied to the cases when the ora-
cle phase α 
= π . Whereas kopt steps are sufficient to achieve a
zero failure rate for a range of α around π , increasingly more
number of iterations are required with larger deviations. This
property is demonstrated in Fig. 4 for λ = 1/16, chosen as
an example. Exploring the dependence of optimal number of
iterations and corresponding phase parameters as a function
of α, and λ is a subject of future research.

[1] L. K. Grover, Quantum Mechanics Helps in Searching
for a Needle in a Haystack, Phys. Rev. Lett. 79, 325
(1997).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
Random Access Memory, Phys. Rev. Lett. 100, 160501
(2008).

[3] V. Giovannetti, S. Lloyd, and L. Maccone, Architectures for
a quantum random access memory, Phys. Rev. A 78, 052310
(2008).

[4] A. Galindo and M. A. Martín-Delgado, Family of grover’s
quantum-searching algorithms, Phys. Rev. A 62, 062303
(2000).

[5] G. L. Long, Grover algorithm with zero theoretical failure rate,
Phys. Rev. A 64, 022307 (2001).

[6] F. Toyama, W. van Dijk, and Y. Nogami, Quantum search
with certainty based on modified grover algorithms: opti-

mum choice of parameters, Quant. Inf. Process. 12, 1897
(2013).

[7] F. M. Toyama, W. van Dijk, Y. Nogami, M. Tabuchi, and Y.
Kimura, Multiphase matching in the grover algorithm, Phys.
Rev. A 77, 042324 (2008).

[8] T. J. Yoder, G. H. Low, and I. L. Chuang, Fixed-Point Quantum
search With an Optimal Number of Queries, Phys. Rev. Lett.
113, 210501 (2014).

[9] P. Li and S. Li, Phase matching in grover’s algorithm, Phys.
Lett. A 366, 42 (2007).

[10] G. Brassard and P. Hoyer, An exact quantum polynomial-time
algorithm for Simon’s problem, in Proceedings of the Fifth
Israeli Symposium on Theory of Computing and Systems (IEEE,
Piscataway, NJ, 1997), pp. 12–23.

[11] L. K. Grover, Quantum Computers can Search Rapidly by using
Almost Any Transformation, Phys. Rev. Lett. 80, 4329 (1998).

L022013-5

https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevA.62.062303
https://doi.org/10.1103/PhysRevA.64.022307
https://doi.org/10.1007/s11128-012-0498-0
https://doi.org/10.1103/PhysRevA.77.042324
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.1016/j.physleta.2007.02.029
https://doi.org/10.1103/PhysRevLett.80.4329


ROY, JIANG, AND SCHUSTER PHYSICAL REVIEW RESEARCH 4, L022013 (2022)

[12] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum am-
plitude amplification and estimation, Contemp. Math. 305, 53
(2002).

[13] A. Ambainis, Quantum search algorithms, ACM SIGACT
News 35, 22 (2004).

[14] M. Saeedi and M. Pedram, Linear-depth quantum circuits for
n-qubit toffoli gates with no ancilla, Phys. Rev. A 87, 062318
(2013).

[15] H. Kwon and J. Bae, Quantum amplitude-amplification opera-
tors, Phys. Rev. A 104, 062438 (2021).

[16] H. Buhrman, C. Durr, M. Heiligman, P. Hoyer, F. Magniez,
M. Santha, and R. De Wolf, Quantum algorithms for element
distinctness, in Proceedings 16th Annual IEEE Conference on

Computational Complexity (IEEE, Piscataway, NJ, 2001), pp.
131–137.

[17] A. Ambainis, Quantum walk algorithm for element distinctness,
SIAM J. Comput. 37, 210 (2007).

[18] C. Durr and P. Hoyer, A quantum algorithm for finding the
minimum, arXiv:quant-ph/9607014.

[19] S. Aaronson, Lower bounds for local search by quantum argu-
ments, SIAM J. Comput. 35, 804 (2006).

[20] G. Brassard, P. Hoyer, and A. Tapp, Quantum algorithm for the
collision problem, in LATIN’98: Theoretical Informatics. LATIN
1998, edited by C. L. Lucchesi and A. V. Moura, Lecture Notes
in Computer Science Vol. 1380 (Springer, Berlin/Heidelberg,
2006).

L022013-6

https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1145/992287.992296
https://doi.org/10.1103/PhysRevA.87.062318
https://doi.org/10.1103/PhysRevA.104.062438
https://doi.org/10.1137/S0097539705447311
http://arxiv.org/abs/arXiv:quant-ph/9607014
https://doi.org/10.1137/S0097539704447237

