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Entanglement spectrum and entropy in topological non-Hermitian systems
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We study entanglement properties of free-fermion systems without Hermiticity by use of correlation matrix
and overlap matrix in the biorthogonal basis. We find at a critical point in the non-Hermitian Su-Schrieffer-
Heeger (SSH) model with parity and time-reversal symmetry (PT symmetry) the entanglement entropy exhibits a
logarithmic scaling with corresponding central charge c = −2, signaling the emergence of nonunitary conformal
field theory. In addition, we demonstrate that, in the PT-symmetric SSH model and the non-Hermitian Chern
insulators, the entanglement spectrum characterizes the topological properties in terms of the existence of mid-
gap states.
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I. INTRODUCTION

In contemporary condensed matter physics, quantum en-
tanglement plays a pivotal role in characterizing and obtaining
a deeper understanding of many-body quantum systems. For
example, the topological entanglement entropy provides a
direct method to detect topological order [1,2]. The subsystem
size scaling of the entanglement entropy can be used to
extract useful information of conformally invariant systems
[3]. Ground-state properties of topological systems are also
reflected in their entanglement spectra [4–9]. Moreover, quan-
tum entanglement paves a way for a deeper understanding
of the renormalization group and an emergent holographic
space-time [10–12].

In this paper, we aim to extend the quantum-entanglement-
based approach to systems that lack Hermiticity. Non-
Hermitian quantum mechanical systems, in particular, those
which host topological phenomena, have attracted a lot of
interest recently [13–31]. To be concrete, we take, as paradig-
matic examples, the non-Hermitian Su-Schrieffer-Heeger
(SSH) model with the combination of parity and time-reversal
symmetry (PT symmetry) [21–24], and non-Hermitian Chern
insulators [32]. These non-Hermitian models host a variety
of trivial and topological gapped phases, as well as gapless
phases and critical points.
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In order to introduce and investigate the entanglement
entropy/spectrum in these non-Hermitian systems, we use
a generalized definition of the (reduced) density matrix in
terms of the biorthogonal basis [33,34]. First, we will show
that for noninteracting systems, the entanglement entropy and
spectrum can be efficiently computed from the correlation
and overlap matrices in the biorthogonal basis. Furthermore,
we will demonstrate that the entanglement entropy and spec-
trum can be used to detect various universal properties of
non-Hermitian gapped (topological) systems. For example,
we show that the topological gapped (trivial) PT-symmetric
phase in the non-Hermitian SSH model supports (does not
support) robust mid-gap states in the entanglement spectrum.
The existence of the mid-gap states in the entanglement spec-
trum is concurrent with the existence of protected physical
boundary modes in these PT-symmetric phases [23,24]: thus,
the entanglement spectrum provides a way to characterize the
topological non-Hermitian phases.

Furthermore, we found, at a critical point appearing in
the non-Hermitian SSH model, the entanglement entropy
decreases logarithmically in the subsystem size: this signals
the emergence of nonunitary conformal field theory (CFT).
More specifically, at the critical point separating the trivial
PT-symmetric phase and the spontaneously PT-broken phase
in the non-Hermitian SSH model, we show that the entangle-
ment entropy for the subsystem of length LA scales as SA =
(c/3) ln LA + · · · with c = −2. The negative central charge
c = −2 can be attributed to the bc-fermionic ghost theory
[35–40] (see Appendix F).

The entanglement entropy in nonunitary CFTs has been
studied previously [41–47], but in most cases, the entan-
glement entropy scaling is captured by the effective cen-
tral charge ceff > 0, even when the central charge itself is
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negative, i.e., the entanglement entropy in these cases in-
creases logarithmically in the subsystem size ∼(ceff/3) ln LA.
In Ref. [47], the authors studied loop models by using the
biorthogonal reduced density matrix to compute the entan-
glement entropy, and found that the entanglement entropy
scaling is given by the central charge ∼(c/3) ln LA with c < 0.
In this paper, we will show that the negative central charge
can also occur in non-Hermitial topological PT-symmetric
systems [16,20–24,27]. Our findings shed light on the nature
of critical points appearing in non-Hermitian systems, and
in particular those in proximity to topological non-Hermitian
phases.

We also found, at the other critical point of the PT-
symmetric SSH model, i.e., the one which separates the topo-
logical PT-symmetric phase and the spontaneously PT-broken
phase, the entanglement entropy/spectrum is somewhat more
complicated and interesting; there are two additional mid-
gap states in the entanglement spectrum which mimic the
physical boundary modes at this critical point. Nevertheless,
by modifying the bipartition, we show that the entanglement
scaling again is given by the logarithmic law with c = −2.
This reminds us of the similar behavior at the symmetry-
enriched critical point found in a Hermitian system [48].

We also demonstrate the quantum entanglement in the
spontaneously PT-broken phase can also be studied, once we
consider a proper “ground state” which is obtained by filling
modes with real energy. The entanglement entropy scaling
gives the central charge c = 1. We show the Jordan block form
at the exceptional point leads to the ground state identical
to the free Dirac theory. Finally, as yet another example, we
study the entanglement spectrum of the non-Hermitian Chern
insulators. The mid-gap states in the entanglement Hamilto-
nian mimic the physical boundary modes in non-Hermitian
systems. Our method provides an alternative way to study
the entanglement properties in both critical and topological
non-Hermitian systems.

II. BIORTHOGONAL BASIS AND NON-HERMITIAN
HAMILTONIAN

Before discussing quantum entanglement of specific non-
Hermitian lattice systems, we start by developing a convenient
method to compute the entanglement spectrum/entropy in the
biorthogonal basis, which is valid for free (quadratic) sys-
tems. Specifically, we will show that the generalized reduced
density matrix can solely be constructed from the correlation
matrix or the overlap matrix, much the same way in regular
Hermitian systems. Our method is complementary to the
flattened singular-value decomposition recently proposed in
[49].

Consider a generic quadratic non-Hermitian Hamilto-
nian H = ∑

i j φ
†
i Hi jφ j , with H �= H† and {φi , φ

†
j } = δi j

being fermionic operators. The biorthogonal basis is con-
structed from the left and right eigenvectors of H, H|Rα〉 =
εα|Rα〉, H†|Lα〉 = ε∗

α|Lα〉, such that 〈Lα|Rβ〉 = δαβ [33]. The
single-particle Hamiltonian can then be written as H =∑

α εα|Rα〉〈Lα|, and, correspondingly, the Hamiltonian can be

written as

H =
∑

α

εα

∑
i

(Rαiφi )
†
∑

j

(Lα jφ j ) =
∑

α

εαψ
†
RαψLα, (1)

where ψ
†
Rα and ψ

†
Lα are the right and left creation opera-

tors such that |Rα〉 = ψ
†
Rα|0〉, |Lα〉 = ψ

†
Lα|0〉, and ψRα|0〉 =

ψLα
|0〉 = 0. It should be noted that ψLα and ψRβ are not

ordinary fermionic operators, in the sense that they satisfy the
commutation relationship {ψLα, ψ

†
Rβ} = δαβ . We refer these

operators the bifermionic operators.
Many-body eigenstates can be constructed by acting on

the vacuum with a set of (“occupied”) bifermionic cre-
ation opreators. For example, |GR〉 = ∏

α∈occ. ψ
†
Rα|0〉 satisfies

H |GR〉 = ∑
α εαψ

†
RαψLα

∏
β∈occ. ψ

†
Rβ |0〉 = ∑

β∈occ. εβ |GR〉.
Similarly, a many-body left eigenstate |GL〉 = ∏

α∈occ. ψ
†
Lα|0〉

satisfies H†|GL〉 = ∑
α∈occ. ε

∗
α|GL〉.

From many-body left and right eigenstates, we can con-
struct a non-Hermitian density matrix as ρ = |GR〉〈GL| such
that ρ† �= ρ and ρ2 = ρ. With this generalized notion of the
density matrix, we can introduce measures of quantum entan-
glement by partitioning the total system into two subsystems
A and B, and then by taking the partial trace over subsystem
B, ρA = TrB ρ. We can discuss the spectrum of the generalized
reduced density matrix, and the entanglement entropy.

In Hermitian systems, if the Hamiltonian has the quadratic
form, the reduced density matrix can be constructed either
from the correlation matrix [50,51] or the overlap matrix [52].
We extended these derivations to non-Hermitian systems with
quadratic form in terms of bifermionic operators as follows
(see Appendices A and B).

(i) The correlation matrix is defined as

Ci j = 〈GL|φ†
i φ j |GR〉 =

∑
α∈occ.

LαiR
†
α j . (2)

The entanglement Hamiltonian HA can be introduced
by C = e−HA

/(1 + e−HA
). The entanglement entropy

for subsystem A can then be introduced as SA =
−∑

δ [ξδ ln ξδ + (1 − ξδ ) ln(1 − ξδ )], where ξδ are the
eigenvalues of Ci j .

(ii) The overlap matrix is defined as

MA
αβ =

∑
i∈A

L†
αiRβi =

∑
δ

pδ

(
LA

αδ

)†
RA

βδ, (3)

where LA
αδ and RA

βδ are the corresponding left and right eigen-
vectors of MA with eigenvalues p∗

δ and pδ . The original left
and right many-body wave functions as well as the reduced
density matrix can be expressed in this new basis. In particu-
lar, ρA is given by

ρA =
⊗

δ

[
pδ

∣∣LA
δ

〉〈
RA

δ

∣∣ + (1 − pδ )|0〉〈0|]. (4)

The entanglement entropy can be directly obtained from
the reduced density matrix as SA = −∑

δ[pδ ln pδ + (1 −
pδ ) ln(1 − pδ )].
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FIG. 1. (a) The phase diagram of the non-Hermitian SSH model
(5) as a function of w − v with fixed (u, v) = (0.5, 0.8). The upper
panels are the corresponding real and imaginary parts of the bulk
dispersion. (b) The real and imaginary parts of the energy dispersion
in the presence of open boundary condition. When w − v > u, there
is a pair of edge modes with imaginary energy Eedge = ±iu.

III. ENTANGLEMENT ENTROPY AND ENTANGLEMENT
SPECTRUM IN NON-HERMITIAN SYSTEMS

A. Non-Hermitian SSH model

We now study the non-Hermitian SSH model [24,53] with
the PT symmetry defined in momentum space by

Hk =
(

iu vk

v∗
k −iu

)
, (5)

where vk = we−ik + v with u, v,w ∈ R and k is the single-
particle momentum. Here, the PT symmetry is defined as
σxHkσx = H∗

k . The energy is Ek = ±
√

|vk|2 − u2. The right
eigenvectors are

|Rk,+〉 =
(

vk
|vk | cos φk

2

sin φk

2

)
, |Rk,−〉 =

(
− vk

|vk | sin φk

2

cos φk

2

)
, (6)

where Hk|Rk,±〉 = ±Ek|Rk±〉 and φk = tan−1[|vk|/iu], and the
corresponding left eigenvectors are

|Lk,+〉 =
(

vk
|vk | cos∗ φk

2

sin∗ φk

2

)
, |Lk,−〉 =

(
− vk

|vk | sin∗ φk

2

cos∗ φk

2

)
, (7)

with H†
k |Lk,±〉 = ±Ek|Lk,±〉. The right and left eigenvec-

tors satisfy the biorthogonal condition 〈Lk,±|Rk,±〉 = 1 and
〈Lk,∓|Rk,±〉 = 0.

There are three phases in the non-Hermitian SSH model
with u �= 0 [Fig. 1(a) with the parameters w, v, u > 0]. In
the spontaneously PT-broken phase (|w − v| < u), the energy
spectrum is complex and gapless with two exceptional points.
The region with w − v > u realizes one of the PT-symmetric
phases, where the spectrum is fully gapped, and there are a
pair of edge modes with pure imaginary energy Eedge = ±iu
[Fig. 1(b) (right panel)]. This phase is a topological non-
Hermitian phase supporting protected boundary modes and
characterized by the nonzero global complex Berry phase

FIG. 2. The entanglement entropy as a function of the subsystem
size LA with the total system length L = 100. (a) At the critical
point separating the trivial PT-symmetric gapped phase and the PT-
broken phase, (w, v, u) = (1.3, 1.8, 0.5). The numerical data are fit
to SA(LA) = −8.81185 − 0.666 ln[sin(πLA/L)] (solid line), leading
to the identification c = −2. (b) In the PT-broken phase, (w, v, u) =
(0.8, 0.7, 0.5). Here, the state is obtained by filling only negative
real-energy modes. The numerical data can be fit to SA = 1.93 +
0.3337 ln[sin(πLA/L)], i.e., c = 1.

[53]. Finally, the other gapped PT-symmetric phase (w − v <

−u) is trivial and does not support edge mode [Fig. 1(b)].
Critical points and (nonunitary) CFT. Now, we can com-

pute the entanglement entropy and entanglement spectrum
from the correlation matrix or the overlap matrix. In this
non-Hermitian SSH model with PT symmetry, there are two
critical points that separate the PT-symmetric phases and
the spontaneously PT-broken phase at w − v = ±u. When
u = 0, the SSH model has only one critical point at w = v

and the system is a critical free-fermion chain. There, the
entanglement entropy scales logarithmically in the subsystem
size LA, SA ∼ (c/3) ln LA with c = 1 [3].

For finite u, we first analyze the entanglement entropy
at the critical point w − v = −u which separates the trivial
PT-symmetric phase and the spontaneously PT-broken phase.
At this critical point, we observe that all eigenvalues of the
correlation matrix are real and they come in pairs, ξα > 1 and
ξβ = 1 − ξα < 0. This pairwise structure of the eigenvalues
guarantees that the entanglement entropy is real and negative.
As shown in Fig. 2(a), we found from numerical calculations
that the entanglement entropy scales logarithmically SA =
(c/3) ln[sin(πLA/L)] + const with the central charge c = −2.
Since the spectrum at this critical point is linear around
k = ±π , one can write the effective field theory action as S =∫

dx dt (ψ†
b ∂̄ψc + ψ̄

†
b ∂ψ̄c), where ∂ = (1/2)(∂x − i∂t ), ∂̄ =

(1/2)(∂x + i∂t ), and ψb/c (ψ̄b/c) represent the fermionic fields
for the right-moving (left-moving) modes. (We have set the
Fermi velocity to be one). We identify ψ

†
b (c) as the right

(left) creation operator ψ
†
R (L) defined in Eq. (1). A crucial

observation here is that states associated with these right and
left fermionic operators are not normalizable at the critical
point [54]: the ill-defined norm of the quantum states can be
thought of as a hallmark of the ghost theory. The above action,
with proper assignment of the conformal dimensions, defines
the bc-ghost CFT with central charge c = −2 [35–40] (see
Appendix F). The entanglement entropy detects the correct
central charge as we expect.

The appearance of the negative central charge, however, is
sensitive to the choice of the boundary condition. To obtain
the c = −2 scaling of the entanglement entropy, we need
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to choose the periodic boundary condition and consider the
half-filled ground state, where we fill the (left/right) state at
the crossing point but with a tiny momentum shift [55]. On the
other hand, imposing antiperiodic, open boundary conditions,
or simply removing the state at the crossing points k = ±π ,
we recover the central charge c = 1 in the entanglement
entropy scaling [56]. The sensitivity to boundary conditions
is consistent with the fact that the ill-defined norm occurs
only at the crossing point k = ±π . Furthermore, we monitor
the entanglement entropy scaling as a function of the twisting
angle of the boundary condition (i.e., a shift of single-particle
momenta) for very small (∼10−7) to large twisting angle
(∼2π ). We observe that the entanglement entropy scaling
crosses over from a convex (c = −2) to concave function
(c = 1) (see Appendix C). This crossover also occurs by
going from the critical point to a PT-symmetric phase with
a small gap. We note that a similar crossover was also ob-
served in the quantum Ising chain in an imaginary magnetic
field [44].

We now turn to the other critical point (w − v = u) sep-
arating the topological PT-symmetric phase and the sponta-
neously PT-broken phase. It exhibits a very different entan-
glement entropy scaling. At this critical point, we observe
an additional pair of eigenvalues ξ±,α = 0.5 ± iIα , where Iα
depends on the subsystem size. This pair in the entanglement
spectrum mimics the protected boundary modes in the gapless
point in the physical spectrum [see Fig. 1(b) at w − v = u
and Fig. 7(a) in Appendix D]. Although this pair of eigen-
values contributes to the pure real part of the entanglement
entropy, the imaginary part Iα depends on the total system
size. We find the entanglement entropy shows the scaling SA =
α ln[sin(πLA/L)] + const, where α decreases as a function
of the total system size [Figs. 7(b) and 7(c)]. The length-
dependent coefficient α is not described by CFT. However,
these two critical points are seemingly described by the same
effective field theory, and one would expect the same scaling
behavior in the entanglement entropy.

To shed some light on this issue, we consider another
bipartition which cuts through the unit cell [4]. With this
shifted unit cell, the hopping w and v are interchanged and the
entanglement spectra are identical to the critical point that sep-
arates the trivial PT-symmetric phase and the spontaneously
PT-broken phase. We recover the c = −2 entanglement en-
tropy scaling under this bipartition. The above story reminds
us of the protected boundary modes (both in the physical
and entanglement spectra) in the symmetry-enriched critical
point in the Hermitian system discussed in [48]. There, by
redefining the unit cell, we also recover the c = 1 scaling
of the free-fermion system (see Appendix E). In this sense,
the nonunitary CFT appearing at the critical point separating
the topological PT-symmetric phase and the spontaneously
PT-broken phase may be viewed as a non-Hermitian analog
of symmetry-enriched critical theory.

Lastly, let us consider the entanglement properties in
the spontaneously PT-broken phase (|w − v| < u), where
there are two exceptional points. In this phase, some of
the single-particle energies are purely imaginary and fill-
ing such single-particle states would be unphysical. Here,
we consider the ground state which is constructed by fill-
ing only states with real energy. As shown in Fig. 2(b),

FIG. 3. The real part (a) and imaginary part (b) of the eigenvalues
of the correlation matrix CA with (w − v, u) = (0.9, 0.5). There
are two mid-gap states. (c) The wave-function amplitude of the
localized states including two mid-gap states. The real part (d) and
imaginary part (e) of the eigenvalues of the correlation matrix CA

with (w − v, u) = (−0.9, 0.5). There are four states with imaginary
eigenvalues. (f) The wave-function amplitude of the localized states
where the total system is 200 sites and n is the eigenlevel index.

the entanglement entropy of this ground state follows
the CFT scaling behavior SA = (c/3) ln[sin(πLA/L)] + const
with c = 1. The appearance of the c = 1 CFT behavior
can be understood as follows. At the exceptional points,
two eigenstates are coalescing into one and the Hamilto-
nian cannot be diagonalized. One can expand the Hamilto-
nian at the exception point kEP with a Jordon block form
[57,58], H = ∫

dk 
†
k [σz(kEP − k) + γ (σx + iσy)]k where


†
k = (ψ†

1,k, ψ
†
2,k ) are fermionic fields, and γ is an arbitrary

complex number. (Once again, we set the Fermi velocity to
be unity [59].) At the exceptional point kEP, two eigenstates
collapse to one eigenstate (1,0) with energy −(k − kEP).
The ground state can be expressed as |G〉 = ∏

k−kEP>0(1, 0)T,
which has the identical form of the ground state of the free
Dirac theory with central charge c = 1.

Fully gapped phases and entanglement spectrum. Next,
we study the PT-symmetric, fully gapped phases, where the
ground state is well defined since there is no imaginary energy
mode. Once again, the entanglement spectrum is obtained
from the eigenvalues of the correlation matrix and the overlap
matrix with the periodic boundary condition. In the topo-
logical non-Hermitian phase (w − v > u) where the physical
edge modes are present, there are two mid-gap states in the
entanglement spectrum with Re [ξ ] = 1

2 and nonvanishing
imaginary part Im [ξ ] �= 0 [Figs. 3(a) and 3(b)]. In addition to
these two mid-gap states localized at the entangling bound-
aries, there are numerous other localized boundary modes
which are not the mid-gap states in the correlation matrix
[Fig. 3(c)]. On the other hand, in the trivial phase where no
physical edge modes are present, we observe four additional
states with nonvanishing imaginary eigenvalues of the corre-
lation matrix [Figs. 3(d) and 3(e)]. There are also numerous
localized boundary modes which are not the mid-gap states
in this phase. These localized modes in the correlation matrix
are similar to the non-Hermitian skin effect in non-Hermitian
systems with the open boundary condition [17,23,60].
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B. Non-Hermitian Chern insulators

Finally, we consider the non-Hermitian Chern insulator
[32] in two dimensions defined in momentum space by

H(k) = (m + t cos kx + t cos ky)σx

+ (iγ + t sin kx )σy + (t sin ky)σz, (8)

where t, m, and γ are real parameters and we assume t > 0.
The complex dispersion relation is given by E±(k) = ±[(m +
t cos kx + t cos ky)2 + √

(iγ + t sin kx )2 + (t sin ky)2. Ex-
ceptional points appear when the two bands satisfy
E±(kEP) = 0 at certain momenta k = kEP, at which the
Hamiltonian (8) is defective and the eigenstates coalesce
and linearly depend on each other. The gapped phases
with E+(k) �= E−(k) for all k are characterized by the
first Chern number, and in the case of γ = 0, the model
reduces to a Hermitian Chern insulator. We computed
the entanglement spectrum of the non-Hermitian Chern
insulator model (8) from the correlation matrix and/or the
overlap matrix with the periodic boundary conditions in
both x and y directions. Since it has been known that the
existence of the bulk-edge correspondence in (physical)
non-Hermitian systems is sensitive to boundary conditions,
in the following we investigate the entanglement spectrum
of the non-Hermitian gapped phases by setting entangling
boundary either in the y direction or in the x direction.

In the topologically nontrivial gapped phase, we observe
two chiral mid-gap modes localized at the right and left
edges, respectively [Figs. 4(b) and 4(c)]. In particular, for
the entangling boundary running along the x direction, the
right mid-gap mode has the largest positive imaginary part
for γ > 0, whereas the left mid-gap mode has the largest
negative imaginary part [Fig. 4(c)]. In contrast, the imaginary
parts of the mid-gap states vanish for the entangling boundary
along the y direction [Fig. 4(b)]. This phenomenon implies the
amplification of the right mid-gap mode and the attenuation
of the left mid-gap mode, similar to the behaviors of the
physical edge modes in the non-Hermitian Chern insulator
and a topological insulator laser discussed in other contexts
[32,61,62].

IV. CONCLUSION AND OUTLOOK

Many critical points and phases in Hermitian quantum
many-body systems are described by unitary CFTs. For ex-
ample, the Tomonaga-Luttinger liquid phase with an inte-
gral central charge is rather ubiquitous in one-dimensional
many-body systems. In contrast, virtually nothing has been
known on the many-body aspects of critical points and phases
appearing in non-Hermitian systems, in particular in terms of
their (conformal) field theory description. In this paper, from
the entanglement entropy scaling, we identified the nonunitary
CFT with c = −2 in a PT-symmetric non-Hermitian hosting
topological phases. It deserves further investigation as to why
this particular CFT is realized. We also demonstrated the
entanglement spectrum can detect the topological properties
in the gapped phase of the PT-symmetry SSH mode and the
non-Hermitian Chern insulator.

Note added. Recently, we became aware of a partially
related work by Herviou et al. [63].

FIG. 4. Topologically nontrivial gapped phases with
nonzero Chern number C = −1 (t = 1.0, m = −1.0, γ = 0.5).
(a) Complex-band structures of the non-Hermitian Chern insulator
E± = E±(kx, ky ), where the orange and blue bands represent E+
and E−, respectively. (b) Complex entanglement spectrum as a
function of ky, and the mid-gap modes at ky = 0 and ξ = 0.5 along
x direction. (c) Complex entanglement spectrum as a function of
kx , and the mid-gap modes at kx = 0 for ξ = 0.5 − 0.289i (yellow
squares) and for ξ = 0.5 + 0.289i (gray dots) along y direction.
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APPENDIX A: CORRELATION MATRIX

We present the detailed derivations of the entanglement
properties from the correlation matrix and the overlap matrix.
We first use the correlation matrix [51] to extract eigenvalues
of the reduced density matrix in a free-fermion system. Since
the theory is free, the reduced density matrix has a Gaus-
sian form ρA = 1

N exp(−∑
α,β HE

αβφ†
αφβ ), where HE

αβ refers
to the entanglement Hamiltonian. The correlation matrix is
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defined as

Ci j = 〈GL|φ†
i φ j |GR〉 = TrρAφ

†
i φ j, (A1)

where |GR〉 and |GL〉 are the right and left ground states.
One can simultaneously diagonalize Ci j and HE

αβ and find

C = e−HE

1+e−HE . The correlation matrix can be expressed by the
left and right eigenvectors as

Ci j = 〈GL|φ†
i φ j |GR〉

= 〈0|
∏

i′∈occ.

(∑
α

Lαi′φα

)
φ

†
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∏
j′

⎛
⎝∑

β

R†
β j′φ

†
β

⎞
⎠|0〉.

(A2)

By using the commutation relation {φi, φ
†
j } = δi j and φi|0〉 =

0, we have
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3 j

∏
j′ �=3

ψ
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φi

∏
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α
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†
α

)
|0〉 = L†

1i

∏
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ψ
†
Li′ |0〉 − L†
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∏
i′ �=2

ψ
†
Li′ |0〉

+ L†
3i

∏
i′ �=3

ψ
†
Li′ |0〉 − · · · , (A3)

where ψ
†
R j′ = ∑

β R†
β j′φ

†
β and ψ

†
Li′ = ∑

α L†
αi′φ

†
α , which sat-

isfy {ψLi, ψ
†
R j} = δi j .

Using Eq. (A3), the correlation matrix is

Ci j =
∑

α

LαiR
†
α j . (A4)

One should notice that C∗
ji = ∑

α RαiL
†
α j �= Ci j is not Hermi-

tian. The entanglement entropy is

SA = −TrρA ln ρA = −Tr

[
e−HE

1 + e−HE ln
e−HE

1 + e−HE

+ 1

1 + e−HE ln
1

1 + e−HE

]

= −
∑

δ

[ξδ ln ξδ + (1 − ξδ ) ln(1 − ξδ )], (A5)

where ξδ are the eigenvalues of Ci j .

APPENDIX B: OVERLAP MATRIX

Alternatively, we can use the overlap matrix to extract
the entanglement properties. The basic idea is to rotate the
reduced density matrix in a new biorthogonal basis in the
subsystem A, {|LA(B)

i 〉, |RA(B)
i 〉}, such that 〈LA(B)

i |RA(B)
i 〉 = δi j .

The rotation matrix is constructed from the overlap matrix
[52]

MA
αβ =

∫
x∈A

dx〈Lα|Rβ〉 =
∑

i

pi
(
LA

iβ

)†
RA

iα, (B1)

where LA
iβ and RA

iα are the corresponding left and right eigen-
vectors of MA with eigenvalues p∗

i and pi. Notice that the
overlap matrix is non-Hermitian:

[
MA

αβ

]† = [
MA

βα

]∗ =
[∫

x∈A
dx〈Lβ |Rα〉

]∗

�=
∫

x∈A
dx〈Lα|Rβ〉. (B2)

So in the diagonal basis, the non-Hermitian overlap matrix is∑
αβ

(
LA

iα

)†
MA

αβRA
βi = pi. (B3)

Thus, we can normalize the left and right eigenvectors of MA

as

∑
αβ

(
LA

iα

)†

√
pi

〈
L̃A

α

∣∣R̃A
β

〉 RA
β j√
p j

= δi j . (B4)

Here, we express MA
αβ = 〈L̃A

α |R̃A
β〉, where |L̃A

α 〉 and |R̃A
α〉 are

left and right vectors span only in subsystem A. These left and
right vectors are not yet biorthogonal, but from Eq. (B4), we
can construct the local biorthogonal basis as

∣∣RA
i

〉 =
∑

α

RA
iα√
pi

∣∣R̃A
α

〉
,

∣∣LA
i

〉 =
∑

α

LA
iα√
pi

∣∣L̃A
α

〉
,

〈
LA

i

∣∣RA
j

〉 = δi j . (B5)

From the property of the overlap matrix MA + MB = I, MA

and MB can be simultaneously diagonolized with the corre-
sponding eigenvalues pi and 1 − pi:∑

αβ

(
LA

iα

)†
MA

αβRA
β j +

∑
αβ

(
LA

iα

)†
MB

αβRA
β j

= piδi j + (1 − pi )δi j = δi j . (B6)

Thus, the biorthogonal basis {|RB
i 〉, |LB

i 〉} in subsystem B can
also be constructed from the rotation matrices RA

αi and LA
β j .

The right vector |Rα〉in the total system can be rotated by RA
αi

such that ∑
α

RA
αi|Rα〉 = √

pi

∣∣RA
i

〉 + √
1 − pi

∣∣RB
i

〉
. (B7)

Now, we consider many-body wave function after the rotation

|G̃R〉 =
∏

i

(√
piψ

A†
Ri +

√
1 − piψ

B†
Ri

)|0〉, (B8)

where ψA(B)†
Ri|0〉 = |RA(B)

i 〉. Then, the density matrix in the
rotated many-body wave function has a tensor product form

ρ = |G̃R〉〈G̃L| =
⊗

i

|νRi〉〈νLi|, (B9)

where |νRi〉 = √
pi|RA

i 〉A|0〉B + √
1 − pi|0〉A|RB

i 〉B. Then, the
reduced density matrix has a tensor product form

ρA =
∑

i

〈
LB

i

∣∣ρ∣∣RB
i

〉 =
⊗

i

(
pi

∣∣LA
i

〉〈
RA

i

∣∣ + (1 − pi )|0〉〈0|).
(B10)
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FIG. 5. The entanglement entropy scaling as a function of sub-
system size lA with fixed total system size L = 200 and different
momentum shifts δ. (a) δ = 0.000 001, (b) δ = 0.000 01, (c) δ =
0.0001, (d) δ = 0.0008, (e) δ = 0.001, (f) δ = 0.01. The correspond-
ing c/3 for (a), (b), (c), and (f) are 0.666, 0.666, 0.660, and 0.346,
respectively.

Now, we can compute the entanglement entropy as

SA = −
∑

i

[pi ln pi + (1 − pi ) ln(1 − pi )]. (B11)

Furthermore, if we define pi := qi

qi+q−1
i

and 1 − pi := q−1
i

qi+q−1
i

,

the entanglement entropy is

SA = −
∑

i

[
qi

qi + q−1
i

ln
qi

qi + q−1
i

+ q−1
i

qi + q−1
i

ln
q−1

i

qi + q−1
i

]

=
∑

i

[
ln

(
qi + q−1

i

) − qi − q−1
i

qi + q−1
i

ln qi

]
. (B12)

The eigenspectrum of ρA gives the entanglement spectrum.

APPENDIX C: CROSSOVER OF THE ENTANGLEMENT
ENTROPY SCALING FROM c = −2 TO 1

As we mentioned in the main text, both left and right
eigenvectors are singular at the crossing point (k = π ). To
get the c = −2 entanglement entropy scaling behavior, we
introduce a tiny momentum shift δ to avoid directly taking
the crossing point.

We observe that if the momentum shift is comparable to
the size of the discrete momentum 2π/L, the entanglement
entropy scaling gives the central charge c = 1. The crossover
from c = −2 to 1 entanglement entropy scaling is shown in
Fig. 5. The entanglement entropy as a function of the subsys-
tem size goes from a convex function to a concave function.
This crossover behavior can also be seen when we are slightly
away from the critical point [6]. In other words, a small
finite momentum shift can be seen as introducing a small gap
at the crossing point. We can linearize the spectrum at the
crossing point and the corresponding velocity is veff. = √

wv.
We can convert the momentum shift to the corresponding
gap � ∼ 2veff.δ which is the same order of the crossover
behavior shown in Fig. 6. This crossover is also observed

FIG. 6. The entanglement entropy scaling as a function of sub-
system size lA with fixed total system size L = 200, momentum shift
δ = 0.000 001, and different gap � = 2

√
|vk |2 − u2. Here, we fix

(w, v) = (1.3, 1.8) and change u. (a) � = 0.001, (b) � = 0.0025,
(c) � = 0.004, and (d) � = 0.01.

in the quantum Ising chain in an imaginary magnetic field
[44].

APPENDIX D: ENTANGLEMENT PROPERTIES AT THE
CRITICAL POINT SEPARATING THE TOPOLOGICAL
PT-SYMMETRIC PHASE AND THE SPONTANEOUSLY

PT-BROKEN PHASE

In the SSH model with PT symmetry, the critical point
which separates the topological PT-symmetric phase and the
PT-broken phase has a pair of “boundary modes” in the
entanglement spectrum ξ±,α = 0.5 ± iIα [Fig. 7(a)]. Since
ξ±,α and ξ∓,α = 1 − ξ±,α are complex conjugate to each
other, this pair does not generate the imaginary part of the
entanglement entropy, i.e., the entanglement entropy is still
real. The scaling behavior of the entanglement entropy is
SA = α(L) ln[sin[π lA

L ]] + const as shown in Fig. 7(b). The
coefficient α(L) depends on the total system size L as shown
in Fig. 7(c). At thermodynamic limit 1/L → 0, we expect this
coefficient vanishes.

The “boundary modes” in the entanglement spectrum are
not exponentially localized but show power-law decay at the
boundaries [Fig. 8(a)]. Thus, these boundary modes can give
a subsystem-size-dependent contribution to the entanglement
entropy. If we naively subtract out the contribution from
boundary modes in the entanglement entropy, as shown in
Fig. 8(b), the effective central charge we extract from the
coefficient still depends on the total system size.

We observe the eigenvalues of the boundary modes are
ξ±,α = 0.5 ± iIα with Iα depending on the subsystem size. If
we shift the unit cell by half of the lattice constant, the bound-
ary modes in the entanglement spectrum can be removed and
the spectrum is identical to the critical point that separates
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FIG. 7. (a) Entanglement spectrum at the critical point which separates the topological PT-symmetric phase and the PT-broken phase. The
parameters are (w, v, u) = (1.8, 1.3.0, 5). (b) The entanglement entropy as a function of the subsystem size LA with different total system size
L. The scaling of the entanglement entropy satisfies SA(LA) = α(L) ln[sin( πLA

L )] + const with α(L) depending on the total system size. (c) The
log-log plot of the α(L) as a function of 1/L.

the trivial PT-symmetric phase and the PT-broken phase. The
entanglement entropy scaling gives the central charge c = −2.

APPENDIX E: SYMMETRY-ENRICHED CFT

In this section, we present the entanglement spectrum and
entanglement entropy analysis on the free-fermion version
of the symmetry-enriched CFT studied in Ref. [48]. The
Hamiltonian for this critical chain [shown in the left panel in
Fig. 9(a)] is

H(k) =
(

0 eik + ei2k

e−ik + e−i2k 0

)
. (E1)

One can immediately see that there will be two isolated sites
when the open boundary condition is imposed. It is shown that
these boundary modes are exponentially localized as long as
the parity and time-reversal symmetries are preserved in the
bulk [64]. On the other hand, if we introduce boundaries by
cutting through the unit cell, or equivalently shifting the half
of the unit cell of the original chain, the system becomes the
regular critical chain [see right panel in Fig. 9(a)].

We compute the entanglement spectrum and entropy in
this symmetry-enriched CFT. There are two mid-gap states

FIG. 8. (a) The boundary modes in the entanglement spectrum
at the critical point w − v = u. (b) The effective central charge
ceff = 3 ∗ α after subtracting out the contributions of the boundary
modes as a function of total system size L. Here, α being the
coefficient in the logarithmic scaling of the entanglement entropy,
SA = α ln[sin[ πLA

L ]] + const. The effective central charge ceff as a
function of total system size L for only including the imaginary
part of the eigenvalues of the boundary modes in the entanglement
spectrum.

which are localized at the boundaries of the entanglement
Hamiltonian [Fig. 9(b)]. Due to these boundary modes, the
entanglement entropy does not have logarithmic scaling and
we cannot extract the central charge. However, if we bipartite
the system such that the entangling boundaries cut through the
unit cell, there is no boundary mode in the entanglement spec-
trum and the central charge c = 1 can be directly extracted
from the entanglement entropy scaling [Fig. 9(c)].

APPENDIX F: bc-GHOST CFT

In this Appendix, we briefly review the bc-ghost CFT
[35–40]. The effective action for the bc-ghost theory is

S =
∫

d2z(ψb∂̄ψc + ψ̄b∂ψ̄c), (F1)

FIG. 9. (a) The free-fermion version of symmetry-enriched CFT,
which has boundary modes in the critical chain as shown in the
left panel. After shifting half of the unit cell, it has the regular
critical chain configuration and has no boundary modes (right panel).
(b) The entanglement spectrum (left) and the entanglement entropy
scaling (right) in the symmetry-enriched CFT. There are two mid-gap
states in the entanglement spectrum corresponding to two boundary
modes in the entanglement Hamiltonian. The entanglement entropy
scaling does not satisfy the logarithmic scaling. (c) The entanglement
spectrum (left) and the entanglement entropy scaling (right) in the
critical chain case. There are no mid-gap states in the entanglement
spectrum and the entanglement entropy scaling gives the central
charge c = 1.
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where ψb/c are the fermionic ghost fields for the right-moving
mode and ψ̄b/c denotes the antiholomorphic fermionic ghost
fields which correspond to the left-moving mode. We use the
shorthand notations z = x + it , z̄ = x − it , ∂ = 1

2 (∂x − i∂t ),
and ∂̄ = 1

2 (∂x + i∂t ). Here, we have the anticommutation
relationship {ψb(z), ψc(w)} = δ(z − w). From dimensional
analysis, the conformal dimension of the ghost fields must
be �b + �c = 1. We can parametrize them by �b = λ and
�c = 1 − λ. The equations of motion give

∂̄ψb(z) = ∂̄ψc(z) = 0,

∂̄ψc(z)ψb(0) = 2πδ(2)(z, z̄). (F2)

The above equations imply the operator product expansion
(OPE) and the two-point function are

ψb(z)ψc(w) ∼ 1

z − w
,

〈ψb(z)ψc(w)〉 ∼ 1

z − w
. (F3)

The other two-point functions do not have singularity,
〈ψb(z)ψb(w)〉 ∼ 〈ψc(z)ψc(w)〉 ∼ O(|z − w|).

The Noether’s theory gives the normal-ordered holomor-
phic part of the energy-momentum tensor

T (z) =: (∂ψb)ψc : −λ∂ : (ψbψc) : . (F4)

The OPEs between T and ψb/c are

T (z)ψb(w) ∼(∂ψb(z))ψc(z)ψb(w) − λ∂ (ψb(z)ψc(z)ψb(w))

∼ 1

z − w
∂ψb(z) − λ∂ (ψb(z)

1

z − w

∼ λ

(z − w)2
ψb(w) + 1 − λ

z − w
∂ψb(w), (F5)

T (z)ψc(w)

∼ (1 − λ)∂ (ψb(z)ψc(z)ψc(w)) − ψb(z)(∂ψc(z))ψc(w)

∼ (1 − λ)∂

( −1

z − w
ψc(z)

)
+ 1

z − w
∂ψc(z)

∼ 1 − λ

(z − w)2
ψc(w) + λ

z − w
∂ψc(w), (F6)

which give the conformal dimensions �b = λ and �c = 1 −
λ, respectively.

The central charge can be obtained from the OPE of
T (z)T (w):

T (z)T (w) ∼ [: (∂ψb)ψc : −λ∂ : (ψbψc) :](z)[: (∂ψb)ψc :

− λ∂ : (ψbψc) :](w)

∼ −1

(z − w)2
∂zψb(z)ψc(w) + 6λ(1 − λ)

1

(z − w)4

∼ (−6λ2 + 6λ − 1)
1

(z − w)4
. (F7)

We can identify the central charge c = −12λ2 + 12λ −
2. In the non-Hermitian SSH model at the critical point,
(�b,�c) = (1, 0), which gives c = −2.

FIG. 10. Two-point functions of (a) 〈ψ†
b (x)ψc(y)〉 and

(b) 〈ψ†
b/c(x)ψb/c(y)〉 as a function of |x − y|.

APPENDIX G: TWO-POINT FUNCTIONS

Here, we compute the two-point functions in the non-
Hermitian SSH model at the critical point v − w = u. We first
compute the correlation function 〈ψ†

b (x)ψc(y)〉 with ψ
†
b (x) is

the right creation operator and ψc(y) is the left annihilation
operator. We refer these fields the ghost fields:

〈ψ†
b (x)ψc(y)〉 = Tr

∑
k

1

L
eik(x−y)|Rk,−〉〈Lk,−|

=
∑

k

eik(x−y)

L
= 1

π

sin π (x − y)

|x − y| . (G1)

This two-point function gives the correct conformal dimen-
sions of the ghost fields λb + λc = 1 [Fig. 10(a)].

We can also compute the other two-point functions
〈ψ†

b (x)ψb(y)〉 and 〈ψ†
c (x)ψc(y)〉:

〈ψ†
b (x)ψb(y)〉

= Tr
∑

k

1

L
eik(x−y)|Rk,−〉〈Rk,−|

=
∑

k

eik(x−y)

L

(
sin

φk

2
sin

φ∗
k

2
+ cos

φk

2
cos

φ∗
k

2

)
,

〈ψ†
c (x)ψc(y)〉

= Tr
∑

k

1

L
eik(x−y)|Lk,−〉〈Lk,−|

=
∑

k

eik(x−y)

L

(
sin

φk

2
sin

φ∗
k

2
+ cos

φk

2
cos

φ∗
k

2

)
, (G2)

where φk = tan−1[ |we−ik+v|
iu ]. As shown in Fig. 10(b), there is

no power-law decay as expected in the CFT.

APPENDIX H: ENTANGLEMENT ENTROPY IN A (1+1)D
NONUNITARY CFT

The field-theory approach to the entanglement entropy
in nonunitary CFTs has previously been studied in, e.g.,
Refs. [41–43], where the twist operator and replica method
are used. In Ref. [42], it was found that for a nonunitary
CFT in which the physical ground state is different from the
conformal vacuum, the entanglement entropy has the form
SA ∼ ceff log l

ε
, where ceff is the effective central charge, l is

the length of subsystem A, and ε is a UV cutoff. In particular,
it is found that ceff = c − 24�, where � < 0 is the lowest
conformal dimension of operator in the theory. This result
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is reminiscent of the work of by Itzykson, Saleur, and Zuber
[65], where it was found that the central charge c is replaced
by the effective central charge ceff in the expression of the
ground-state free energy. Later in Ref. [41], it was found
that the entanglement entropy in the ghost bc CFT with c =
−2 has the form SA ∼ c log l

ε
with c = −2. The underlying

reason is that in this case the physical ground state is the same
as the conformal vacuum (see more details in the following
discussions).

Here, we give a brief review of these results on the entan-
glement entropy in nonunitary CFTs by utilizing the approach
introduced by Cardy and Tonni [66]. Let us first introduce
the possible difference between the physical ground state and
the conformal vacuum. In (1+1)D conformal field theory, the
conformal vacuum |0〉 is defined as the state invariant under
all regular conformal transformations Ln|0〉 = 0, where n �
−1. [This results from the requirement that the stress-energy
tensor T (z) is regular at z = 0 in the conformal vacuum.]
Therefore, for the conformal vacuum, we always have L0|0〉 =
0. On the other hand, the physical vacuum |G〉, or the physical
ground state, is defined as the lowest eigenstate of L0. In
nonunitary CFTs, we have

L0|G〉 = �|G〉, L0|G〉 = �|G〉, (H1)

where � � 0 in general. Here, L0 and L0 have the same lowest
eigenvalue because the ground state is translation invariant.
In a unitary CFT, we always have |G〉 = |0〉, which is not
necessarily true for a nonunitary CFT.

In the following derivation of the entanglement entropy, we
will only use the conformal symmetry as well as the definition
of physical ground state |G〉 of a generic nonunitary CFT in
Eq. (H1). For simplicity, we consider a finite interval A =
[−l/2, l/2] in an infinite system in the ground state |G〉. The
path-integral representation of the reduced density ρA = TrBρ

can be expressed as [66]

z

A BB
(H2)

where z = x + iτ , and two small disks of radius ε have been
removed at the two entanglement cuts x = ±R = ± l

2 as the
UV cutoff. The rows and columns of the reduced density
matrix ρA are labeled by the values of the fields on the upper
and lower edges of the slit along A. Along the two small
disks, the conformal boundary conditions |a〉 and |b〉 are
imposed. Then, by considering the conformal transformation
w = f (z) = log z+R

R−z , ρA in Eq. (H2) is mapped to the follow-
ing cylinder in w plane:

u

v

w

. (H3)

One can find that the length of the cylinder in w plane is

W = 2 log

(
l

ε

)
+ O(ε), (H4)

FIG. 11. The topologically trivial bands with zero Chern number
(t = 1.0, m = −3, γ = 0.5). (a) The orange and blue bands corre-
spond to E+ and E−, relatively. (b) Complex entanglement spectrum
which is labeled by ky and amplitude of the eigenmodes of ky = 0
for two degenerate ξ = 0.981 (yellow squares) and two degenerate
ξ = 0.019 (gray dots) along x direction. (c) Complex entanglement
spectrum labeled by kx and the amplitude of the eigenmodes of
kx = 0 for ξ = 0.0176 − 0.013i, 0.982 − 0.013i (yellow squares)
and for ξ = 0.0176 + 0.013i, 0.982 + 0.013i (gray dots) along y
direction.

and the circumference is 2π in v direction. Then, we have
TrAρn

A = Zn, where Zn is the path integral over the manifold
obtained by gluing n cylinders in (H3) along the (gray) edges
one by one. Zn can be explicitly evaluated as follows:

Zn = 〈a|e−HCFTW |b〉 = 〈a|e− 2π
2πn (L0+L̄0− c

12 )W |b〉
=

∑
k

〈a|k〉〈k|b〉e− 1
n (�k+�̄k− c

12 )W , (H5)

where in the second step we have inserted a complete basis
vector |k〉. Considering W � 1, only the lowest weight �k +
�̄k dominate in Zn. Now, the difference between unitary and
nonunitary CFTs comes in. For a unitary CFT, the conformal
vacuum is the same as the physical ground state, i.e., |0〉 =
|G〉. The term with �k = �̄k = 0 dominates, and therefore

Zn  〈a|0〉〈0|b〉e c
12n W , for unitary CFTs. (H6)

On the other hand, for a nonunitary CFT, as seen in Eq. (H1),
the ground state has a possibly negative eigenenergy � � 0.
Then, Zn is dominated by the term with �k = �̄k = �:

Zn  〈a|G〉〈G|b〉e c−24�
12n W =: 〈a|G〉〈G|b〉e ceff

12n W

for nonunitary CFTs, (H7)

where we have defined

ceff = c − 24�. (H8)
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FIG. 12. The gapless phase with two pairs of exceptional points
on both kx = 0 (t = 1.0, m = −2, γ = 1). (a) The orange and blue
bands correspond to E+ and E−, relatively. (b) Complex entangle-
ment spectrum which is labeled by ky and the eigenmodes of ky = 0
and for ξ = 0.661 − 0.001i (yellow squares) and for ξ = 0.339 +
0.001i (gray dots) along x direction. (c) Complex entanglement
spectrum labeled by kx and the eigenmodes of kx = 0 for ξ =
0.147 + 0.18i (yellow squares) and for 0.853 − 0.18i (gray dots)
along y direction.

As a remark, the procedure of evaluating Zn here is essentially
the same as the calculation of the free energy in the ground
state of a nonunitary CFT as studied in Ref. [65]. Then, the n-
th Renyi entropy and von Neumann entropy can be expressed
as

S(n)
A := 1

1 − n
log

Tr
(
ρn

A

)
(TrρA)n

= 1

1 − n
log

Zn

(Z1)n

 ceff

12

1 + n

n
W  ceff

6

1 + n

n
log

(
l

ε

)
,

SA = lim
n→1

S(n)
A  ceff

6
W = ceff

3
log

(
l

ε

)
,

where we have neglected the O(1) terms which are con-
tributed by the boundaries. In particular, we have ceff = c for
unitary CFTs, and ceff = c − 24� for nonunitary CFTs.

For the bc ghost CFT with c = −2 as studied in the main
text, it is noted that the physical ground state |G〉 is the same as
the conformal vacuum |0〉, i.e., |G〉 = |0〉, and we have � = 0
in Eq. (H1) [41]. Then, based on Eq. (H8), we have

ceff = c = −2. (H9)

This agrees with the result obtained in Ref. [41] based on the
the twist operator approach, with appropriate generalizations
of the standard CFT replica technique. Furthermore, for the
ghost bc CFTs with λ > 1 (see previous sections), one has
� = λ(1−λ)

2 and the central charge c = −12λ2 + 12λ − 2. The

FIG. 13. The gapless phase with two pairs of exceptional points
on both kx = 0 and kx = ±π (t = 1.0, m = −0.2, γ = 1). (a) The
orange and blue bands correspond to E+ and E−, relatively. (b) Com-
plex entanglement spectrum which is labeled by ky and the eigen-
modes of ky = 0 for ξ = 0.653 − 0.002i (yellow squares) and for
ξ = 0.347 + 0.002i (gray dots) along x direction. (c) Complex en-
tanglement spectrum labeled by kx and the eigenmodes of kx = 0 for
ξ = 0.4 + 0.185i (yellow squares) and for ξ = 0.9 − 0.185i (gray
dots) along y direction.

effective central charge has the expression

ceff = c − 24
λ(1 − λ)

2
, (H10)

which reduces to ceff = c = −2 for λ = 1.

APPENDIX I: ENTANGLEMENT SPECTRUM OF THE
NON-HERMITIAN 2D MODEL

The non-Hermitian Chern insulator [32] defined by the
Bloch Hamiltonian

H(k) = (m + t cos kx + t cos ky)σx

+ (iγ + t sin kx )σy + (t sin ky)σz (I1)

has complex dispersion relations as

E±(k) = ± [(m + t cos kx + t cos ky)2 + (iγ + t sin kx )2

+ (t sin ky)2]1/2. (I2)

Exceptional points appear when the two bands satisfy
E±(kEP) = 0. This condition demands sin(kEP,x ) = 0. We
can find the gapless phases where pairs of exceptional
points appear on kx = 0, kx = ±π , and both kx = 0 and
kx = ±π.

In the gapped phase with the topologically trivial bulk,
no mid-gap modes appear between the gapped complex
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entanglement bands, as shown in Fig. 11. In the gapless
phases, there appear exceptional points on kx = 0 and/or

kx = ±π . Complex entanglement spectra in the presence of
exceptional points are shown in Figs. 12 and 13.
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