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In a storage ring, turn-to-turn fluctuations in the intensity of spontaneous synchrotron radiation occur
due to two mechanisms. The first mechanism is the quantum uncertainty in the number of emitted photons.
The second mechanism is the turn-to-turn variations in the relative positions of classical pointlike electrons
in the bunch. We present a unified description of both effects in the framework of quantum optics. We
derive an equation for the fluctuations for an arbitrary degree of coherence, which generalizes previously
reported results for temporally incoherent radiation. We compare the predictions of our calculation with a
previous experiment at Brookhaven National Laboratory, where the latter mechanism was dominant and
propose a new dedicated experiment in the Integrable Optics Test Accelerator (IOTA) at Fermilab, where
the two mechanisms may have comparable contributions to the fluctuations. Finally, our calculation shows
that the magnitude of the fluctuations is rather sensitive to the dimensions and the shape of the electron
bunch, thereby indicating possible applications in beam instrumentation. In particular, the small vertical
size of the flat beams in IOTA may be estimated via these fluctuations, whereas measurement by a
conventional synchrotron radiation monitor is difficult due to the diffraction limit.
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I. INTRODUCTION

In the last few decades there were several experiments
regarding the statistical properties of incoherent synchro-
tron radiation produced by electron bunches in storage
rings and linear accelerators [1–5]. Pulse-to-pulse varia-
tions in the radiated energy were also studied theoretically.
It was shown in Refs. [2,3] that in some cases the rms
electron bunch length can be measured via these fluctua-
tions. Moreover, Refs. [4,5] suggest that if the fluctua-
tions in the radiation spectrum are measured with a high

resolution spectrometer, then even the shape of the electron
bunch can be reconstructed. These observations, combined
with the fact that fluctuations of the same nature are present
in SASE FELs [6–11], make the study of fluctuations in
synchrotron radiation relevant to better understanding of
beam dynamics and, potentially, to beam diagnostics.
The number of photons, radiated by an electron bunch

in an external electromagnetic field (undulator, wiggler,
bending magnet, etc.), fluctuates from pass to pass due to
the following two mechanisms [12]. The first mechanism is
the photon shot noise, related to the quantum discrete
nature of light. This effect would exist even if there was
only one electron. Indeed, the electron would radiate
photons with Poisson statistics [13–15]. The second
mechanism is related to the interference of fields radiated
by different electrons. Changes in relative electron posi-
tions and velocities inside the bunch result in fluctuations in
intensity, and, consequently, in the number of photons. In a
storage ring, the effect arises because of the betatron
motion, synchrotron motion, radiation induced diffusion,
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etc.; in linacs, there are additionally bunch-to-bunch
fluctuations in beam intensity.
For dense bunches, the fluctuations in the number of

emitted photons are usually dominated by the latter mecha-
nism [7], as was the case in Refs. [1–5]. In this paper, we
present a unified description of both mechanisms in the
framework of quantum optics. Below, we consider a single
electron bunch circulating in a storage ring. The number of
electrons in the bunch is constant. We consider the radiation
generated in one of the synchrotron radiation sources in the
ring, e.g., in an undulator, a wiggler, a bending magnet, etc.
In Sec. II, we derive equations for the mean and the variance
of the number of detected photons for an electron bunch of
arbitrary shape. These equations apply to any degree of
coherence of the radiation. Then, in Sec. III, the general
equations are simplified for the case of temporally incoher-
ent radiation, and an example of a Gaussian electron bunch is
considered. Section IV discusses several cases, where simple
closed-form expressions can be obtained. In Sec. V, our
calculations are compared with the empirical data from the
previous experiment carried out at Brookhaven National
Laboratory [1]. Unfortunately, the experiment’s parameters
are not known to us with sufficient accuracy. Therefore, in
Sec. VI, we propose a new experiment in the IOTA storage
ring [16–18], where all relevant parameters will be measured
with good accuracy.

II. DERIVATION OF FLUCTUATIONS

Let us assume that we have a detector that can measure
the number of detected photonsN during one revolution in
a ring. The operator corresponding to this observable will
be denoted by N̂ . The operation principle of the detector
will be discussed later. In this section, we want to calculate
the average number of detected photons hN i and its turn-
to-turn variance varðN Þ in the framework of quantum
optics. We consider quantized electromagnetic field of the
radiation. The electrons are classical pointlike particles
with equal velocities before entering the synchrotron
radiation source. Quantitatively, it means that the electron
momentum spread σp is sufficiently small, so that all of
them produce radiation with approximately the same
spectrum. Also, the beam divergence is negligible com-
pared to the radiation divergence [2,7,19],

σx0 ; σy0 ≪ σr0 : ð1Þ

These conditions are satisfied in the experiments
reported in Refs. [1,2,17], for example.

A. Density operator formalism

The density operator [14,20–22] for the radiation is

ρ̂ ¼
Z

dξpðξÞjψðξÞihψðξÞj; ð2Þ

where jψðξÞi represents the state of the radiation field after
the passage of the electron bunch through the synchrotron
radiation source. This state is a function of the initial
relative positions of the electrons in the bunch. To signify
this we use the symbol ξ,

ξ ¼ ðr1;… rneÞ; ð3Þ

dξ ¼ dr1… drne ; ð4Þ

where rm ¼ ðxm; ym;−ctmÞ, here and below vector quan-
tities will be represented by bold symbols; ne is the number
of electrons in the bunch, pðξÞ is the probability density
function for the relative electron positions configuration ξ,Z

dξpðξÞ ¼ 1: ð5Þ

In a more general case, ξ should include the initial
velocities of the electrons. Here they are assumed equal.
We choose a coordinate system where the z-axis is along

the axis of the undulator (wiggler), and the x- and y-axes
are in the horizontal and vertical planes, respectively, as
illustrated in Fig. 1. In a bending magnet, the z-axis can be
chosen to point along the radiation traveling toward the
detector.
We seek the expressions for the average number of

detected photons hN i and for the turn-to-turn variance of
N , varðN Þ. In the density operator formalism [20],

hN i ¼ Trðρ̂ N̂ Þ ¼
Z

dξpðξÞhψðξÞjN̂ jψðξÞi; ð6Þ

varðN Þ ¼ Trðρ̂ðN̂ − hN iÞ2Þ ¼ Trðρ̂N̂ 2Þ − hN i2

¼
Z

dξpðξÞhψðξÞjN̂ 2jψðξÞi − hN i2: ð7Þ

We consider the regime of negligible electron recoil, and,
thereby, classical electrons [14,15,15]. This is satisfied in
all present storage rings. In this case, according to Ref. [14],
the radiation is in a coherent state. We begin by considering
the radiation in a cube with a finite side length L and

FIG. 1. Chosen coordinate system for the description of
undulator (wiggler) radiation.
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periodic boundary conditions. Hence, there are discrete
optical modes with wave vectors k ¼ ðm; n; lÞ × 2π=L,
wherem, n, l are integers, not equal to zero simultaneously.
For each wave vector k, there are two perpendicular
polarizations esðkÞ, s ¼ 1, 2. For simplicity, we will
consider only one polarization s. In this case, each mode
is fully described by its wave vector k. Therefore, instead of
carrying the indicesm, n, l, we will use a single symbol k as
an index in a sum (or product) over all optical modes.
Similarly, k will be used as a subscript of several functions,
quantities, quantum states and operators to indicate which
mode they pertain to. In this convention, the coherent state
of the radiation field, as a direct product over all the optical
modes, is

jψðξÞi ¼
Y
k

jαkðξÞik; ð8Þ

with

jαkðξÞik ¼ e−
1
2
jαkðξÞj2

X
nk

αnkk ðξÞffiffiffiffiffiffiffi
nk!

p jnkik; ð9Þ

where jnkik represents the number state (Fock state) of the
optical mode with wave-vector k. According to Ref. [14],

αkðξÞ ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L3ℏω
p

Z
dtdresðkÞ · jðξ; r; tÞeik·r−iωt; ð10Þ

where jðξ; r; tÞ represents the current density of the electron
bunch with the initial relative arrangement ξ, ℏ is the
reduced Planck constant, ω ¼ kc, where c is the speed
of light.
The coherent state of each optical mode is the eigenstate

of the annihilation operator corresponding to this mode,

âkjαkðξÞik ¼ αkðξÞjαkðξÞik: ð11Þ

We postpone the calculation of αkðξÞ until Sec. II C.
Discussion of the regime, where both polarization compo-
nents are registered, will be provided after Eq. (34).

B. Detection operator

The specifics of operation of the chosen light detector
determine the form of the operator N̂ . This operator has
different forms for photodiodes, homodyne detectors,
avalanche photodiodes and multiplexed detection schemes
with many avalanche photodiodes [20]. In this paper, for
the k-dependent (and polarization dependent) quantum
efficiency of a nonideal detector, ηk, we consider the model
of a beam splitter, followed by an ideal detector, see [21]
and Fig. 2.
The input-output relations for the beam splitter take the

form

b̂k ¼
ffiffiffiffiffi
ηk

p
âk þ i

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk

p
ĉk; ð12Þ

d̂k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk

p
ĉk þ i

ffiffiffiffiffi
ηk

p
âk; ð13Þ

where âk represents the incoming field, ĉk corresponds to
the second input port, which is in the vacuum state in this
model, b̂k and d̂k are the transmitted and reflected fields,
respectively. This model is appropriate for quantum effi-
ciency of a photodiode [20], where the number of detected
photons N is determined as the number of photoelectrons
coming from the photodiode. In addition, this model can
take into account the spectral transmission of optical filters,
lenses, reflectance of mirrors, detector acceptance.
Further, we assume that the operator for the total number

of detected photons N̂ is a superposition over all modes.
Then,

N̂ ¼
X
k

b̂†kb̂k: ð14Þ

In this model of the detector, the operator N̂ belongs to
the Hilbert space composed of the Hilbert subspaces of
both input ports of the beam splitter. Therefore, the vector
state of the radiation jψðξÞi has to be supplemented by the
vacuum state of the second input port,

jψðξÞi → j0icjψðξÞi; ð15Þ

where the subscript c is used to indicate the Hilbert
subspace of the second input port. When the substitution,
Eq. (15), is carried out in Eqs. (6) and (7), the expectation
values in these equations will take the following form,

hψðξÞjN̂ jψðξÞi → hψðξÞjch0jN̂ j0icjψðξÞi; ð16Þ

hψðξÞjN̂ 2jψðξÞi → hψðξÞjch0jN̂ 2j0icjψðξÞi: ð17Þ

We calculate the expectation values in Eqs. (16) and (17)
for the vacuum state of the second input port in the

FIG. 2. The beam splitter model for quantum efficiency of a
nonideal detector.
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Appendix A. The results are as follows,

ch0jN̂ j0ic ¼
X
k

ηkâ
†
kâk; ð18Þ

ch0jN̂ 2j0ic ¼
X
k

ηkâ
†
kâk þ

X
k1;k2

ηk1ηk2 â
†
k1
â†k2 âk2 âk1 ; ð19Þ

these expressions are not scalars, they are operators in the
Hilbert subspace of the first input port, to which the vector
state jψðξÞi belongs.

C. General expressions for the mean and the
variance of the number of detected photons

The expectation values of the operators obtained in
Eqs. (18) and (19) for the vector state jψðξÞi, defined in
Eq. (8), can be calculated by using Eq. (11). When the
results are used in Eqs. (6) and (7), the expressions for hN i
and varðN Þ in the beam splitter model of the detector take
the following form,

hN i ¼
X
k

Z
dξpðξÞηkjαkðξÞj2; ð20Þ

varðN Þ ¼ hN i þ
Z

dξpðξÞð
X
k

ηkjαkðξÞj2Þ2 − hN i2:

ð21Þ

Assuming a monoenergetic electron bunch with negli-
gible beam divergence, see Eq. (1), we derived the
following relation in Appendix B,

αkðξÞ ¼ αð1Þk ×
X
m

eik̃·rm; ð22Þ

where k̃ ¼ ðkx; ky; kÞ, noting that the z-component is
k ¼ jkj ¼ ω=c, not kz; rm ¼ ðxm; ym;−ctmÞ is the initial

position of the mth electron; αð1Þk is calculated only for the
reference electron, which can be chosen to be m ¼ 1
without loss of generality,

αð1Þk ¼ ieffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L3ℏω

p
Z

dtesðkÞ · v1ðtÞeik·r1ðtÞ−iωt; ð23Þ

where e is the electron charge, r1ðtÞ and v1ðtÞ are the
trajectory and the velocity (as a function of time) of the
reference electron in the synchrotron radiation source.
At this point, we can take the limit L → ∞ and transition

from discrete to continuous optical modes, i.e.,

jαð1Þk j2 → Ið1Þk dk; ð24Þ

where

Ið1Þk ¼ e2

2ð2πÞ3ℏω
����
Z

dtesðkÞ · v1ðtÞeik·r1ðtÞ−iωt
����2: ð25Þ

Then, Eqs. (20) and (21) become, respectively,

hN i ¼
Z

dkηkI
ð1Þ
k

Z
dξpðξÞJ kðξÞ; ð26Þ

varðN Þ ¼ hN i þ
Z

dk1dk2ηk1I
ð1Þ
k1
ηk2I

ð1Þ
k2

×
Z

dξpðξÞJ k1ðξÞJ k2ðξÞ − hN i2; ð27Þ

where we introduced

J kðξÞ≡
����Xm

eik̃·rm
����2: ð28Þ

Further, we consider an electron bunch, where the
positions of the electrons are independent random variables
with identical probability functions, i.e.,

pðξÞ ¼ pðr1Þ…pðrneÞ: ð29Þ

J kðξÞ can be represented in the following form,

J kðξÞ ¼
X
m

eik̃·rm
X
n

e−ik̃·rn ¼
X
m;n

eik̃·ðrm−rnÞ

¼
X
m

1þ
X
m≠n

eik̃·ðrm−rnÞ

¼ ne þ
X
m≠n

eik̃·ðrm−rnÞ: ð30Þ

Therefore, the integral over ξ in Eq. (26) can be
calculated asZ

dξpðξÞJ kðξÞ ¼ ne þ
Z

dξpðξÞ
X
m≠n

eik̃·ðrm−rnÞ

¼ ne þ
X
m≠n

Z
pðrmÞeik̃·rmdrm

×
Z

pðrnÞe−ik̃·rndrn
¼ ne þ neðne − 1ÞjPðk̃Þj2; ð31Þ

where the multiplier neðne − 1Þ comes from the sum over
m and n from 1 to ne, ignoring the diagonal terms, where
m ¼ n. Also, we defined the following function,

Pðk̃Þ≡
Z

pðrÞeik̃·rdr: ð32Þ

The calculation of the integral over ξ in Eq. (27) is
lengthy. The details are provided in Appendix C. The final
expressions for hN i and varðN Þ are the following,
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hN i ¼ ne

Z
dkηkI

ð1Þ
k ð1þ ðne − 1ÞjPðk̃Þj2Þ ð33Þ

varðN Þ ¼ hN i þ neðne − 1Þ
Z

dk1dk2ηk1I
ð1Þ
k1
ηk2I

ð1Þ
k2
½jPðk̃1 − k̃2Þj2 − jPðk̃1ÞPðk̃2Þj2

þ ðne − 2Þ½P�ðk̃1ÞPðk̃2ÞðPðk̃1 − k̃2Þ − Pðk̃1ÞP�ðk̃2ÞÞ þ c:c:��: ð34Þ

Equations (33) and (34) are the most general results of
this paper. They apply to any degree of coherence of the
radiation (both transverse and temporal), for any number of
the electrons in the bunch ne, and for any probability
function of each electron pðrÞ. If both polarization com-
ponents are registered by the detector, the following
substitution should be performed,

ηkI
ð1Þ
k →

X
s¼1;2

ηk;sI
ð1Þ
k;s : ð35Þ

In Eq. (33), the first term represents incoherent radiation.
The second term constitutes coherent synchrotron radiation
(CSR). The limit of fully coherent radiation can be obtained
by assuming that all the electrons are concentrated in a
single point. Using the Dirac delta function, pðrÞ ¼ δðrÞ. In
this limit, for any k̃,

Pðk̃Þ ¼ 1; ð36Þ
and in Eq. (33) we obtain the expected result, that the
intensity scales as n2e.
In Eq. (34), the first term, namely, hN i, is the photon

shot noise contribution. It exists even in the case of a single
electron, ne ¼ 1. The second term arises from the variations
in the relative positions of the classical pointlike electrons
in the bunch. It vanishes in the case of fully coherent
radiation, as one can see by inserting Eq. (36) in Eq. (34).
However, it is non-zero in the case of incoherent or partially
coherent radiation. Therefore, henceforth this term will be
called the incoherence contribution to the fluctuations.
Further, we will consider possible simplifications of

Eqs. (33) and (34) in specific cases. The form of
Eqs. (33) and (34) for a Gaussian electron bunch is
provided in Appendix D.

III. REGIME OF TEMPORAL INCOHERENCE

In this section, we will consider the regime of temporally
incoherent radiation,

ωσt ≫ 1; ð37Þ

where σt is the rms bunch duration. We will show that
Eq. (34) agrees with the results obtained in [2], where this
less general regime was studied classically.
Given Eq. (37), the integrals of the form of Eq. (32) with

the arguments k̃1 and k̃2 will be negligible due to the fast

oscillations of the phase factor. Only the integral with the
argument k̃1 − k̃2 will result in a nonvanishing contribution.
Therefore,

hN i ¼ ne

Z
dkηkI

ð1Þ
k ; ð38Þ

varðN Þ ¼ hN i þ neðne − 1Þ

×
Z

dk1dk2ηk1I
ð1Þ
k1
ηk2I

ð1Þ
k2
jPðk̃1 − k̃2Þj2: ð39Þ

Following the notation of [1,2] and [[7] p. 28], Eq. (39)
can be re-written as

varðN Þ ¼ hN i þ 1

M
hN i2; ð40Þ

where the parameter M was introduced. In this paper it is
defined as

1

M
≡ ð1 − 1=neÞ

R
dk1dk2ηk1I

ð1Þ
k1
ηk2I

ð1Þ
k2
jPðk̃1 − k̃2Þj2

ðR dkηkI
ð1Þ
k Þ2

;

ð41Þ
however, it can be identified with the number of coherent
modes, defined in [7,19,23], therefore wewill use this name
for the parameter M from now on. Equation (41) is in
agreement with Eq. (14) of Ref. [2], which was derived for
a relative fluctuation of classical radiation intensity. Also, it
agrees with a simple order-of-magnitude estimate of M,
provided in Appendix F.
Equation (37) is satisfied in the Brookhaven experiment

[1] and in the proposed experiment in IOTA [17,18], which
will be discussed in Secs. V and VI, respectively. In both
cases, ωσt ∼ 106.
There is one more possible simplification, which can be

used for the above mentioned experiments. If we assume
that the probability function can be decoupled into tem-
poral and transverse components,

pðrÞ ¼ ptðtÞp⊥ðr⊥Þ; ð42Þ

then,

Pðk̃1 − k̃2Þ ¼ Ptðk1 − k2ÞP⊥ðk1 − k2Þ; ð43Þ
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with

Ptðk1 − k2Þ ¼
Z

ptðtÞeicðk1−k2Þtdt; ð44Þ

P⊥ðk1 − k2Þ ¼
Z

p⊥ðr⊥Þeiðk1−k2Þ·r⊥dr⊥; ð45Þ

where

r⊥ ¼ ðx; y; 0Þ; dr⊥ ¼ dxdy: ð46Þ

The width of Ptðk1 − k2Þ as a function of k1 − k2 is of
the order of 1=ðcσtÞ. If Ptðk1 − k2Þ is much narrower than

any other scale in the problem, such as the width of the
radiation spectrum, or the monochromator’s FWHM (if
used), then we can use the following relation employing the
Dirac delta function,

jPtðk1 − k2Þj2 ¼ κtδðk1 − k2Þ; ð47Þ
with

κt ¼ ð2π=cÞ
Z

p2
t ðtÞdt; ð48Þ

the derivation is provided in Appendix E.
Using Eqs. (42) to (48), Eq. (41) takes the form

1

M
¼ ð1 − 1=neÞ

κt
R
dkdΩ1dΩ2k4ηkn1I

ð1Þ
kn1

ηkn2I
ð1Þ
kn2

jP⊥ðkn1 − kn2Þj2
ðR dkηkI

ð1Þ
k Þ2

; ð49Þ

where n1 and n2 are two unit vectors,

ni ¼ ðnix; niy; nizÞ; niz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2ix − n2iy

q
; ð50Þ

dΩi ¼ dnixdniy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ix þ n2iy

q
; ð51Þ

where i ¼ 1, 2; dΩi is the element of solid angle. Note that
the above derivation did not use the paraxial approxima-
tion, ni ≈ ðϕix;ϕiy; 1Þ; ϕix;ϕiy ≪ 1. However, it can be
used in most practical cases. Also, usually ne ≫ 1 and,
hence, 1=ne can be neglected.
For a Gaussian electron bunch,

pðrÞ ¼ 1

ð2πÞ3=2σxσyσt
exp

�
−

x2

2σ2x
−

y2

2σ2y
−

t2

2σ2t

�
; ð52Þ

and

jP⊥ðkn1 − kn2Þj2 ¼ e−k
2σ2xðn1x−n2xÞ2−k2σ2yðn1y−n2yÞ2 ; ð53Þ

κt ¼
ffiffiffi
π

p
cσt

: ð54Þ

While in a typical electron storage ring the longitudinal
momentum distribution is close to Gaussian, the longi-
tudinal density distribution may not be Gaussian due to
beam interaction with its environment (see, for example
[24]). This is also the case in IOTA. Equation (48) correctly
accounts for the actual longitudinal distribution and it will
be used during the proposed experimental study in IOTA.
However, to simplify our estimations in Secs. Vand VI, we
will use Eq. (54).
In the numerical examples in this paper (the Brookhaven

experiment [1], and in the proposed experiment in IOTA

[17,18]) we use the full version of Eq. (49) and perform
numerical integration, because the values of the parameters
in these experiments do not allow to use any approxima-
tions or simplifications in the integrals. We use the expres-
sions for spectral-angular intensity distribution of wiggler
(undulator) radiation from Ref. [25]. Based on these
expressions, we developed a PYTHON package for calcu-
lation of Ið1Þk , which can be found in the code repository
[26]. The developed scripts for numerical integration in
Eq. (49) are available in the code repository [27].
Equations (40) and (49) do not reveal the exact distri-

bution ofN , they only give the variance varðN Þ. However,
the form of the distribution can be suggested by a simple
qualitative argument when the number of longitudinal
modes ML (see [7][p. 28]) is much larger than one. For
bending-magnet radiation ML ∼ ωσt, for undulator radia-
tion ML ∼ ωσt=Nu, where Nu is the number of undulator
periods, see Eq. (56). Indeed, in this case the total number
of detected photons N is the sum of a large number of
independent random numbers of detected photons coming
from small longitudinal slices of the bunch. Therefore,
according to the central limit theorem, N follows a normal
distribution with good accuracy. More details on the exact
distribution of N can be found in [3,7,23,28–30] which
suggest that, in the case of incoherent spontaneous radi-
ation, the classical radiated power obeys Gamma statistics.

IV. PRACTICAL APPROXIMATIONS

The integrals in Eq. (49) can be evaluated analytically
in multiple cases, when some approximations are used.

Assuming a Gaussian form of ηkI
ð1Þ
k , an expression for M

was previously reported in [2]. Similar calculations for a
one-dimensional model (longitudinal) were carried out in
[[7] pp. 26–28]. Below we present the results of our
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calculation for the fundamental harmonic of undulator
radiation. We assume a small undulator parameter,
Ku ≪ 1, and a large number of periods, Nu ≫ 1. The
electrons are ultrarelativistic, γ ≫ 1. We employ the for-
mula for spectral-angular distribution of the radiation
reported in Refs. [31,32]. We consider an ideal detector
with a rectangular aperture. The horizontal and vertical
angular sizes are θx and θy, respectively. The detector is
assumed to be much smaller than the characteristic angular
size of the undulator radiation,

θx; θy ≪ 1=ðγ
ffiffiffiffiffiffi
Nu

p
Þ: ð55Þ

We may assume a detector registering both polarization
components. However, given Eq. (55), the vertical compo-
nent is negligible.
Given the above approximations, the following two

expressions for the number of coherent modes M can be
obtained in two opposite limiting cases. In the first case,
when θx; θy ≪ 1=ðk1σxÞ; 1=ðk1σyÞ,

M ¼ ð1 − 1=neÞ−1
3

2
ffiffiffi
π

p cσtk1
Nu

; ð56Þ

which essentially implies radiation, fully coherent in trans-
verse plane. Hence, M is determined solely by the number
of longitudinal modes.
In the second case, when θx; θy ≫ 1=ðk1σxÞ; 1=ðk1σyÞ,

M ¼ ð1 − 1=neÞ−1
3

2π3=2
cσtk1
Nu

ðσxk1θxÞðσyk1θyÞ; ð57Þ

where we can see the product of the numbers of both
longitudinal and transverse modes. In Eqs. (56) and (57), k1
refers to the first harmonic (fundamental) of the undulator
radiation. Do not confuse with k1, which was used as an
integration variable previously. In the limit of Ku ≪ 1,

k1 ¼ 2γ2
2π

λu
; ð58Þ

where λu is the undulator period.
Another example when an expression for M takes a

simple form is the extreme approximation of a single mode
detector, which can only sense one optical mode with a
certain wave vector k. It readily follows from Eq. (41) that
in this model M ¼ 1=ð1 − 1=neÞ. Hence,

varðN Þ ¼ hN i þ ð1 − 1=neÞhN i2: ð59Þ

which coincides with the results, reported in Refs. [1,33–
36]. Equation (59) is correct for any source of temporally
incoherent synchrotron radiation, and for any direction and
wavelength of k.

V. BROOKHAVEN EXPERIMENT

In the seminal experiment at Brookhaven National
Laboratory [1], the fluctuations in the wiggler and
bending-magnet radiation were studied in the vacuum-
ultraviolet (VUV) electron storage ring. The wiggler
radiation data in Fig. 3 were extracted from the original
paper [1] by digitizing the plot. The scale was also changed
from log-log to a linear scale. This procedure could have
introduced some deviations from the original data, but the
deviations are believed to be negligible.
The data for the wiggler radiation was collected for

the fundamental harmonic, λ1 ¼ 532 nm. An optical inter-
ference filter with FWHM ¼ 3.2 nm and a maximum
transmission at λ1 was used. Polarizing filters were not
used. The parameters of the wiggler and the electron
bunch are listed in Table I. A silicon PIN photodiode
was used to detect the wiggler radiation. The measurements
were carried out with two different lattice configurations,
i.e., two different transverse beam profiles—in the lan-
guage of the authors of [1], a tightly focused beam and a
loosely focused beam. In this paper, we will refer to them as
lattice configuration A and lattice configuration B,
respectively.
The mean photoelectron count was mainly varied by

using a variable neutral density filter. For filters of this type,
the efficiency ηk does not depend on the radiation wave-
length. Hence, ηk1 , ηk2 , and ηk cancel out in the numerator
and the denominator of Eq. (49). In Eq. (40), M does not
change when the transmission of the neutral density filter
changes. However, the average number of detected photons
hN i changes, in accordance with Eq. (38).
The two solid curves in Fig. 3 are the theoretical pre-

dictions made by Eqs. (40) and (49) using the parameters of
the electron bunch, the wiggler, and the monochromator,
given in [1]. The Gaussian model for the transmission of
the monochromator was used. Equation (49) gives the
following results for lattice configurations A and B,
MA ¼ 5.7 × 104, MB ¼ 6.0 × 104.

FIG. 3. Experimental data from Ref. [1] for wiggler radiation
(points) and predictions made by our calculation (solid curves).
The noise variance (3 × 108) has been subtracted from the data.
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Although our calculation agrees well with the measure-
ments at lattice configuration A, there is some disagreement
at lattice configuration B. In terms of the M parameter, the
deviation is about 20%. It is not clear if this disagreement
comes from inaccuracy in our calculations or from our
incomplete understanding of the experiment configuration
from [1]. The experiment took place three decades ago and
a detailed description is currently not available. This is one
of the motivations for carrying out a new dedicated
experiment in IOTA.
Furthermore, in the Brookhaven experiment, the number

of coherent modes (MA, MB) is much smaller than the
average number of photoelectrons hN i. Hence, the first
term in Eq. (40) is negligible. Therefore, these data do not
test Eq. (40) in the regime when the two contributions are
comparable. This may be achievable in an independent
experiment in IOTA.

VI. PROPOSED EXPERIMENT IN IOTA

We propose a dedicated study of fluctuations in the
number of detected undulator radiation photons in the
IOTA storage ring at Fermilab [16].
In addition to the motivation outlined in the end of

Sec. V, these measurements can also provide information
about the dimensions and the shape of the electron bunch in
IOTA. Indeed, Eqs. (49), (53), and (54) indicate that the
magnitude of the fluctuations depends on the dimensions of
a Gaussian bunch. Also, if the longitudinal shape of the

bunch is not Gaussian, it will be reflected in the magnitude
of the fluctuations according to Eq. (48).
Currently, the transverse beam sizes σx and σy are

measured by synchrotron radiation monitors using the
radiation from dipole magnets, while σt is measured by
a wall-current monitor. The existing physical model of
beam lifetimes and beam shapes in IOTA (taking into
account intrabeam scattering, gas scattering, quantum
excitation, etc.) is not fully consistent with observations
[38]. An independent estimate of σx, σy, and σt through
fluctuations in undulator radiation, see Eq. (49), may help
resolve inconsistencies.
Because in IOTA the fundamental of the undulator

radiation is in the near infrared range, λ1 ¼ 1120 nm, it
will be necessary to use an InGaAs PIN photodiode (for
example, [39]) instead of the silicon one, used in [1]. We
will not use a polarizing filter. Both polarization compo-
nents will be registered. The spectral distribution of the
number of photons emitted into an aperture with 2 inch
diameter, located 3.5 m away from the undulator in IOTA is
shown in Fig. 4 (the red curve). This curve was obtained by
using our simulation package [26] and also verified by an
independent simulation using the SRW software [40]. This
curve represents the intensity per electron.
Assuming no additional losses apart from the quantum

efficiency of the InGaAs photodiode, we estimated the
expected number of photon counts hN i and the number of
coherent modesM for the proposed IOTA experiment. The
results are given in Table I and in Fig. 5. We propose not to

TABLE I. Summary of the parameters of the Brookhaven experiment [1] and the proposed experiment at Fermilab in the IOTA storage
ring [16,18]. The electron bunch dimensions correspond to the center of the wiggler (undulator). Both rings store a single electron
bunch. The parameters of IOTA are given at Ibeam ¼ 1.3 mA. For more details about the undulator in IOTA, see [37]. Some parameters
of the BNL VUV ring are followed by (A) or (B) to specify the corresponding lattice configuration.

Parameter BNL VUV ring Fermilab IOTA ring

Ring circumference 51.06 m (170.2 ns) 40 m (133 ns)
Beam energy 650 MeV 100 MeV
Typical average current 50 mA 1.3 mA
Horizontal emittance (rms), ϵx 0.80 μmðAÞ, 0.74 μmðBÞ 0.32 μm
Vertical emittance (rms), ϵy 0.20 μmðAÞ, 0.26 μmðBÞ 31 nm
Relative momentum spread, σp=p (not available) 3.1 × 10−4

Horizontal beam size, σx 1.0 mm(A), 0.96 mm(B) 815 μm
Vertical beam size, σy 0.32 mm(A), 0.36 mm(B) 75 μm
Longitudinal bunch size, σz (σt) 6.11 cm (0.204 ns) 38 cm (1.3 ns)
Beam lifetime ≈100 min > 10 min
Wiggler (undulator) parameter, Ku 5.7 1.06
Wiggler (undulator) period, λu 10 cm 5.5 cm
Number of wiggler (undulator) periods, Nu 22.5 10.5
Fundamental harmonic wavelength, λ1 532 nm 1120 nm
Photodiode diameter (not available) 1 mm
Quantum efficiency @λ1 78% 80%
Monochromator FWHM 3.2 nm (not used)
Simulated number of photon counts per turn, hN i 5.6 × 107 3.3 × 107

Simulated number of coherent modes, M 5.7 × 104ðAÞ, 6.0 × 104ðBÞ 1.2 × 107

Ratio of fluctuation contributions, hN i=M ≈103 ≈3
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use a monochromator in IOTA. This will let us see
approximately the same average photon count hN i as in
the Brookhaven experiment, even though the beam current,
beam energy, wiggler (undulator) parameter Ku, and the
number of wiggler (undulator) periods is lower in IOTA.
This is important in order to have a signal of a comfortable
amplitude for measurements.
The absence of a monochromator may also make the

number of coherent modes M much larger than in the
Brookhaven experiment, see Table I, and comparable to
hN i. This may allow us to probe Eq. (40) in the regime
where the two sum terms are comparable, see the last row in
Table I. Indeed, the curve denoted by M0 in Fig. 5 is rather
close to the green dashed line, representing the photon shot
noise fluctuations.M0 was calculated by Eq. (49) assuming
no additional losses except for the quantum efficiency of
the detector. This is the value of M reported in Table I.
The curves denoted by M1 and M2 were calculated with
bandpass filters (1050 nm, 1350 nm) and (1150 nm,
1300 nm), respectively:M1¼4.9×106 andM2¼2.7×106.
We provide these two curves to show how the data may
change due to spectral properties of additional optical
elements in the measurement apparatus. The measured
spectral range will likely be narrower than that of the
InGaAs photodiode, and it will be determined by

transmission curves of additional optical elements, such
as lenses, mirrors, and, possibly, bandpass filters.
As opposed to neutral density filters, bandpass filters do

change the number of coherent modes M. However,
typically, at fixed beam current and shape, the ratio between
the incoherence contribution and the photon shot noise
contribution in Eq. (40), namely, hN i=M, stays approx-
imately constant when different bandpass filters are
used. In a simplified model of Gaussian spectral-angular
distribution of radiation, considered in [2], this statement
is exact. In the proposed experiment in IOTA, at Ibeam ¼
1.3 mA, hN i=M ≈ 3, see Table I.
In the simulation in Fig. 5, we assume the same

measurement procedure as in the Brookhaven experiment.
Namely, in each curve, the mean photon count hN i is
varied by using a variable neutral density filter. The bunch
charge is constant. This means that σx, σy, σt, and, hence,
M are constant too. The values used in the simulation
are provided in Table I. In our experiment in IOTA, we
also plan to vary the bunch charge and observe how
the magnitude of the fluctuations varðN Þ changes. The
dependence of varðN Þ on hN i is expected to be nontrivial
(not a parabola) because the dimensions of the electron
bunch in IOTA change significantly with beam current, and
so should M, according to Eq. (49). Some examples of the
effects that depend on beam current and that determine the
electron bunch shape and size in IOTA include intrabeam
scattering [41–43] and longitudinal self-focusing due to
space-charge [24]. The proposed measurements may help
improve our understanding of these effects in IOTA.

VII. CONCLUSIONS

We derived Eq. (34), which predicts the fluctuations
varðN Þ in spontaneous synchrotron radiation with any
degree of coherence for an electron bunch of arbitrary
shape. Then, several possible simplifications were consid-
ered in the case of temporally incoherent radiation. The
formulas properly take into account the discrete nature of
light and the quantum efficiency of the detector, which, in
general, is a function of the radiation wavelength. A
spectral filter with any transmission function can be
incorporated by including the transmission function into
ηk in Eqs. (34) and (49). The detector acceptance can be
taken into account by setting ηk to zero outside of a given
angular range.
The predicted variance vs radiation intensity was com-

pared with the empirical data from a previous experiment
at Brookhaven [1] for the case of wiggler radiation with
a dominant incoherence contribution. We propose a new
experimental study of undulator radiation fluctuations in
IOTA. In this experiment, Eq. (40) may be tested in a new
regime, when the photon shot noise contribution and the
incoherence contribution are comparable.
As was pointed out in [2–5], the fluctuations in syn-

chrotron radiation can be used to determine the bunch

FIG. 4. Spectral distribution of the number of emitted photons
(per electron) from the undulator in IOTA (red curve). Quantum
efficiency of an InGaAs PIN photodiode (blue curve).

FIG. 5. Simulations for photoelectron count variance in IOTA
for three different filter configurations. The green dashed line
represents the photon shot noise contribution to the fluctuations.
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length on a picosecond scale, and the proof of principle
experiments were successful. In IOTA, the longitudinal
bunch size is relatively large, σz¼38 cm at Ibeam¼1.3mA,
and can be easily measured with a wall-current monitor. On
the other hand, the transverse bunch size (especially
vertical) can be quite small, down to a few tens of microns,
where it may be difficult to measure by conventional
synchrotron radiation monitors, because of the diffrac-
tion limit. However, the number of coherent modes M in
the undulator radiation in IOTA is rather sensitive to the
transverse bunch size. Therefore, the magnitude of the
fluctuations may help determine the transverse dimensions
of the electron bunch.
In any case, the measurement of undulator radiation

fluctuations in IOTA is a measurement of a certain function
[see Eqs. (40) and (49)] of electron bunch dimensions and
shape. This measurement is independent from the wall-
current monitor and the synchrotron radiation monitors.
Therefore, it may help refine the existing model of the
physical effects determining the electron bunch parameters

in IOTA. The results of the proposed experiment in IOTA
will be reported in a separate paper.
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APPENDIX A: BEAM SPLITTER
DETECTOR MODEL

Using Eq. (12) in Eq. (14) we obtain

N̂ ¼
X
k

ðηkâ†kâk þ i
ffiffiffiffiffi
ηk

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk

p
â†kĉk − i

ffiffiffiffiffi
ηk

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk

p
ĉ†kâk þ ð1 − ηkÞĉ†kĉkÞ: ðA1Þ

Equation (18) readily follows from Eq. (A1), since only the first term in the parentheses will provide a nonzero
contribution.
The derivation of Eq. (19) is more lengthy,

ch0jN̂ 2j0ic ¼ ch0j
X
k1

b̂†k1 b̂k1
X
k2

b̂†k2 b̂k2 j0ic

¼ ch0j
X
k1;k2

ðηk1 â†k1 âk1 þ i
ffiffiffiffiffiffi
ηk1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk1

p
â†k1 ĉk1 − i

ffiffiffiffiffiffi
ηk1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk1

p
ĉ†k1 âk1 þ ð1 − ηk1Þĉ†k1 ĉk1Þ

ðηk2 â†k2 âk2 þ i
ffiffiffiffiffiffi
ηk2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk2

p
â†k2 ĉk2 − i

ffiffiffiffiffiffi
ηk2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk2

p
ĉ†k2 âk2 þ ð1 − ηk2Þĉ†k2 ĉk2Þj0ic: ðA2Þ

After considering the products of each term from the first parentheses with each term from the second parentheses, we
conclude that only the following two will provide nonzero contributions,

ch0jN̂ 2j0ic ¼ ch0j
X
k1;k2

ðηk1ηk2 â†k1 âk1 â
†
k2
âk2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηk1ð1 − ηk1Þηk2ð1 − ηk2Þ

q
â†k1 ĉk1 ĉ

†
k2
âk2Þj0ic

¼
X
k1;k2

ηk1ηk2 â
†
k1
ðâ†k2 âk1 þ δk1;k2Þâk2 þ

X
k

ηkð1 − ηkÞâ†kâk

¼
X
k1;k2

ηk1ηk2 â
†
k1
â†k2 âk1 âk2 þ

X
k

η2kâ
†
kâk þ

X
k

ηkâ
†
kâk −

X
k

η2kâ
†
kâk; ðA3Þ

where we employed the commutation relation [14],

½âk1 ; â†k2 � ¼ δk1;k2 ¼
�
1; if k1 ¼ k2;

0; otherwise;
ðA4Þ

and also the fact that

ch0jĉk1 ĉ†k2 j0ic ¼ δk1;k2 : ðA5Þ

Clearly, Eq. (A3) is equivalent to Eq. (19).
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APPENDIX B: CALCULATION OF THE
EIGENVALUES OF THE COHERENT STATES OF

RADIATION OF AN ELECTRON BUNCH

The current density of the electron bunch is

jðξ; r; tÞ ¼
X
m

evmðtÞδðrmðtÞ − rÞ; ðB1Þ

where δð::Þ is the Dirac delta function, m ¼ 1;… ne.
Without loss of generality one can choose the electron

with m ¼ 1 to be the reference electron. To be specific, for
this electron, the time of entrance is zero, t1 ¼ 0, and the
initial transverse position is zero, r1⊥ ¼ 0. We assume that
in the synchrotron light source under consideration the
trajectory of the mth electron is merely the trajectory of the
reference electron offset by rm⊥ ¼ ðxm; ym; 0Þ. It is usually
a good approximation in undulators, wigglers, and bending
magnets. In this case,

jðξ; r; tÞ ¼
X
m

ev1ðt − tmÞδðr1ðt − tmÞ þ rm⊥ − rÞ: ðB2Þ
By integrating over r in Eq. (10) using Eq. (B2), we

obtain

αkðξÞ ¼
ieffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L3ℏω
p

X
m

Z
dtesðkÞ · v1ðt − tmÞ

× eik·r1ðt−tmÞþik·rm⊥−iωðt−tmÞ: ðB3Þ

By changing the integration variable from t to t − tm in
each summation term one arrives at

αkðξÞ ¼
ieffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L3ℏω
p

X
m

eik·rm⊥−iωtm
Z

dtesðkÞ · v1ðtÞeik·r1ðtÞ−iωt

¼
�X

m

eik̃·rm
�
× αð1Þk : ðB4Þ

Similar calculations have been presented in [2,7,19].

APPENDIX C: CALCULATION OF
PHOTOCOUNT VARIANCE FOR
ARBITRARY BUNCH SHAPE

In this Appendix, we derive Eq. (34). We will need to use
the following relation in Eq. (27),

J k1ðξÞJ k2ðξÞ ¼
����Xm

eik̃1·rm
����2
����Xn

eik̃2·rn
����2 ¼

�
ne þ

X
m≠n

eik̃1·ðrm−rnÞ
��

ne þ
X
i≠j

e−ik̃2·ðri−rjÞ
�

¼ n2e þ ne
X
m≠n

eik̃1·ðrm−rnÞ þ ne
X
i≠j

e−ik̃2·ðri−rjÞ þ
X
m≠n

eiðk̃1−k̃2Þ·ðrm−rnÞ þ
X
m≠n;i≠j
m;n≠i;j

eik̃1ðrm−rnÞ−ik̃2ðri−rjÞ: ðC1Þ

The next step is to multiply each term of Eq. (C1) by
pðξÞ and integrate over ξ. The integral of the first term in
Eq. (C1) is trivial. The second, third and fourth terms have
the same form as Eq. (31). Therefore, we simply provide
the results,Z

dξpðξÞne
X
m≠n

eik̃1·ðrm−rnÞ ¼ n2eðne − 1ÞjPðk̃1Þj2; ðC2Þ

Z
dξpðξÞne

X
i≠j

e−ik̃2·ðri−rjÞ ¼ n2eðne − 1ÞjPðk̃2Þj2; ðC3Þ

Z
dξpðξÞ

X
m≠n

eiðk̃1−k̃2Þ·ðrm−rnÞ ¼ neðne − 1ÞjPðk̃1 − k̃2Þj2:

ðC4Þ

The fifth (last) term has to be considered separately. It
can be represented in the following form,

X
m≠n;i≠j
m;n≠i;j

eik̃1ðrm−rnÞ−ik̃2ðri−rjÞ ¼ A1ðξÞ þ A2ðξÞ þ A3ðξÞ; ðC5Þ

where

A1ðξÞ ¼
X
m≠n
j≠n
j≠m

eiðk̃1−k̃2Þ·rm−ik̃1·rnþik̃2·rj ; ðC6Þ

A2ðξÞ ¼
X
m≠n
i≠n
i≠m

e−iðk̃1−k̃2Þ·rnþik̃1·rm−ik̃2·ri ; ðC7Þ

A3ðξÞ ¼
X
m≠n
i≠j
i≠m
j≠n

eik̃1·ðrm−rnÞ−ik̃2·ðri−rjÞ: ðC8Þ

Integration of Eq. (C5) is analogous to Eq. (31), with the
exception that counting the terms in the sums is more
difficult. Omitting the details,

Z
dξpðξÞA1ðξÞ ¼

�Z
dξpðξÞA2ðξÞ

��
¼ neðne − 1Þðne − 2Þ
× Pðk̃1 − k̃2ÞP�ðk̃1ÞPðk̃2Þ; ðC9Þ
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Z
dξpðξÞA3ðξÞ ¼ neðne − 1Þðn2e − 3ne þ 3ÞjPðk̃1ÞPðk̃2Þj2: ðC10Þ

When Eqs. (C2) to (C4), (C9) and (C10) are used together with Eq. (C1) to calculate the integral over ξ in Eq. (27), one
arrives atZ

dξpðξÞJ k1ðξÞJ k2ðξÞ ¼ n2e þ neðne − 1ÞjPðk̃1 − k̃2Þj2

þ neðne − 1Þ½neðjPðk̃1Þj2 þ jPðk̃2Þj2Þ þ ðne − 2ÞðPðk̃1 − k̃2ÞP�ðk̃1ÞPðk̃2Þ þ c:c:Þ
þ ðn2e − 3ne þ 3ÞjPðk̃1ÞPðk̃2Þj2�: ðC11Þ

Finally, one can obtain Eq. (34), by using Eqs. (33) and
(C11) in Eq. (27).

APPENDIX D: GAUSSIAN BUNCH EXAMPLE

In this Appendix we provide the form of Eqs. (33) and
(34) for a Gaussian electron bunch, where each electron has
the probability function as in Eq. (52). In this case, the

integration over r in Eq. (32) can be performed by using the
Hubbard-Stratonovich identity [44]. The results are

hN i ¼ ne

Z
dkηkI

ð1Þ
k ð1þ ðne − 1Þe−K·ΣÞ; ðD1Þ

where K≡ ðk2x; k2y; k2Þ, Σ≡ ðσ2x; σ2y; c2σ2t Þ,

varðN Þ ¼ hN i þ neðne − 1Þ
Z

dk1dk2ηk1I
ð1Þ
k1
ηk2I

ð1Þ
k2
½Δ2 − Σ2 þ 2ðne − 2ÞΣðΣ − ΔÞ�: ðD2Þ

where

Δ ¼ e−
1
2
Δ12·Σ; Σ ¼ e−

1
2
K12·Σ; ðD3Þ

Δ12 ¼ ½ðk1x − k2xÞ2; ðk1y − k2yÞ2; ðk1 − k2Þ2�; ðD4Þ

K12 ¼ ðk21x þ k22x; k
2
1y þ k22y; k

2
1 þ k22Þ: ðD5Þ

APPENDIX E: BROAD-SPECTRUM
APPROXIMATION

Start with the following ansatz,

jPtðkÞj2 ¼ κtδðkÞ: ðE1Þ
Then,

κt ¼
Z

dkjPtðkÞj2

¼
Z

dk
Z

ptðt1Þeickt1dt1
Z

ptðt2Þeickt2dt2

¼ 2π

Z
ptðt1Þptðt2Þ

�Z
eickðt1−t2Þ

2π
dk

�
dt1dt2

¼ ð2π=cÞ
Z

ptðt1Þptðt2Þδðt1 − t2Þdt1dt2

¼ ð2π=cÞ
Z

p2
t ðtÞdt: ðE2Þ

APPENDIX F: ESTIMATION OF NUMBER
OF COHERENT MODES

An order of magnitude estimate of the number of
coherent modesM can be made as the ratio of the radiation
phase space volume Ω and the coherent phase space
volume ΩR [2,7,25,45]:

M ¼ Ω
ΩR

; ðF1Þ

where

ΩR ¼ 1=ð2kÞ3: ðF2Þ

Given that Eq. (1) is satisfied, the following expression for
Ω can be used [[7] pp. 26–28],

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x þ σ2r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y þ σ2r

q
σ2r0cσtσω=ω; ðF3Þ

where σω=ω describes the width of the radiation spectrum,
σr is the effective radiation source size, σr0 is the angular
divergence of the radiation.
For the fundamental of undulator radiation, see [[25]

pp. 56, 75],

σr ¼
1

4π

ffiffiffiffiffiffiffiffiffiffi
λ1Lu

p
; σr0 ¼

ffiffiffiffiffiffi
λ1
Lu

s
; ðF4Þ
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σω=ω ¼ 1

Nu
; k ¼ k1 ¼

2π

λ1
; ðF5Þ

where Nu is the number of undulator periods, Lu is the
length of the undulator, and λ1 is the wavelength of the
fundamental.
In IOTA, 1=ð2k1Þ ¼ 89 nm, σr ¼ 64 μm, σr0 ¼1.4mrad,

σω=ω ¼ 1=Nu ¼ 0.095. With these values, Eq. (F1)
gives M ¼ 8.6 × 106.
In the Brookhaven experiment, at lattice configuration A,

1=ð2k1Þ¼42 nm, σr ¼ 87 μm, σr0 ¼ 0.49 mrad. The width
of the radiation spectrum was determined by the mono-
chromator, σω=ω¼3.2 nm=2.355=532 nm¼2.55×10−3,
see Table I. With these values, Eq. (F1) gives
M ¼ 1.6 × 105.
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