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The suppression of transverse wakefield effects using transversely elliptical drive beams in a planar
structure is studied with a simple analytical model that unveils the geometric nature of this phenomenon. By
analyzing the suggested model we derive scaling laws for the amplitude of the longitudinal and transverse
wake potentials as a function of the Gaussian beam ellipticity—σx=a. We explicitly show that in a wakefield
accelerator application it is beneficial to use highly elliptical beams for mitigating transverse forces while
maintaining the accelerating field. We consider two scaling strategies: (1) aperture scaling, where we keep a
constant charge to have the same accelerating gradient as in a cylindrical structure and (2) charge scaling,
where aperture is the same as in the cylindrical structure and charge is increased to match the gradient.
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I. INTRODUCTION

Single-bunch beam breakup (BBU) effects stem from the
excitation of transverse wakefields driven by off-axis par-
ticles in a particle accelerator. One of the suggested methods
of mitigating the effects of beam coupling to transverse
wakefields is the introduction of a bunched beam with high
transverse ellipticity in a rectangular structure with high
aspect ratio [1]. Transverse mode control and suppression is
relevant for many accelerator applications, however these
effects are particularly urgent when considering advanced
accelerator concepts operating at high frequency and gra-
dient. For example, collinear wakefield acceleration driven
by intense charged particle beams in dielectric materials, has
demonstrated GV/m fields [2] in THz wakefields, and is
considered a candidate method to surpass the field gradients
of existing radio frequency structures. The practicality
of beam-driven wakefield acceleration for high-energy

applications depends on the ability to extend the length of
the acceleration process, which may be limited by BBU
instability [3,4]. The beam-mode coupling can be dramati-
cally reduced for beams with high transverse ellipticity in
structures with planar geometry (consisting of two parallel
planes of retarding material infinitely long in the z direction,
and a width in x direction much larger than the beam RMS
width σx). Although when employing elliptical beams the
longitudinal electric field behind the elliptical bunch
decreases as ∼1=σx, the deflecting force due to transverse
fields scales as ∼1=σ3x, leading to an advantageous scenario
where the effects of the transverse forces can be heavily
suppressedwhile maintaining substantial longitudinal fields.
This effect was described using direct application of boun-
dary conditions to Maxwell’s equations for the case of a
planar dielectric loadedwaveguide inRef. [1]. The continued
studies on structures with planar geometry are relevant as
these structures are commonly used inwakefield acceleration
and beamphase spacemanipulation experiments today [5–8]
and provide a natural path forward for more advanced
applications.
In this paper, we further investigate the phenomenon

of wakefield generation in a rectangular structure driven
by an elliptical beam, by using an alternative approach
based purely on geometric considerations. We base our
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explanations on the limiting values of the wake potentials,
previously derived inRef. [9]. In this approach,wakefields in
a longitudinally translationally invariant structure lined with
layers of an arbitrary impedance material (of dielectric,
resistive, or corrugated type) have been developed. The
analysis of Ref. [9] yields a derivation of expressions for the
wakefields that are based on a conformalmappingmethod. It
has been shown that the limiting value of losses and kicks for
a pointlike bunch is independent of material properties and
depends only on the transverse shape of the bunch and the
cross-section shape of the vacuum channel [10–13].
Following the conventions of Ref. [9], we consider a point-
like bunch in the longitudinal coordinate with a given
distribution in the transverse coordinates. Using this model,
the transverse wake potential is calculated for various
transverse beam distributions. For charge distributions of
varying ellipticity, the results are compiled to construct trade-
off curves comparing the relative strengths of the longi-
tudinal and transversewake potentials. Finally, the transverse
wake potentials of the elliptical beam model are directly
compared to those obtained in the cylindrically symmetric
case using scaled variables with respect to structure aperture
and beam charge.

II. THEORETICAL MODEL OF A PLANAR
STRUCTURE

The theoretical basis for our wakefield model, where the
loss and kick factors are derived, has been explored in detail
in Ref. [9] and is summarized here. In this treatment, we
restrict the analysis to the upper limits of the fields to obtain
the relevant scaling relations for elliptical beams. The
expressions for the upper limits of the longitudinal electric
field, E0þ

z , and of the transverse component of the Lorentz
force, F⊥, as a function of generalized complex coordinates
are

E0þ
z ðω;ω0Þ ¼ −

4Q
a2

ℜ½f0ðω;ω0Þ�f0ðω0;ω0Þ�; ð1Þ

F⊥ðω;ω0; ζÞ ¼
4qQθðζÞζ

a2
f00ðω;ω0Þ�f0ðω0;ω0Þ: ð2Þ

HereQ is the charge of the particle generating thewakefield,
q is the charge of the test particle, a is the size of the structure
aperture, ζ ¼ ct − z is the longitudinal distance behind the
particle and the test particle, and θðζÞ is the Heaviside
function which ensures that the field is nonvanishing only
behind the particle, as dictated by causality, superscript 0þ
stands for the point ζ ¼ 0þ taken immediately behind the
particle in the case ofEz. The cross section of the structure is
described as a complex plane with ω ¼ x0 þ iy0; in this
analysis F⊥ ¼ Fx0 þ iFy0 and fðω;ω0Þ is the conformal
mapping function that transforms the cross section of interest
onto a circle such that the point ω0 corresponds to the center
of a circle. Here the use of asterisks denotes complex
conjugation.
At this point, it should be reiterated that Eqs. (1) and (2)

represent the upper bounds for the corresponding wake-
fields driven by longitudinal pointlike particles. The exact
solutions for the complete wakefield evolution will have
specific dependence on a given longitudinal bunch distri-
bution. However, the analysis is propitious because it
describes the worst-case scenario for the transverse forces
as the amplitude of the pointlike particle wake potential
will always be greater or equal to that of a distribution
for a given charge. In other words, for a charge density,
ρzðζ0Þ, the transverse force experienced by the bunch
will not exceed

R
ζ
−∞ F⊥ðω;ω0; ζ − ζ0Þρzðζ0Þdζ0, with

F⊥ðω;ω0; ζ − ζ0Þ in Eq. (2). In practice, optimization
requires prudent augmentation of the longitudinal field
with respect to the integrated transverse force.
Now let us consider the cross section ψ ¼ xþ iy of a

planar structure (Fig. 1 first left panel). First we introduce a
change of the coordinates to rotate the strip by π=2 in angle,
ωðψÞ ¼ iψ�. Then we build a conformal map of the strip
onto a circle, as diagrammed in Fig. 1. The plane ω is
mapped onto a circle of radius a with the function

χðωÞ ¼ a tan

�
π

4

ω

a

�
: ð3Þ

The point of the bunch location ω0, is mapped to a point
χ0 ¼ a tan ðπ

4
ω0

a Þ. Then, we map a new circle on this circle
such that the point χ0 corresponds to the center of the last
circle. This mapping is accomplished using the function

FIG. 1. Initial plane ψ and schematics of the conformal mapping of the ω plane.
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fðχ; χ0Þ ¼ a2
χ − χ0
a2 − χχ�0

: ð4Þ

Using Eqs. (1) and (2) we can calculate the transverse part
of the Lorentz force and longitudinal electric field in ω
plane. Combining (3) and (4) we arrive at

fðω;ω0Þ ¼ a
tan ðπ

4
ω
aÞ − tan ðπ

4
ω0

a Þ
1 − tan ðπ

4
ω
aÞ tan ðπ4

ω�
0

a Þ
: ð5Þ

First we calculate

f0ðω;ω0Þ ¼
π

4

ðsec ðπ
4
ω
aÞÞ2ð1 − j tan ðπ

4
ω0

a Þj2Þ
½1 − tan ðπ

4
ω
aÞ tan ðπ4

ω�
0

a Þ�
2

: ð6Þ

here prime denotes total derivative by ω.
Consequently

f0ðω0;ω0Þ ¼
π

4

½sec ðπ
4
ω0

a Þ�2
1 − j tan ðπ

4
ω0

a Þj2
: ð7Þ

Combining (6) and (7) with (1) we have an expression of
the longitudinal field in the ω plane

E0þ
z ðω;ω0Þ ¼ −

4Q
a2

π2

16
ℜ

��
sec

�
π

4

ω� þ ω0

a

��
2
�
: ð8Þ

Now, we examine the transverse force component and note
that

½F⊥ðω;ω0Þ�� ¼
d
dω

f0ðω;ω0Þf0ðω0;ω0Þ�; ð9Þ

and consequently

½Fω⊥ðω;ω0Þ�� ¼
4qQθðζÞζ

a3
π3

32

�
sec

�
π

4

ωþ ω�
0

a

��
2

× tan

�
π

4

ωþ ω�
0

a

�
: ð10Þ

Making a substitution ωðψÞ ¼ iψ� in (8) we arrive at the
transverse dependence of Ez in ψ plane

E0þ
z ðψ ;ψ0Þ ¼ −

4Q
a2

π2

16
ℜ

��
sech

�
π

4

ψ − ψ�
0

a

��
2
�
: ð11Þ

Taking into account that Fψ
⊥ ¼ iðFω⊥Þ� with the substitution

ωðψÞ ¼ iψ� and (10) we arrive at

Fψ
⊥ðψ ;ψ0Þ ¼ −

4qQθðζÞζ
a3

π3

32

�
sech

�
π

4

ψ� − ψ0

a

��
2

× tanh

�
π

4

ψ� − ψ0

a

�
: ð12Þ

Since we are only interested in the properties of the
distributions, we introduce scaled wake potentials per unit
length in the form wk ¼ −E0þ

z =Q and w⊥ ¼ Fψ
⊥=ðqQÞ.

With this we finally obtain the longitudinal and transverse
wake potentials,

wkðψ ;ψ0Þ ¼
π2

4a2
ℜ

��
sech

�
π

4

ψ − ψ�
0

a

��
2
�
; ð13Þ

w⊥ðψ ;ψ0Þ ¼ −
π3θðζÞζ
8a3

�
sech

�
π

4

ψ� − ψ0

a

��
2

× tanh

�
π

4

ψ� − ψ0

a

�
: ð14Þ

It is noteworthy that the results for the longitudinal and
transverse wake potentials for a planar structure in (13) and
(14) agree with previously derived results for a rectangular
corrugated structure [13]. In Ref. [13], a different approach
of surface impedances, developed in [14], was employed.
Both approaches [9] and [13,14] predict the same interest-
ing result, namely, the limiting value of the loss and kick
factors are independent of the properties of the retarding
material, and therefore the transverse dependencies are
properties of the geometry only. For a more detailed
explanation of these concepts we refer the reader to the
original works [9,10,13,14].

III. MECHANISM FOR THE TRANSVERSE
WAKEFIELD DAMPING

The effects of the transverse wake potential are man-
ifested in transverse forces that may lead to the growth of
the BBU instability. There are many methods proposed to
stabilize the growth of this effect, such as using external
magnetic focusing elements superimposed on the accel-
erating channel [3,4,15] to exploit BNS damping [16]. In
this section, we explore an alternative method described in
[1,17], whereby the coupling to the transverse wake is
mitigated by employing highly elliptical drive beams in
rectangular structures.
First, we plot field lines for the transverse wake potential

(14) for the case when a point particle is traveling along the
axis of the planar structure (Fig. 2 left panel), and second,
for an off-axis point particle displaced by y0 ¼ 0.2a
(Fig. 2 right panel). From Fig. 2 it is apparent that the
transverse wake potential has a vortex-like structure away
from the origin, while near the origin, the field can be
described as “quadrupolelike”, because the field focuses
along x-axis and defocuses along y-axis. In the case of the
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off-axis particle, the vortexlike structure actually leads to
focusing in both y and x directions, along the displacement
line (dashed line on Fig. 2 right panel) for jx=aj > ∼1.
For simplicity in further analysis, we assume that the

y-dimension of the drive bunch is much smaller then the
aperture a, and we consider small y0 displacements from
the center. Using this approximation we decompose (13)
and (14) in a Taylor series at the point y ¼ y0 ¼ 0 keeping
only linear terms in y and y0. Thus, for the longitudinal
wake potential we have

wkðx; x0; y; y0Þ ≈
π2

4a2

�
sech

�
π

4

x − x0
a

��
2

; ð15Þ

and for the y-component of the transverse wake potential
we have

wyðx; x0; y; y0Þ ≈
π4ðyþ y0ÞζθðζÞ

32a4

�
sech

�
π

4

x − x0
a

��
4

×

�
2 − cosh

�
π

2

x − x0
a

��
: ð16Þ

Formulas (15) and (16) are approximate transverse Green’s
functions for the longitudinal wake potential and the y
component of the transverse wake potential respectively,
that are valid for bunches with σy ≪ a and small displace-
ments in y.
Now, we assume a transverse bunch distribution of the

form

ρðx0; y0Þ ¼ ρxðx0Þρyðy0Þ ¼ ρxðx0Þδðy0 − 0.01aÞ; ð17Þ

and y ¼ 0.01a.
We plot the x dependence of wk and wy for the point

particle with ρxðx0Þ ¼ δðx0Þ. The peak longitudinal field is
accompanied by a peak in the transverse wake at x ¼ 0, as
expected, with a tailing off for higher values of x. However,
the y-component of the transverse wake potential in Fig. 3,
wy, has a region where it is negative. This implies that
instead of being deflected, particles that are located in this
region will be attracted back to the x-axis. The length of the
defocusing region is 2xc ≈ 1.68a, where xc is the zero
crossing in x, and the location of the focusing maximum is

xm ≈�1.46a, as derived in Appendix A. There are no such
features on the longitudinal wake potential, wk.
The existence of this region in the x-dependence of wy

wake potential and absence of this feature in the longi-
tudinal wake potential wk allows one to benefit from
stretching the beam in x direction. Increasing the beam
size in x diminishes both wk and wy, however, due to the
narrower peak in the wy pattern, the reduction for wy will be
more pronounced. Furthermore, partial cancellation ofwy is
possible due to the focusing regions.
In order to illustrate this feature, we consider a simple

example of two synchronous drive particles placed at a
distance jxmj ≈ 1.46a (we assume ρðx0Þ¼1=2½δðx0−0.73aÞ
þδðx0þ0.73aÞ�), equal to the distance from the origin to the
minimum of wy (See Appendix A). This selected arrange-
ment minimizes the amplitude of the combined transverse
wake potential of the two particles. From Fig. 4 we see that
due to decoherence, the longitudinal wake amplitude was
reduced by only 27%, whereas the transverse wake potential
acting on each bunch was reduced by 67% due to the
interference effect. Moreover, it is worth mentioning that if a
witness particlewill be placed at the point x ¼ 0 after the two
driver bunches considered in this example, the maximum
kick that the witness bunch will experience is reduced by
86% compared to standard schemewhen a single driver with
the same total charge is placed at x ¼ 0, as seen in Fig. 4.

FIG. 2. Field lines of the transverse wake potential that is given by Eq. (14) for the source (red circle) located in the center of the
wakefield structure (left panel) and displaced from the center (right panel) y0 ¼ 0.2a.

FIG. 3. x-dependence for the longitudinal wake potential (left
panel) and y-component of the transverse wake potential (right
panel) for a point particle. Both plots are normalized to be unity at
the point x ¼ 0. The red shaded area on the right panel shows the
focusing region of wy.
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This simple illustration unveils the mechanism behind the
idea of transversewakefield suppression by a highly elliptical
drive bunch that was introduced earlier in literature [1]. In
particular, the coherence length in the x direction is greater
for the longitudinalwake potential than for they-components
of the transverse wake potential. In addition, partial cancel-
lation is possible for the y-component of the transverse wake
potential due to the existence of the focusing regions in the
x-dependence of the Green’s function wy.
We would like to stress that the analysis above is purely

dependent on structure and beam geometry, and independent
of the material in the structure, thus is valid for dielectric-
lined structures, metallic corrugated structures, resistive
wall and the recently considered photonic planar structures
[18,19].

IV. TRADEOFF CURVES

In this section we further analyze the tradeoff between
the loss of the amplitude of the longitudinal wake potential
compared to the suppression of the transverse wake
potential for varying beam distributions. We consider a
Gaussian distribution in x and calculate both longitudinal
and transverse wake potentials using approximate equa-
tions (15) and (16) as

WkðxÞ ¼
π2

4a2σx
ffiffiffiffiffiffi
2π

p
Z

∞

−∞
exp

�
−

x20
2σ2x

�

×

�
sech

�
π

4

x − x0
a

��
2

dx0; ð18Þ

WyðxÞ ¼
π4ðyþ y0ÞζθðζÞ
32a4σx

ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dx0 exp

�
−

x20
2σ2x

�

×

�
sech

�
π

4

x − x0
a

��
4
�
2 − cosh

�
π

2

x − x0
a

��
:

ð19Þ

Here and below we use the capitalW to symbolize wake
potentials due to a driving bunch with Gaussian distribution
in x and width σx.
In Fig. 5 we plot the normalized wake potentials Wkð0Þ

and Wyð0Þ as a function of the bunch flatness, which we
define as ϰ ¼ σx=a. When the bunch flatness is increased
both longitudinal and transverse wake potentials are
reduced. However, the rate of decrease for the transverse
wake potential is significantly greater compared to the
longitudinal component, as also predicted in Refs. [1,17].
To introduce a figure of merit of how fast both wake

potentials decrease we calculate asymptotes for relatively
large bunch flatnesses (σx=a ≥ 3) for amplitudes of both
longitudinal and transverse wake potentials as a function of
ϰ ¼ σx=a

Wσx
k ≈

4

a2

ffiffiffi
π

p

2
ffiffiffi
2

p
�
1

ϰ
−

2

3ϰ3

�
; ð20Þ

Wσx
y ≈

8ðyþ y0ÞζθðζÞ
a4

ffiffiffi
π

p

4
ffiffiffi
2

p
�
1

ϰ3
−

2

ϰ5

�
: ð21Þ

For convenience we introduced the notations
Wσx

k ≡Wkð0Þ, Wσx
y ≡Wyð0Þ. Derivation of these expres-

sions is found in Appendix B and C respectively.
The first terms in the brackets of Eq. (20) reduces as

∼1=ϰ ∼ 1=σx, while the leading terms in the brackets of
Eq. (21) reduces as ∼1=σ3x. This scaling demonstrates the
favorable tradeoff in longitudinal to transverse wake effects
for flat bunches, and is consistent with the predictions in [1].
Until this point, we have only considered the wy

component of the transverse potential. For completeness,
we derive the wx component of the wake potential, taking
Eq. (14) and decomposing the real part in a Taylor series at
the point y ¼ y0 ¼ 0 keeping only terms linear in y and y0
and arrive at,

FIG. 4. x-dependence for the longitudinal wake potential (left
panel) and y part of the transverse wake potential (right panel) for
two point particle separated by a distance equal to the distance to
the location of the minimum of the wy. Dashed lines are
normalized wake potentials of each particle separately. Solid
lines are the resulting wake potentials.

FIG. 5. Normalized maximum of the longitudinal wake
potential (red) and maximum of the y-component of the trans-
verse wake potential (blue) for the Gaussian distribution as a
functions of the σx=a. Dashed lines are asymptote given by
Eqs. (20) and (21).
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wxðx; x0; y; y0Þ ≈ −
π3ζθðζÞ
8a3

sinh ðπ
4
x−x0
a Þ

½cosh ðπ
4
x−x0
a Þ�3 : ð22Þ

It is immediately apparent that the x focusing force is
independent of the source particle transverse displacement
in y0 and the y witness particle transverse displacement.
This implies that the effect is present even for a perfectly
aligned beam on-axis.
Next, we consider a bunch with Gaussian distribution in

x and calculate WxðxÞ inside this bunch as

WxðxÞ ¼ −
π3ζθðζÞ

8a3
ffiffiffiffiffiffi
2π

p
σx

Z
∞

−∞

dx0 exp ð− x2
0

2σ2x
Þ sinh ðπ

4
x−x0
a Þ

½cosh ðπ
4
x−x0
a Þ�3 :

ð23Þ

As it is shown in Appendix D for the case when ϰ ¼
σx=a > 3 and for x ¼ σx (the point where focusing force is
maximal within the bunch core x ∈ ½−σx; σx�) Wσx

x ≡
jWxðσxÞj is given by

Wσx
x ≈

8ζθðζÞ
a3

ffiffiffi
π

p

4
ffiffiffiffiffi
2e

p
�
1

ϰ2
−

4

3ϰ4

�
: ð24Þ

On Fig. 6 we plot the normalized wakefields Wkð0Þ and
WxðσxÞ as a function of the bunch flatness. One can see that
in contrast to the case ofWy when bunch flatness increased
Wx first increases up to ϰ ∼ 0.6 and only then goes down.
We also notice that decrease rate for Wx is higher then for
Wk but lower then for Wy.

V. COMPARISON TO CYLINDRICAL
GEOMETRY: SCALED APERTURE

Although the mitigating effects of the flat bunch are
relatively favorable in regards to optimizing the ratio of the

longitudinal to transverse potentials, we must address the
fact that there is a reduction to the longitudinal (accelerat-
ing) field. In this section, we compare the results derived for
the planar structure to the wake potential of a cylindrical
structure for a given, i.e., fixed, accelerating gradient. In
this case, we keep the drive bunch charge fixed and scale
the aperture of the planar structure such that the limiting
gradient matches that of a cylindrical structure. The
maximum gradient in the cylindrical structure per unit
charge per unit length for a point particle is given by

Wc
k ¼

4

a2c
: ð25Þ

Here ac is the radius of the cylindrical structure. We
equate the gradient in a flat structure (20) to the gradient in
cylindrical structure (25)Wσx

k ¼ Wc
k and derive formula for

the scaled aperture of the planar structure a to achieve the
same gradient as in the cylindrical:

a ¼ ac
π1=4

81=4

�
1

ϰ
−

2

3ϰ3

�
1=2

: ð26Þ

Equation (26) gives the scaling law for the aperture in the
planar structure and is valid for the ϰ ¼ a=σx ≥ 3. Next we
substitute (26) into the Eq. (21), set y ¼ y0, notice that
deflecting transverse wakefield for a point particle in the
cylindrical structure is given by

Wc
y ¼

8y0ζθðζÞ
a4c

ð27Þ

and arrive at

Wσx
y

Wc
y
¼

ffiffiffi
8

π

r
9ϰ3 − 18ϰ

ð3ϰ2 − 2Þ2 : ð28Þ

Formula (29) shows the reduction in transverse field in a
flat structure with flat beam in comparison to cylindrical
structure while maintaining the same accelerating gradient.
Ultimately for a very flat beam ϰ ≥ 6, this ratio reduces
further to the simple form

Wσx
y

Wc
y
≈

ffiffiffi
8

π

r
1

ϰ
: ð29Þ

The relation above shows that one can reduce the deflecting
wakefield while maintaining an equivalent gradient, by
implementing an elliptical beam in a planar structure. The
reduction in amplitude, however, is quite modest, scaling
as ∼a=σx.
Now we consider the Wx component of the wake

potential that is a property of planar structure and compare
the amplitude ofWx to the amplitude of the deflecting wake
potential Wc

y in a cylindrical structure. With Eqs. (26) and
(27) we express Wσx

x =Wc
y as

FIG. 6. Normalized maximum of the longitudinal wake
potential (red) and x-component of the transverse wake potential
at x ¼ σx (blue) for the Gaussian distribution as a functions of the
σx=a. Dashed line is the asymptote given by Eq. (24) and
multiplied by the same normalization coefficient as blue
x-component of the transverse wake potential at x ¼ σx.
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Wσx
x

Wc
y
¼ 1

ð2πÞ1=4
ac
y0

ffiffiffiffiffiffi
3ϰ

e

r
3ϰ2 − 4

ð3ϰ2 − 2Þ3=2 : ð30Þ

Ultimately for large values of ϰ ¼ σx=a ≫ 1 we have

Wσx
x

Wc
y
≈

1

ð2πÞ1=4 ffiffiffi
e

p 1ffiffiffi
ϰ

p ac
y0

: ð31Þ

From Eq. (31), we can set a conditional statement such
that Wσx

x for a planar structure be less then Wc
y of a

cylindrical, in the following inequality

ϰ ≥
1

e
ffiffiffiffiffiffi
2π

p
�
ac
y0

�
2

: ð32Þ

For an offset in a cylindrical structure of ac=y0 ∼ 10 we
immediately achieve ϰ ≥ 14.7. This analysis leads to a
conclusion that the aperture scaling approach demands a
high degree of bunch flatness to achieve both y and x
component amplitudes lower, compared to the deflecting
wake in the cylindrical structure.
Indeed, it has been experimentally demonstrated that it is

possible to produce beams with very high transverse
emittance ratios ϵx=ϵy ¼ 100 [20] and thus have a high
ellipticity σx=σy ∼ 10, with more recent work demonstrat-
ing emittance ratios ϵx=ϵy ∼ 400 and ellipticity σx=σy >
20 [21,22].
It is worth emphasizing this result: we have explicitly

shown theoretically that both the x and y components of the
transverse wake potential in a planar structure could be
simultaneously reduced with the aperture scaling strategy,
and both x and y components could be simultaneously lower
then the deflecting wake potential in a cylindrical structure
with the same amplitude of the longitudinal wake potential.

VI. COMPARISON TO CYLINDRICAL
GEOMETRY: SCALED CHARGE

The second approach to match the gradient in a planar
structure is to increase the charge of the bunch while
maintaining the same aperture.
We start from Eq. (20) for the amplitude of the

longitudinal wake potential and compare it to the expres-
sion for the cylindrical structure (25). We notice that for the
longitudinal electric fields (gradients) to be equal, the
charge in the planar structure should be

Qpl ¼ Qc
2

ffiffiffi
2

p
ffiffiffi
π

p 3ϰ3

3ϰ2 − 2
: ð33Þ

Since the dependence on charge is linear, one can achieve
the ratios

Wσx
y

Wc
y
¼ 3

ϰ2
−

6

3ϰ2 − 2
; ð34Þ

and

Wσx
x

Wc
y
¼ 1

2ϰ
ffiffiffi
e

p a
y0

3ϰ2 − 4

3ϰ2 − 2
: ð35Þ

By simply increasing Wσx
y and Wσx

x by a factor of 2
ffiffi
2

pffiffi
π

p 3ϰ3

3ϰ2−2,
taking the limit of large ϰ ≫ 1 we arrive at

Wσx
y

Wc
y
≈

1

ϰ2
; ð36Þ

and

Wσx
x

Wc
y
≈

1

2ϰ
ffiffiffi
e

p a
y0

: ð37Þ

From Eqs. (36) and (37) we see that in case of the charge
scaling strategy the decrease in the transverse wake
potential is more pronounced than in case of the aperture
scaling approach. As in the previous section we can set a
conditional statement such that Wσx

x for a planar structure
be less thenWc

y of a cylindrical. This leads to the following
inequality

ϰ ≥
1

2
ffiffiffi
e

p ac
y0

: ð38Þ

We repeat the same estimating procedure as in the previous
section, from Eq. (35) for an offset in a cylindrical structure
a=y0 ∼ 10 and we achieve ϰ > 3 for theWσx

x to be the lesser
then Wc

y. This value for beam ellipticity is within exper-
imental capabilities for practically achievable flatness, and
could indeed be greater, thus further suppressing Wx lesser
than the deflecting force in cylindrical structures.

VII. CONCLUSIONS

In this paper, we have presented an analysis for a planar
symmetry slow-wave structure for varying transverse beam
flatness ϰ ¼ σx=a. The approach is distinct from previous
approaches [1,23] in its generality, derived on the basis of a
Green’s function approach that accommodates any imped-
ance. In particular, the analysis is independent of the proper-
ties of the retarding material used to describe the transverse
structure of thewake potential.We have explicitly shown that
for highly elliptical beams, the transverse wake potential can
be dramatically suppressed, and the tradeoff in longitudinal
field loss is still favorable for beam ratios greater than
σx=a ≈ 3. Further, we compared the results explicitly to
achieve equal accelerating gradients in cylindrical structures
by scaling both the aperture and the charge, and propose that
charge scaling is a more favorable method.
As a relevant example, we consider a beam of a total

charge Q ¼ 3 nC in a planar structure with a vacuum gap
of 2a ¼ 300 μm, comparable to the parameters of the
cylindrical structure in Ref. [2]. We consider beam trans-
verse emittance ratios of ϵx=ϵy ¼ 100 [20], and a beta
function ratio of βx=βy ¼ 3 with σz ¼ σy ¼ 30 μm. From
Eq. (20) with max jEzj ¼ QWσx

k , it is immediately apparent
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that such a beam can produce longitudinal fields of
∼1 GV=m in the considered structure. In particular, the
ultimate limit for the longitudinal electric field is max jEzj ≤
0.83 GV=m. Accordingly, due to the implementation of the
flat beam driver, the limiting value for the deflecting Lorentz
force drops by almost two orders of magnitude (∼57 times)
from max jFy=y0j ≤ 9.7 MV=m=μm for a round beam with
σx ¼ σy to max jFy=y0j ≤ 0.17 MV=m=μm for an elliptical
beam with σx ∼ 17.32; σy ≈ 520 μm and corresponding ϰ ¼
σx=a ¼ 3.46.
The implications of this work are important for inves-

tigating possible designs of future wakefield accelerators to
combat deleterious transverse fields effects that compromise
drive beam stability. The results are general, depending only
on geometric factors, and hold true for corrugated, dielectric
planar structures and planar structures with resistive walls,
and are directly extendable to 1D and 3D photoniclike planar
structures that allow for further precisionmodal controlwhen
driven by selectively shaped beams [18,19].
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APPENDIX A: DERIVATION OF THE LOCATION
OF THE ZEROS xc AND COORDINATE OF THE

MINIMUM xm OF THE FUNCTION wy

We assume a point particle to be placed at the x0 ¼ 0, in
this case Eq. (16) reads

wyðx; 0; y; y0Þ ≈
π4ðyþ y0ÞζθðζÞ

32a4

�
sech

�
π

4

x
a

��
4

×

�
2 − cosh

�
π

2

x
a

��
: ðA1Þ

Equating wake potential to zero wyðx; 0; y; y0Þ ¼ 0 we
arrive to the following equation on xc (zeros of wake
potential by x)

2 − cosh

�
π

2

xc
a

�
¼ 0: ðA2Þ

Expanding hyperbolic cosine using well known formula

coshðsÞ ¼ es þ e−s

2
ðA3Þ

and introducing notation

X ≡ exp

�
π

2

xc
a

�
; ðA4Þ

we rewrite (A2) as

X2
c − 4Xc þ 1 ¼ 0: ðA5Þ

The solution of this equation is

Xc ¼ 2�
ffiffiffi
3

p
: ðA6Þ

Consequently with substitution (A4) we have for the zeros
of wy

xc ¼ a
2

π
log ½2�

ffiffiffi
3

p
�: ðA7Þ

Next let us find location of the minimums xm of the
function wy. Following standard procedure we equate

x-derivative of Eq. (A1) to zero ∂wy

∂x ¼ 0 and arrive at

�
cosh

�
π

2

x
a

�
− 5

�
tanh

�
π

4

x
a

��
sech

�
π

4

x
a

��
4

¼ 0: ðA8Þ

As far as x ¼ 0 is the coordinate of maximum for the
coordinates of minimums we have an equation

cosh

�
π

2

x
a

�
− 5 ¼ 0: ðA9Þ

We once again expanding hyperbolic cosine as (A3) and
introducing substitution (A4) we arrive at the algebraic
equation

X2
m − 10Xm þ 1 ¼ 0: ðA10Þ

The solution of this equation is

Xm ¼ 5� 2
ffiffiffi
6

p
: ðA11Þ

Consequently with substitution (A4) we have for the
positions of the minimums of wy

xm ¼ a
2

π
log ½5� 2

ffiffiffi
6

p
�: ðA12Þ

APPENDIX B: ASYMPTOTE FOR THE
MAXIMAL AMPLITUDE OF THE

LONGITUDINAL WAKE POTENTIAL Wkð0Þ
FOR LARGE RATIOS σx=a > 3

First we consider the equation for the longitudinal as
given by Eq. (18) and rewrite it in the following form for
the point x ¼ 0, where function WkðxÞ has maximum

BATURIN, ANDONIAN, and ROSENZWEIG PHYS. REV. ACCEL. BEAMS 21, 121302 (2018)

121302-8



Wσx
k ¼ π3=2

4a2
ffiffiffi
2

p
ϰ

Z
∞

−∞
exp

�
−

x̃2

2ϰ2

��
sech

�
π

4
x̃

��
2

dx̃ ðB1Þ

with ϰ ¼ σx=a.
Assuming 1=ϰ ≪ 1 we decompose exponent under the

integral in Taylor series and keep only first two terms

exp
�
−

x̃2

2ϰ2

�
≈ 1 −

x̃2

2ϰ2
: ðB2Þ

After the substitution of (B2) into (B1) we have

Wσx
k ≈

π3=2

4a2
ffiffiffi
2

p
�
I1
ϰ
−

I2
2ϰ3

�
; ðB3Þ

with

I1 ¼
Z

∞

−∞

�
sech

�
π

4
x̃

��
2

dx̃; ðB4Þ

I2 ¼
Z

∞

−∞
x̃2
�
sech

�
π

4
x̃

��
2

dx̃: ðB5Þ

After substitution of variables and integrating by parts in
case of the second integral I2 one may show that

I1 ¼
8

π
; I2 ¼

32

3π
: ðB6Þ

We combine (B3) and (B6) and arrive at the final formula
for the asymptote

Wσx
k ≈

4

a2

ffiffiffi
π

p

2
ffiffiffi
2

p
�
1

ϰ
−

2

3ϰ3

�
: ðB7Þ

APPENDIX C: ASYMPTOTE FOR
THE MAXIMAL AMPLITUDE OF THE

Y-COMPONENT OF THE TRANSVERSE WAKE
POTENTIAL Wyð0Þ FOR THE LARGE RATIOS

σx=a > 3

As in the Appendix B we rewrite amplitude κσxy given by

κσxy ≡ Wyð0Þ
ðyþ y0ÞζθðζÞ

ðC1Þ

for the y-component of the transverse wake potential for a
Gaussian bunch (19) in the form

κσxy ¼ π7=2

32
ffiffiffi
2

p
a4ϰ

Z
∞

−∞
dx̃ exp

�
−

x̃2

2ϰ2

�

×

�
sech

�
π

4
x̃

��
4
�
2 − cosh

�
π

2
x̃

��
: ðC2Þ

As before we assume 1=ϰ ≪ 1 and decompose exponent
under the integral in Taylor series. Now we keep the first
three terms

exp

�
−

x̃2

2ϰ2

�
≈ 1 −

x̃2

2ϰ2
þ x̃4

8ϰ4
: ðC3Þ

After the substitution of (C3) into (C2) we have

κσxy ≈
π7=2

32
ffiffiffi
2

p
a4

�
I3
ϰ
−

I4
2ϰ3

þ I5
8ϰ5

�
ðC4Þ

with

I3 ¼
Z

∞

−∞

�
sech

�
π

4
x̃

��
4
�
2 − cosh

�
π

2
x̃

��
dx̃; ðC5Þ

I4 ¼
Z

∞

−∞
x̃2
�
sech

�
π

4
x̃

��
4
�
2 − cosh

�
π

2
x̃

��
dx̃; ðC6Þ

I5 ¼
Z

∞

−∞
x̃4
�
sech

�
π

4
x̃

��
4
�
2 − cosh

�
π

2
x̃

��
dx̃: ðC7Þ

After substitution of variables and integrating by parts one
may show that

I3 ¼ 0; I4 ¼ −
128

π3
; I5 ¼ −

1024

π3
: ðC8Þ

We combine (C4) and (C8) and arrive at the final formula
for the asymptote

κσxy ≈
8

a4

ffiffiffi
π

p

4
ffiffiffi
2

p
�
1

ϰ3
−

2

ϰ5

�
: ðC9Þ

APPENDIX D: ASYMPTOTE FOR THE
MAXIMAL AMPLITUDE OF THE

X-COMPONENT OF THE TRANSVERSE
WAKE POTENTIAL WxðσxÞ FOR THE

LARGE RATIOS σx=a > 3

We introduce amplitude κσxx as

κσxx ≡ jWxðσxÞj
ζθðζÞ ðD1Þ

for the x-component of the transverse wake potential for a
Gaussian bunch (23) in the form

κσxx ¼ π5=2

8
ffiffiffi
2

p
a3ϰ

				
Z

∞

−∞

dx̂ exp ð− ðx̂þϰÞ2
2ϰ2

Þ sinh ðπ
4
x̂Þ

½cosh ðπ
4
x̂Þ�3

				: ðD2Þ

We assume 1=ϰ ≪ 1 and decompose exponent under the
integral in Taylor series and keep first three terms
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exp

�
−
ðx̂þ ϰÞ2
2ϰ2

�
≈

1ffiffiffi
e

p −
x̂

ϰ
ffiffiffi
e

p þ x̂3

3ϰ3
ffiffiffi
e

p : ðD3Þ

After the substitution of (D3) into (D2) we have

κσxx ≈
π5=2

8
ffiffiffiffiffi
2e

p
a3

				 I6ϰ −
I7
ϰ2

þ I8
3ϰ4

				 ðD4Þ

with

I6 ¼
Z

∞

−∞

sinh ðπ
4
x̂Þ

½cosh ðπ
4
x̂Þ�3 dx̂; ðD5Þ

I7 ¼
Z

∞

−∞
x̂

sinh ðπ
4
x̂Þ

½cosh ðπ
4
x̂Þ�3 dx̂; ðD6Þ

I8 ¼
Z

∞

−∞
x̂3

sinh ðπ
4
x̂Þ

½cosh ðπ
4
x̂Þ�3 dx̂: ðD7Þ

After substitution of variables and integrating by parts one
may show that

I6 ¼ 0; I7 ¼
16

π2
; I8 ¼

64

π2
: ðD8Þ

We combine (D4) and (D8) and arrive at the final formula
for the asymptote

κσxx ≈
8

a3

ffiffiffi
π

p

4
ffiffiffiffiffi
2e

p
�
1

ϰ2
−

4

3ϰ4

�
: ðD9Þ
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