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RNA velocity estimation is a potentially powerful tool to reveal the directionality of
transcriptional changes in single-cell RNA-sequencing data, but it lacks accuracy, absent
advanced metabolic labeling techniques. We developed an approach, TopicVelo, that
disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a
highly interpretable form of latent space factorization, to infer cells and genes associated
with individual processes, thereby capturing cellular pluripotency or multifaceted func-
tionality. Focusing on process-associated cells and genes enables accurate estimation
of process-specific velocities via a master equation for a transcriptional burst model
accounting for intrinsic stochasticity. The method obtains a global transition matrix
by leveraging cell topic weights to integrate process-specific signals. In challenging
systems, this method accurately recovers complex transitions and terminal states, while
our use of first-passage time analysis provides insights into transient transitions. These
results expand the limits of RNA velocity, empowering future studies of cell fate and
functional responses.

single-cell RNA-seq | RNA velocity | trajectory inference | probabilistic topic models |
systems immunology

One of the key challenges in single-cell data science, trajectory inference (TI) leverages
genome-wide transcriptional profiles to estimate the position of each cell in an underlying,
ordered biological process (1–3). TI is used to analyze a variety of dynamic processes,
most commonly, embryonic development and cellular differentiation, but also immune
responses and tumorigenesis (4, 5). The destructive nature of single-cell RNA-sequencing
(scRNA-seq) technologies limits the input data to static snapshots, rather than temporal
records. Computational innovations glean true dynamic information by exploiting
inadvertently captured reads from unspliced pre-mRNA, as well as targeted reads from
mature, spliced mRNA, to model the transcriptional kinetics of genes and thereby
estimate a time derivative of the transcriptional state, known as RNA velocity (6, 7).

Unlike similarity-based “pseudotime” TI methods (reviewed in ref. 3), RNA velocity
reveals the directions and patterns of complex flows, and hence precursor and terminal cell
populations, even in a single time point. Its unique capabilities and possible extensions
make it a potentially powerful tool in the study of diverse biological systems, particularly
where there is limited prior knowledge. Yet, despite advances, the effective use of RNA
velocity has been impeded by a lack of robustness and accuracy, driven by multiple
factors (8–12). Recent approaches use a variety of techniques to improve it (13–22) but
do not generally account for pluripotency or distinct processes, beyond lineages, occurring
simultaneously. Moreover, as most methods rely on ordinary differential equations, they
do not model intrinsic transcriptional stochasticity. The persistent gap between the
promise and reality of RNA velocity has largely restricted its application.

To create a more broadly effective RNA velocity tool for investigating complex
systems, including immune responses, we created TopicVelo (Fig. 1), an approach that
disentangles potentially simultaneous processes using a probabilistic topic model (23, 24),
also known as a grade-of-membership model (25, 26). This highly interpretable,
Bayesian nonnegative matrix factorization allows TopicVelo to focus on the specific
cells and genes involved in distinct processes to better capture their dynamics. To infer
kinetic parameters for process-specific genes, TopicVelo fits integer transcript counts to a
physically meaningful transcriptional burst model (27). Using the topic weights for each
cell, TopicVelo integrates the process-specific dynamics to infer a global model of cell
transitions.

In addition to using standard visualizations of streamlines, we assessed RNA
velocity results with Markovian techniques, including mean first-passage time analyses
that identify transient transitions not observed via traditional approaches. In diverse
datasets, TopicVelo offers distinctive insights and performs significantly better than the

Significance

The study of dynamic biological
phenomena, such as
differentiation, immune
responses, and cancer—
which involve multiple,
simultaneously occurring
biological processes—using
destructively measured
transcriptomic profiles remains
a central challenge in single-cell
data science. State-of-the-art
methods show promise but fail in
many settings. Here, we present
a method that incorporates a
probabilistic topic model to
dissect and then integrate
simultaneous, yet distinct, bursty
transcriptional dynamics. We
demonstrate its effectiveness for
inferring biologically informative
velocity for key genes, identifying
complex cell-state transitions and
providing insights on transient
transitions and terminal state
distributions in several
challenging biological systems.

Author contributions: C.F.G., S.V., and S.J.R. designed
research; C.F.G. developed, implemented, and tested the
algorithm; C.F.G. and S.J.R. analyzed data; C.F.G., S.V., and
S.J.R. interpreted the results; S.V. and S.J.R. supervised
research; and C.F.G., S.V., and S.J.R. wrote the paper.

Competing interest statement: The authors disclose the
following patent filing: “Computational Models to Analyze
RNA Velocity”; Case number: UCHI 22-T-208-001; Date
filed: 17 January 2023.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1S.V. and S.J.R. contributed equally to this work.
2To whom correspondence may be addressed. Email:
sriesenfeld@uchicago.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2306901121/-/DCSupplemental.

Published April 26, 2024.

PNAS 2024 Vol. 121 No. 18 e2306901121 https://doi.org/10.1073/pnas.2306901121 1 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 K
ir

st
en

 V
al

le
e 

on
 A

pr
il 

26
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

99
.7

.2
.4

8.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2306901121&domain=pdf&date_stamp=2024-04-26
https://orcid.org/0000-0002-3296-773X
https://orcid.org/0000-0001-9144-021X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sriesenfeld@uchicago.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2306901121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2306901121/-/DCSupplemental


Topic 2
...

G
en

e
A

G
en

e 
B

G
en

e 
C

G
en

e 
D

G
en

e 
E

G
en

e 
F

G
en

e
M

–1
G

en
e 

M

...

Topic 1

Topic K

To
pi

c 
1

To
pi

c 
2

To
pi

c 
K

...

Cell 1
Cell 2

Cell C
...

Cell 3
Cell 4
Cell 5

Topic 1
Cells ...

...

...

...

Topic 2
Cells

Topic K
Cells

Topic 1
Cells

Topic 2
Cells

Topic K
Cells

Pr
ob

ab
ilit

y

U
ns

pl
ic

ed

Observed in 
all cells

10-1

10-2

10-30

2

4

Spliced
0 2 4 6 8

Observed in 
topic-specific cells

Pr
ob

ab
ilit

y

0 2 4 6 8
0

2

4

U
ns

pl
ic

ed

Spliced

10-1

10-2

10-3

Pr
ob

ab
ilit

y

0 2 4 6 8
0

2

4
U

ns
pl

ic
ed

Spliced

10-1

10-2

10-3

Inferred in 
topic-specific cells

Truth

Topic 1

Topic 2

Topic K

A

B C D

E
~

G2

Proliferation

Differentiation

Ribsomal synthesis

Time

 N
um

be
r o

f 
Tr

an
sc

rip
ts

b  Burst Size

kon Burst Frequency
b

1/kon

unspliced RNA
(u)

spliced RNA
(s)

degradation (γ)splicing (β)transcription

Cell-specific
proportions of 

program contribution

Gene-specific 
bursty transcription model

L1

L2

LK

Gene programs

Immune response

Transcriptional 
profiles

{PLK1,...}

{RPL37A,...}

{IRF8,...}

Program-specifc
genes

L3
U

S

Prediction

{GZMB,...}

U

S

Fig. 1. TopicVelo combines topic modeling and a burst model for accurate, robust RNA velocity inference. (A) The generative model motivating TopicVelo
accounts for distinct stochastic dynamics of transcriptional processes for different gene programs (Left). Program- and gene-specific transcription follows a
bursty transcriptional model governed by several parameters: the typical burst frequency kon, the burst size b, which has a geometric distribution, the splicing
rate parameter �, and the degradation rate  (Middle). By accounting for the varying activity levels (Lk ) of each program k across cells, the transcriptional
profiles can be generated and characterized by the matrices U and S, specifying the number of unspliced and spliced transcripts, respectively, of all genes in
all cells (Right). (B) A probabilistic topic model gives a Bayesian low-rank nonnegative matrix factorization of a multinomial probability matrix that generates
the combined U and S matrix for a heterogeneous population of cells, which reveals distinct, possibly overlapping, cells and genes associated with underlying,
individual programs (topics), thereby capturing cellular pluripotency or multifaceted functionality. (C) For many genes, the joint distribution over all cells of
spliced and unspliced transcripts is concentrated at (0,0), as the gene is not involved in most cell states (Top). Zooming in, the joint distribution of a topic-specific
gene in topic-associated cells reveals detailed, process-specific dynamics (Middle). To infer those dynamics, we fit the burst model of transcription by minimizing
the KL divergence between inferred and experimentally observed joint distributions of spliced and unspliced transcripts (Bottom). (D) Cell-specific topic weights
are leveraged to integrate process-specific transition signals into a global transition matrix. (E) Results enable robust, accurate trajectory inference, as assessed
by transition streamline visualizations, as well as by new mean first-passage time, terminal states, and relative flux analyses.

state-of-the-art approach scVelo (7), without the aid of metabolic
labeling or multiple time points, by recovering velocities, tran-
sition flows, and terminal states that are more consistent with
known biology.

In the rest of the paper, we give an overview of TopicVelo and
highlight its performance in a human hematopoiesis dataset, for
which the correct dynamics were previously inferred only with
the aid of metabolic labeling (22). We also illustrate the capability
of TopicVelo to handle complex developmental systems with
stage-dependent dynamics (8, 28–30). Last, we show TopicVelo
infers validated, complex, convergent trajectories underlying the
inflammatory responses of skin lymphocytes, using only a single
time point (31).

Results
Overview of the TopicVelo Method. One scRNA-seq snapshot
may capture multiple biological processes, even within one cell
type, including ubiquitous processes, such as proliferation and
ribosomal synthesis, as well as system-specific processes, such as
differentiation and immune responses (Fig. 1A). Each process
involves a set of genes, or gene program, for which the process-
and gene-specific kinetics are typically governed by a bursty
transcription model (32). The resulting transcriptional profiles
of cells in the system also reflect the varying degrees to which

different processes have been active in each cell up to the time of
capture. These considerations are absent in existing RNA velocity
approaches but must be accounted for in an accurate model of
the generative processes of scRNA-seq data. The need to capture
these key biological features motivated our approach toTopicVelo.
Because the joint inference of all parameters in such a generative
model may be computationally intractable, TopicVelo separates
the inference of program-specific genes and cell-specific activity
levels from the inference of kinetic parameters. Specifically,
TopicVelo operates in these three stages:
Process-specific inference. Inspired by previous works that effec-
tively use probabilistic topic models to distinguish biologically
relevant signals in scRNA-seq data (e.g., refs. 31 and 33–36),
we apply topic modeling (35) to the combined unspliced and
spliced transcript matrix (Fig. 1B) (Materials and Methods and
SI Appendix, section 1). The result is a representation of each
cell as a probability distribution over topics (gene programs, in
the context of scRNA-seq), while each topic is a probability
distribution over individual genes (Fig. 1B). Process-associated
cells, i.e., cells with relatively high weights in a topic, and process-
specific genes, determined using previous strategies (31, 36),
serve as the input for inferring process-specific kinetic parameters.
Within process-associated cells, process-specific genes can reveal
important dynamic information that is hidden at the global scale
and hence missed by existing methods (Fig. 1C ).
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The number of topics is a user-selected parameter, which, like
clustering resolution, often has multiple, biologically meaningful
settings. We explored several topic-quality metrics developed in
natural language processing (e.g., refs. 37–39) and also used the
biological literature to assess interpretability of topic-specific gene
programs (Materials and Methods and SI Appendix, section 1).
Bursty transcription model. In contrast to the ODE-based one-
state model underlying scVelo, TopicVelo efficiently fits a more
faithful physical model that accounts for transcriptional bursting
(Materials and Methods), adapting a previous model for studying
mRNA transport (27) (Fig. 1 A and C ). The chemical master
equation of the model for a given gene is:

∂p(u, s, t)
∂t

= kon

[ u∑
z=0

pzp(u− z, s, t)− p(u, s, t)
]

+ �
[
(u + 1)p(u + 1, s − 1, t)− up(u, s, t)

]
+ 

[
(s + 1)p(u, s + 1, t)− sp(u, s, t)

]
, [1]

where p(u, s, t) is the probability of observing a cell with u
unspliced pre-mRNA transcripts and s spliced mature mRNA
transcripts at time t; kon is the rate of the Poisson process
governing the burst event; pz , the probability of producing z
unspliced pre-mRNA transcripts during a single burst event, is
governed by a geometric distribution; � is the splicing rate; and
 is the rate of degradation of spliced mRNA. Parameters are
initialized with the method of moments or another heuristic.
Cells with weights that are relatively high for a given topic
are assumed to be in steady state for topic-associated genes.
For a topic-associated gene and parameter setting, we use the
Gillespie algorithm (40) to estimate the joint distribution of
unspliced and spliced transcript counts in steady-state cells for
the transcriptional burst model. The maximum likelihood values
of parameters are then estimated using an implementation of
the Nelder–Mead algorithm (41) (SI Appendix, Fig. S1). Hence,
each set of topic-associated genes shares a common splicing rate,
but genes from different topics may operate on different time
scales.
Integration of process-specific dynamics. A key feature of
TopicVelo is the capability to integrate process-specific transition
matrices into a global transition matrix (Fig. 1D) (Materials
and Methods). First, from the inferred process-specific kinetic
parameters, TopicVelo constructs process-specific transition ma-
trices, based on a previous approach (7), namely by applying an
exponential kernel to the cosine similarities between velocities
and differences in spliced expression among nearest neighbors.
Each transition matrix characterizes the probabilistic flow of
process-specific transcriptional changes across process-associated
cells. Then, a global transition matrix is constructed by linearly
combining process-specific transition matrices, using the topic
weights of cells. This strategy enables locally important dynamics
to be accurately recovered and then woven into larger-scale,
complex trajectories. The user-selected topic-weight threshold,
which determines topic-associated cells, balances an inherent
trade-off between the benefit of separating dynamic processes
and the risk of losing dynamic range and/or information in
overlaps among topic-associated cells (Materials andMethods and
SI Appendix, section 1).
Analysis of the integrated transition matrix. To reveal cell-state
transitions and assess the accuracy of RNA-velocity–based infer-
ence, we use both customary streamline visualizations and several

quantitative approaches (Materials and Methods and SI Appendix,
section 1). We compute the stationary distribution of the
integrated transition matrix to identify terminal cell populations.
We also introduce the use of mean first-passage time (MFPT),
which captures the expected time needed for a cell-state transition
to occur, to gain insights into transient transitions invisible at
the global scale with traditional approaches. Furthermore, we
introduce another measure, relative flux, to quantify relative
transitions across cell type boundaries.

Our analysis of the run-time and memory complexity of
software (SI Appendix, section 2), as well as its performance
in diverse applications detailed below, revealed its capacity to
efficiently offer interpretable biological insights (Fig. 1E).

TopicVelo Enables Challenging Trajectory Inference in Human
Hematopoiesis without Metabolic Labeling. RNA velocity in-
ference without metabolic labeling is often inaccurate (22),
but incorporating metabolic labeling into scRNA-seq remains
an experimental challenge (43). To test the effectiveness of
TopicVelo, we applied it to human hematopoiesis data from a
recent study in which RNA velocity was extended to leverage
single-cell metabolic labeling techniques that distinguish newly
synthesized versus preexisting transcripts (22). The published
analysis reconstructed a complex, multifurcating trajectory of
transitions, which scVelo fails to capture. Using TopicVelo on
the data without the metabolic labels, we inferred the correct
transitions, including streamlines that accurately delineate the
trajectories of monocytes, basophils, erythrocytes, and megakary-
ocytes (Fig. 2A).

To obtain a global transition matrix, we first performed topic
modeling (35, 36), resulting in an 8-topic model that identifies
gene programs associated with known cell types (topics 1 and 3)
and heterogeneous cell states during differentiation (SI Appendix,
Fig. S2 and Table 1). For example, megakaryocyte-associated
topic 3 appropriately features the geneF13A1, a subunit of plasma
factor XIII known to be produced by megakaryocytes (42) (SI
Appendix, Figs. S2D and S3A). Though a global phase plot of
F13A1 indicates little transcriptional activity, focusing on cells
with highest weight in topic 3 brings the dynamical features of
F13A1 into relief (Fig. 2B).

Based on the burst model, TopicVelo then inferred topic-
specific kinetic parameters for topic-specific genes. By assuming
a steady state can be approximated by the joint distributions
of spliced and unspliced counts of topic-specific genes in
topic-associated cells, TopicVelo substantially improved upon
the parameter estimates inferred from the one-state model
underlying scVelo. For example, it more accurately recovered
the experimental joint distribution of F13A1 over topic-3 high
cells (Fig. 2C ). Indeed, while velocities of topic-3 specific
genes F13A1, PLEK, and ZYX were inferred to be negative by
scVelo, TopicVelo inferred them to be positive, consistent with
experimental evidence that these genes are up-regulated during
megakaryocytic differentiation (44, 45) (SI Appendix, Fig. S3
A–C ). Similarly, whereas scVelo inferred downregulation of the
basophil-associated, topic-1 specific genes GATA2 and HPGD,
TopicVelo predicted their upregulation in the basophil lineage,
consistent with previous experiments showing that GATA2 is
critical for basophil development (46) and HPGD is enriched
in basophils (47) (SI Appendix, Fig. S3 D and E). Using the
inferred topic-specific signals, TopicVelo then created topic-
specific transition matrices, whose corresponding streamlines
were consistent with those inferred for the same regions using
metabolic labeling data (Fig. 2D).
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Fig. 2. TopicVelo inferred multifurcating trajectories of human hematopoiesis whose recovery previously required metabolic labeling. (A) Previously
published (22) UMAP embedding of hematopoiesis data shows cells colored by annotated progenitor (HSC, hematopoietic stem cell; MEP-like, megakaryocyte
and erythrocyte progenitor; GMP-like, granulocyte and monocyte progenitor) and terminal (Ery, erythrocyte; Bas, basophil; Mon, monocyte; Neu, neutrophil;
Meg, megakaryocyte) cell types. Streamlines (arrows) were inferred either with metabolic labeling, by Dynamo (Left), or without it, by the scVelo dynamical
model (Middle), and by TopicVelo with an 8-topic model (Right); TopicVelo but not scVelo captures key cell-type differentiation (green versus red arrows). (B) Plots
show the experimental joint distribution of spliced and unspliced mRNA counts in all cells, or cells with highest weight in topic 3, of the topic-3 specific gene F13A1,
which is known to be expressed in megakaryocytes (42). (C) Plots show the joint distribution of F13A1 in topic-3 high cells, inferred using the one-state model,
or maximum likelihood estimates for the burst model; the latter better captures both the diffuseness of the joint distribution and the empirical concentration
at (0,0). (D) Topic-specific streamlines obtained from topic-specific transition matrices for topics 3 and 7, respectively. The color bar indicates the topic weights
for cells used in the parameter inference. The topic-3 plot demonstrates transitions into mature megakaryocytes, and the topic-7 plot suggests transitions into
erythroid. (E and F ) TopicVelo identified terminal states missed by scVelo. UMAPs (E) show stationary probabilities for scVelo (Left) and TopicVelo (Right) transition
matrices, which are summarized in bar charts (F ) by cell type (Left, colored as in panel A) and by time point (Right) that highlight relatively high probabilities
from TopicVelo for terminal cell types, such as megakaryoctyes, versus progenitor cell types, and for late versus early time points. (G and H) TopicVelo estimated
shorter transition times for true differentiation pathways. UMAPs (G) show mean first-passage times to megakaryocytes (Target, blue), rescaled by median,
based on scVelo (Left) and TopicVelo (Right); summary violin plots (H) highlight shorter transition times from progenitors versus others estimated by TopicVelo,
but not scVelo. (Black dot: median, white vertical lines: 25th to 75th percentile.) *P < 0.0001 by one-sided permutation test; ns, P ≥ 0.1.

Finally, these topic-specific transition matrices were inte-
grated to obtain the global transition matrix and corresponding
streamlines (Fig. 2A). To quantitatively evaluate the quality of
inference by TopicVelo, we computed the stationary distribution

as a proxy for identifying terminal states. While both scVelo
and TopicVelo assigned relatively high stationary probabilities
to erythroid cells and monocytes, TopicVelo additionally recog-
nized megakaryocytes as terminal states (Fig. 2E). Furthermore,
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aggregation of the stationary probabilities by cell types illustrated
that, compared to scVelo, TopicVelo suggested higher stationary
probability for terminal cell types and lower probability for
progenitors, consistent with the expected cell-fate transitions
(Fig. 2F ).

To investigate the differentiation dynamics and trajectories,
we used MFPT analysis to gauge the identities of ancestral
subpopulations and assess the likelihood of subpopulations tran-
sitioning into terminal states. For instance, we computed MFPTs
to megakaryocyte-like cells and observed that the MFPTs derived
from scVelo versusTopicVelodisplayed very different trends (Fig. 2
G and H ). In particular, TopicVelo estimated lower MFPTs
for progenitors than for other, nonmegakaryocyte terminal cell
types, whereas scVelo estimated the opposite. The inference from
TopicVelo agrees better with established biological understanding
that megakaryocytes originate directly from progenitors, rather
than from other terminally differentiated populations.

Collectively, these results demonstrate the capacity of
TopicVelo to identify biologically meaningful dynamic genes,
infer more biologically accurate RNA velocity, and provide more
meaningful insights into the terminal states and trajectories of
differentiation.

TopicVelo Recovers Complex Developmental Trajectories in
Mouse and Human. Several studies have observed that cer-
tain genes exhibit developmental-stage–dependent transcription
rates, termed “multiple rate kinetics (MURK)” (7–10, 28). scVelo
does not account for this stage dependency and erroneously
produced reversed streamlines for mouse erythropoiesis when
MURK genes were included in the data (8). In contrast,TopicVelo
produced the correct trajectories in this setting (Fig. 3A). A
stationary distribution analysis further confirmed the streamline
visualization; whereas scVelo falsely identified intermediate ery-
throid stages as terminal states, TopicVelo results suggested that
essentially all of the stationary probability is in the erythroid-3
cell state (Fig. 3B). To investigate the relative proportion of
cell–cell transitions entering versus leaving a terminal cell
type, we computed the relative flux between cells at different
developmental stages (Materials and Methods and SI Appendix,
section 1). TopicVelo predicted overall positive flow toward more
mature erythroid cells, while scVelo predicted negative flow in
later stages (Fig. 3C ).

Biologically informative results were achieved by TopicVelo
using a model with two topics, which accurately captured
expression patterns during the maturation of blood progenitors
to erythroid cells (SI Appendix, Fig. S4 and Table S1). Topic 0 has
weights increasing across the developmental process and features
the archetypal red blood cell genes Hba-x and Hbb-y (8), and
their unspliced counterparts, as well as Smim1, which influences
red blood cell traits (48) (Fig. 3D and SI Appendix, Fig. S4A).
Inversely, topic-1 weights decrease across the developmental
process, as does the expression of topic-1 specific genes, such as
Gata2, Fn1 and Fscn1 (Fig. 3E and SI Appendix, Fig. S4B). These
results corroborate previous observations that Gata2 is highly
expressed in progenitors, with expression declining after erythroid
commitment (49), and that Ccnd2 expression is anticorrelated
with erythroid progression (50).

We then turned to a challenging setting of human hematopoi-
etic stem cell (HSC) differentiation (28). TopicVelo used a 10-
topic model to recover the expected trajectories and identify
key genes involved in cell-fate commitments, without the prior
knowledge of the starting state required by pseudotime inference
(SI Appendix, Fig. S5). Unlike scVelo, TopicVelo did not infer

erroneous reversals in directionality (Fig. 3F ). The stationary
distribution analysis confirmed that scVelo incorrectly identified
early stage HSCs as terminal states, whereas the stationary
probability derived fromTopicVelowas predominantly associated
with true terminal states (Fig. 3 G and H ).

The inferred topics characterized different stages of devel-
opment and identified key, lineage-specific genes, leading to
velocity predictions that are more consistent with known biology.
For example, topic six is relatively high in erythroid cells and
includes the gene KLF1, previously shown to be associated with
erythroid commitment (28). In contrast to scVelo predictions
that early erythroid cells (Ery 1) down-regulate KLF1, TopicVelo
accurately predicted that they up-regulate KLF1 (Fig. 3I ).
TopicVelo also highlighted several other patterns previously
observed in the literature, including upregulation ofMPO during
monocyte commitment (28) (Fig. 3J ), upregulation of CA1 in
the peripheral blood erythroid cells (51), association of IRF8
with monocyte development and dendritic cell function (52),
expression of SELP during megakaryocyte development (53),
downregulation of CRHBP in HSCs during differentiation (54),
and expression of the chemotactic gene AZU1 in monocytes (55)
(SI Appendix, Fig. S6 and Table S1).

To investigate the performance of TopicVelo on additional
examples, we applied it to human dentate gyrus (29) and murine
pancreatic endocrinogenesis (30) datasets on which scVelo was
tested (7) (SI Appendix, Figs. S7–S10 and sections 3 and 4). In
these data, TopicVelo infers the appropriate transitions as well as
offers insights into key genes in rare cell types.

Together, the results show that TopicVelo outperforms the
state-of-the-art in complex settings, recovering biologically accu-
rate trajectories and highlighting informative genes.

TopicVelo Predicts Bidirectional and Convergent Immune
Responses of Innate Lymphoid Cells. An important motivation
for developing TopicVelo was to meet the challenge of ana-
lyzing complex immune responses, including those involving
unconventional trajectories, such as convergence on one cell
state from multiple origins and functional plasticity between cell
types (31, 56, 57). With different gene programs involved in
conversions in opposite directions between cell types, traditional
approaches to RNA velocity and trajectory inference do not
reveal such intricacies. In our previously published study of skin-
resident innate lymphoid cells (ILCs) from a mouse model of
psoriasis (31), the ILC transcriptional states and their trajectories
during the immune response are modeled by leveraging scRNA-
seq data collected from mice killed at five time points (days
0 to 4) during induction of inflammation (Fig. 4A). The
study’s detailed analysis, which combines topic modeling with
density-based pseudotime inference, and extensive experimen-
tal validations, demonstrates multiple possible transitions to
a pathogenic ILC3-like state. These include an ILC2-ILC3
transition, confirmed using a transgenic fate-mapped mouse,
which may occur via two routes, as well as a quiescent-ILC3
transition and possibly bidirectional quiescent-ILC2 transition
(Fig. 4B).

To assess the capability of TopicVelo to predict these complex
immune response trajectories, without information from mul-
tiple time points or specification of root and terminal states,
we used data from day 3 only. First, we verified that the cells
in a thin bridge connecting ILC2 and ILC3 cells are unlikely
to represent doublets (SI Appendix, Fig. S11 and section 5).
Next, we performed topic modeling to obtain a 10-topic model
that was consistent with the published analysis (Fig. 4 C–E and
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Fig. 3. TopicVelo correctly captured mouse erythropoiesis and human bone marrow development trajectories. (A andB) TopicVelo accurately identified erythroid
3 as a terminal state. Previously published (8, 10) UMAP embedding of cells in erythropoiesis (A), colored by cell-type annotation, shows streamlines (arrows)
inferred by the scVelo stochastic model (Left), which erroneously suggests differentiation of erythroid 3 into erythroid 2 cells (red arrow), or by TopicVelo
(Right), which recovers the expected differentiation trajectory (green arrow). Bar charts (B) show the stationary probability distributions for each method (row),
aggregated and colored by cell type. (C) TopicVelo predicted positive flux toward more mature erythroid cells, whereas scVelo predicted negative flux. For each
method (color), the plot (C) shows the relative flux (y axis) between pairs of cell subpopulations in the direction of the arrow (x axis). (D and E) UMAP plots for
topic-specific genes Smim1 (D) and Gata2 (E), with cells colored by smoothed gene expression (Left) and by velocities (negative, red; positive, blue), as inferred
by scVelo (Middle) or TopicVelo (Right). (F–H) TopicVelo correctly discovered terminal cell types in human bone marrow development. Previously published (28)
t-SNE plot of cells from human bone marrow, colored by annotated cell type (F ), shows streamlines inferred by scVelo stochastic model (Left), which incorrectly
predicted that precursors, megakaryocytes (Mega), and erythrocytes (Ery) differentiate into hematopoietic stem cells (HSC) (red arrow), or by TopicVelo (Right),
using 10 topics, which recovered the expected trajectories for all major lineages (green arrow). (Mono: monocyte, DC: dendritic cell, CLP: common lymphoid
progenitor.) The t-SNE plots show cells colored by stationary probability (G) as inferred by scVelo (Top) or TopicVelo (Bottom). Bar charts (H) show the stationary
probability distributions for each method (row), aggregated by cell type (color, as in panel F ). (I and J) TopicVelo gave markedly different velocity results from
those of scVelo for topic-specific genes. For the erythroid-associated gene KLF1 (I) and monocyte-associated gene MPO (J), t-SNE plots show cells colored by
smoothed gene expression (Left) and by velocities, as inferred by scVelo (Middle) or TopicVelo (Right).

SI Appendix, Fig. S12 and Table S1). In particular, topic 4 is
strongly associated with the ILC3-like cells and characterized
by proinflammatory, ILC3- and TH17-associated genes, such as
Il17a, Il23r, Gzmb, and Il1r1 (58) (Fig. 4C ). Topic 6 features

a gene program previously identified as “quiescent-like” (31),
including Klf2, a transcription factor associated with T cell
quiescence (59) (Fig. 4D). Topic 9 features ILC2- and TH2–
associated genes, such as Il1rl1 (ST2, the receptor for IL-33) (58),
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Fig. 4. Using data from only one of five time points, TopicVelo revealed complex transitions underlying the inflammatory responses of skin ILCs. (A and B)
Previously published force-directed layout (FDL) embedding of scRNA-seq profiles of skin ILCs from a mouse model of psoriasis, colored by day of collection
(A) and by pseudotime (B), as previously inferred via diffusion-based trajectories (panels, B), with directionality (arrows) imposed by the presence of ILC3-like
cells (orange circle, A) on day 3 but not day 0 (31). (C–E) Highlights of three topics from a 10-topic model of both spliced and unspliced mRNA transcripts from
only day-3 cells. For ILC3-like topic 4 (C), quiescent-like topic 6 (D), and ILC2-like topic 9 (E), the FDL plots (as in panel A) show only day-3 cells, colored by topic
weight (Top Left) and by log-normalized expression of topic-specific genes (Bottom Left, Right), and the bar chart (Top Right) shows the top 10 topic-specific
genes by largest log-fold change, colored by z-score (’_U’ appended to gene symbol indicates unspliced transcript). A subset of induced cells have relatively high
topic weights for both topics 4 and 9 (orange circle, E). (F–I) TopicVelo disentangled simultaneous but distinct dynamics of ILC responses. FDL plots of day-3
cells, colored by most strongly associated topic (F ), show streamlines (arrows) from the scVelo dynamical model (Left) or TopicVelo (Right), using the topic model
shown. Focusing on transitions to ILC3-like cells (yellow, high in topic 4), streamlines suggest that both methods predicted the transition from quiescent-like
cells (blue, high in topic 6), but only TopicVelo correctly predicted the experimentally validated transition from ILC2-like cells (green, high in topic 9). Violin
plots show the distributions of median-rescaled mean first-passage times, estimated using scVelo and TopicVelo (x-axis), from different groups of nontarget
cells (colors) to different target populations: ILC3-like (G), quiescent-like (H), and ILC2-like (I) cells. Smaller values indicate faster inferred transition times,
suggesting better support for that biological transition. (Black dot: median; white vertical line: 25–75th percentile.) *P < 0.0001 by one-sided permutation tests;
ns, P ≥ 0.1.

as well as chemokines, such asCcl1 andCxcl2, and their unspliced
counterparts (Fig. 4E).

Though the RNA velocity analyses of these data by both
TopicVelo and scVelo suggested a quiescent-ILC3 transition
(Fig. 4F ) and predicted the observed downregulation of Klf2
and Fos (31) during the transition (SI Appendix, Fig. S13 A
and B), only TopicVelo revealed the transition path of the

biologically important ILC2-ILC3 trajectory or suggested a
possible bidirectional quiescent-ILC2 transition (Fig. 4F ). We
found that discrepancies between TopicVelo and scVelo results
were at least partly due to differences in velocity estimates. For
example, the observed upregulation of Il23r, Il1r1, and Lgals3
during ILC3 response (31) was more faithfully captured by
TopicVelo than scVelo (SI Appendix, Fig. S13 C–E).
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To quantitatively confirm these intertwined transitions, we
computed rescaled mean first-passage times (rMFPT) to different
target cell populations. First, we used cells very strongly associated
with the ILC3-like gene programs as target cells. The rMFPTs
derived from scVelo show little variation across cells, whereas
results from TopicVelo showed a clear distinction suggesting that,
relative to transitions from other populations, the quiescent-
ILC3 and ILC2-ILC3 transitions may both occur at relatively
fast timescales (Fig. 4G and SI Appendix, Fig. S14 A and B).
For quiescent-like cells as the target group, both methods agreed
that a reverse ILC3-quiescent transition was unlikely. However,
TopicVelo suggested a possible ILC2-quiescent conversion
(Fig. 4H and SI Appendix, Fig. S14 C and D). Finally, for ILC2-
like cells as targets, both methods again agreed that a reverse
ILC3-ILC2 transition is unlikely. TopicVelo also specifically
identified a transition from quiescent-like cells to ILC2s as
significantly more likely than transitions to ILC2s from other
populations (Fig. 4I and SI Appendix, Fig. S14 E and F ). Our
analysis of the potential bidirectional quiescent-ILC2 transitions
suggests that the most likely trajectories in each direction occur
through different but overlapping parts of transcriptional space
(SI Appendix, Fig. S15 and section 6).

While the analysis of the day 3 data demonstrates that
TopicVelo can infer immune response dynamics without requiring
a time course, we also investigated the dynamics inferred for other
days (SI Appendix, Figs. S16–S18 and section 7). We found
good consistency, particularly between days 3 and 1, with greater
differences between those days and day 2 or 4 (SI Appendix,
Figs. S17 and S18), which could be caused by batch effects or
interday fluctuations in immune response dynamics.

Taken together, our results demonstrate the effectiveness of
TopicVelo in the analysis of immune responses, where cells may
exhibit functional plasticity or reflect varying contributions of
simultaneous, very distinct, dynamic processes.

Discussion
RNA velocity inference has recently been improved via different
machine learning techniques (16–22, 60, 61), but challenges
remain. We present TopicVelo, a method and framework for
RNA velocity that improves on the state of the art and conceptu-
ally complements other approaches. Existing methods typically
include genes based on their fit to a velocity model (7, 19–21),
making strong assumptions about a globally determined steady
state and potentially excluding genes that are informative for
locally dynamic processes. In contrast, by using topic modeling
to discover biologically relevant gene programs or processes
(“topics”) and the cells in which their activity levels are relatively
high, TopicVelo hones in on genes that are informative for
the kinetic parameters for different processes, while preventing
cells that are not associated with a process from distorting
its parameter estimates. To provide a global view of cell-state
transitions, TopicVelo leverages the probabilistic topic weights
to integrate process-specific transition matrices into a unified
transition matrix. The number of topics, which ideally reveals
granular processes without compromising statistical power, can
be selected using a combination of measures to assess the quality
of topic models and biological interpretability (Materials and
Methods and SI Appendix, sections 1 and 8). Our detailed analysis
shows that results from TopicVelo are robust to the exact choice,
provided the number of topics lies in an appropriate regime (SI
Appendix, Fig. S19 and section 8). Future work may incorporate
the use of hierarchical Dirichlet processes (62), which infer the
number of topics from data in an unsupervised fashion.

TopicVelo infers gene-specific parameters of a transcriptional
burst model by efficiently estimating the full joint distribution
of unspliced and spliced gene counts given by a chemical master
equation, thus explicitly accounting for higher-order moments.
In contrast, the leading method scVelo (7) and others (18, 19,
21, 22, 60), which infer kinetic parameters based on ordinary
differential equations (ODEs) from counts smoothed across cell
neighborhoods in the kG -nearest neighbors (kG -NN) graph,
can distort second- or higher-order moments (11). A recent
study also incorporated a global burst model, fit via numerical
gradient descent, rather than the simplex-based optimization in
TopicVelo, but focused on analyzing the effects of gene-length–
dependent capture rates of unspliced RNA (15). To assess how
the burst model and topic modeling each contribute to TopicVelo
performance, we performed an algorithmic ablation study (SI
Appendix, section 9). We found that the ablative approaches,
i.e., the burst model without topic modeling and topic modeling
(combined with scVelo) without the burst model, offer different
improvements, though none as remarkable as those achieved
by their combination (SI Appendix, Fig. S20). The flexible
conceptual framework ofTopicVelo allows future incorporation of
more sophisticated topic models (63) and transcriptional models
(e.g., ref. 64).

A critique (12) of scVelonotes that excessive smoothing can lead
to a potentially problematic dependence of parameters, especially
in the dynamical model, on the global kG -NN graph structure
and the visualization embedding. TopicVelo circumvents this
issue at the gene level by inferring kinetic parameters from
unsmoothed counts. Furthermore, by computing a kG -NN for
each topic, TopicVelo loosens the coupling between the transition
matrix and UMAP embedding. Like scVelo, TopicVelo uses the
inferred velocity matrix and matrix of differences of smoothed
spliced counts to compute transition probabilities, but the
TopicVelo framework also naturally permits the computation of
(noisier) transition probabilities from differences of unsmoothed
counts.

Using its dissection-then-integration approach, TopicVelo in-
ferred robust, accurate dynamics in complex systems, including
functionally plastic immune responses and multifurcating differ-
entiation, without requiring multiple time points or the support
of metabolic labeling. To use information from ordered time
points, a future extension could add weak penalties to transitions
in the integrated transition matrix between cells from later time
points to cells from earlier time points, similar in spirit to a biased
diffusion approach (e.g., ref. 65). A more intricate potential
extension could capture topic evolution using a dynamic topic
model (66).

The combination of topic modeling with a steady-state tran-
scriptional model may allow TopicVelo to implicitly handle some
non-steady-state contexts. Relaxing the steady-state assumption
in the chemical master equation framework to fully account
for transient states presents considerable challenges. Recent
work (11) considers the applicability of general master equations
to RNA velocity inference, but not their efficient implementa-
tion. Future research may focus on efficiently sampling from
the distributions of transient states and inferring time-dependent
stochastic dynamics.

Challenges for the future also include developing methods
that merge the advantages of TopicVelo with other recent, com-
plementary advances, such as batch correction, improving and
removing biases in transcript quantification (15, 67), a Bayesian
deep generative framework for quantifying statistical uncertainty,
which was developed for ODE velocity models (18, 60, 61),
greater robustness from postprocessing noisy velocity vectors
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using representation learning (16, 68), and multiomic data and
models (13, 14).

The interpretation of RNA velocity data represents another set
of challenges. Traditional approaches heavily rely on streamline
visualizations and pseudotime, which may be inadequate or
misleading. Our detailed discussion of various quantitative
measures (Materials and Methods and SI Appendix, section 1)
may help practitioners more confidently interpret RNA velocity.
In the vein of our use of fundamental Markovian techniques to
quantitatively assess transition matrices, future work may borrow
ideas from nonequilibrium statistical mechanics and relevant
sampling frameworks (69), potentially leading to more reliable
tools to provide mechanistic insights into cell-state transitions.
More broadly, TopicVelo provides a potential framework for
developing more sophisticated RNA velocity methods, while
serving as a valuable biological tool to accurately infer the
dynamics of interpretable gene programs and cell-state transitions
in diverse systems.

Materials and Methods
Topic Modeling and Differential Expression Analysis. We use the tomotopy
Python package (70) to efficiently infer topic models for a range of values of K,
the number of topics. After evaluating those results to select a final value for
K, we use the FastTopics R package (35) to infer the final model and compute
topic-specific differentially expressed genes (36) (SI Appendix, section 1). For
optimized K, the above procedures were performed as follows:

topic_model_fit <- fit_topic_model(count_matrix, k=K)
de_results <- de_analysis(topic_model_fit,

count_matrix)
where the input count matrix is constructed by stacking the raw spliced count
matrix and the raw unspliced count matrix for top 2,000 highly variable genes.

Topic Modeling Evaluation Metrics. To estimate the optimal number K of
topics, we computed established metrics, including average cosine distance (37),
information divergence (39), and topic coherence (38) (SI Appendix, section 1)
on topic models inferred using tomotopy (70) for a range of values of K. For
each dataset, at least one of these metrics plateaued as a function of increasing
values of K, and we selected the smallest value of K in the intersection of
those regimes across metrics. To prevent overfitting, we also considered the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
(SI Appendix, section 1).

Another criterion was interpretability, i.e., a reasonable number of potentially
biologically meaningful differentially expressed genes. For most datasets,
“topic-specific genes“ were selected from the differentially expressed genes
for downstream analysis (e.g., RNA velocity) if, for either the spliced or unspliced
form, the local false sign rate (lfsr) was at most 0.001 and the log fold change
(LFC) was at least 0.5 in absolute value. This criterion is a very conservative
estimate of differential expression and, in practice, produces 50 to 250 topic
genes for each topic.

RNA Velocity Parameter Estimation Via the One-State Model. The one-
state transcription model is governed by this master equation:

∂p(u, s, t)
∂ t

=�
[
p(u− 1, s, t)− p(u, s, t)

]
+ �

[
(u + 1)p(u + 1, s− 1, t)− up(u, s, t)

]
+ 

[
(s + 1)p(u, s + 1, t)− sp(u, s, t),

] [2]

where� is the rate of transcription,� is the splicing rate, and is the degradation
rate. Previous work showed that the steady-state distribution when � 6=  is the
product of two independent Poisson distributions foruand s respectively (71). By

identifying the maximum likelihood estimates for observing the transcriptional

profiles of cells at steady state, we obtained

�

=
〈u〉
〈s〉

where 〈·〉 denotes

expectation, and 〈s〉 and 〈u〉 are the average abundance of u and s over all cells
in steady state (SI Appendix, section 1).

RNA Velocity Parameter Estimation Via the Geometric Burst Model.
To estimate the steady-state joint distributions, we implemented a Gillespie
algorithm (40) to simulate the master equation (Eq.1) in Python, accelerated via
Numba (72). For a trajectory with burn-in period tburn-in (i.e., before the system
converges to a steady state) and total simulation time ttotal, the probability
p(u, s) of observing a cell with u unspliced and s spliced transcripts for a given
gene in the steady state is

p(u, s) =
1

ttotal − tburn-in

∫ ttotal

tburn-in

�(u, s, t) dt, [3]

where �(u, s, t) = 1 if the cell has u unspliced counts and s spliced counts at
time t, and �(u, s, t) = 0 otherwise.

We initialize the kinetic parameters with the method of moments, which was
previously derived (15, 27):

b̂ =
〈u2
〉

〈u〉
− 1, k̂on =

〈u〉

b̂
, ̂ =

〈u〉
〈s〉

, [4]

where the moments are estimated from the observed distribution. Then, to
find the optimal kinetic parameters, the KL divergence is minimized using
the Nelder–Mead algorithm implemented in SciPy (41). In some cases, the
method of moments estimate is a local minimum that is close to the global
minimum, and the optimizer can get stuck. In this case, we used 3b̂, k̂on/3,
and ̂ to restart the search for the global minimum. The convergence criterion
was chosen to be a relative change in KL divergence between two subsequent
iterations smaller than 1/1,000 or reaching a maximum number of iterations. To
verify the performance and robustness of this inference scheme, we performed
detailed analysis on both simulated data and real biological datasets. Our results
indicated that the approach is efficient, recovers the ground truth on simulated
data, and outperforms the one-state model for real data (SI Appendix, section 1
and Fig. S1).

Determination of Topic-Associated Cells. TopicVelouses the cells associated
with a topic to analyze the steady state for that topic (SI Appendix, section 1).
While one approach for choosing a topic weight threshold is to associate each
cell with the topic for which it has the highest weight, which discretely clusters
the cells, this has several drawbacks: 1) A cell may have relevant information
about a topic for which it does not have the highest weight; 2) the cells assigned
to a topic may not capture the full dynamic range of the topic-associated process;
and 3) there is no potential for transitions between cells assigned to different
topics.

In general, we instead used the following procedure to identify a reasonable
range for the choice of topic weight threshold as a topic weight percentile. For a
given topic k, we denote by A+n,k the set of cells with topic-k weights above the

nth-percentile, and by A−n,k the set of cells with topic-k weights at most the nth-

percentile. Note thatA+n,k
⋃

A−n,k = AwhereA is the set of all cells. For integersn
from1to99,wecomputewhatwecallanaveragerescaledKLdivergence,denoted
by D+

n,k as follows: For each topic-specific gene, we compute the KL divergence

of the joint u-s distribution of A+n,k to that of A, and rescale the divergence to
[0, 1]; then, we average the rescaled KL divergences over the genes. We perform
an analogous procedure to compute D−n,k , the average rescaled KL divergence

for the distribution from A−n,k to that of A. D+
n,k approaches 0 as n approaches 0.

We observed a sharp decline in D+
n,k at a relatively large value of n, which we

denote by n+k . If the topic weight threshold is chosen in the regime n > n+k ,
the full dynamic range of topic-associated process is not properly accounted for.
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Similarly, D−n,k approaches 0 as n approaches 100, and a sharp decline in D−n,k is

observed for a relatively small value ofndenoted byn−k . Topic weight thresholds
in the regime n ≤ n−k risk including cells not meaningfully associated with the

topic-associated process. The interval [n−k , n
+
k ] is a natural and simple heuristic

for the range of suitable thresholds for topic k. For the majority of topics and
datasets, we observed [n−k , n

+
k ] = [30, 70] to be a range in which both D−n,k

and D+
n,k were relatively flat, though in other cases, corresponding to a rare cell

type or very distinct process, the range was around [75, 95].

Construction of Topic-Specific Transition Matrices. While we use un-
smoothed counts for kinetic parameter inference, we compute the transition
flows on smoothed counts to remove noise in the visualization. We did not
observe significant distortions in the overall trends using smoothed versus
unsmoothed counts. For cell i and gene m, the first moments ũim and s̃im
represent the smoothed counts, computed as the number of unspliced and
spliced transcripts, respectively, averaged over the cells in the neighborhood
of i in the kG-NN graph with kG = 30, computed from the top 30 principal
components (PCs) of the global PCA of the log-normalized spliced expression
matrix.

The velocity vector for cell i associated to topic k is ṽi,k =
(ṽi1,k , ṽi2,k..., ṽiMk ,k), for topic-specific velocity vector ṽim,k defined as ṽim,k =

ũim −  ′m,k s̃im for gene m, where Mk is the number of topic-specific genes,
and  ′m,k is the topic-specific degradation rate for gene m. Across small
neighborhoods in the kG-NN graph, the first moments of the smoothed data are
not as distorted as higher-order moments, and the velocity ṽi,k is a reasonable
smoothed approximation.

Then, a cosine similarity between the velocity vectors and the differences in
spliced expression can be computed, as previously (7):

p̃ij,k = cos(s̃j,k − s̃i,k , ṽi,k), [5]

where s̃i,k is the vector of smoothed spliced counts in cell i for topic-k specific
genes.

For each topic k, a topic-specific kG-NN graph is constructed on the topic-
associated cells using the top 30 PCs of the global PCA. The topic-specific
transition probability pij,k from cell i to j for topic k is obtained by applying an
exponential kernel to the cosine similarities over the set Nk(i) of cells in the
topic-specific neighborhood of cell i:

pij,k =
1
zik

exp

(
p̃ij,k
�2

)
, [6]

where � is kernel width, and the normalization factor zik is zik =∑
j∈Nk(i) exp

(
p̃ij,k
�2

)
.

Integration of Process-Specific Dynamics. Because the topic-associated cells
and global set of cells may have different indices, we switch to using c to denote
the identity of a cell. To compute the global transition matrix, we first renormalize
the topic weights L̃ck over just the topics that cell c is associated to:

L̃ck =
Lck∑

k′∈{kc} Lck′
if k ∈ {kc}, 0 otherwise, [7]

where {kc} is the set of topics associated to cell c.
We compute the probability of a transition from cell c to c′ as:

Tcc′ =
K∑

k=1

L̃ckp
′

cc′ ,k , [8]

where p′cc′ ,k = pcc′ ,k if k ∈ {kc}
⋂
{k′c} and p′cc′ ,k = 0 otherwise. In the rare

case that a cell is not included in any topic-associated process, the transition

probability of the cell is assigned such that it can transition to any of its neighbors
with uniform probability.

RNA Velocity Evaluation Metrics. We apply and compare several quantitative
measures (SI Appendix, section 1) that go beyond pseudotime-based evalua-
tions (7, 17) to assess the quality of RNA velocity estimates and accuracy of
downstream inferred trajectories. Briefly, these measures include: 1) velocity
coherence, also used by scVelo (7), to quantify the consistency (but not
correctness) of velocity estimates; 2) the stationary distribution of the transition
matrix, also used by CellRank (17), to identify terminal states; 3) mean first-
passage time (MFPT), used before in velocity-independent TI (73) and related
to a least action path (LAP) approach (22), to capture the expected timescales of
transitions between subpopulations of cells; and 4) relative flux (SI Appendix,
section 1), which we defined as a visualization-embedding–independent version
of cross-boundary correctness (16), to capture the relative transition probability
in each direction between two subpopulations.

Permutation Tests. To calculate the statistical significance of comparisons of
the MFPT distributions between two groups of cells, we use a permutation
test with 99,999 permutations. Specifically, for two subpopulations A and B of
cells, each permutation consists of randomly permuting the MFPT values for
A ∪ B and then splitting the values again into two groups of sizes |A| and
|B| to compute the means. We perform a similar permutation test to calculate
statistical significance for the difference in means in the number of intermediate
states in a neighborhood (SI Appendix, Fig. S15).

Preprocessing of scRNA-seq Data. For each dataset, a gene was removed if
there were not at least 20 cells with both spliced and unspliced transcripts
for it. Following previous studies, we account for cell sizes by using size-
normalized counts, which is also consistent with assumption in the classical
derivation of the chemical master equation that reactions occur in a container of
constant volume (74). Because the master equations inference requires integer
counts, we round the size-normalized counts. In general, the normalization
does not cause severe distortions to the abundances or proportions of the
unspliced and spliced counts. However, distortions became problematic for the
very small ratios of unspliced to spliced counts in the gastrulation data (SI
Appendix, Fig. S21 A and B); hence, there we used raw counts. We verified that
TopicVelo is robust with respect to the choice to size normalize by also using
the raw counts to infer kinetic parameters for topic-associated processes, with
other procedures remaining the same, on the scNT-seq dataset. The results
from using normalized or raw counts were qualitatively consistent for the
streamlines, stationary distributions, and mean first-passage times (SIAppendix,
Fig. S21 C–E).

Aprincipalcomponentsanalysiswasperformedonthelog-normalizedspliced
counts matrix using the top 2,000 highly variable genes. From the top 30
principal components, a kG-nearest-neighbor (kG-NN) graph was constructed
(using the default of kG = 30). (The notation kG is used to distinguish
the parameter for the number of nearest neighbors from the completely
independent parameter k in the topic model.) Then the first and second
moments of each cell were estimated over the kG-NN graph. The above
procedures were performed via scVelo (7):

scVelo.pp.filter_and_normalize(adata,
min_shared_counts=20)

scVelo.pp.moments(adata, n_pcs=30, n_neighbors=30)

TopicVelo Analysis of scRNA-seq Data. For all datasets, we identified the
number of topics, selected topic-associated genes and cells, constructed
integrated transitions, and computed RNA velocity evaluation metrics, as
described (SI Appendix, section 1).

Data, Materials, and Software Availability. The source code, Jupyter
notebooks, and R markdown files for reproducing figures and results in
this paper are available at https://doi.org/10.5281/zenodo.10826412 (75).
TopicVelo is available as an open-source Python package for public use at
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https://github.com/RiesenfeldGroup/TopicVelo (76). The gastrulation (10), bone
marrow (28), dentate gyrus (29), and pancreas (30) data are available in the
scVelo package (7). The human hematopoiesis scNT-seq (22) and ILCs data (31)
are available in the NCBI Gene Expression Omnibus (GEO) under accession
numbers GSE193517 and GSE149622, respectively.
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