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With advances in our understanding regarding the neurochemical underpinnings of neurological and psychiatric diseases, there is
an increased demand for advanced computational methods for neurochemical analysis. Despite having a variety of techniques for
measuring tonic extracellular concentrations of neurotransmitters, including voltammetry, enzyme-based sensors, amperometry,
and in vivo microdialysis, there is currently no means to resolve concentrations of structurally similar neurotransmitters from
mixtures in the in vivo environment with high spatiotemporal resolution and limited tissue damage. Since a variety of research and
clinical investigations involve brain regions containing electrochemically similar monoamines, such as dopamine and
norepinephrine, developing a model to resolve the respective contributions of these neurotransmitters is of vital importance. Here
we have developed a deep learning network, DiscrimNet, a convolutional autoencoder capable of accurately predicting individual
tonic concentrations of dopamine, norepinephrine, and serotonin from both in vitro mixtures and the in vivo environment in
anesthetized rats, measured using voltammetry. The architecture of DiscrimNet is described, and its ability to accurately predict
in vitro and unseen in vivo concentrations is shown to vastly outperform a variety of shallow learning algorithms previously used
for neurotransmitter discrimination. DiscrimNet is shown to generalize well to data captured from electrodes unseen during model
training, eliminating the need to retrain the model for each new electrode. DiscrimNet is also shown to accurately predict the
expected changes in dopamine and serotonin after cocaine and oxycodone administration in anesthetized rats in vivo. DiscrimNet
therefore offers an exciting new method for real-time resolution of in vivo voltammetric signals into component neurotransmitters.
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INTRODUCTION

The modern landscape of neuroelectrochemistry is evolving
towards the development of methods which are directly
translatable to human research. It is becoming increasingly well
understood that many neuropsychiatric disorders, including
Parkinson Disease, Huntington Disease, Tourette Syndrome,
Alzheimer Disease, schizophrenia, addiction, depression, and
chronic pain, have an etiology stemming from an imbalance or
disruption in neurochemical signaling. In particular, recent work
has shown that it is specifically a disruption in tonic concentra-
tions of neurotransmitters that give rise to the homeostatic
imbalances that allow these diseases to develop [1-7]. Briefly,
neurotransmitter signaling can be divided into phasic and tonic
release. The former refers to burst-firing neurons releasing
neurochemicals in response to salient stimuli, and is characterized
by short-lived, rapid release of neurochemicals into the synaptic
cleft. This type of release can be measured using techniques such
as fast-scan cyclic voltammetry (FSCV) [8, 9]. In contrast, tonic-level
release of neurotransmitters involves pacemaker-like spontaneous
firing of neurons, periodically releasing neurotransmitters into the
extrasynaptic space. This extracellular tonic concentration is

thought to maintain network homeostasis by modulating neural
excitability in response to external stimuli [10-12]. A significant,
long-term disruption in this homeostasis would therefore give rise
to issues pertaining to over- or under-excitable networks,
including aberrant oscillations, higher firing thresholds, changes
in receptor densities, and even neural atrophy.

It is therefore of vital importance to continue to develop and refine
electrochemical methods for probing the tonic concentrations of
neurotransmitters in vivo for future human translation. Methods for
measuring these tonic concentrations have been outlined in depth in
a recent review [2]. For human translation, one of the most promising
branches of these methods is cyclic voltammetry [13-16]. This is
because cyclic voltammetry enables measurement in situ without the
need for repetitive sample extraction from the brain for laboratory
analysis and does not involve genetic modification or Vviral
transduction (cf. methods such as optogenetics). Voltammetry's
relative safety profile, involving the use of a minimally traumatic
measurement electrode, makes it the most likely branch of methods
for approval in human use in the near future. Voltammetric methods
for tonic-level measurements, including multiple cyclic square-wave
voltammetry (M-CSWV), N-shaped multiple cyclic square-wave
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Fig. 1

In vitro workflow. A The input M-CSWV waveform is transmitted to the CFM, oxidizing and reducing surrounding electrochemical

species in the beaker solution. The resulting current data is picked up by the CFM and sent back to the computer for analysis. B Tested single
and mixture monoamine solution concentrations (nM). C Artificial intelligence models are used to resolve mixtures of monoamines into their

individual components.

voltammetry (N-MCSWV), and fast scan controlled-adsorption cyclic
voltammetry (FSCAV) have shown promise for a variety of applica-
tions in animal research, including for probing the neurochemical
dynamics of addiction and Tourette Syndrome treatment [2, 17-21].

Since the principle of voltammetry is to identify molecules by
the specific voltages at which they are oxidized or reduced, an as-
of-yet unsolved problem is the inability to discriminate between
structurally similar monoamines, which oxidize or reduce at nearly
identical voltages. This is especially a problem in the in vivo
environment, where mixtures of similar appearing neurochem-
icals, such as dopamine and norepinephrine, are abundant.
Previous work has attempted to leverage voltammetric measure-
ments in combination with artificial intelligence algorithms, such
as principal components regression (PCR) [22], partial least squares
linear regression (PLSR) [23], support vector regression (SVR) [24],
and deep learning networks [25, 26] to resolve the individual
monoamine concentrations present within a mixture. However,
these models have currently only been applied to phasic
neurotransmitter release data and have shown limited success
when extended to predict on mixtures in the in vivo environment.
Given the importance of tonic concentrations of neurotransmit-
ters, and the recent emergence of voltammetric methods to study
them, models for resolving these tonic concentrations of similar
appearing monoamines are ready for development.

Here, we introduce DiscrimNet, a deep learning algorithm that
can successfully resolve tonic concentrations of neurotransmitters
from in vitro mixtures containing both single monoamines and
mixtures of dopamine (DA), norepinephrine (NE), and serotonin (5-
HT). Further, in the in vivo environment in anesthetized rats,
DiscrimNet successfully predicts expected changes in these
neurotransmitters after pharmacological intervention with drug
of abuse administration. We detail the architecture of DiscrimNet
and compare its performance to a variety of shallow learning
algorithms that have been used in prior literature to attempt to
solve a similar problem. We show that DiscrimNet vastly outper-
forms all other shallow learning algorithms tested.

MATERIALS AND METHODS

Electrode fabrication

Carbon fiber microelectrodes (CFMs) were fabricated using an established
standardized CFM design at Mayo Clinic [16]. A single carbon fiber (AS4,
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diameter =7 pm; Hexel, Dublin, CA) was inserted into a silica tube
(ID =20 pm, OD =90 pm, 10 um coat with polyimide; Polymicro Technol-
ogies, Phoenix, AZ). The connection between the carbon fiber and the
silica tubing was sealed with epoxy resin. The silica tubing was then
attached to a nitinol (Nitinol #1, an alloy of nickel and titanium; Fort Wayne
Metals, IN) extension wire with a silver-based conductive paste. The nitinol
wire was then insulated with polyimide tubing (ID = 0.0089”, OD = 0.0134,
WT = 0.00225; Vention Medical, Salem, NH) up to the exposed carbon fiber
tip. The exposed carbon fiber was then trimmed under a dissecting
microscope to a length of 50 um. An Ag/AgCl reference electrode was
prepared from Teflon-coated silver wire (A-M systems, Inc., Sequim, WA) by
chlorinating the stripped tip in saline with a 9V dry cell battery. CFMs were
chemically tested in a beaker with TRIS buffer prior to coating with a
PEDOT:Nafion deposition solution, which has been shown to minimize the
effect of in vivo biofouling and increase sensitivity to electroactive
monoamine neurotransmitters [27].

In vitro experiments

Figure 1 outlines the workflow of the in vitro experiments. M-CSWV was
performed using a commercial electronic interface (NI USB-6363, National
Instruments) with a base-station desktop computer and software written
in-house using MATLAB (MathWorks Inc., Natick, MA) [28]. Data, in the form
of a sequence of unsigned 2-byte integers, were saved to the base-station
computer. Additional processing, including temporal averaging, filtering,
and background current simulation were done in MATLAB [28]. A CFM and
Ag/AgCl reference electrode were lowered into the monoamine solution.
The NI system transmitted the M-CSWV waveform through the CFM,
oxidizing and subsequently reducing surrounding species. The resulting
current traveled back through the CFM to the base-station computer for
analysis (Fig. 1A).

The monoamine solutions used in this work are shown in Fig. 1B. These
three monoamines were chosen because they are commonly seen in the in
vivo environment and are relevant for a variety of neuropsychiatric
conditions [29-31]. Other potential interferents such as ascorbic acid,
DOPAC, and pH changes have already been shown to be excluded by the
M-CSWV waveform [32], so were not assessed. All solutions were dissolved
in TRIS buffer to the appropriate concentrations. Each solution represents a
single dataset per CFM. For each dataset, the CFM was allowed to stabilize
in TRIS buffer for 30 minutes. Then, the CFM was inserted into the solution,
and was allowed to stabilize for an additional 10 minutes. 50 voltammo-
grams were then recorded (scan repetition rate = 0.1 Hz [32]). In between
solutions, the CFM was rinsed with TRIS buffer. A total of 12 CFMs with data
collected by 5 different experimenters were used for in vitro data
collection.

Voltammogram processing proceeded as described previously
[28, 32, 33]. The current data measured by the CFM is sent to the
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base-station computer for processing. Tonic concentrations are obtained
through dynamic background subtraction of the non-Faradaic current. The
final background subtracted voltammogram was fed into the artificial
intelligence models for neurochemical concentration prediction (Fig. 1C).

Unlabeled in vivo data

The second branch of our model learns salient features from unlabeled
in vivo data. This data was collated from prior in vivo experiments
performed in our laboratory. These experiments were all performed on
male urethane-anesthetized Sprague-Dawley rats (150-200 g). For each
experiment, using M-CSWV, 50 voltammograms were selected randomly
from a portion of the experiment after the CFM was electrochemically
stabilized but before any experimental manipulations, such as electrical
stimulation or drug of abuse administration, were performed. The
voltammograms were preprocessed in the same way as the in vitro data.
Overall, 20 experiments conducted by 3 different investigators were used,
for a total of 500 in vivo voltammograms. The brain regions targeted by
these experiments include the nucleus accumbens (n=13), the dorsal
hippocampus CA1 region (n = 3), and the medial prefrontal cortex (n = 4).
Of note, the electrodes used within these in vivo experiments are distinct
from those used to collect the in vitro data.

Shallow learning algorithm modeling

All shallow learning modeling was performed in MATLAB. The following
artificial intelligence algorithms were assessed based on their previous use
in the electrochemical literature for discriminating similar appearing
monoamines: Support vector regression (SVR), principal components
regression (PCR), partial least squares linear regression (PLSR), lasso
regression, ridge regression, and elastic net regression [14, 22, 23, 34, 35].
The 50 voltammograms and the associated concentration labels from each
in vitro experiment were compiled and shuffled. Prior literature utilizing
artificial intelligence for concentration resolution from mixtures has used
the same electrodes to construct the training and test sets. We follow this
approach for our “within electrode” training branch. In general, this
decision makes sense, as electrochemical data arising from different
electrodes can be quite variable, due to different electrode surface
characteristics, lengths, etc. These differences lead to differing voltammo-
grams for solutions containing the same concentrations of monoamines,
which can disrupt artificial intelligence model training. However, the
decision to use the same electrodes for training and testing also presents
several problems. When future data is collected with new electrodes, it will
mean the model will have to be retrained with data from these new
electrodes. Further, this prevents extension to the in vivo environment, as
ground truth labeling of in vivo data is difficult to obtain. Therefore, we
also included an “across electrode” training branch, in which validation and
testing voltammograms were allowed to come from electrodes entirely
unseen during model training. This tests the electrode-wise generalizability
of each model. Having a model that performs well across-electrodes would
be beneficial, as it would mean that data from future electrodes could
simply be fed back into the model without the need for retraining. Such
generalizability would bode well for generalizing to the in vivo environ-
ment. Indeed, our unlabeled in vivo data was collected with an entirely
separate set of electrodes from the in vitro data.

For the “within electrode” branch, the shuffled voltammogram dataset
was split randomly into training and test sets (80% training) for evaluation
(Fig. 2A). In total, there were 11350 voltammograms, yielding 9080
voltammograms for training and 2270 for testing. To maximize the
generalizability of the models, each model was programmed to output a
predicted concentration for each monoamine (DA, NE, 5-HT) regardless of
whether the monoamine was present in the mixture. Model performance
was evaluated with root mean square error (RMSE) between the predicted
and true test concentrations.

For support vector regression, the box constraint, epsilon, and kernel
scale hyperparameters were optimized using five-fold cross validation on
the training set using the L1QP solver. A total of 30 optimization iterations
were performed on the training set before the final concentration
predictions on the test set. For PCR and PLSR, a total of 7 principal
components were used in the regression, as 7 principal components
explained 99% of the variance.

For lasso, ridge, and elastic net regression, Principal Component Analysis
(PCA) was performed on the training and test datasets, and the first 100
principal components of the training set were kept for regression. This was
to reduce the program execution time and make the regression problem
tractable. 20-fold cross validation was used to estimate the coefficients of

Molecular Psychiatry

A. Goyal et al.

each regression model. The largest lambda value (retained regularization
coefficients) was used such that the cross-validated mean squared error
was within 1 standard error of the minimum mean squared error.

DiscrimNet architecture

M-CSWV-derived voltammograms can be reshaped into 2D heatmaps,
which effectively can be fed as images to a deep learning algorithm.
Therefore, deep learning network layers which operate on images, such as
2D convolutional layers, can be used on our voltammograms. Such layers
offer an advantage over equivalent layers which operate on 1D time series
(e.g., 1D convolutional layers, recurrent layers, etc.) because of their ability
to encode multi-dimensional spatial information in the data, and to use
this encoding to discriminate between similar-appearing voltammograms.

One of the major limitations of in vivo use of voltammetric methods
such as M-CSWV is that labeling the concentrations of in vivo voltammo-
grams is difficult, as there is currently no way to accurately determine the
concentrations of each neurotransmitter present in a certain brain region.
One could use in vivo microdialysis, but this method is unsuitable for
future clinical use, due to its propensity for tissue damage, low sampling
rate, and need for external laboratory identification [2, 36]. To circumvent
these concerns, we have developed a semi-supervised learning algorithm
which is trained on labeled in vitro voltammograms, allowed to encode
features of unlabeled in vivo voltammograms, and finally can predict
concentrations from unseen in vivo data.

DiscrimNet was built as a convolutional autoencoder (Fig. 2C) using the
Keras library [37] in Python. Autoencoders, which consist of an encoding
(learning) branch and a decoding (reconstruction) branch, are typically
used in an unsupervised manner to learn the salient features of the input
data and attempt to reconstruct it. Autoencoders have been used for
anomaly detection, noise suppression, data augmentation, etc. [38]
However, we use it in a semi-supervised manner for both concentration
prediction and voltammogram reconstruction.

First, voltammogram pre-processing proceeds by normalizing all pixel
values to be between 0 and 1 (as recommended for stable training of deep
learning networks) [39]. The autoencoder is trained on the same labeled
in vitro data as the shallow learning algorithms were trained on. As before,
training proceeded in either a “within electrode” or “across electrode”
manner (Fig. 2B).

The output of the encoding pathway consists of three concentrations,
the predictions for DA, NE, and 5-HT, respectively (Fig. 3). The output of the
decoding pathway is an attempted reconstruction of the input voltammo-
gram. There are thus 2 losses that the training process attempts to
minimize: regression loss, which is the root mean square error between the
predicted concentrations and actual concentration, and the reconstruction
loss, which is the binary cross-entropy between the input and output
voltammograms. By minimizing both, the network is forced to learn the
salient features within the voltammogram and allow these features to
inform the concentration prediction process.

Second, an identical autoencoder is built, but without the dense blocks
that lead to concentration prediction. This autoencoder is only designed
for reconstruction. Following the principles of transfer learning, the trained
layers from the first autoencoder are transferred to this one, and then this
second network is fed unlabeled in vivo voltammograms. Now, the layer
weights will be modified to incorporate salient features of in vivo
voltammograms.

Finally, an encoder is built, identical to the encoding branch of the first
network. The encoding layer weights of the second network, which
contains information from labeled in vitro data as well as unlabeled in vivo
data, are transferred to this one. Unseen in vivo data can then be fed into
this encoder, which will output predicted concentrations for DA, NE, and
5-HT in vivo.

Overall, this convolutional autoencoder derives inspiration from Xue
et al, 2021 [40], who utilized a similar autoencoder and transfer learning
scheme to predict phasic concentration changes of several monoamines.
However, our model possesses some key differences. First, the model of
Xue et al. utilized 1D convolution blocks, and reconstructed the
voltammogram directly from the concentration predictions. In contrast,
our model uses 2D convolution blocks, and reconstructs the voltammo-
gram from a low-dimensional 2D layer, which is near the bottom of the
encoding branch. Because our voltammograms possess significantly
higher dimensions than theirs (128 x 45,000) vs. (1 x 200), it is impossible
to reconstruct the voltammogram from just 3 concentration values. Various
additional adjustments are made, such as the addition of batch normal-
ization blocks, the use of Separable convolution blocks rather than simple
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C DiscrimNet is a convolutional autoencoder consisting of 2D convolution and MaxPooling blocks in the encoder branch, and 2D convolution

and upsampling blocks in the decoder branch.

convolution blocks, and the use of 2D convolution and Upsampling blocks
rather than transposed convolution blocks. Finally, the biggest difference is
that Xue et al.'s in vitro test set as well as their in vivo set came from the
same electrodes used for the training set, while our “across electrode”
branch has test sets that consist of voltammograms from electrodes never
seen during training. Further, our in vivo dataset comes from an entirely
different set of electrodes. Additionally, our model aims to predict tonic
concentrations of neurotransmitters, while Xue et al's model predicts
phasic changes in concentrations.

For all phases of DiscrimNet training, the Adam optimizer was used with
random initial hyperparameters. After 3 epochs of no validation loss
reduction, learning rate was reduced by 10-fold, with a minimum possible
learning rate of 1x10°. Training continued for a maximum of 50 epochs
but was programmed to stop after 20 epochs of no reduction in validation
loss. For training on labeled in vitro data, the loss functions were root
mean square error for the monoamine concentration predictions and
binary cross-entropy for voltammogram reconstruction. For training on
unlabeled in vivo data, the loss function was binary cross-entropy for
voltammogram reconstruction.

In vitro validation experiments
To validate DiscrimNet’s ability to characterize individual concentrations of
DA, NE, and 5-HT, a new set of in vitro solutions were made that contain all
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three monoamines (Table 1). These mixtures are entirely different from the
initial in vitro mixtures used to create the training set, as those mixtures
contained either one or two monoamines each. The mixtures here
contained three monoamines and would serve purely as a test set (no
iteration of the model would be trained on this set of mixtures). A similar
procedure was used to construct this test set and pre-process it (Fig. 2).
Three CFMs were used to record 20 voltammograms from each of these
mixtures. DiscrimNet and SVR were then used to predict the concentra-
tions of DA, NE, and 5-HT of each voltammogram.

Selectivity validation experiments

Prior work has shown that the voltammograms recorded by M-CSWV are
not affected by other common electroactive interferents in the brain,
including adenosine, ascorbic acid, DOPAC, pH changes, homovanillic acid
(HVA), and uric acid. [32] However, to further confirm that DiscrimNet's
concentration prediction performance would not be affected by these
electroactive interferents, we performed two separate in vitro validation
experiments across 3 CFMs.

In the first experiment, 20 in vitro voltammograms were collected from
solutions that contained 500nM DA by itself or in the presence of
physiologic concentrations of other possible in vivo interferents. Each
solution contained 500 nM DA in addition to one of adenosine (1 uM),
ascorbic acid (200 uM), HVA (20 uM), DOPAC (20 pM), uric acid (100 pM), or

Molecular Psychiatry
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voltammogram, while simultaneously minimizing regression and reconstruction loss. Next, both the encoder and decoder weights are
transferred to a new autoencoder, which is trained to reconstruct unseen in vivo data. Finally, the fully-trained encoder weights are used to

predict concentrations on unseen in vivo data.

Table 1. In vitro validation solution concentrations. Each mixture
consisted of all three monoamines.

DA (nM) NE (nM) 5-HT (nM)
100 250 500
300 250 500
100 500 250
300 500 250
500 100 250
500 300 250
500 250 100
500 250 300

pH change (-0.2). DiscrimNet was then assessed on its ability to predict the
correct DA concentration based on the voltammograms. DiscrimNet was
not retrained using voltammograms collected with these other
interferents.

In the second experiment, 20 in vitro voltammograms were collected
from solutions that contained all three analytes of interest (DA, NE, and 5-
HT) in various concentrations (Fig. 4l) and in the presence of physiologic
concentrations of one other possible in vivo interferent (adenosine, pH
change, DOPAC, and uric acid). DiscrimNet was then assessed on its ability
to predict the correct analyte concentrations based on the voltammo-
grams. DiscrimNet was not retrained using voltammograms collected with
these other interferents.

In vivo validation experiments
Male Sprague-Dawley rats (n = 8; 200 g; Envigo, United States) were used
for in vivo validation studies. Rats were kept in social housing in an
Association for Assessment and Accreditation of Laboratory Animal Care
International (AAALAC) accredited vivarium following a standard 12-h
light/dark cycle at constant temperature (21 °C) and humidity (45%) with
ad libitum food and water. The present studies were approved by the
Institutional Animal Care and Use Committee (IACUC), Mayo Clinic,
Rochester, MN. The NIH Guide for the Care and Use of Laboratory Animals
guidelines (Department of Health and Human Services, NIH publication No.
86-23, revised 1985) were followed for all aspects of animal care. As
animals were not allocated to separate experimental groups, randomiza-
tion and blinding were not needed.

Rats were anesthetized with urethane (1.5 g/kg, i.p., Sigma-Aldrich, St.
Louis, MO, USA). After depth of anesthesia was confirmed with loss of hind
limb nociceptive withdrawal response, rats were fixed to a stereotactic
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surgical frame (David Kopf Instruments, Tujunga, CA, USA). A burr hole was
drilled over the right nucleus accumbens core (Coordinates from bregma
[41]: AP: +1.2, ML: +1.4, DV: -6.5 to -7.5) for placement of the CFM. Another
burr hole was drilled on the contralateral side for placement of the Ag/
AgCl reference electrode. The CFM was lowered to the target location, and
the M-CSWV signal was allowed to stabilize for 60 minutes. Then, cocaine
(2 mg/kg, iv, n=4) [17] or oxycodone (2.5 mg/kg, iv., n=4) [42] was
administered, and the resulting effects on monoamine concentrations
were recorded with M-CSWV.

After the experiment, DiscrimNet was used to predict concentrations for
the three monoamines over the course of each in vivo experiment. Each
model was evaluated on its ability to track the expected changes in the
monoamines in response to cocaine and oxycodone based on their
mechanisms of action.

RESULTS

In vitro data collection

The 12 CFMs performed similarly in their ability to acquire stable
electrochemical recordings across each solution. Representative
plots showing background-subtracted voltammograms and the
associated color plots for each monoamine demonstrate a high
signal-to-noise ratio and high recording fidelity (Fig. 4). The
oxidation and reduction voltages derived from the voltammo-
grams for DA and NE are indiscriminable to the naked eye
(Fig. 4A, B), confirming the need for artificial-intelligence based
post-processing algorithms.

In vitro model performance

To determine which model performed the best at discriminating
between similar-appearing monoamines, we assessed the root
mean square error (RMSE) between the models’ concentration
predictions and the actual monoamine concentrations for the
labeled in vitro data. When the test set consisted of voltammo-
grams held out from the same electrodes used for the training set
(“within electrode”), DiscrimNet and support vector regression
(SVR) showed significantly lower RMSEs compared to the
remaining models, across all monoamines (two-way ANOVA;
p <0.001; Fig. 4D). Each model exhibited similar variance across
all monoamines (Levene's Test; p>0.1). This result was likely
achieved due to the number of tunable hyperparameters allowed
by the SVR architecture, enabling robust fitting to a very high-
dimensional dataset. Overfitting to the training set is a natural
concern with such a flexible and tunable model but appears to not
have occurred here due to the low test errors achieved by SVR,
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evident in Fig. 4D. Without hyperparameter optimization, SVR
showed similar performance to lasso regression (two-way ANOVA,
p > 0.05), showcasing the utility of hyperparameter tuning.
Because SVR vastly outperformed other shallow learning
algorithms in predicting monoamine concentrations, it was the
only algorithm to be assessed for the “across electrode” training
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DA+Interf. Monoamines only Monoamine+interf.

Experiment

branch, where test set voltammograms arose from electrodes
unseen during model training. In this case, DiscrimNet showed
significantly lower RMSEs than SVR across all monoamines on the
test set (one-way ANOVA, p<0.001; Fig. 4E). This result
showcases the lack of generalizability across electrodes dis-
played by shallow learning algorithms, as seen in prior literature,
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Fig.4 Model output, performance, and validation. A 500 nM dopamine. B 500 nM norepinephrine. C 100 nM serotonin. The voltammograms
for DA and NE are very similar due to their structural similarity. D Root Mean Square Errors (RMSEs) between actual and predicted monoamine
concentrations. The test set consisted of voltammograms obtained using the same electrodes (within) as the training set voltammograms.
E Same as (A), but the test set consisted of voltammograms obtained using different electrodes (across) as those from the training set.
F Training and validation loss curves for DiscrimNet phase 1, training on labeled in vitro data. G Training and validation loss curves for
DiscrimNet phase 2, training on unlabeled in vivo data. H DiscrimNet and SVR are used to predict concentrations from in vitro mixtures
containing all three monoamines. Error bars indicated standard deviation across CFMs. | Solutions used for the second selectivity validation
experiment. All 4 solutions were measured across 3 CFMs. Monoamine concentrations are in nM. J DiscrimNet performance for both selectivity
validation experiments, as well as its performance from monoamine mixtures without interferent (same data as (H), left). Error bars indicate

standard deviation across CFMs.

which is why test set voltammograms in these prior studies came
from the same electrodes as training set voltammograms
[22, 23, 40].

The training and validation loss curves for the two training
phases of DiscrimNet are shown in Fig. 4F, G. For both training
iterations, a plateau is reached early in training, with incremental
improvements to validation loss seen after the respective
plateaus. This early plateau indicates that DiscrimNet is well
suited to the problems of discriminating similar appearing
monoamines, as well as reconstructing voltammograms from
low dimensional latent space representations. Interestingly, even
after training for many epochs following the plateau, overfitting
(which would be represented by an increase in validation loss) did
not occur to a significant degree. This is possibly due to the
presence of dropout and MaxPooling layers within the network,
which both serve to eliminate a certain percentage of learned
representations during each training epoch. These layers are
intended to significantly mitigate overfitting.

Because SVR significantly outperformed the other shallow
learning models evaluated, it was the only shallow learning
model assessed for in vitro validation experiments. DiscrimNet was
shown to significantly outperform SVR in its ability to accurately
predict concentrations of DA, NE, and 5-HT from solutions
containing all three monoamines (Fig. 4H; one-way ANOVA,
p <0.001). This supports DiscrimNet’s generalizability to solutions
that differ from the training set (which consisted of solutions
containing only one or two of the monoamines) and supports its
potential applicability to the in vivo setting.

Finally, to confirm that DiscrimNet'’s in vivo performance will not
be affected by the presence of other electroactive interferents
such as adenosine, uric acid, ascorbic acid, pH changes, DOPAC, or
homovanillic acid (HVA), we performed two selectivity validation
experiments. In the first, DA concentration was predicted in the
presence of one of these interferents. In the second, concentra-
tions from mixtures containing all three analytes of interest (DA,
NE, and 5-HT) were predicted in the presence of one of these
interferents (Fig. 4l). DiscrimNet's ability to accurately predict all
three analyte concentrations in the presence of interferents was
not significantly different from its ability to accurately predict
monoamine concentration with no added interferents (one-way
ANOVA, p>0.1), as expected from M-CSWV's ability to exclude
these analytes from its voltammograms (Fig. 4J).

In vivo model performance

To test DiscrimNet's ability to predict concentrations of each
monoamine in vivo, it was modeled on in vivo data previously
acquired in our lab, in which either cocaine or oxycodone was
administered to urethane-anesthetized rats, and M-CSWV was
used to record the voltammetric signal from the right nucleus
accumbens core (Fig. 5). As seen, DiscrimNet accurately predicted
the expected DA and 5-HT surges following cocaine and
oxycodone administration [17, 18, 42] (Fig. 5A, B). The tonic
concentrations predicted by DiscrimNet match those we have
previously seen in our lab [17, 42]. Overall, the total monoamine
concentration predictions match the trends recorded by M-CSWV,
and the individual monoamine concentration predictions follow
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the outcomes expected from the individual drugs’ mechanisms of
action (i.e., increase in both 5-HT and DA, with a larger increase in
DA, and no change to NE).

DISCUSSION

Here we have outlined the development of DiscrimNet, a deep
learning network capable of resolving tonic concentrations of DA,
NE, and 5-HT from in vitro mixtures and in the anesthetized in vivo
environment for the first time with high temporal resolution
(~105s). The architecture of the model is described, and its
performance is compared to a variety of shallow learning
algorithms, outperforming all in terms of generalizability and
in vivo concentration accuracy. After the model is trained, it can
be used to predict concentrations of monoamines in real time as
the voltammetric signal is obtained.

DiscrimNet vastly outperforms other algorithms in the literature
with its generalizability across electrodes and into the in vivo
environment in anesthetized rodents. Prior literature utilizing
artificial intelligence for concentration resolution from mixtures
has used the same electrodes to construct the training and test
sets to improve the similarity between training and test
voltammograms. However, this decision reduces generalizability
of the model to data collected from new electrodes. Therefore, we
also included an “across electrode” training branch, in which
validation and testing voltammograms were allowed to come
from electrodes entirely unseen during model training, and our
in vivo data came from electrodes distinct from those used for
in vitro data collection and model training. DiscrimNet’s ability to
accurately predict concentrations of monoamines from electrodes
unseen during training (Fig. 4) is of vital importance, as it allows
data collected from new electrodes to be predicted without the
need for model retraining and supports DiscrimNet's application
to the in vivo environment.

DiscrimNet's ability to learn salient features of large quantities
of unlabeled in vivo data (Fig. 3, Step 2) lends it a significant
advantage compared to shallow learning algorithms which cannot
be trained on such data. This advantage is evidenced here, with its
ability to accurately track expected changes in neurotransmitters
after pharmacological intervention with drugs such as cocaine and
oxycodone (Fig. 5). Cocaine is a non-selective reuptake inhibitor,
but can be seen here to only elevate DA and 5-HT tonic levels in
the nucleus accumbens core, and not NE. This finding is highly
consistent with post-mortem analysis of nucleus accumbens core
tissue content of these analytes. Post-mortem tissue analysis has
confirmed DA as the major catecholamine and 5-HT as the major
indoleamine present in the nucleus accumbens core of the
mammalian brain with NE comprising less than 1% of the content
[43], supporting why we primarily saw increases in only DA and
5-HT following cocaine administration. Further, the absolute
concentrations predicted by DiscrimNet match those we have
reported previously [17, 18, 32, 42].

Oxycodone is a p-opioid agonist, and has been shown to bind
to p -opioid receptors on VTA GABAergic interneurons, deactivat-
ing these interneurons and disinhibiting dopaminergic transmis-
sion to the nucleus accumbens [44, 45]. Although oxycodone is
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Fig. 5 Validation of DiscrimNet on in vivo data. DiscrimNet is used to predict monoamine concentrations from in vivo experiments in which
rats were administered cocaine (n=4) and oxycodone (n=4). A Total monoamine concentrations averaged across experiments in which
cocaine was administered (i.v.) at t =27 min (dashed gray line) recorded with M-CSWV. B DiscrimNet’s prediction of the total monoamine
concentrations, and the individual monoamine concentrations. C Total monoamine concentrations averaged across experiments in which
oxycodone was administered (i.v.) at t = 27 min (dashed gray line) recorded with M-CSWV. D DiscrimNet’s prediction of the total monoamine
concentrations, and the individual monoamine concentrations. Shaded regions denote standard deviation.

not a direct serotonin reuptake inhibitor like other opioids of the
phenylpiperidine class (e.g., fentanyl, dextromethorphan, etc.) [46],
it has been shown in several case reports to lead to serotonin
syndrome when mixed with other serotonin-releasing agents
[46-49]. These reports have posited mechanisms for oxycodone-
induced serotonin transmission into the nucleus accumbens, but
additional mechanistic studies are needed to elucidate the true
factors underlying serotonin release. Previous studies using
microdialysis have demonstrated that the prototypical p -opioid
agonist morphine induces serotonin efflux into the nucleus
accumbens by acting at the dorsal raphe nucleus (DRN) [50-53],
likely via p-opioid agonism of GABAergic neurons in the DRN [52].
As a morphine analog, it is possible that oxycodone induces
serotonin efflux via a similar mechanism. An alternative explana-
tion is that a metabolite of oxycodone, oxymorphone, exerts
agonism of k-opioid receptors, activation of which has been
shown to reduce serotonin clearance through inhibition of
serotonin transporter function in the rodent dorsal striatum and
nucleus accumbens [54, 55]. This reduction of clearance would
thereby increase tonic 5-HT concentrations in the nucleus
accumbens.

Where previous studies have primarily failed is when attempt-
ing to resolve mixtures of DA and NE into their component
concentrations, especially in vivo. These previous studies worked
with phasic data. The output voltammogram of a phasic scan is a
single dimensional plot of current vs. voltage. This limited
information may not contain sufficient resolution to extract the
small differences in redox potentials between the two mono-
amines. In contrast, the M-CSWV waveform consists of a series of
square waveforms superimposed on a staircase sweeping
potential. The advantage of this morphology is that each
M-CSWV scan contains a greater number of current measurements
within the redox range of DA and NE. These measurements are all
compiled into a high-dimensional voltammogram, allowing for a
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higher-resolution analysis of the current vs. voltage behavior of
the monoamines in solution. This increased resolution may allow
post-processing algorithms to more accurately resolve the small
differences in the voltammetric signals of the two molecules.
DiscrimNet has been shown to track expected changes in
neurotransmitter levels following pharmacological intervention
in vivo; however, it should be emphasized that all in vivo
experiments were performed in anesthetized rodents. It is likely
that in an awake, behaving organism, additional interferents to
the signal would be present, including motion artifacts and other
dynamic neurotransmitter changes, such as spontaneous mono-
amine transients, that are not present in an anesthetized animal.
Further, all of our experiments were performed over the course
of a single day with a fresh CFM and reference electrode for each
recording; however, in a chronic implantation model, CFMs and
reference electrodes would be kept within the animal for several
days or weeks. Voltammogram morphology has been shown to
change over such a time as a result of in vivo biofouling [56],
which is also something that DiscrimNet has not been trained to
handle. DiscrimNet would need additional training to handle
these interferents. Such validation is the aim for future work.
DiscrimNet offers a novel method to resolve in vivo voltam-
metric measurements into component concentrations of DA, NE,
and 5-HT in near real-time. This capability could prove to be
vitally useful for in vivo study of psychiatric disease, which have
been shown to arise from dysfunction in signaling of these
monoamines. Further, the ability to perform real-time electro-
chemical measurements without the need for repetitive sam-
pling and laboratory identification or genetic modification
enables application to human surgeries, during which tonic
concentrations of individual monoamines could serve as unique
biomarkers to monitor intraoperatively, and possibly postopera-
tively using permanent electrochemical monitoring implants [1].
Indeed, deep brain stimulation devices are evolving to leverage
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electrophysiological biomarkers of neuromotor diseases, such as
Parkinson’s Disease and essential tremor, to individualize patient
treatment and stimulation parameters. An implant that would
also be able to detect individual monoamine tonic concentra-
tions would enable creation of high-dimensional patient-specific
models with electrochemical and electrophysiological features of
their pathophysiology, ultimately enabling higher fidelity indivi-
dualized treatment.
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