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State-and-rate friction in contact-line dynamics
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In order to probe the dynamics of contact-line motion, we study the macroscopic properties of sessile drops
deposited on and then aspirated from carefully prepared horizontal surfaces. By measuring the contact angle and
drop width simultaneously during droplet removal, we determine the changes in the shape of the drop as it depins
and recedes. Our data indicate that there is a force which opposes the motion of the contact line that depends both
on the amount of time that the drop has been in contact with the surface and on the withdrawal rate. For water
on silanized glass, we capture the experimentally observed behavior with an overdamped dynamical model of
contact-line motion in which the phenomenological drag coefficient and the assumed equilibrium contact angle
are the only inputs. In this case, the damping coefficient decreases with increasing velocity of the contact line.
For other liquid-substrate pairs, the observed contact-line motion suggests that a maximum static friction force
is important in addition to damping. The dependence on time of contact and withdrawal rate, reminiscent of
rate-and-state friction between solid surfaces, is qualitatively consistent across three substrate-liquid pairs.
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I. INTRODUCTION

Liquid-substrate interactions can be highly complex. Some
of the complexities come into focus for a small liquid drop
residing on a solid surface as the drop is removed either by
evaporation or by aspiration. The motion of such a drop is
mediated by the dynamics of the contact line between the
three phases: the liquid, the solid substrate on which it sits,
and the surrounding gas. Depending on the circumstances, the
drop may respond to the decreasing volume in a variety of
ways. In some cases the contact line slides along the surface
as the drop volume decreases so that the angle that the drop
surface makes with the substrate, the contact angle, remains
constant. In other cases, however, the contact line gets stuck
and the drop dries completely without the contact line ever
moving. For that to happen, the contact angle has to decrease
as the volume of the liquid drops to zero. In many cases,
the contact-line motion is a mixture of these two limiting
behaviors.

Contact-line motion is affected by various timescales as
well as substrate and fluid properties. Complications occur
because the surfaces and liquids are far from ideal, with mi-
croscopic details that strongly affect the drop behavior. In this
paper, we study the contact-line motion of drops as they are
removed from a solid surface by aspiration. We find that the
dynamics depend strongly on the time the drop has been in
contact with the solid surface (wait time) and on how quickly
the drop is removed (flow rate); long wait times or high flow
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rates give rise to lower contact angles as the contact line
recedes towards the drop center. An important conclusion is
that the effects of wait time are not confined to the drop’s
initial contact line but instead appear to be due to changes
throughout the entire drop footprint where the liquid makes
contact with the solid. This suggests that there is a dissipative
force that increases with the time of contact between the liquid
and substrate, reminiscent of friction between solid surfaces.

To make this quantitative, we construct a model of contact-
line motion using overdamped dynamics so that the velocity
of the contact line is proportional to the net force it expe-
riences. The inputs to the model are (i) the drag coefficient
for motion of the contact line along the substrate and (ii) the
equilibrium contact angle, or the angle at which there is no
net force pulling or pushing on the contact line. The resulting
dynamics, obtained by numerically integrating this model,
capture the major features seen in each individual experiment.
To explain behavior across experiments, we show evidence
of a damping coefficient which decreases with increasing
contact-line velocity.

We note that there is considerable variation in day-to-day
values of essential measurements such as the resting con-
tact angle despite great care in preparing the surfaces in a
similar and reproducible manner, and using the same fluids
with the same drop volume. This suggests, just as in stud-
ies of solid-solid friction, that the damping forces are subtle
and controlled by microscopic chemical-physical properties
of the interface between the liquid and substrate. Such vari-
ations, we believe, have been underreported in the literature
on contact-line depinning and contact angle measurements.
These fluctuations can be large relative to the changes we
measure. Nevertheless, we show that the trends described
are consistent not only across samples but across different
solid-liquid pairs, suggesting that the effects of wait time on
liquid-solid friction are robust.
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II. BACKGROUND

The behavior of sessile drops has been studied since 1805,
when Young first argued that drops maintain a static “equilib-
rium” contact angle with the surface on which they sit [1]. In
that formulation, the contact angle is determined by horizontal
balance between the forces created by three surface tensions
between the liquid, solid, and gas interfaces. The forces cre-
ated by the substrate-liquid and substrate-gas surface tensions
(γSL and γSG, respectively) are antiparallel and point tangen-
tial to the substrate surface. At the contact line, the force due
to liquid-gas surface tension (γLG) points along the surface of
the liquid, which forms an angle θ with the substrate. For force
balance to occur in the horizontal direction, the liquid has to
assume an equilibrium contact angle, θeq, such that

γSG = γSL + γLG cos θeq.

The vertical component of the surface tension forces can de-
form the solid substrate [2].

In practice, drops frequently display a variety of static
contact angles. Such variation was originally explained by
distinguishing between the macroscopic (measured) contact
angle and the microscopic (local) contact angle [3]. If there is
a defect, for example, due to surface roughness, Young’s angle
may be satisfied locally even as the macroscopic contact angle
changes. A similar argument can be made for surfaces with
chemical inhomogeneities. However, this does not explain the
presence of significant contact angle hysteresis on extremely
smooth and clean surfaces. One outstanding example is the
case of a superfluid helium drop, which has no impurities,
on a freshly deposited surface of cesium. In that case it was
found that the contact line pins completely as the drop is
removed [4].

A number of approaches, which we will return to in the
Discussion section, have been advanced to explain such large
contact-angle hysteresis. It is possible to have a drop with
contact angle θ �= θeq if the contact line is out of equilibrium;
theories about the motion of such contact lines must account
for the divergence of shear stress at a moving contact line
[5–7]. Contact-line dynamics may also depend on the history
of deposition on rough substrates [8].

One general approach has been to consider contact-line
hysteresis as being due to a form of friction. Ideas about solid-
solid friction—a microscopic effect that is extremely complex
yet is described in some cases by models simple enough to
be taught in introductory physics classes—are promising, and
friction has appeared in the description of liquids moving
across solid surfaces for over half a century [9–14].

Much of the past work measuring the adhesion force of
the contact line has involved drops whose radial symmetry is
broken by gravity, capillary forces, or effective forces due to
rotation [13,15,16]. In our studies, the drop remains approx-
imately axisymmetric throughout the experiment. Because of
the simplified geometry, only the receding (dynamic) contact
angle is relevant. Most importantly, the drop footprint in these
experiments is always contained within the area defined by
the initial contact line, distinct from drop-sliding experiments
where the behavior may depend on whether or not the drop
has left its initial area of contact [11].
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FIG. 1. Schematic of experimental protocol and analysis. (a) A
drop has just been put down; aspiration begins at a fixed flow rate.
(b) Initially the drop is pinned: the contact angle decreases while the
drop width stays fixed at w = w0. (c) Eventually the drop depins
and the drop width begins to decrease so w < w0. (d) Schematic
drop width versus contact angle for three idealized situations. The
blue points correspond to the case where there is no pinning; the
contact angle remains fixed at the equilibrium angle so that the data
would appear as a vertical line of points (constant contact angle).
The yellow points show the limiting case of full pinning: the data
would appear as a horizontal line of points (constant width). The
purple points show what is expected in the case of partial pinning,
where the drop originally remains at a fixed width until it depins and
then recedes with constant contact angle. Time during withdrawal is
shown by arrows, moving to the left and down as the drop volume
decreases.

III. RESULTS

A. Water on silanized glass

We measure the contact-line motion of ultrapure water
drops on a flat horizontal silanized glass surface as the liquid
inside the drops is removed. Surfaces were carefully cleaned
and prepared as discussed in the Methods section below.
Water on silanized glass has only moderate contact-angle
hysteresis so that the contact line is initially pinned during
aspiration but depins well before the drop is fully removed.

We allow the drop to sit for a prescribed wait time τ

in a nitrogen environment before removing it via aspiration
through a thin tube at a constant flow rate q. Throughout the
withdrawal process, we measure two macroscopic parameters:
the contact angle, θ , and the width, w, of the drop at its base,
as depicted in Fig. 1. Note that some fraction of the drop
volume is lost to evaporation during the wait time so that the
contact angle at the beginning of the withdrawal process is
lower for larger τ .

In one type of experiment, shown in Fig. 2, we vary the
wait time, τ , between 0 and 5 min while keeping the flow
rate fixed at q = 2 µl/s. Drops that sit for longer times tend to
have lower dynamic contact angles at a given width than drops
that are immediately removed after deposition. In other words,
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FIG. 2. Drop width, w, vs contact angle, θ , during aspiration of
water drops on silanized glass for the different wait times, τ , shown
in the legend. After being in contact with the surface for time τ , each
drop is then withdrawn at fixed flow rate, q = 2 µl/s. The best-fit
curves from the model are shown as the solid lines. See [17] for plots
of w and θ as a function of time.

for τ = 0 the changing volume of the drop is accommodated
primarily by a change in its width leaving the contact angle
relatively constant; at larger τ , on the other hand, the volume
change creates a more pronounced change in the contact angle
(and therefore a less pronounced change in the width).

In another type of experiment, shown in Fig. 3, we vary
q between 0.4 and 8 µl/s with τ kept fixed at either τ = 0
or 3 min. The effect of flow rate is more subtle than the
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FIG. 3. Drop width, w, vs contact angle, θ , during aspiration of
water drops on silanized glass for the different withdrawal flow rates,
q, shown in the legend. (a) When the drops are removed immediately
after deposition, τ ≈ 0, the curves at all q look similar. (b) When
drops sit for τ = 3 minutes before withdrawal, higher q leads to
lower depinning and dynamic contact angles.
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FIG. 4. For water on silanized glass, drop width, w, vs contact
angle, θ , during paused aspiration of drops. The dashed ovals indicate
regions where aspiration was halted, allowing the drop to relax to
a static configuration. Experiments done at (a) different wait times,
shown in legend (fixed q = 2 µl/s) and (b) different q in legend (fixed
τ = 5 min). Higher flow rates and longer wait times correspond to
lower contact angles even after the drops have depinned and are
allowed to relax.

effect caused by a change in waiting time. Drops deposited
and then removed immediately show little dependence on
withdrawal rate. However, for drops with longer wait times
(τ = 3 min), higher withdrawal rates lead to lower depinning
angles.

We modify the original experiment to remove the effect
of pinning at the drop’s initial contact line. In these mod-
ified experiments, after roughly half of the drop volume is
removed, the drop is allowed to relax at fixed volume for
several seconds. Only after the drop is relaxed in this state is
the remainder of the drop aspirated at the same flow rate as in
the first part of the aspiration process. In the first step of these
modified experiments, enough liquid is removed that the drop
depins from its initial contact line, effectively resetting the
“initial conditions” of the experiment. Thus the initial contact
line does not play a role in the drop’s subsequent motion after
restarting the aspiration.

A drop relaxes during the constant-volume phase by in-
creasing its contact angle while decreasing its width. This
results in nonmonotonic behavior in w versus θ as shown in
Fig. 4, and it allows the observation of increasing as well
as decreasing contact angles. After restarting the flow, the
drop quickly returns to its previous prerelaxation trajectory,
dependent on the initial wait time and flow rate. This is the
case even though the time allowed for the drop to relax is the
same in all experiments.
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Figure 4(a) shows that the change in behavior with wait
time is dominated by an effect from the entire region where
the drop was in contact with the substrate (the drop’s initial
footprint), not only the edge of that region (the initial contact
line). Figure 4(b) demonstrates that even drops removed at
the slowest flow rate relax when the flow is turned off. This
indicates that none of the experiments reported here can be
considered quasistatic, with the contact line in approximate
force balance at all times, since quasistatic behavior would
require the contact line to stop moving as soon as the flow is
turned off.

B. Geometric constraints

When the drop width, w, is not much larger than the cap-
illary length (γLG/ρg)1/2 (where ρ is the liquid density and g
is the gravitational acceleration), the drop shape is a spherical
cap which has volume

V = π

3

(
w

2

)3

h(θ ), (1)

where

h(θ ) = [2 + cos(θ )][1 − cos(θ )]2

sin3 θ
. (2)

Let the total derivative of a quantity x with respect to time be
denoted ẋ. Then differentiating the volume equation gives us

ẇ

w
= 1

3

(
V̇

V
− ḣ

h

)
, (3)

where V̇ = −q is the negative of the withdrawal rate. Typi-
cally, ḣ = θ̇ (∂h/∂θ ) is also negative because θ decreases in
time; the exception is during the constant-volume relaxation
shown in Fig. 4. This equation formalizes the intuition that
changes in drop width depend on both the flow rate and
contact angle variation.

C. Model with overdamped contact-line dynamics

We model the contact-line behavior as the drop volume
decreases linearly in time using four assumptions:

(1) Drops maintain a spherical cap geometry throughout,
so that the volume is a function only of the contact angle and
drop width. In addition to the drop size requirement stated
in the previous section, this takes the withdrawal rate to be
sufficiently slow that it does not distort the drop surface.

(2) The force per unit length on the contact line is given
by γLG(cos θ − cos θeq), where γLG is the liquid-air interfacial
tension, θ is the instantaneous value of the contact angle, and
θeq is the equilibrium contact angle.

(3) The contact-line motion is overdamped and moves
according to F = βv, where β is a damping coefficient and
v = ẇ/2 is the velocity of the contact line. The value of β can
always be calculated instantaneously; the added assumption is
that it is constant over the course of an experiment.

(4) The drop can only recede, not spread.
Note that to describe water on silanized glass, we did not

find it necessary to include any static friction term, as there
would be for solids moving on solids.
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FIG. 5. Model fit parameters for water on silanized glass show-
ing (a) equilibrium contact angles, θeq, and (b) damping coefficients,
β, vs wait time, τ , for fixed flow rate q = 2 µl/s. Values shown
are averages over two or three sets of data taken under the same
experimental conditions. Variation between experiments done under
the same conditions was up to 50% for β and around 10% for θeq.
For a single experiment, uncertainty on the best-fit value of β or θeq

was roughly 10% or 2%, respectively.

This amounts to solving the following equation:

ẇ =
{− 2γLG

β
(cos θ − cos θeq), if θ < θeq

0, if θ > θeq
(4)

with the constraint that the volume V (t ) = V0 − qt and is
given by the volume of a spherical cap.

For each experiment, the model was integrated numerically
using the measured initial contact angle and width as well
as the calculated experimental flow rate (see Methods for de-
tails). For each experiment, we determined the best-fit values
of θeq and β. The code used for numerical integration can be
found at [18].

Figure 2 shows the best-fit results from the model overlaid
on the experimental data. The fits capture the essential fea-
tures of the experiments, including initial pinning, depinning,
and continued decrease in both contact angle and width. The
average best-fit values of θeq and β are plotted in Figs. 5 and
6 for the experiments varying wait time, τ , and flow rate, q,
respectively.

Figures 5(a) and 6(a) show that the equilibrium contact
angle does not vary appreciably as a function of either τ or
q. The results for the damping coefficient, β, however, show
significant variation with both of those control parameters.
In particular, Fig. 6(b) shows that the behavior of β drops
dramatically with increasing q. In Fig. 6(c) we multiply the
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FIG. 6. Model fit parameters for water on silanized glass show-
ing (a) equilibrium contact angles, θeq, and (b) damping coefficients,
β, vs flow rate, q. (c) The damping coefficients from (b) multiplied
by the flow rate are plotted vs q. Values shown are averages over
three sets of data taken under the same experimental conditions.
Uncertainties are as in Fig. 5.

damping coefficients by the flow rate, plotting βq versus q.
This removes most, but not all, of the variation.

D. Analysis of damping coefficient versus flow rate

Combining Eqs. (4) and (3) we find an expression for β:

β = 6γLG

w

(
q

V
+ ḣ

h

)−1

[cos(θ ) − cos(θeq)], (5)

where we assume θ � θeq. In the aspiration experiments, the
flow-rate term dominates, and we can neglect ḣ/h. The ex-
pression then simplifies to

β ≈ 6γLGV

wq
[cos(θ ) − cos(θeq)]. (6)
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FIG. 7. Damping coefficient, β, from relaxation experiments
both during relaxation (q = 0, from exponential fits) and when q > 0
[from linear fits to ẇ/2 vs cos(θ )]. In all cases, τ = 5 min. For larger
values of q, β scales roughly with 1/q as in Fig. 6(b).

From this and the overdamped assumption (i.e., that β is
constant over the course of an experiment), we expect βq to
be approximately constant, as observed in Fig. 6(c). In the
limit that q → 0, this approximation fails and the the ḣ/h
term in Eq. (5) must be included. This is the case in the
relaxation experiments during the time that the aspiration flow
is stopped.

In Fig. 4 the relaxation of the contact angle (or the drop
width) is well described by exponential decay (see [17]),
as expected for an overdamped system approaching a stable
equilibrium point:

θ (t ) ≈ θeq − (θeq − θ0) exp

[
− 2γ sin(θeq)

βα
t

]
, (7)

where θ0 is the contact angle at time t = 0. Fitting an ex-
ponential to the constant-volume region of the contact angle
versus time data therefore provides a measure of the damping
coefficient β and equilibrium contact angle at zero flow rate,
q = 0.

Figure 7 shows β versus flow rate, q, for the experiments
shown in Fig. 4(b). Each dataset is divided into regions where
the volume changes linearly in time due to aspiration flow, q,
(that is, before and after the constant-volume relaxation) and
the intermediate-time, constant-volume regime where q = 0.
The values of β at q = 0 are determined from the exponential
relaxation as described in the previous paragraph; the proce-
dure for finding β when q > 0 is described in the Methods
section. Although there is considerable scatter between exper-
iments, the data at β(q = 0) provide an estimate of how the
1/q scaling is cut off as q → 0.

E. Analysis of damping coefficient versus contact-line velocity

The analysis thus far has focused on determining the damp-
ing coefficient, β, versus the experimental control parameter:
the aspiration rate, q. However, it is perhaps more enlightening
to relate β not to q but to the microscopic variable ẇ/2,
which is the velocity at which the contact line travels over the
substrate surface. From a microscopic point of view, this sets
the scale of the frictional damping coefficient, β. Therefore,
it should be the contact-line velocity ẇ/2, not q, that controls
β. [We note, however, that for the q > 0 experiments, q is a
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FIG. 8. Damping coefficient, β, vs average contact line velocity,
〈ẇ/2〉. Squares show β from numerical integration (each point aver-
aged over three experiments); as in Fig. 7, circles show β from linear
fits to ẇ/2 vs cos(θ ); triangles show β from exponential fits.

good proxy for ẇ/2, as suggested by Eq. (3) when the ḣ term
is small; only for q = 0 does the distinction become critical
because ẇ remains nonzero.]

When fitting the overdamped model to experiments, we
used a single value of β to characterize each entire exper-
iment. But the q dependence in Fig. 6(b) illustrates that
the timescale of the experiment—and hence the contact-line
velocity—does affect β. Because the variation in ẇ/2 is small
during a single run, this dependence is difficult to extract from
a single experiment. In practice, we have been able to resolve
only the average value of β over the course of each run. The
experiments shown in Fig. 3, however, cover a much larger
variation in ẇ/2. In order to make use of this information,
we estimate the average contact line velocity, 〈ẇ/2〉, for each
experiment by taking the total change in drop width divided
by the time that the contact line is in motion. The relationship
between β and 〈ẇ/2〉 is shown in Fig. 8. Even with different
values of τ and different slide preparation, the data have
consistent trends: β increases rapidly as ẇ/2 → 0.

As noted in the Materials section, the slides in the water-
on-silanized-glass experiments, shown in Figs. 2 and 3, were
cleaned with a different procedure than those used in the
relaxation experiments. Thus, the values of β and θeq may not
be directly comparable between the two sets of experiments.
However, the qualitative consistency between all data shown
in Figs. 7 and 8 points to the generality of the results.

F. Other solid-liquid pairs

We repeated the wait-time and flow-rate experiments with
two other solid-liquid pairs: water on evaporated gold and
toluene on silanized glass, shown in Figs. 9(a) and 9(b),
respectively. The details of the drop dynamics vary substan-
tially from case to case. Compared with water on silanized
glass, water on gold remains pinned to lower contact an-
gles and depins more abruptly. Toluene on silanized glass
starts with a much lower contact angle than water on either
surface.

Nevertheless, despite these variations in quantitative and
even qualitative behavior, the trends observed as a function of
τ are consistent across all three liquid-solid pairs: longer wait
times result in lower contact angles after depinning. See the
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FIG. 9. Drop width, w, vs contact angle, θ , for (a) water on
freshly deposited gold and (b) toluene on silanized glass. Legends
show the wait times, τ , for each experiment. The withdrawal flow
rate was fixed at q = 2 µl/s.

Supplemental Material for the full set of experimental results
on all three solid-liquid pairs.

Some of the features observed, for example, the increase
in contact angle after depinning seen in Fig. 9(a), make the
assumptions used in the model outlined above with only two
parameters (the damping coefficient and the equilibrium con-
tact angle) poorly suited for these solid-liquid pairs. However,
the model gives a better fit to the data with an additional
assumption and parameter: a maximum force which must be
overcome before the contact line will begin to move. We
explore this more fully in the Discussion section below.

Finally, we report two clean systems exhibiting maximum
contact-angle hysteresis: pinning down to θ = 0. These two
systems are water on evaporated aluminum and hexadecane
on silanized glass. Representative images from experiments
with these two systems are shown in Fig. 10. Although com-
mon in everyday situations where surfaces are rough and
drops may contain solute, reports of such extreme contact-
angle hysteresis in clean systems with smooth surfaces are
rare with a few exceptions [4,19].

G. Reproducibility

To study the effect of the wait time and flow rate on contact
line dynamics, we would ideally fix all other parameters and
vary only τ and q. However, there are a large number of
factors that affect the behavior of drops, and in practice not
all of them can be precisely controlled.
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1 mm
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FIG. 10. Pure liquids showing complete pinning. Photographs
show the beginning (top) and end (bottom) of aspiration of a drop of
(a) hexadecane on silanized glass and (b) water on freshly evaporated
aluminum. In both cases, the contact line has not moved appreciably
even after the contact angle has gone to zero. The withdrawal tube is
shown emerging from the top of the drop in each image.

We found considerable inconsistency in equilibrium
contact-angle values from day to day for all liquid-solid pairs
considered. Although the surfaces were carefully cleaned and
prepared as consistently as possible (see Methods section),
and although the trends reported above remained present,
the observed values of the contact angle varied by as much
as 15◦. While some substrate-liquid pairs may be more
quantitatively reproducible, we suspect that large variations
are common and have not been sufficiently reported in the
literature.

Figure 11 shows the experimental scatter of results for a
variety of systems with different substrate cleaning methods,
substrate coatings, or liquids. The angle intervals shown give
an estimate of the angle at which the drop began to recede
from its initial contact line (the “depinning angle”) for fixed
τ and q. Note that while water on gold has a fairly consistent
depinning angle, the contact line behavior after depinning was
more variable for both water on gold and toluene on silanized
glass, with not only quantitative but also qualitative changes
from day to day. See [17] for full set of experiments.
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FIG. 11. Six different measurements under the same experimen-
tal conditions of depinning angles for water on silanized glass
prepared with cleaning by base bath, water on silanized glass pre-
pared with cleaning by sonication and plasma etching, water on
gold-coated glass prepared with cleaning by sonication and plasma
etching, and toluene on silanized glass prepared with cleaning by
sonication and plasma etching. Each measurement is shown as upper
and lower bound on actual value; data are separated horizontally for
visual clarity only. In all cases, the spread for a given system was
substantial (between 10◦ and 15◦, much larger than the uncertainty
for a single measurement).

While the variation in angle is less than the contact angles
themselves (e.g., 10◦ vs 70◦), in all cases it is a significant
variation. More important is that the changes we observe as
a function of wait time and flow rate are smaller and would
be difficult to observe if we compared results obtained on
different days. The relative consistency of measurements on
a single day made it possible to observe these trends directly,
and we see from the model best-fit plots that averaging does
not wash out the observed structure. That is, even through
there is a large day-to-day variation of the depinning angle, the
trends as a function of τ and q persist and are fairly consistent
for all three solid-liquid pairs.

Neither thermally annealing silanized slides before use nor
removing drops from below via a hole in the substrate made a
substantial difference in the consistency of the measurements.
Likewise, small variations in the needle height during deposi-
tion and aspiration did not change the observed contact angles
by enough to account for the day-to-day variation, nor did
changing the order in which the experiments were done after
slide preparation. The inconsistencies must therefore come
from sensitivity to a more subtle aspect of the slide prepa-
ration or liquid deposition process, for example, the precise
vacuum pressure during deposition or the humidity of ambient
air while transporting slides from one apparatus to another.
They therefore seem to be a fundamental feature of these
three-phase contact-line measurements.

IV. DISCUSSION

We have focused here on nominally pure fluids without
solute. While a great deal of attention has been paid to the
dynamics controlled directly at the contact line, our results
point to the importance of considering the change in properties
of the entire surface where the drop is in direct contact with
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FIG. 12. The stain left behind by a 5 µl drop of Brilliant Blue G
in water (mass fraction of 2.5 × 10−3) deposited on acrylic. Along
with a dark ring stain at the edge of the stain, a dark region is visible
in the center of the stain.

the substrate. The experiments reported here show that both
wait time and flow rate—in other words, both the timescale
of contact between the liquid and solid and the timescale of
liquid withdrawal—impact the dynamics of a drop as it is
removed.

As demonstrated in Fig. 4, changes to the dynamics are a
result of changes throughout the entire area of contact between
the drop and the solid surface, not as has been previously
suggested [15] a result of changes at the drop’s resting contact
line. In a similar vein, the so-called coffee-stain effect has
drawn attention to the fact that, due to evaporation from the
edges of the drop, any solute is predominantly deposited just
inside the contact line [20,21]. Additional studies have shown
that this effect can be suppressed by changing the geometry
of the particles in solution [22] or the surface activity of the
solute [23].

For a drop of dye solution that has only partly evaporated,
the ring stain that has begun to form can impede contact-line
motion, giving rise to an additional wait-time effect. We note
here that even in simple cases with microscopic solute and a
well-defined contact-line deposit, there is often a large deposit
of solute that remains near the center of the drop. This has
often been neglected. An example is shown in Fig. 12 for Bril-
liant Blue G in water. This observation adds to the evidence
that the interior of the drop, where the liquid makes contact
with the surface, contributes in important ways to the overall
dynamics of pinning and solute deposition.

This distributed effect is also consistent with the result that
a dissipative force acts to oppose motion of the contact line
even once it has started to move. The analogy to solid-on-solid
friction is especially striking when considering the work of
Dietrich on rate-and-state friction [24], which showed that
the frictional force between two solid surfaces can depend
on both how quickly the surfaces are moving with respect to
one another and how long the surfaces have been in contact.
Here we have also observed a state effect: the increase in the

damping coefficient as wait time, τ , increases. The damping
coefficient, β, depends strongly on q so that βq ≈ constant for
q > 0.

The analysis of damping as a function of ẇ/2, the speed
of the contact line over the substrate, suggests that β varies
roughly as 1/ẇ. Drag coefficients in a variety of systems are
known to vary with velocity, as for a granular material [25]
or an object moving through a fluid at high speed. Here the
trend is a decreasing drag with increasing velocity, which is
in line with the idea of rate-and-state friction in that the less
time the contact line remains in one spot, the easier it is to
move. Interestingly, this challenges the idea of a stable flow:
the trend we observe suggests that, for fixed pulling force, a
slight increase in the velocity of the contact line would lead to
lower damping and hence an even larger velocity. However, in
this case the forcing term would decrease, slowing the contact-
line motion so that stability is maintained.

Within the past decade, the inertial spreading of drops
placed on a substrate has been described using analogies to
friction for contact-line motion [12]. Experiments have shown
that drops can have an equivalent of static and kinetic friction
as they start to slide over solid surfaces [13], and kinetic fric-
tion was measured on slippery surfaces by watching a drop’s
contact angle and width relax from an unstable configuration
to a static one after fluid was added or removed [14].

The behavior seen for other solid-liquid pairs as shown in
Fig. 9 is reminiscent of other types of solid-solid friction.
In cases with a sharp depinning event, where the contact
line jumps suddenly to smaller width and larger contact an-
gle, the addition of a maximum static friction term may
be necessary to capture the dynamics. Likewise, the ob-
vious nonmonotonic behavior seen in some water-on-gold
and toluene-on-glass measurements, even after depinning, are
suggestive of stick-slip behavior where the contact line over-
shoots its equilibrium position. In this case, the acceleration
term (implicitly dropped in the overdamped description of
motion) can no longer be neglected.

We have so far been agnostic as to the cause of dissipation
leading to the change of behavior with wait time. However, we
can rule out certain effects and suggest others as possibilities.
As proposed by Young, the basis for our analysis is that any
net force on the contact line comes from the surface tension
of the drop [1]. If, during the course of the drop receding, the
contact angle changes substantially, then the frictional force
must be on the order of the force due to surface tension.

If the contact line is out of equilibrium, the contact angle
need not equal the equilibrium value: θ �= θeq. Theories for
contact-line motion must account for the divergence of the
shear stress at a moving contact line, typically by including a
slip length or other microscopic mechanism [5]. One example
is the Cox-Voinov law, which balances surface tension with
dissipative forces to predict the dynamic contact angle as a
function of capillary number [6,26]. Another is the so-called
molecular-kinetic theory, which describes contact-line motion
when it is dominated by adsorption and desorption events [7].

To assess the importance of these effects, we note that
for the observed contact-line velocities (V ≈ a few mm/s in
the fastest cases), the capillary number, Ca = V η/γLG < 10−4

(where η and γLG are the liquid viscosity and liquid-air surface
tension, respectively). This indicates that viscous forces are
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small compared to those due to surface tension. In particular,
even with the shear stress formally diverging at the contact
line, it has been suggested that the total dissipation of a
smooth contact line is negligible for Ca less than ∼10−4 [27].
It thus seems unlikely that the effects of a nonzero slip length
are important in our case. We note that inertial forces are
also negligible for the observed contact-line velocities; for a
drop of width w = 4 mm, the Weber number We = ρV 2w/γ

(where ρ is the liquid density) is We < 10−3.
Frictional dissipation during contact-line motion on rough

surfaces has been attributed to an adhesion force that depends
on the surface area wet by the liquid [8]. When first deposited,
microscopic air pockets under the drop may remain in surface
declivities so that the actual area of contact is lower than it
appears [28]. As the drop sits, the contact area increases as
the liquid more fully wets the substrate and the drop-substrate
adhesion increases [29]. In the case of a smooth surface,
we propose that the presence of atmospheric gas molecules
adsorbed to the surface could play a similar role; the gas
dissolves into the water over time. In this case, however, the
timescale is set by dissolution and diffusion of gas molecules
rather than the Cassie-Wenzel wetting transition. A mech-
anism such as this would explain the increase in damping
coefficient, β, that we observe with wait time, τ . Interestingly,
this mechanism is similar to the idea of deforming contact
points that give rise to a changing solid-solid friction in the
rate-and-state model [24].

As suggested above, the effect of flow rate q is more subtle
than the effect of wait time. When we vary q while keeping
the wait time fixed, neither the equilibrium contact angle θeq

nor the rescaled damping coefficient βq changes by much as
a function of q. This may be surprising as Fig. 3(b) shows
curves that are well separated as a function of flow rate.
However, comparing the effect of flow rate to the effect of
wait time [for example, by comparing Figs. 3(a) and 3(b)], we
see that τ has a much more striking effect, and this, more than
the small variation as a function of q, is what the results of the
model capture.

We note that different models corresponding to different
functional forms for the forcing have been proposed in the
past, for example, ẇ ∝ θ − θeq [30] and ẇ ∝ θ3 − θ3

eq [6,26].
For small changes in angle, the models listed here have a simi-
lar form as does the one we have used in Eq. (4): ẇ ∝ θ − θeq.

In the large body of work on contact-angle hysteresis, a
disjoint collection of different factors have been proposed that
influence how contact lines move. The assortment of models
that account for these different factors are each valid in a
different limit. Friction between solid surfaces exhibits some
of the same complexities seen for moving contact lines, with
microscopic details that are specific to each liquid-substrate
pair studied. Yet a generic description of friction exists: a force
proportional to the applied force and opposing the direction of
motion. The difficulty in obtaining reproducible equilibrium
contact angles on different days, despite great care in the
preparation of the substrates certainly points to the importance
of microscopic effects that affect the contact-line dynamics.
Nevertheless, we are able to describe some of the macro-
scopic behavior using a simple model of friction in which the
dampling coefficient β varies approximately inversely with
the contact-line velocity. Additional experiments are clearly

necessary to isolate the nature of the microscopic aspects of
liquid-solid friction.

V. METHODS

A. Cleaning

All surfaces were prepared on Fisherbrand Plain Pre-
cleaned Microscope Slides. Reagents used for preparing
slides were 2-propanol (� 99.5%, Fisher Scientific), ace-
tone (� 99.5%, Fisher Scientific), sodium hydroxide pellets
(Fisher Scientific), ethanol (200 proof, Decon Laboratories),
chlorotrimethylsilane (99 + %, Sigma-Alderich), and ultra-
pure water taken from an Elga Water Purification system.

Most slides were sonicated in acetone for five minutes,
rinsed in 2-propanol, rinsed in ultrapure water, and dried with
nitrogen before being plasma etched for 5 min under oxygen
(100 W, flow rate of 20 cc/min).

In a few cases (water on silanized glass experiments not
including the relaxation measurements), slides were cleaned
by soaking overnight in base bath and rinsing with reverse
osmosis water and then ultrapure water. The base bath was
composed of sodium hydroxide, ethanol, and water.

After cleaning, slides were either silanized or coated with
metal.

B. Silanization

Cleaned slides were placed in a vacuum desiccator. Here
40 µl of chlorotrimethylsilane was placed on one slide (not
used for experiments). The desiccator was pumped down
for 60 sec, left for 5 min, then pumped down for another
60 sec. Four hours later, the slides were removed and cleaned
by 1 min of sonication in acetone, rinsed with 2-propanol,
rinsed with ultrapure water, and dried with nitrogen.

C. Metal evaporation

Cleaned slides were loaded in an Angstrom Engineering
EvoVac Evaporator. The substrates were rotated at five revo-
lutions per minute while deposition occurred. For gold-coated
slides, a 7 nm layer of chromium was first deposited, then
50 nm of gold. For aluminum surfaces, 100 nm of aluminum
was deposited. All depositions were done at a rate of 1 Å/s.

D. Experiments

All slides were used within 5 hr of preparation. Toluene
(99.9%, Sigma-Alderich) and ultrapure water taken from an
Elga Water Purification system were used as the liquids for
experiments. All experiments were done in a nitrogen envi-
ronment (flow rate 15 SCFH) around 25 ◦C using a Krüss
Drop Shape Analyzer (DSA100) with a camera tilt of between
2◦ and 3◦. For each drop, a needle ∼0.5 mm in width was
positioned ∼4 mm above the surface, a 14 µl drop was dosed
from a syringe connected to the needle, and the needle was
moved to a position ∼0.5 mm above the surface (inside the
drop). The drop was left to sit for wait time τ before being
removed with flow rate q.

For relaxations experiments, 10 µl were removed (nominal
value; actual value was lower because of hysteresis in the

065111-9



CHLOE W. LINDEMAN AND SIDNEY R. NAGEL PHYSICAL REVIEW E 107, 065111 (2023)

removal mechanism). The drop was left to relax for 8 sec, then
the remainder of the drop was removed as before.

Water experiments were analyzed frame-by-frame using
the Krüss software Advance with fitting method “Tangent.”
Toluene experiments were analyzed using sessile drop analy-
sis software from GitHub [31] with linear interpolation used to
find the drop’s edge and a quadratic fit using 14 pixels from the
drop’s edge; data are reported down only to 2 µl to minimize
the effects of the needle. In all cases contact angles reported
are an average of the left and right contact angles.

E. Fit results from the overdamped model

The following analysis was performed for water on
silanized glass experiments done on slides cleaned using a
base bath.

In the model of the overdamped contact-line dynamics, the
volume of a drop was calculated as the volume of a spherical
cap with the measured contact angle and width. The initial
volume of a drop for a given experiment was set by the
measured initial contact angle and width and the volume was
decreased linearly over time with a flow rate measured by
fitting for the slope of the experimental volume versus time
data. For a given equilibrium contact angle, the force per unit
length on the contact line at each moment was calculated as
γLG(cos θ − cos θeq), where γLG is the surface tension of the
liquid in air (0.072 N/m for water in air). The drop was not
allowed to spread (i.e., the width w did not increase even if
the force was negative), but if the force was positive the width
was decreased according to

vCL = |ẇ|
2

= Fnet

β
.

The final volume of the drop was calculated from the final
values of the contact angle and width determined in the exper-
iment, and the numerical iteration of the model was stopped
when the drop reached that volume.

For each experiment, the numerical integration of the
model was repeated over a wide range of θeq and β values. The

resulting width versus contact-angle curve with the smallest
residuals was chosen as the best fit.

For slides cleaned by sonication (in other words, for data
with q > 0 coming from relaxation experiments), the follow-
ing procedure was used.

It is possible to directly obtain the damping coefficient β

by fitting ẇ versus cos(θ ). We use a piecewise linear function
[zero for cos(θ ) > cos(θeq) and linear for cos(θ ) < cos(θeq)].
Note that, due to Eq. (4), this is roughly equivalent to the
numerical integration fitting explained above but requires no
numerical integration; the offset of the linear fit provides
information about the best-fit equilibrium contact angle and
the slope provides information about the damping coefficient.

For relaxation experiment data with q = 0, fitting was done
using an exponential fit as described in the main text.

Experimental data can be found at [18] along with the code
used to plot it.
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