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Abstract

Instrumental variable (IV) strategies are widely used to estimate causal effects in economics,
political science, epidemiology, sociology, psychology, and other Ąelds. When there is
unobserved heterogeneity in causal effects, standard linear IV estimators only represent
effects for complier subpopulations (Imbens and Angrist, 1994). Marginal treatment effect
(MTE) methods (Heckman and Vytlacil, 1999, 2005) allow researchers to use additional
assumptions to extrapolate beyond complier subpopulations. We discuss a Ćexible framework
for MTE methods based on linear regression and the generalized method of moments. We
show how to implement the framework using the ivmte package for R.

Keywords: instrumental variables, marginal treatment effects, local average treatment
effect, partial identiĄcation

1. Introduction

A central task in many empirical Ąelds is to determine the effect (the causal effect) of one

variable on another. The task is often complicated by the fact that the effecting variable

(the treatment) is not only not randomly assigned, it is chosen by an agent with information

unavailable to the researcher. For example, in the application discussed later, the treatment

is the number of children a family decides to have, and the empirical question is the effect

that bearing more children has on the motherŠs labor force participation. Since having a

child and working are joint decisions a family makes using their own private information,

strategies such as propensity score matching are unlikely to eliminate systematic unobserved

differences between families with more children and those with fewer children. Different

empirical strategies are needed to credibly identify a causal effect.

Instrumental variables (IVs) are one extremely popular strategy (e.g. Heckman and Robb,

1985; Bollen, 2012; Baiocchi et al., 2014; Imbens, 2014). An IV (or instrument) is an observed

variable that is correlated with the treatment variable, but uncorrelated with confounding
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unobservable differences. A well-known example of an instrument for fertility is the same-sex

instrument introduced by Angrist and Evans (1998). This instrument is a binary variable

that is equal to 1 if a familyŠs Ąrst two children had the same sex (female-female or male-male)

and is 0 otherwise.1 The key assumption of an IV model is that the sex of the second child is

as good as randomly assignedŮand therefore independent of any confounding unobservable

differences across familiesŮwhile still impacting a familyŠs decision to have a third child due

to a preference for having both a male and female child. The intuition is that by comparing

the labor supply decisions of families whose Ąrst two children were the same sex to families

whose children were mixed sex, one picks up only the differences that are caused by the

decision to have additional children.

While IV strategies have been widely studied and applied for many decades (see Stock

and Trebbi, 2003, for a history), it wasnŠt until the 1980s that researchers started to focus

on IV models with unobserved heterogeneity in treatment effects.2 In an inĆuential paper,

Imbens and Angrist (1994) provided nonparametric conditions under which a simple linear

IV estimator can be interpreted as estimating the average causal effect (the Şlocal average

treatment effect,Ť or LATE) among a subpopulation described as the compliers. The

compliers are the individuals whose treatment choice would have been different had their

instrument been different. In the fertility application, they are the families who would have

had a third child if and only if their Ąrst two children had the same sex.

An important implication is that the interpretation of a linear IV estimator depends on

the instrument used. If there is unobserved treatment effect heterogeneity, then linear IV

estimators cannot in general be interpreted as providing estimates of conventional parameters

such as the average treatment effect (ATE) or the average treatment effect on the treated

(ATT). One response to this Ąnding is to continue to use linear IV estimators and change

the research question to serve the deĄnition of the complier group, a practice espoused by

Angrist and Krueger (2001) and Angrist and Pischke (2009, 2010). A number of authors in

multiple disciplines have criticized this practice (e.g. Robins and Greenland, 1996; Heckman,

1997; Deaton, 2010; Pearl, 2011; Swanson and Hernán, 2014, among many others).3 Another

response is to change the estimator and extrapolate from the compliers to the subpopulation

that better answers the researchersŠ empirical question (see Mogstad and Torgovitsky, 2018,

for a discussion of different approaches).

1. Using the same-sex instrument requires restricting the analysis to families with two or more children.
2. An early example is Heckman (1976). See also Heckman and Robb (1985), Björklund and Moffitt (1987),

and Manski (1990). Taking a more expansive view of unobserved heterogeneity in Ştreatment effectsŤ
to also encompass random coefficient models, one can trace interest back to the Cowles Foundation
(Hurwicz, 1950; Rubin, 1950) as well as foundational economic analyses like Becker and Chiswick (1966).

3. More recently, Blandhol et al. (2022) have argued that the LATE interpretation typically does not even
apply to the types of linear IV speciĄcations used in practice.
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In a series of papers, Heckman and Vytlacil (1999, 2005, 2007a,b) developed the concept

of the marginal treatment effect (MTE) and showed how it can be used to nonparametrically

model this type of extrapolation under the same ŞmonotonicityŤ condition used by Imbens

and Angrist (1994). Carneiro et al. (2011) and Brinch et al. (2012, 2017) showed how to

apply their idea to identify and estimate semiparametric MTE models. These methods

have now been applied across a wide range of topics in empirical economics including the

returns to schooling (Moffitt, 2008; Carneiro et al., 2011, 2016; Nybom, 2017; Heinesen

and Stenholt Lange, 2022), and its impacts on wage inequality (Carneiro and Lee, 2009),

discrimination (Arnold et al., 2018, 2020), the returns to citizenship (Gathmann et al., 2021),

and to agricultural technology (Mellon Bedi et al., 2021; Sarr et al., 2021), the effects of

foster care (Doyle Jr., 2007), the impacts of welfare (Moffitt, 2019) and disability insurance

(Maestas et al., 2013; French and Song, 2014; Autor et al., 2019) programs on labor supply,

the performance of charter schools (Walters, 2018), health care (Kowalski, 2018; Depalo,

2020), marketing (Daljord et al., 2021), nonresponse bias in social surveys (Dutz et al.,

2021), the effects of early childhood programs (Kline and Walters, 2016; Cornelissen et al.,

2018; Felfe and Lalive, 2018), the efficacy of preventative health products (Mogstad et al.,

2017), the quantityŰquality theory of fertility (Brinch et al., 2017), the demand for electricity

(Ito et al., 2022), and the effects of Ąnes (Goncalves and Mello, 2022; Possebom, 2022),

misdemeanor prosecution (Agan et al., 2021), and incarceration (Bhuller et al., 2020; Rose

and Shem-Tov, 2021), among many others.

Mogstad et al. (2018) developed a general moment-based framework for implementing

MTE approaches that allows for partial identiĄcation (bounds) in cases when the researcherŠs

assumptions are not strong enough (or the data is not rich enough) to pin down a unique

conclusion.4 In this paper, we discuss implementation of this framework, as well as a related

regression-based framework, that minimizes a least squares criterion.5 Instead of focusing

on Ątting speciĄc moments, the regression framework minimizes a least squares criterion. As

we discuss, this has both beneĄts and drawbacks that depend on the researcherŠs empirical

setting and goals. We then describe the R package ivmte, which can be used to implement

both the moment and regression frameworks. The package provides a Ćexible environment

for using IV strategies to conduct rigorous policy evaluation in the presence of unobserved

heterogeneity.

4. Rose and Shem-Tov (2021) extended and applied the framework in their study of the impact of incarceration
on recidivism.

5. Brinch et al. (2012, 2017) introduced the regression-based framework for point-identiĄed cases.

3



Shea and Torgovitsky

2. Model and identiĄcation

2.1 Potential outcomes and choices

The model is about the impact of a binary treatment Di ∈ ¶0, 1♢ on individual iŠs observed

outcome variable, Yi. Let Yi(0) and Yi(1) denote the unobserved potential outcomes for Yi if

individual i had received Di = 0 or 1, respectively, so that Yi = DiYi(1) + (1 − Di)Yi(0). The

researcher is interested in features of the distribution of the causal effect, Yi(1) − Yi(0). The

researcher has access to some observable covariates, Xi, but they are concerned that Di is still

dependent with Yi(0) or Yi(1) even after conditioning on Xi, so that the unconfoundedness

(selection on observables) assumption (e.g. Barnow et al. (1980), Rosenbaum and Rubin

(1983), Heckman et al. (1996)) does not hold.

However, the researcher also has access to an instrumental variable, Zi. The instrument

inĆuences individual iŠs treatment choice with Di(z) denoting their unobserved potential

treatment choice if Zi were set to z. Their observed treatment choice is related to these

potential choices via Di =
∑

z∈Z 1 [Zi = z] Di(z), where Z is the support of Zi. In contrast

to Di, the instrument is assumed to be as good as randomly assigned, conditional on Xi, in

the sense that Zi is independent of (Yi(0), Yi(1), ¶Di(z)♢z∈Z), conditional on Xi. Given that

the potential outcomes Yi(d) are indexed by d only, this assumption also implies that the

instrument also has no direct causal effect on Yi, an assumption typically referred to as the

exclusion restriction.

2.2 The selection model

Imbens and Angrist (1994) introduced an additional assumption that they described as

monotonicity. The monotonicity assumption says that for any pair of instrument values z and

z′, either Di(z) ≥ Di(z
′) for all individuals i, or else Di(z

′) ≥ Di(z) for all individuals i. That

is, a shift from z to z′ either pushes every individual towards treatment, or else pushes every

individual away from treatment. Whichever direction holds, the monotonicity condition

maintains that there are no individuals who deviate from this ordering, a requirement

sometimes described as Şno deĄers.Ť6

Vytlacil (2002) showed that the monotonicity condition is equivalent to the latent variable

selection model

Di = 1 [Ui ≤ p(Xi, Zi)] , (1)

6. Despite the name "monotonicity," the condition would be more accurately described as "uniformity," since
it restricts heterogeneity in how the instrument impacts treatment choice (Heckman et al., 2006; Mogstad
et al., 2021).
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where Ui is a continuously distributed unobserved random variable, and p(x, z) ≡ P[Di =

1♣Xi = x, Zi = z] is the propensity score. The latent variable Ui is independent of Zi,

conditional on Xi, and is customarily normalized to be uniformly distributed on [0, 1].7 It

can be interpreted as the individual iŠs rank (quantile) of latent willingness to choose Di = 1,

with smaller values of Ui corresponding to more-willing individuals. When Di is a variable

chosen by an agent, such as in the fertility example, we expect that Ui will be dependent

with Yi(0) and Yi(1) if these potential outcomes themselves either directly inĆuence the

agentŠs choice or are correlated with other factors that do.

2.3 Marginal treatment response and effect functions

The advantage of the latent variable model (1) is that it facilitates modeling unobserved

heterogeneity in the effect of Di on Yi. The key object for this purpose is the marginal

treatment response (MTR) function

m(d♣u, x) ≡ E[Yi(d)♣Ui = u, Xi = x] (2)

The MTR function describes how expected treated and untreated outcomes vary conditional

on both observed covariates, Xi, and the unobserved latent propensity to take treatment,

Ui. The marginal treatment effect (MTE) of Heckman and Vytlacil (1999, 2005, 2007a,b)

is the difference of the MTR function between treatment states: m(1♣u, x) − m(0♣u, x).

For example, if the MTE is declining in u, then individuals who are less likely to choose

treatment (larger u) would experience smaller treatment effects than those who are more

likely to choose treatment. Thus, the MTE captures the idea of selection on unobservables,

where the unobservable in question is an individualŠs latent propensity to take treatment,

Ui.

2.4 Target parameters

Many treatment effect parameters can be written as weighted averages of the MTR function.

For example, the average treatment effect (ATE) can be written as

E[Yi(1) − Yi(0)]
︸ ︷︷ ︸

≡ATE

= E [E[Yi(1)♣Ui, Xi] − E[Yi(0)♣Ui, Xi]]

= E[m(1♣Ui, Xi) − m(0♣Ui, Xi)] = E

∫ 1

0
m(1♣u, Xi) − m(0♣u, Xi) du



,

(3)

7. See Heckman and Vytlacil (2005), Matzkin (2007), or Mogstad and Torgovitsky (2018) for a detailed
discussion of the normalization.
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where the Ąnal equality used the normalization on the distribution of Ui to be uniform and

independent of Xi. Similarly, the average treatment effect on the treated (ATT) can be

written as

E[Yi(1) − Yi(0)♣Di = 1]
︸ ︷︷ ︸

≡ATT

= E

∫ 1

0
(m(1♣u, Xi) − m(0♣u, Xi)) ×

1 [u ≤ p(Xi, Zi)]

P[Di = 1]
du



, (4)

see e.g. Heckman and Vytlacil (2005). As in Mogstad et al. (2018), we view both (3) and (4)

as examples of target parameters τ with the general form

τ(m) ≡
∑

d∈¶0,1♢

E

∫ 1

0
m(d♣u, Xi)ωτ (d♣u, Xi, Zi) du



, (5)

where ωτ is a weighting function that is either known to the researcher (as in (3)) or point

identiĄed from the distribution of (Di, Xi, Zi) (as in (4)). Heckman and Vytlacil (2005) and

Mogstad et al. (2018) provide extensive discussions and many examples of target parameters,

along with their weighting functions, ωτ .

2.5 Implied observable quantities

The model implies a relationship between the MTR function and moments of the ob-

served outcome, Yi. In particular, Mogstad et al. (2018, Proposition 1) show that for any

(measurable) function s of (Di, Xi, Zi)

E[Yis(Di, Xi, Zi)] = E



s(0, Xi, Zi)

∫ 1

0
m(0♣u, Xi)1[u > p(Xi, Zi)] du



+ E



s(1, Xi, Zi)

∫ 1

0
m(1♣u, Xi)1[u ≤ p(Xi, Zi)] du



≡ γs(m). (6)

A similar expression can be derived for the conditional moments of Yi:

E[Yi♣Di = 1, Xi = x, Zi = z]

= E[Yi(1)♣Ui ≤ p(x, z), Xi = x] =

∫ 1

0
m(1♣u, x)

1[u ≤ p(x, z)]

p(x, z)
du,

and, symmetrically,

E[Yi♣Di = 0, Xi = x, Zi = z] =

∫ 1

0
m(0♣u, x)

1[u > p(x, z)]

(1 − p(x, z))
, du.
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We combine the right-hand side of these two relationships using the notation

γcm(m♣d, x, z) =

∫ 1

0
m(0♣u, x)(1 − d)

1[u > p(x, z)]

(1 − p(x, z))
+ m(1♣u, x)d

1[u ≤ p(x, z)]

p(x, z)
du. (7)

2.6 IdentiĄcation

We use expressions (6) and (7) to deĄne two identiĄed sets for the target parameter, τ . To

do this, we Ąrst deĄne identiĄed sets for the MTR function. We assume that m lives in

some set M contained in a vector space, where M encodes any additional assumptions we

might want to place on m, such as parameterizations or shape restrictions.

One identiĄed set matches a collection of unconditional moments (6) formed by a

collection of functions s ∈ S:

M⋆
S = ¶m ∈ M : γs(m) = E[Yis(Di, Xi, Zi)] for all s ∈ S♢ . (8)

The moment approach is based on M⋆
S . Another identiĄed set matches the conditional

mean of the observed outcome:

M⋆
cm = ¶m ∈ M : γcm(m♣d, x, z) = E[Yi♣Di = d, Xi = x, Zi = z] for almost every d, x, z♢ .

(9)

The regression approach is based on M⋆
cm. If m satisĄes the set of conditional moment

equalities in M⋆
cm, then it also satisĄes the unconditional moment equalities in M⋆

S for

any choice of S, and thus M⋆
cm ⊆ M⋆

S . However, there are some practical, statistical, and

conceptual considerations that may nevertheless favor the moment approach (see Section

3.4).

Our object of interest is not an identiĄed set for the MTR function, but rather an

identiĄed set for the target parameter, τ . An identiĄed set for the target parameter can be

formed by taking the image of either M⋆
S or M⋆

cm under τ :

T ⋆
S ≡ ¶τ(m) : m ∈ M⋆

S♢ and T ⋆
cm ≡ ¶τ(m) : m ∈ M⋆

cm♢ . (10)

The set T ⋆
S gives the values of the target parameter that are consistent with the assumptions

of the model and the unconditional moments (6) for s ∈ S. The set T ⋆
cm is the subset of T ⋆

S

that is consistent with the entire conditional mean of the observed outcome.

7
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2.7 Point identiĄcation vs. partial identiĄcation

The formulation in the previous section allows the identiĄed sets M⋆
S , M⋆

cm, T ⋆
S , and T ⋆

cm to

be either singletons or proper non-singleton sets. In the Ąrst case, we say that m or τ is

point identiĄed, while in the second case we say that they are partially identiĄed. Point

identiĄcation of m implies point identiĄcation of τ . When τ is not point identiĄed, its

identiĄed sets T ⋆
S and T ⋆

cm will still be closed intervals under weak conditions (see Mogstad

et al., 2018, for a precise statement). One can thus describe the partial identiĄcation case as

providing bounds on the target parameter. It is also possible for the identiĄed sets to be

empty, in which case the model is said to be misspeciĄed.

The size and cardinality of the identiĄed sets depend on a few factors. Having a smaller

parameter space MŮthat is, maintaining more restrictive assumptionsŮmechanically

shrinks the identiĄed sets. Making S a larger set of functions also mechanically shrinks

the moment-based identiĄed set. The number of distinct functions one can potentially

include in S is determined by the supports of Zi and Xi. Richer supports of Zi allow for

smaller identiĄed sets and thus tighter conclusions; richer supports of Xi can also be helpful

if M is such that m(d♣u, x) depends on x in a restricted way. These richer supports get

automatically incorporated into the conditional mean identiĄed set T ⋆
cm, so that it necessarily

shrinks with additional support points.

2.8 Criterion functions

For implementation, it is useful to have a scalar function that determines if a candidate

MTR function m is in either M⋆
S or M⋆

cm.

For the moment approach, we let cs ≡ E[Yis(Di, Xi, Zi)], and stack both cs and γs(m)

across s ∈ S into vectors cS and γS(m). DeĄne

QS(m) = ∥γS(m) − cS∥ ,

for some choice of norm ∥·∥. Then m ∈ M⋆
S if and only if QS(m) = 0, so that

T ⋆
S = ¶τ(m) : QS(m) = 0♢ .

The minimum value of QS(m) over m ∈ M can be used as the basis for a speciĄcation test;

if the model is correctly speciĄed, then it should be 0.

For the regression approach, we deĄne the least squares criterion:

Qcm(m) ≡ E

[

(Yi − γcm(m♣Di, Xi, Zi))
2
]

.
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If M⋆
cm is not emptyŮthat is, if the model is correctly speciĄedŮthen m ∈ M⋆

cm if and

only if m ∈ arg minm′∈M Qcm(m′), so that

T ⋆
cm =



τ(m) : Qcm(m) = min
m′∈M

Qcm(m′)



.

Unlike T ⋆
S , which can be empty, T ⋆

cm is necessarily non-empty, reĆecting the fact that the

minimum of the least squares criterion cannot be used as the basis for a speciĄcation test.

3. Estimation and computation

3.1 Linear basis representation

Implementation requires evaluating the functions τ and γs or γcm at candidate choices of

the MTR function. Some dimension reduction is needed for computation. Let

mθ(d♣u, x) =
K∑

k=1

θkbk(d♣u, x) for some θ ∈ R
K , (11)

where bk are known basis functions and θk are unknown parameters. We assume that the

parameter space is M = ¶mθ : θ ∈ Θ♢ for some subset Θ of R
K . That is, the MTR function

is assumed to be a member of the class of functions formed by taking linear combinations of

the basis functions. This reduces the dimension of the function m to a K-dimensional real

vector θ.

Linear-in-parameters speciĄcations like (11) are commonplace in statistical models. For

example, if x is scalar, one could specify

mθ(d♣u, x) =

mθ(0♣u,x)
︷ ︸︸ ︷

θ1(1 − d) + θ2(1 − d)u + θ3(1 − d)x + θ4(1 − d)ux

+ θ5d + θ6du + θ7du2 + θ8dx + θ9dx2

︸ ︷︷ ︸

mθ(1♣u,x)

(12)

which corresponds to K = 9 parameters with basis functions e.g. b3(d♣u, x) = (1 − d)x and

b7(d♣u, x) = du2. The assumption used in the ivmte package is that M contains only MTR

functions such that both mθ(0♣u, x) and mθ(1♣u, x) are either polynomials or polynomial

BŰsplines in u. This is certainly a special case of (11), but one that is popular both as

a parametric restriction (e.g. a polynomial, like (12)) and as an approximating basis for

nonparametric sieve estimation (e.g. Chen, 2007).
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3.2 Sample analogs

The beneĄt of using the linear-in-parameters speciĄcation (11) is that it preserves the

linearity of τ , γs, and γcm as functions of m. In particular,

τ(mθ) = θ′T, (13)

where T is a K-dimensional vector with kth element

τ(bk) =
∑

d∈¶0,1♢

E

∫ 1

0
bk(d♣u, Xi)ωτ (d♣u, Xi, Zi) du



. (14)

Given a sample of data ¶(Yi, Di, Xi, Zi)♢
n
i=1, each component of T can be estimated by its

sample analog

τ̂(bk) ≡
1

n

n∑

i=1

∑

d∈¶0,1♢

∫ 1

0
bk(d♣u, Xi)ω̂τ (d♣u, Xi, Zi) du, (15)

where ω̂τ is an estimate of ωτ . Requiring mθ(d♣u, x) to be a polynomial or BŰspline in u

means that the integral in τ̂(bk) can be computed analytically as long as ω̂τ (u, x, z) has a

tractable form, which it does for all conventional target parameters.8 By the same reasoning,

γs(mθ) = θ′Γs and γcm(mθ♣d, x, z) = θ′Γcm(d, x, z),

where Γs and Γcm(d, x, z) are K-dimensional vectors with kth elements given by γs(bk) and

γcm(bk♣d, x, z). A sample analog estimator of γs(bk) is

γ̂s(bk) ≡
1

n

n∑

i=1

ŝ(0, Xi, Zi)

∫ 1

0
bk(0♣u, Xi)1[u > p̂(Xi, Zi)] du

+
1

n

n∑

i=1

ŝ(1, Xi, Zi)

∫ 1

0
bk(1♣u, Xi)1[u ≤ p̂(Xi, Zi)] du,

where ŝ is an estimator of s, and p̂ is an estimator of p. A sample analog estimator of

γcm(bk♣d, x, z) is

γ̂cm(bk♣d, x, z) =

∫ 1

0
bk(0♣u, x)(1 − d)

1[u > p̂(x, z)]

(1 − p̂(x, z))
+ bk(1♣u, x)d

1[u ≤ p̂(x, z)]

p̂(x, z)
du.

8. ivmte allows for any target parameter for which ω̂τ (u, x, z) can be written as a constant spline in uŮsee
Section 4.3.
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We use these sample analogs to deĄne sample criterion functions. The moment-based

sample criterion is

Q̂S(mθ) ≡
∥
∥
∥Γ̂Sθ − ĉS

∥
∥
∥ ,

where Γ̂S is an ♣S♣ × K matrix with rows Γ̂′
s ≡ [γ̂s(b1), . . . , γ̂s(bK)], and ĉS is a vector with

elements

ĉs ≡
1

n

n∑

i=1

Yiŝ(Di, Xi, Zi).

The regression-based sample criterion is

Q̂cm(mθ) ≡
1

n

n∑

i=1



Yi − θ′Γ̂cm(Di, Xi, Zi)
2

,

where Γ̂cm(Di, Xi, Zi) is a K-dimensional vector with kth element γ̂cm(bk♣Di, Xi, Zi).

3.3 Estimation

Estimation differs for point and partially identiĄed cases.

3.3.1 Point identification

In the point identiĄed case, we assume that the parameter space is Θ = R
K . This

simpliĄcation allows for closed-form estimators.

For the moment criterion, we use the generalized method of moments (Hansen, 1982,

ŞGMMŤ) estimator of θ:

θ̂ = argminθ∈RK



Γ̂Sθ − ĉS

′
Ω̂



Γ̂Sθ − ĉS



, (16)

where Ω̂ is a positive semi-deĄnite weighting matrix. The minimizer θ̂ of (16) is the minimizer

of Q̂S when ∥ · ∥ is taken to be the Euclidean norm weighted by Ω̂. In a point identiĄed

case, one would expect that (16) has a unique solution, in which case it can be solved for

analytically.

The regression sample criterion Q̂cm is simply the ordinary least squares criterion for

a linear regression of Yi onto the vector of generated regressors Γ̂cm(Di, Xi, Zi). It has a

unique minimizer if and only if the matrix

n∑

i=1

Γ̂cm(Di, Xi, Zi)Γ̂cm(Di, Xi, Zi)
′ (17)

11
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is invertible. If the researcher believes that point identiĄcation holds, then a simple estimator

θ̂ of θ is the ordinary least squares estimator from a regression of Yi on Γ̂cm(Di, Xi, Zi).

For both the moment and regression approaches, we then set

τ̂⋆ ≡ θ̂′T̂ (18)

where T̂ is the K-dimensional vector with kth element τ̂(bk). Then τ̂⋆ is our point estimator

of the (assumed singleton) identiĄed set for the target parameter, T ⋆
S or T ⋆

cm, depending on

the criterion function used.

3.3.2 Partial identification

For partially identiĄed cases we use a two-step estimator developed by Mogstad et al. (2018)

for both the moment and regression approaches. In the Ąrst step, we minimize the criterion

function to Ąnd

Q̂⋆ ≡ min
θ∈Θ

Q̂(mθ), (19)

where Q̂ could be either Q̂S or Q̂cm, and now the parameter space Θ is allowed to be a proper

subset of R
K . In the second step, we then minimize and maximize the target parameter

over the set of θ ∈ Θ that produce sample criteria close to the best possible value, Q̂⋆. That

is, we solve for

τ̂⋆
lb/τ̂⋆

ub ≡ min/max
θ∈Θ

θ′T̂ subject to Q̂(mθ) ≤ (1 + σ)Q̂⋆, (20)

where σ ≥ 0 is a tuning parameter used in the asymptotic theory (see Mogstad et al., 2018,

for more detail). The feasible set in (20) is always non-empty due to the deĄnition of Q̂⋆,

so that both τ̂⋆
lb and τ̂⋆

ub are always well-deĄned. Mogstad et al. (2018) provide conditions

under which [τ̂⋆
lb, τ̂⋆

ub] is a consistent set estimator of T ⋆
S if Q̂ = Q̂S , and of T ⋆

cm if Q̂ = Q̂cm.

To facilitate computation, we assume that the constraint set Θ can be written in terms

of linear inequality constraints:

Θ =
{

θ ∈ R
K : rlb ≤ Rθ ≤ rub

}

, (21)

for vectors rlb, rub, and a conformable matrix R. In practice, these constraints typically

represent bounds on levels and/or derivatives of m(0♣·, x) and m(1♣·, x) and/or m(1♣·, x) −

m(0♣·, x) on a large grid of evaluation points. We discuss shape constraints in more detail in

Sections 4.5 and 5.

12
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For the moment approach, the structure of the Ąrst and second step programs depends

on the choice of norm ∥ · ∥. In the ivmte module, we take ∥ · ∥ to be the ℓ1 norm so that

Q̂S(mθ) =
∑

s∈S

∣
∣
∣Γ̂sθ − ĉs

∣
∣
∣ . (22)

This choice is attractive given (21) because one can then reformulate the Ąrst and second step

problems (19) and (20) as linear programs by replacing absolute values with appropriate slack

variables. Linear programs scale quite well with the number of parameters and constraints.

Given (21), the program deĄning Q̂⋆ in the regression approach is a convex quadratic

program. The second step programs in (20) are convex quadratically-constrained quadratic

programs (QCQPs). Mature algorithms exist for solving both types of programs to global

optimality. As one might expect, QCQPs do not tend to scale as well as LPs, and can be

more sensitive to numerical issues.

3.4 Trade-offs between the moment and regression approaches

As already noted, the identiĄed set for the regression approach is always weakly smaller

than in the moment approach: T ⋆
cm ⊆ T ⋆

S . Not only that, but the researcher does not need

to specify the set S, as they would in the moment approach. The number of options for

elements of S can be large, especially with covariates, and removing this subjective element

may be attractive. In point identiĄed cases, the regression approach has the additional

beneĄt of being implementable through ordinary least squares, which is computationally

trivial and can be expected to have good statistical properties. These are certainly strong

points in favor of the regression approach.

There are, however, also some beneĄts to the moment approach. Being able to choose

the set of moments S that are Ąt can be attractive since it draws a clear line between

the portions of the observed data that are used in inference and the portions that are not.

For example, Mogstad and Torgovitsky (2018) suggest reporting common linear IV model

estimates such as various two-stage least squares speciĄcationsŮwhich do not in general

estimate an interesting target parameterŮtogether with bounds on the target parameter

that incorporate the same information by using the same linear IV estimands as functions

in S. The moment-based criterion can also be easier to interpret; it simply measures the

distance to satisfying the moments, so if the number of moments is small and the MTR

function is Ćexible, it can be exactly zero, indicating that all the moments can be reproduced.

A related consequence is that the moment-based approach can be used for speciĄcation

testing. The other primary beneĄt of the moment approach is computation in partially

13
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identiĄed cases, where it produces an LP implementation that can usually be expected to

be easier to compute than the QCQPs required in the regression approach.

4. The ivmte package

4.1 Installation and requirements

The ivmte package is available in CRAN, and can be installed and loaded as usual:

install.packages("ivmte")

library("ivmte")

The most up-to-date version can be installed directly from the GitHub repository:

devtools::install_github("jkcshea/ivmte")

The splines2 package, which is available on CRAN, is required for implementing spec-

iĄcations in which the MTR function contains polynomial splines (see Section 4.4). No

additional packages are required for implementing the point estimators discussed in Section

3.3.1.

For the partially identiĄed cases, ivmte requires a solver package. If using the moment

approach, the options are gurobi, Rmosek, cplexAPI (Roettger et al., 2019), or lpSolveAPI

(Konis, 2019). The Ąrst package requires a Gurobi (Gurobi Optimization, Inc., 2015) license,

the second requires a MOSEK (MOSEK ApS, 2021) license, while the third requires a

CPLEX (IBM, 2010) license. These are available at no cost for academic researchers.

Alternatively, lpSolveAPI is freely available through CRAN and does not require a license.

For the regression approach with partial identiĄcation, ivmte requires either gurobi or

Rmosek, since the other solvers cannot solve QCQPs.9

All of the examples shown ahead in Section 5 were computed using Gurobi.

4.2 Basic syntax

The main command in ivmte is called ivmte. It requires the following arguments

ivmte(data, target, m0, m1, outcome, propensity)

where data is the usual dataframe and

• target speciĄes the target parameter, τ .

9. CPLEX can solve QCQPs, but its R API does not appear to allow for it.
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• m0 and m1 are formulas indicating the speciĄcation for the MTR function m broken

up into treatment arms m(0♣u, x) and m(1♣u, x).

• outcome indicates the outcome variable, Yi, and implements the regression criterion.

To use moment criterion, one instead passes ivlike, which contains a list of formula

that determine the set of functions S that deĄne the moment conditions.10

• propensity is a formula that speciĄes how the propensity score is estimated.

In the remainder of this section we discuss how to specify these arguments to implement

the methodology previously described. Along the way, we cover some additional options

that provide extra functionality. More detail and discussions of some lesser-used options are

provided in a vignette at the GitHub repository (https://github.com/jkcshea/ivmte).

4.3 Specifying the target parameter

The target option can be set to one of "ate", "att", "atu", "late", or "genlate", which

correspond respectively to the average treatment effect (ATE), the average treatment on the

treated (ATT), the average treatment on the untreated (ATU), the local average treatment

effect (LATE; Imbens and Angrist, 1994), and the generalized LATE (Heckman and Vytlacil,

2005; Mogstad et al., 2018). The choice of this argument speciĄes the form of the target

parameter τ via its weighting function ωτ in (5). Nothing else has to be speciĄed for "ate",

"att", and "atu". It is also possible to specify a custom parameter by specifying the weights

ωτ .

4.3.1 LATE

The local average treatment effect (LATE) from shifting the instrument Zi from z0 to z1 is

deĄned as

LATE(z0 → z1) ≡ E[Yi(1) − Yi(0)♣Di(z0) = 0, Di(z1) = 1].

In terms of the equivalent selection model (1),

LATE(z0 → z1) = E


∫ p(Xi,z1)

p(Xi,z0)
(m(1♣u, Xi) − m(0♣u, Xi))


1

E [p(Xi, z1) − p(Xi, z0)]



du

]

,

10. The terminology comes from Mogstad et al. (2018), who described the class of cross-moments cs ≡

E[Yis(Di, Xi, Zi)] as ŞIVŰlikeŤ estimands because they nest standard linear IV estimands via particular
choices of s.
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which takes the form (5) with weighting function

ωτ (d♣x, z) = (−1)d+1 1[p(x, z0) < u ≤ p(x, z1)]

E [p(Xi, z1) − p(Xi, z0)]
.

This is the form of ωτ used if target = "late". The user must pass late.from and late.to,

which should be named lists indicating the identity and value of z0 and z1, respectively.

As deĄned, the LATE parameter averages over all covariates. The ivmte package also

allows for Şeffect modiĄcation,Ť where the LATE is computed conditional on Vi = v, for

some function Vi of the covariate vector Xi (e.g. Ogburn et al., 2015; Kennedy et al., 2019):

LATE(z0 → z1♣v)

≡ E


∫ p(Xi,z1)

p(Xi,z0)

(m(1♣u, Xi) − m(0♣u, Xi))


1

E [p(Xi, z1) − p(Xi, z0)♣Vi = v]



du
∣
∣Vi = v

]

.

To do this, set target = "late" and late.from, late.to as above, but also pass a named

list late.X to indicate the variable Vi and value v. Note that no smoothing is done for the

conditional expectation, so Vi should be a discrete variable.

4.3.2 Generalized LATE

The selection model (1) allows conceptualizing a generalized LATE where instead of choosing

instrument values z0 and z1, we choose values u0 and u1 for the latent propensity variable

Ui (Heckman and Vytlacil, 2005). This can be useful for diagnosing the robustness of a

standard LATE to broadening the complier subpopulation (Mogstad and Torgovitsky, 2018).

The formal deĄnition is

GenLATE(u0, u1) ≡ E

∫ u1

u0

(m(1♣u, Xi) − m(0♣u, Xi))
1

(u1 − u0)
du



, (23)

for values u0, u1 ∈ [0, 1] with u0 < u1. To set the target parameter to (23) in ivmte,

pass target = "genlate", genlate.lb and genlate.ub, where the latter two parameters

correspond to u0 and u1. Effect modiĄcation can also be incorporated by passing late.X,

in the same way as for the usual LATE discussed in the previous section.

4.3.3 Custom target parameters

The user can deĄne their own target parameters by directly specifying the weight function

ωτ in (5). To facilitate computation, these weight functions are required to be constant

16
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splines in u, i.e.

ωτ (d♣u, Xi, Zi) =
Jd∑

j=1

1 [κj−1(d♣Xi, Zi) < u ≤ κj(d♣Xi, Zi)] ω̄τ,j(d♣Xi, Zi),

where κ0(d♣Xi, Zi) ≡ 0, and kJd
(d♣Xi, Zi) ≡ 1. The user sets these weights by passing the

J0 − 1 knot functions (κ1(0♣·, ·), . . . , κJ0−1(0♣·, ·)) as a list via target.knots0 and the J0

weight functions (ω̄τ,1(0♣·, ·), . . . , ω̄τ,J0
(0♣·, ·)) as a list via target.weight0. The analogous

options target.knots1 and target.weight1 for the treated (d = 1) weights also need to

be speciĄed. For any component of these lists, a constant (scalar numeric) can be passed

instead of a function to indicate a function that does not vary with (x, z). Note that the

option target is ignored when any of the custom target.* options are passed.

4.4 Specifying the MTR function

The required m0 and m1 arguments accept speciĄcations for two treatment arms of the

MTR function using the standard R formula syntax familiar from functions like lm or glm.

However, these formulas involve an unobservable variable whose default name is u.11 Typical

speciĄcations will involve combinations of u and other covariates. For example,

m0 <- ~ var1 + u + I(var1 * u) + I(uˆ2)

speciĄes m(0♣u, x) to be quadratic in the unobservable u (u) and linear in var1 (a subcom-

ponent of x), with a Ąrst order interaction between u and var1. Note that the left-hand

side of these formulas is empty. Also note the use of I() to inhibit the interpretation of *

and ˆ as formula operators.

Currently, ivmte requires speciĄcations of m0 and m1 to either be polynomials or B-splines

in u. B-splines are incorporated using the function uSplines, which is an interpreter that

utilizes the splines2 package (Wang and Yan, 2018). An example of the syntax is

m1 <- ~ var1 + uSplines(degree = 0, knots = c(0.2, 0.5, 0.8))

which would specify m(1♣u, x) to be linear in var1 and piecewise constant in u with jumps at

the speciĄed knot points.12 Splines can be interacted with other variables and intermingled

with other polynomials, for example

11. The name can be changed with the uname option.
12. As Wang and Yan (2018) describe in their vignette, the only difference between the bSpline function in

splines2 and the bs function in the core package splines is that bSpline allows for degree 0 splines,
i.e. piecewise constant functions. This turns out to be particularly useful for our purposes because
piecewise constant functions have a special place in the theory developed by Mogstad et al. (2018); see
their Proposition 4.
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m0 <- ~ u + I(uˆ2) + var1:uSplines(degree = 2, knots = c(0.3, 0.4, 0.5, 0.7))

would specify a quadratic function of u and a linear function of var1 whose slope varies

with u according to a quadratic B-spline with knot points at .3, .4, .5, and .7.

4.5 Imposing shape constraints

For partial identiĄcation cases, ivmte also allows the user to require the MTR and/or MTE

functions to be bounded and/or monotone in u. The bounds are imposed through the

arguments m0.lb, m0.ub, m1.lb, m1.ub, mte.lb, and mte.ub. Note that the default action

of ivmte is to set the upper and lower bounds on m0 and m1 to the largest and smallest

values of the response variable observed in the data, which also implies values for mte.lb

and mte.ub. Monotonicity in u, in either an increasing or decreasing sense, is set through

the boolean arguments m0.dec, m0.inc, m1.dec, m1.inc, mte.dec, and mte.inc. These

arguments are set to FALSE by default.

These shape constraints (boundedness and monotonicity) are enforced through an

ŞauditingŤ procedure. The procedure is designed to circumvent the difficulty of determining

whether a polynomial function is bounded or monotone on its domain. It starts by imposing

the desired shape constraints on the MTR function at all points on a well-spaced, relatively

coarse constraint grid. After producing the bound estimates τ̂⋆
lb and τ̂⋆

ub, the solution MTR

functions at these bounds are checked (ŞauditedŤ) for shape restrictions on a much Ąner

audit grid. If the solutions satisfy the shape restrictions across the entire audit grid, then

the process ends. Otherwise, the estimator is recomputed with an expanded constraint

grid that contains some of the points in the audit grid where the restrictions were violated.

The procedure repeats until the solutions pass the audit, or until a maximum number of

iterations are reached.

The user can adjust the size of the initial constraint grid through the arguments

initgrid.nu and initgrid.nx. These arguments control the initial number of points

at which to impose the constraints for u, via initgrid.nu, and all other variables included

in the speciĄcation of m0 and m1, via initgrid.nx. For the latter, the points are drawn

randomly from the empirical distribution in data. The default values of initgrid.nu and

initgrid.nx are both 20, so that the total initial constraint grid size is 400.

The user can also adjust the size of audit grid through the arguments audit.nu and

audit.nx. The default for audit.nu is 25, while the default for audit.nx is set at 2500.

By default then, the solution MTR function must satisfy the shape constraints on an audit

grid with 62,500 points.13 When a solution MTR function fails an audit, the number of

13. Assuming of course that there are at least 2500 unique values of Xi in the data. Otherwise, the entire
empirical support of Xi is used.
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violating points that are added to the constraint grid from the audit grid (for each shape

constraint) is given by audit.add, which has a default of 100.

The audit is terminated after the solution MTR functions satisfy the constraints on the

entire audit grid, or after audit.max rounds of the audit procedure, which has a default of

25 rounds. If audit.max is hit, the user should investigate the audit.grid$violations

Ąeld of the list that ivmte returns. This reports the points of the audit grid at which the

shape restrictions are violated. Small regions of violation can likely be ignored without

seriously affecting the estimated bounds τ̂⋆
lb and τ̂⋆

ub. If the violations occur on a large region,

the user can let the audit procedure run for more rounds by increasing audit.max.

4.6 Specifying the criterion function

To use the regression approach, simply leave the ivlike input empty and indicate the

outcome variable Yi as outcome = y.

To use the moment approach, one needs to specify the collection of functions S via

ivlike by passing a vector of formulas, each of which has the same outcome variable (Yi)

on the left-hand side. For example,

ivlike <- c(

y ~ d,

y ~ d | z,

y ~ d + x | z + I(zˆ2) + x

)

has three formulas, with the second two speciĄed using the | syntax familiar from the ivreg

command in the AER package (Kleiber and Zeileis, 2018). The Ąrst formula is an OLS

regression of y on d and a constant. The second formula uses z as an instrument for d, as in

just-identiĄed IV regressions. The third formula uses z and zˆ2 as instruments for d, with x

serving as a covariate that instruments for itself.

The default behavior of ivmte is to include all of the estimated coefficients from each

speciĄcation as functions s ∈ S. In the example above, this would mean the coefficients on

the constant and d in the Ąrst and second speciĄcations, and the coefficients on the constant,

d and x in the third, for a total of 7 moments to match. The user can change this behavior

with the components argument. This argument expects a list of the same length as ivlike,

with the jth component of the list being a vector that indicates which coefficients should be

included from the jth IVŰlike speciĄcation in ivlike. In the example above, we could have

used
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components <- l(intercept, d, c(d, x))

to indicate that we want only the coefficient on the constant (intercept) from the Ąrst

speciĄcation, only the coefficient on d in the second, and both the coefficients on d and x in

the third, for a total of 4 moments. Note that intercept is used to refer to the implied

constant term in the formula speciĄcations, and so should be viewed as a reserved word

when it comes to naming data columns.14

Conditioning subsets for the IVŰlike speciĄcation can be set through the optional subset

argument. This option expects a list of the same length as ivlike, with each component of

the list representing a logical statement. For example,

subset <- l(z == 1, , x %in% c(2, 3))

would estimate the Ąrst IVŰlike speciĄcation only on the subset with z == 1, the second for

all observations, and the third only for the subset for which either x == 2 or x == 3. This

provides an easy way to specify conditional moments as components of S, e.g. via

E[Yi♣Zi = 1] = E



Yi
1[Zi = 1]

P[Zi = 1]
︸ ︷︷ ︸

example of s(Di,Xi,Zi)

]

. (24)

4.7 Propensity score estimation

Estimating γ̂s and γ̂cm, as well as τ̂ for many choices of target parameter requires Ąrst

estimating the propensity score, p(x, z) ≡ P[Di = 1♣Xi = x, Zi = z]. This is communicated

through the propensity argument. Typically, the user will pass a formula for propensity

in which the treatment variable appears on the left-hand side, for example

propensity <- d ~ x + z

By default, this estimates a logit model using glm with the speciĄed right-hand side variables,

but the user can change this to probit or linear by passing link = "probit" or link =

"linear".

Alternatively, the user can estimate the propensity score before running ivmte, save

estimates of p(Xi, Zi) in their dataframe as a new column, say p, and then pass propensity

= p. When this is done, the user must also indicate the name of the treatment variable

through the argument treat. When a formula is passed for propensity, the treatment

variable is inferred to be the response variable of the formula, and the treat argument is

ignored unless it does not match the inferred variable, in which case an error is thrown.

14. The l function is a generalization of the list function, and allows the user to list variables and expressions
without having to enclose them by quotation marks.
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4.8 Solving

By default, ivmte attempts to determine whether there is a unique solution to either the

moment-based or regression-based criteria (depending on the userŠs speciĄcation of ivlike)

by checking the rank of their (unconstrained) Ąrst-order equations. If it determines that

there is a unique solution, and point is either not passed, or passed as point = TRUE, then

it proceeds to solve for the unique solution and form a point estimate of the target parameter

as described in Section 3.3.1. For the moment criterion, the default behavior is to use the

optimal two-step weighting for Ω̂, but this can be changed to the identity weighting by

passing point.eyeweight = TRUE.

If ivmte determines there is not a unique solution, or if point = FALSE is passed, then

it proceeds with the two-step bounds estimator described in Section 3.3.2 The solver package

for these problems is set using the option solver, which currently accepts the following

values: gurobi, Rmosek, cplexAPI, and lpSolveAPI.15 If no value is passed for solver,

then ivmte searches for a solver in the order given above and uses the Ąrst one that is found.

The value of the tuning parameter, σ, in (20) is set to 10−4 by default, and can be changed

with the criterion.tol argument.

4.9 ConĄdence intervals

The ivmte command can construct conĄdence intervals by resampling (bootstrapping or

subsampling). The number of replications is determined by the argument bootstraps,

which is set to 0 by default so that conĄdence intervals are not computed. The size of the

resampled dataset is determined by bootstraps.m, which is set to the sample size of data

by default. The default behavior is to draw the resampled data with replacement from

data, but this can be toggled with the boolean argument bootstraps.replace. ConĄdence

intervals are reported for all levels in levels, which has the default of c(.99, .95, .90).

For the point-identiĄed case, the reported intervals are formed from the resampled

distribution of (18).16 Conducting statistical inference on bounds in the partially identiĄed

case is more delicate due to their potentially non-standard asymptotic distributions.17

There does not currently exist a solution for the MTE framework that is both theoretically

satisfactory and computationally tractable. Instead, ivmte implements the forward and

15. The gurobi package is included with Gurobi, while cplexAPI and lpSolveAPI are available from CRAN.
The version requirements of ivmte as of this writing are: gurobi 8.1-0 or later, Rmosek 9.2.38 or later,
cplexAPI 1.3.3 or later, and lpSolveAPI 5.5.2 or later.

16. The moment-based criterion uses re-centered moment conditions (Hall and Horowitz, 1996; Brown and
Newey, 2002).

17. See Canay and Shaikh (2017) for a recent survey on inference in partially identiĄed models.
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reverse bootstrap procedures discussed by Andrews and Han (2009).18 While these are

known to not be valid in general, they may still provide a reasonable indication of statistical

uncertainty for the user. In addition to conĄdence intervals for each level in levels, imvte

also returns a p-value, computed as the smallest level a such that a 1 − a conĄdence interval

would not contain 0.

4.10 SpeciĄcation tests

If using the moment-based criterion function, ivmte will also conduct a bootstrap test of

the null hypothesis that the model is correctly speciĄed (i.e. of the null hypothesis that the

minimum value of the population criterion is zero) whenever bootstraps is a positive number.

In the point-identiĄed case, the test used is the well-known Hansen (1982) overidentiĄcation

test for GMM using the adjustment for bootstrapping discussed by Hall and Horowitz (1996).

In the partially-identiĄed case, the test used is the Şre-samplingŤ test of Bugni et al. (2015).

In either case, ivmte returns a p-value for the null hypothesis of correct speciĄcation. The

user can turn off the speciĄcation test by passing specification.test = FALSE.

4.11 Output

The return of ivmte is a named list with a large number of Ąelds.19 The most important

Ąelds are pointestimate and bounds, which return (18) or (20), depending on whether

point is TRUE or FALSE. If conĄdence intervals are being computed, these are returned in

the Ąelds pointestimate.ci or bounds.ci, with the p-value returned in the Ąeld pvalue.

Other Ąelds that may be useful for diagnostics or debugging are s.set, which contains

the results of running the IVŰlike speciĄcations, propensity, which contains the results of

the propensity score estimation, audit.criterion, which gives the value Q̂⋆ in (19), and

audit.grid$violations, which reports points at which the audit procedure failed to secure

compliance with the desired shape restrictions.

5. Empirical illustration

5.1 Data and motivation

We illustrate the motivation and usage of ivmte by revisiting Angrist and EvansŠs (1998)

analysis of the relationship between fertility on labor supply. The data comes from the 1980

Census Public Use Micro Samples (PUMS); a detailed description can be found in Angrist

18. The default is to compute and report the results from both backward and forward procedures. This
behavior can be changed by passing ci.type = "backward" or ci.type = "forward".

19. In case memory usage is an important issue to the user, we have included an option smallreturnlist

that can be set to TRUE to limit the number of objects that are returned.
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and Evans (1998).20 Our illustration uses three main variables: worked is an indicator for

whether a woman worked for pay in the year prior to the survey, morekids is an indicator

for whether a woman has exactly two children (morekids = 0) or three or more children

(morekids = 1), and samesex is an indicator that is 1 if the Ąrst two children had the same

sex. Later, we will also use the womanŠs year of birth (yob) and indicators for her race

(hisp, black, other) to demonstrate speciĄcations with covariates. Our interest is in the

effect of having more than two children (morekids) on labor supply (worked).

A simple linear regression of worked on morekids shows that 58% of women with two

children work, compared to only 44% of those with three or more children:

lm(data = AE, worked ~ morekids)

##

## Call:

## lm(formula = worked ~ morekids, data = AE)

##

## Coefficients:

## (Intercept) morekids

## 0.5822 -0.1423

The coefficient on morekids of −.14 probably overstates the causal impact of fertility on

labor supply, since women who choose to have more children likely do so in part because

their labor market prospects are weaker. An IV regression using samesex as an instrument

for morekids returns a coefficient on morekids that is substantially smaller in magnitude:

library("AER")

ivreg(data = AE, worked ~ morekids | samesex)$coeff["morekids"]

## morekids

## -0.08484221

If there is heterogeneity in the effect of fertility on working, then this IV estimate only

reĆects the same-sex compliers, that is, those women who would have a third child if and

only if their Ąrst two had the same sex. The ŞĄrst stageŤ regression of morekids on samesex

shows that this group is rather small, comprising less than 6% of the population.

20. The original data can be downloaded from https://economics.mit.edu/Ąles/1199 or from http:
//sites.bu.edu/ivanf/files/2014/03/m_d_806.dta_.zip. The data we use is restricted to women who were
at least 20 years old at their Ąrst birth. The cleaned subsample data with only the variables relevant to
the current analysis is included as data with ivmte.
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lm(data = AE, morekids ~ samesex)$coeff["samesex"]

## samesex

## 0.05886826

If our research question requires knowing a quantity involving the entire population, such as

the ATE or the ATT, then this linear IV estimate is not particularly helpful.

5.2 Extrapolation to the ATE under different assumptions

The ivmte package can be used to extrapolate from the small complier group to larger groups

by providing a coherent framework under which additional assumptions can be imposed.

Suppose for example that we assume that the MTR function is quadratic in u for both

treatment states, so that the pair is characterized by six parameters. Since both morekids

and samesex are binary, we only have four moments at our disposal to identify these six

parameters, so the model is not point identiĄed. However, we can use ivmte to estimate

bounds on the ATE:21

ivmte(

data = AE,

ivlike = c(worked ~ morekids + samesex + morekids * samesex),

target = "ate",

m0 = ~ u + I(uˆ2),

m1 = ~ u + I(uˆ2),

propensity = morekids ~ samesex

)

##

## Bounds on the target parameter: [-0.2862919, 0.1050867]

## Audit terminated successfully after 1 round

As a comparison, ManskiŠs (1990) nonparametric IV bounds on the ATE are [−.548, .393].

The bounds produced by ivmte are much tighter because they impose a parametric assump-

tion on the model primitives which smooths out the extreme cases at which ManskiŠs bounds

are obtained. The parametric assumption says that if we line up families by their latent

propensity to have a third child, then families who are close to having the same propensity

(similar u) are, on average, not too dissimilar in their potential work outcomes. A weaker

21. This call illustrates the basic syntax introduced in Section 4.2. The speciĄcation of ivlike indicates four
moments in S (see Section 4.6). The speciĄcations of m0 and m1 follow the syntax discussed in Section 4.4
with the u syntax for the unobserved variable. The propensity option indicates a simple logit regression
of morekids on samesex and a constant (Section 4.7), which in this case is numerically equivalent to a
binned estimator of the conditional probability of treatment.
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parameterization for the MTR, such as a polynomial of higher order than 2, would allow

families with similar fertility propensities to be more different, since such a function could

ŞwiggleŤ more quickly between the natural bounds of 0 and 1 for Yi.

While narrower than ManskiŠs nonparametric bounds, the bounds under a quadratic

parameterization are still quite wide; they are consistent with both large negative and

modest positive causal effects. However, because the outcome is binary and all four potential

s functions have been incorporated into the saturated speciĄcation ivlike = c(worked

~ morekids + samesex + morekids*samesex), we know from Proposition 3 of Mogstad

et al. (2018) that the bounds are sharp (best possible) in the sense of fully exhausting the

information contained in the model and the data. Thus, if the researcher is unsatisĄed with

the width of the bounds, they have two paths to satisfaction: (i) make stronger (or different)

assumptions, or (ii) ask a less ambitious question by changing the target parameter.

A natural way to strengthen the assumptions is to eliminate the quadratic terms in the

MTR speciĄcations, so that there are only four parameters:

ivmte(

data = AE,

ivlike = worked ~ morekids + samesex + morekids * samesex,

target = "ate",

m0 = ~u,

m1 = ~u,

propensity = morekids ~ samesex

)

## Warning: MTR is point identified via GMM.

##

## Point estimate of the target parameter: -0.07791036

The bounds have collapsed to a point. This makes sense since we have not changed ivlike,

so we still have four moments, but relative to the quadratic case we have reduced the

number of parameters from six to four (Brinch et al., 2012, 2017). If we had done this

moment-counting exercise ahead of time, we could have added point = TRUE to the call

(Section 4.8):

ivmte(

data = AE,

ivlike = worked ~ morekids + samesex + morekids * samesex,

target = "ate",

m0 = ~u,

m1 = ~u,
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propensity = morekids ~ samesex,

point = TRUE

)

##

## Point estimate of the target parameter: -0.07791036

Linearity is a restrictive parameterization, and one might be uncomfortable with the

fact that it allows for complete extrapolation from the 6% of the population represented

in the LATE to the entire population represented in the ATE. As an alternative, consider

combining the quadratic case with shape restrictions (Section 4.5). For example, we could

assume that the MTRs must generate an MTE curve that is negative and increasing:

ivmte(

data = AE,

ivlike = worked ~ morekids + samesex + morekids * samesex,

target = "ate",

m0 = ~ u + I(uˆ2),

m1 = ~ u + I(uˆ2),

mte.inc = TRUE,

mte.ub = 0,

propensity = morekids ~ samesex

)

##

## Bounds on the target parameter: [-0.08484221, -0.06323574]

## Audit terminated successfully after 1 round

The assumption behind this shape restriction is that the effect of having another child

on working is negative (m(1♣u, x) − m(0♣u, x) ≤ 0, imposed via mte.ub = 0), and is more

negative for women who are more likely to have more children (m(1♣u, x)−m(0♣u, x) increasing

as a function of u, imposed via mte.inc = TRUE). Adding the assumption narrows the bounds

considerably, from [−.286, .105] to [−.085, −.063]. In this case, the resulting bounds happen

to be similar to the original linear IV estimate for compliers, but they are the product of a

formally-justiĄed theoretical framework for extrapolation, rather than verbal extrapolation

and wishful thinking.

5.3 Easier extrapolation problems

Extrapolating from the complier group represented in the LATE (6%) to the entire population

represented in the ATE is a heroic challenge. Changing the target parameter to something

less ambitious makes the extrapolation problem easier. For example, one could consider
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extrapolated LATEs, i.e. generalized LATEs (23) with ulb = max¶p(0) − α, 0♢ and uub =

min¶p(1) + α, 1♢ for different non-negative values of α (Mogstad et al., 2018, Section

4.2). For α = 0, the extrapolated LATE is equivalent to the usual LATE, while as

α → max¶p(0), 1 − p(1)♢, it returns to the ATE.22

# Set up ivmte arguments as a list so they can be easily changed

args <- list(

data = AE,

ivlike = worked ~ morekids + samesex + morekids * samesex,

target = "genlate",

m0 = ~ u + I(uˆ2),

m1 = ~ u + I(uˆ2),

propensity = morekids ~ samesex,

audit.nu = 200

)

# Get propensity score and construct alpha list

p <- predict(lm(data = AE, morekids ~ samesex),

newdata = data.frame(samesex = c(0, 1)),

type = "response"

)

alphalist <- seq(from = 0, to = max(p[1], (1 - p[2])), by = .01)

# Function for computing genlate bounds at different values

loopivmte <- function(args, alphalist) {

df.lb <- data.frame(alpha = alphalist, value = NA, type = "lb")

df.ub <- data.frame(alpha = alphalist, value = NA, type = "ub")

for (i in 1:length(alphalist)) {

args[["genlate.lb"]] <- max(p[1] - alphalist[i], 0)

args[["genlate.ub"]] <- min(p[2] + alphalist[i], 1)

r <- do.call(ivmte, args)

df.lb$value[i] <- r$bound[1]

df.ub$value[i] <- r$bound[2]

}

return(rbind(df.lb, df.ub))

}

# Run the quadratic case

plotquadratic <- loopivmte(args, alphalist)

plotquadratic$name <- "Quadratic"

# Run the quartic case

22. These calls use the genlate, genlate.lb, and genlate.ub parameters, which are discussed in Section
4.3.2, as well as the spline functionality discussed in Section 4.4.
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args[["m0"]] <- ~ u + I(uˆ2) + I(uˆ3) + I(uˆ4)

args[["m1"]] <- args[["m0"]]

plotquartic <- loopivmte(args, alphalist)

plotquartic$name <- "Quartic"

# Run the spline case

args[["m0"]] <- ~ uSplines(degree = 3, knots = seq(from = .1, to = .9, by = .1))

args[["m1"]] <- args[["m0"]]

plotspline <- loopivmte(args, alphalist)

plotspline$name <- "Cubic spline"

library("ggplot2")

plotdf <- rbind(plotquadratic, plotquartic, plotspline)

ggplot(plotdf, aes(x = alpha, y = value, color = name)) +

geom_line(data = subset(plotdf, type == "lb")) +

geom_line(data = subset(plotdf, type == "ub")) +

labs(

x = expression(paste("Extrapolation distance (", alpha, ")")),

y = "Bounds",

color = "MTR function"

) +

theme(legend.position = "bottom")

Figure 1: Bounds as a function of assumptions and extrapolation difficulty
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Figure 1 reports bounds on extrapolated LATEs as a function of α for three different

speciĄcations of the MTR function. The tightest speciĄcation is the unconstrained quadratic

used above. The quartic speciĄcation takes the quadratic and adds third and fourth order

terms to the MTR function for both treatment states. The spline speciĄcation is a Ćexible

cubic spline with nine knots.

As expected, the bounds are always ordered in width with quadratic being narrowest

and the cubic spline being widest. For all speciĄcations, the bounds start as a point at

α = 0 (the LATE) and tend towards the ATE bounds as α → 1. This shows how the MTE

framework allows the researcher to achieve bounds of any width they desire, while still being

constrained by the reality that stronger conclusions require stronger assumptions. Given

this freedom, it is unlikely that the researcherŠs preferred trade-off between assumptions

and conclusions is the corner solution of reporting only nonparametrically point-identiĄed

parameters such as the LATE, which reĆect both the weakest assumptions and the weakest

conclusions.

5.4 Covariates

Covariates (Xi) serve two roles in all IV strategies. First, they can increase the credibility

of the assumption that the instrument is as good as randomly assigned by making that

assumption conditional on other observables. Second, covariates can reduce sampling

uncertainty to the extent that they soak up residual variation in the outcome and/or

treatment variables. In the MTE framework, covariates can also be used in a third role to

provide identifying content through separability (e.g. Carneiro et al., 2011; Brinch et al.,

2012, 2017).

To demonstrate this, we return to the quadratic speciĄcation with the ATE as the target

parameter, but now we fully interact the MTE speciĄcation in yob, viewed here as Xi:

set.seed(1234) # the covariate part of the audit grid is stochastic

ivmte(

data = AE,

ivlike = worked ~ (morekids + samesex + morekids * samesex) * yob,

target = "ate",

m0 = ~ u + yob + u * yob + I(uˆ2) + I(uˆ2) * yob,

m1 = ~ u + yob + u * yob + I(uˆ2) + I(uˆ2) * yob,

propensity = morekids ~ yob + samesex + samesex * yob

)

##

## Bounds on the target parameter: [-0.2790478, 0.09365855]

## Audit terminated successfully after 1 round
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The bounds are quite similar to the previous bounds that we obtained without covariates.

This is expected because for each new interacted moment that is being matched we are

adding an interaction term in the MTR that must be Ąt. Eliminating one or more of these

interaction terms imposes separability, that is, the assumption that unobserved heterogeneity

in potential outcomes operates similarly for different values of the covariate. Here we

eliminate the quadratic interaction and see that the bounds narrow considerably.

set.seed(1234)

ivmte(

data = AE,

ivlike = worked ~ (morekids + samesex + morekids * samesex) * yob,

target = "ate",

m0 = ~ u + yob + u * yob + I(uˆ2),

m1 = ~ u + yob + u * yob + I(uˆ2),

propensity = morekids ~ yob + samesex + samesex * yob

)

##

## Bounds on the target parameter: [-0.1206799, 0.03139476]

## Audit terminated successfully after 1 round

With multiple types of assumptions to impose there is naturally a trade-off. For example,

we might want to use the information we obtain with separability to buy a more Ćexible

functional form.

set.seed(1234)

ivmte(

data = AE,

ivlike = worked ~ (morekids + samesex + morekids * samesex) * yob,

target = "ate",

m0 = ~ 0 + uSplines(degree = 3, knots = seq(from = .25, to = .75, by = .25)) + yob,

m1 = ~ 0 + uSplines(degree = 3, knots = seq(from = .25, to = .75, by = .25)) + yob,

propensity = morekids ~ yob + samesex + samesex * yob

)

##

## Bounds on the target parameter: [-0.2945988, 0.1704043]

## Audit terminated successfully after 2 rounds

The regression approach starts to become particularly attractive in rich speciĄcations

with multiple different covariates. This is because the number of possible moments that

could be matched blows up; using all of them is potentially unwise due to small-sample bias,

but it is also not necessarily clear how to choose which ones to use. The regression approach

removes this choice through the usual least squares weighting. For example:
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set.seed(1234)

ivmte(

data = AE,

outcome = worked,

target = "ate",

m0 = ~ 0 + uSplines(degree = 3, knots = seq(from = .25, to = .75, by = .25)) + yob +

black + hisp + other,

m1 = ~ 0 + uSplines(degree = 3, knots = seq(from = .25, to = .75, by = .25)) + yob +

black + hisp + other,

propensity = morekids ~ samesex + yob + black + hisp + other,

solver = "gurobi"

)

##

## Bounds on the target parameter: [-0.2958156, 0.1643243]

## Audit terminated successfully after 2 rounds

5.5 Run time

In this section, we provide a sense of the run time involved in ivmte. The following

benchmarks were performed with a Intel Xeon W-2125 processor. The AE dataset has

209,133 observations.

library("microbenchmark")

quad.simple <-

list(

data = AE,

ivlike = c(worked ~ morekids + samesex + morekids * samesex),

target = "ate",

propensity = morekids ~ samesex

)

quad.simple[["m0"]] <- ~ u + I(uˆ2)

quad.simple[["m1"]] <- quad.simple[["m0"]]

quad.const <- quad.simple

quad.const[["mte.inc"]] <- TRUE

quad.const[["mte.ub"]] <- 0

spline.reg <-

list(

data = AE,

outcome = "worked",

target = "ate",

m0 = ~ 0 + uSplines(degree = 3, knots = seq(from = .25, to = .75, by = .25)) +

yob + black + hisp + other,
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propensity = morekids ~ samesex + yob + black + hisp + other,

solver = "gurobi",

audit.nu = 50

)

spline.reg[["m1"]] <- spline.reg[["m0"]]

m <- microbenchmark(

do.call(ivmte, quad.simple), # simple, unconstrained

do.call(ivmte, quad.const), # add some constraints

do.call(ivmte, spline.reg), # more complex specification

times = 100

)

autoplot(m)

Figure 2: Run time distributions for three speciĄcations
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5.6 ConĄdence intervals

To conclude, we demonstrate how ivmte constructs conĄdence intervals (Section 4.9). If

we estimate the model assuming point identiĄcation, as with a linear speciĄcation, ivmte

returns:
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set.seed(1234) # the bootstrap is stochastic

r <- ivmte(

data = AE,

ivlike = worked ~ morekids + samesex + morekids * samesex,

target = "ate",

m0 = ~u,

m1 = ~u,

point = TRUE,

bootstraps = 100,

propensity = morekids ~ samesex

)

summary(r)

##

## Point estimate of the target parameter: -0.07791036

## MTR coefficients: 4

## Independent/total moments: 4/4

##

## Bootstrapped confidence intervals (nonparametric):

## 90%: [-0.150156, -0.006348619]

## 95%: [-0.161036, 0.003467422]

## 99%: [-0.1650715, 0.02561266]

## p-value: 0.08

## Number of bootstraps: 100

While for the general case of bound estimation, ivmte returns:

set.seed(1234)

r <- ivmte(

data = AE,

ivlike = worked ~ morekids + samesex + morekids * samesex,

target = "ate",

m0 = ~ u + I(uˆ2),

m1 = ~ u + I(uˆ2),

mte.inc = TRUE,

mte.ub = 0,

bootstraps = 100,

propensity = morekids ~ samesex

)

summary(r)

##

## Bounds on the target parameter: [-0.08484221, -0.06323574]

## Audit terminated successfully after 1 round

## MTR coefficients: 6
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## Independent/total moments: 4/4

## Minimum criterion: 0

## Solver: Gurobi ('gurobi')

##

## Bootstrapped confidence intervals (backward):

## 90%: [-0.1409956, -0.01898701]

## 95%: [-0.14766, -0.009421106]

## 99%: [-0.1587216, 2.775558e-17]

## p-value: 0.02

## Number of bootstraps: 100
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