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(57) ABSTRACT 

Methods and systems for computationally processing data 
with a multi-layer convolutional neural network (CNN) 
having an input and output layer, and one or more interme
diate layers are described. Input data represented in a form 
of evaluations of continuous functions on a sphere may be 
received at a computing device and input to the input layer. 
The input layer may compute outputs as covariant Fourier 
space activations by transforming the continuous functions 
into spherical harmonic expansions. The output activations 
from the input layer may be processed sequentially through 
each of the intermediate layers. Each, intermediate layer 
may apply Ciebsch-Gordan transforms to compute respec
tive covariant Fourier space activations as input to an 
immediately next layer, without computing any intermediate 
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inverse Fourier transforms or forward Fourier transforms. 
Finally, the respective covariant Fourier space activations of 
the last intermediate layer may be processed in the output 
layer of the CNN to compute invariant activations. 
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FULLY FOURIER SPACE SPHERICAL 
CONVOLUTIONAL NEURAL NETWORK 

BASED ON CLEBSCH-GORDAN 
TRANSFORMS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a national stage entry of, and claims 
priority to, PCT/US19/38236, filed on Jun. 20, 2019, which 
claims priority under 35 U.S.C. § 119(e) to U.S. Provisional 
Patent Application Ser. No. 62/688,200, filed on Jun. 21, 
2018, both of which are incorporated herein in their entirety 
by reference. 

BACKGROUND 

Convolutional neural networks (CNN) may be used in a 
variety of computer vision and related tasks. In a typical 
configuration, a CNN may include multiple sequentially
connected layers in which the outputs of one layer, referred 
to as "activations," are the inputs to the next layer. In each 
layer, the output activations are computed by mathemati
cally convolving or cross-correlating the previous layer's 
activations with a filter, and then applying a nonlinearity to 
the resulting convolution or cross-correlation. The input data 
may correspond to measurements as a function of some 
spatial coordinates, such as image pixels in a plane, and may 

2 
any given object equally well regardless of its location. 
Described in this way, a CNN is sometimes referred to as a 
"classical CNN." 

Recent research examining equivariance from the theo
retical point of view has been motivated by the understand
ing that the natural way to generalize convolutional net
works to other types of data will likely lead through 
generalizing the notion of equivariance itself to other trans
formation groups. Letting f5 denote the activations of the 

10 neurons in layers of a hypothetical generalized convolution
like neural network, mathematically, equivariance to a group 
G means that if the inputs to the network are transformed by 
some transformation gEG, then f5 transforms to T /(f5) for 
some fixed set oflinear transformations {T /} gEG (Note that 

15 in some contexts this is called "covariance," though the 
difference between the two words may be considered only 
one of emphasis.) 

A recent success of this approach are Spherical CNNs, 
which are an SO(3)-equivariant neural network architecture 

20 for learning images painted on the sphere. Leaming images 
on the sphere in a rotation invariant way has applications in 
a wide range of domains from 360 degree video through 
drone navigation to molecular chemistry. A fundamental 
idea in Spherical CNNs is to generalize convolutions using 

25 the machinery of noncommutative harmonic analysis: 
employing a type of generalized SO(3) Fourier transform, 
Spherical CNNs transform the image to a sequence of 
matrices, and compute the spherical analog of convolution 
in Fourier space. This construction is appealing because it 

30 guarantees equivariance, and the resulting network have 
been shown to attain state of the art results on several 
benchmark datasets. 

be mathematically represented by one or more continuous 
functions defined over the space described by the coordi
nates. In this somewhat generalized description, the convo
lution of the filter with the previous layer's activations 
involves translating the filter over some displacement in or 
across the space in or on which the input functions are 35 

defined, and thereby obtaining a measure of how well the 
filter matches the activations in the region of translation. 
Carrying out this operation at successive layers of the CNN 
with different filters having different characteristics can be 
used for recognition of hierarchical structure as captured 40 

through the filter characteristics applied successively at each 
CNN layer. 

The inventors have recognized, however, one potential 
drawback of Spherical CNN s of the form proposed in some 
recent research; namely that the nonlinear transform in each 
layer still needs to be computed in "real space." Conse-
quently, each layer of the network involves a forward and a 
backward SO(3) Fourier transform, which is relatively 
costly, and is a source of numerical errors, especially since 
the sphere and the rotation group do not admit any regular 
discretization similar to the square grid for Euclidean space. 

Spherical CNN s are not be the only context in which the 
idea of Fourier space neural networks may be applied. From 
a mathematical point of view, the relevance of Fourier SUMMARY 

A complete understanding of how deep neural networks 
are able to achieve apparently very good performance on a 
wide range of learning problems has generally lagged other 
advancements in fields of and related to deep learning. 
Nevertheless, it seems fairly clear that certain architectures 
pick up on natural invariances in data, and that this appears 
to be a significant component of their success. An example 
is Convolutional Neural Networks (CNNs) for image clas
sification. In particular, each layer of a CNN realizes two 
simple operations: a linear one consisting of convolving the 
previous layer's activations with a (typically small) learn
able filter, and a nonlinear but pointwise one, such as a 
ReLU operator. This architecture is sufficient to ensure 
"translation equivariance," meaning that if the input image 

45 theoretic ideas in all these cases is a direct consequence of 
equivariance, specifically, of the fact that the {T /} gEG 

operators form a "representation" of the underlying group, in 
the algebraic sense of the word. In particular, it may be 
shown that whenever there is a compact group G acting on 

50 the inputs of a neural network, there is a natural notion of 
Fourier transformation with respect to G, yielding a 
sequence of Fourier matrices {F/}z at each layer, and the 
linear operation at layer swill be equivariant to G if and only 
if it is equivalent to multiplying each of these matrices from 

55 the right by some (learnable) filter matrix H/. Any other sort 
of operation will break equivariance. The spherical convo
lutions employed in some of the recent research are a special 
case of this general setup for SO(3), and the ordinary 
convolutions employed in classical CNNs are a special case 

60 for the integer translation group ;v. The inventors have 
further recognized that in all of these cases, however, the 
issue remains that the nonlinearities need to be computed in 
"real space," necessitating repeated forward and backward 
Fourier transforms. 

is translated by some vector t, then the activation pattern in 
each higher layer of the network will translate by the same 
amount. Equivariance is important to image recognition for 
two closely related reasons: (a) It ensures that exactly the 
same filters arc applied to each part the input image regard
less of position. (b) Assuming that finally, a translationally 65 

"invariant" layer is added at the very top of the network, the 
entire network will be invariant, ensuring that it can detect 

Accordingly, the inventors disclose herein a spherical 
CNN that differs from other recent research the field spheri
cal CNNs in two fundamental ways. 
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First, while retaining the connection to nonconnnutative 
Fourier analysis, the approach disclosed herein relaxes the 
requirement that the activation of each layer of the network 
needs to be a (vector valued) function on SO(3), requiring 
only that it be expressible as a collection of some number of 
SO(3)-covariant vectors, referred to herein as "fragments," 
corresponding to different irreducible representations of the 
group. In this sense, the proposed architecture is strictly 
more general than other recent spherical CNN architectures. 

4 
are represented by spherical harmonic expansions of the 
input data. This transforms the input functions and activa
tions, as well as operations (e.g., convolutions) applied 
them, into Fourier space. However, in previous techniques 
that adopt this approach, the nonlinearity is applied in the 
inverse-Fourier domain (e.g., time domain). Consequently, 
an inverse Fourier transform of the computational result of 
the Fourier space convolution must be carried out at each 

Second, rather than a pointwise nonlinearity in real space, 10 

the proposed network takes the tensor (Kronecker) product 

layer of the CNN in order to apply the nonlinearity, and then 
a forward Fourier transform is needed to return the activa
tion to Fourier space for input to the next layer. The 

of the activations in each layer followed by decomposing the 
result into irreducible fragments using the so-called 
"Clebsch-Gordan decomposition." This approach yields a 
"fully Fourier space" neural network that avoids repeated 15 

forward and backward Fourier transforms. 

resulting, repeated forward and inverse Fourier transforms 
carried out across multiple layers of a CNN are computa
tionally expensive-even when implemented by efficient 
numerical techniques, such as fast Fourier transforms 
(FFTs). 

Advantageously, the resulting architecture disclosed 
herein is not only more flexible and easier to implement than 
other recent spherical CNN architectures, but test experi
ments show that it can also perform better on some standard 
datasets. 

While application of the Clebsch-Gordan transform has 
been suggested some other recent research in the area of 
neural networks for learning physical systems, it does not 
appear to have been proposed as a general purpose nonlin
earity for covariant neural networks. In fact, any compact 
group has a Clebsch-Gordan decomposition (although, due 
to its connection to angular momentum in physics, the SO(3) 
case is by far the best known). The inventors have therefore 
recognized that, in principle, the methods described here 
could be applied much broadly than just the example pre
sented, and more generally, in any situation where it is 
desirable to build a neural network that is equivariant to 
some class of transformations captured by a compact group. 

In summary then, an important property of CNNs is that 
they are equivariant to translation, such that if the inputs are 
translated by some amount, then the activations at higher 
layers transform in the same way. One result is that higher 
layers are invariant to translations. In practical terms, for 
example, CNN recognition of an object captured in an image 
plane is not ( or should not be) dependent on how that object 
may be translated in the image plane. For input data in a 
rectangular plane, constructing a CNN to maintain the 
property of equivariance may generally be straightforward. 
This is in part because translations in a rectangular plane are 
commutative operations. 

However, for input data defined on a sphere, such as 360° 
images in which the image data may be conceived of as 
"painting" the inner surface of a spherical shell as viewed 
from the center of the sphere, translations inherently involve 
rotations, and rotations are not connnutative operations. 
That is, the outcome of multiple translation operations on a 
sphere generally depends on the order in which the opera
tions are carried out. Consequently, construction of a 
CNN-and in particular, maintaining equivariance across 
the layers-for input data defined on a sphere presents a 
significant analytical and computational challenge. 

The inventors have further recognized that the disadvan
tages of transforming back-and-forth to Fourier space across 
multiple CNN layers may be removed by maintaining all of 

20 the computations, including the nonlinearity operation, 
across all the CNN layers in Fourier space. More specifi
cally, the inventors have developed a mathematical analysis 
that applies Clebsch-Gordan transforms in the calculations 
in each CNN layer, leading to a fully Fourier space com-

25 putation of the activations and operations across all CNN 
layers. In doing so, the inventors have devised a CNN 
architecture-referred to herein as a "Clebsch-Gordan 
CNN"-that solves the previous problems of multiple Fou
rier and inverse-Fourier transforms. When implemented as a 

30 computational algorithm in a computing system, Clebsch
Gordan CNNs result in real and practical improvements in 
terms of reduced computational costs (e.g., resources con
sumed) and increased speed and efficiency, as well as in 
enhanced overall performance, in comparison with previous 

35 approaches. 
In one respect then, example embodiments may involve a 

method, carried out by a computing device, for computa
tionally processing data with a multi-layer convolutional 
neural network (CNN) implemented in the computing 

40 device and having an input layer, an output layer, and one or 
more intermediate layers, the method comprising: at the 
computing device, receiving digital image data correspond
ing to input data that are represented in a form of evaluations 
of one or more continuous functions on a sphere; inputting 

45 the input data to the input layer; computing outputs of the 
input layer as covariant Fourier space activations by ana
lytically transforming the one or more continuous functions 
into spherical harmonic expansions of the data; processing 
the covariant Fourier activations from the input layer 

50 sequentially through each of the one or more intermediate 
layers of the CNN, from the first intermediate layer to the 
last intermediate layer, wherein each intermediate layer is 
configured to apply Clebsch-Gordan transforms to compute 
respective covariant Fourier space activations as input to an 

55 innnediately next layer of the CNN, without computing any 
intermediate inverse Fourier transforms or forward Fourier 

The inventors have recognized that previous attempts to 
address the problem of constructing CNNs adapted to input 
functions defined on a sphere introduce practical computa- 60 

tional disadvantages in terms of computing costs, among 
other impediments to implementation. One particular 
approach is to transform the input functions and higher layer 
activations into a form that accounts for the non-connnuta
tive properties of operations applied to the input functions' 65 

native form. Specifically, the continuous functions that 
describe the data on a sphere and the higher layer activations 

transforms; and processing the respective covariant Fourier 
space activations of the last intermediate layer in the output 
layer of the CNN to compute invariant activations. 

In another respect, example embodiments may involve a 
computing system configured for computationally process
ing data with a multi-layer convolutional neural network 
(CNN), the computing system comprising: one or more 
processors; and memory configured to store computer-ex
ecutable instructions that, when executed by the one or more 
processors, cause the computing system to carry out opera
tions including: implementing the multi-layer CNN in an 
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architectural form having an input layer, an output layer, and 
one or more intermediate layers, from a first intermediate 
layer to a last intermediate layer; receiving digital image 
data corresponding to input data that are represented in a 
form of evaluations of one or more continuous functions on 
a sphere; at the input layer: inputting the input data to the 
input layer; computing covariant Fourier space activations 
by analytically transforming the one or more continuous 
functions into spherical harmonic expansions of the input 
data; and outputting the computed covariant Fourier space 10 

activations to the first intermediate layer; at each interme
diate layer: receiving as input activations from an immedi
ately-preceding layer of the CNN; processing the received 
input activations by applying Clebsch-Gordan transforms to 
compute respective covariant Fourier space activations 15 

without computing any intermediate inverse Fourier trans
forms or forward Fourier transforms; and outputting the 
computed respective covariant Fourier space activations to 
an immediately next layer of the CNN; at the output layer: 
receiving as input the computed covariant Fourier space 20 

activations of the last intermediate layer; processing the 
received covariant Fourier activations of the last intermedi-
ate layer by computing invariant activations; and outputting 
the computed invariant activations. 

In still another respect, example embodiments may 25 

involve a non-transitory computer-readable medium having 
instructions stored thereon that, when carried out by one or 
more processors of a computing device, cause the comput
ing device to carry out operations including: implementing 
a multi-layer convolutional neural network (CNN) compris- 30 

ing an input layer, an output layer, and one or more inter
mediate layers, from a first intermediate layer to a last 
intermediate layer; receiving digital image data correspond
ing to input data that arc represented in a form of evaluations 

6 
FIG. 2 depicts a simplified block diagram of an example 

computing device, in accordance with example embodi
ments. 

FIG. 3 is a conceptual depiction of computations in one 
layer of Clebsch-Gordan network, in accordance with 
example embodiments. 

FIG. 4 illustrates analytical flow of layers of a spherical 
convolutional neural network, in accordance with example 
embodiments. 

FIG. 5 is a flow chart of an example method, in accor
dance with example embodiments. 

DETAILED DESCRIPTION 

Example methods, devices, and systems are described 
herein. It should be understood that the words "example" 
and "exemplary" are used herein to mean "serving as an 
example, instance, or illustration." Any embodiment or 
feature described herein as being an "example" or "exem
plary" is not necessarily to be construed as preferred or 
advantageous over other embodiments or features unless 
stated as such. Thus, other embodiments can be utilized and 
other changes can be made without departing from the scope 
of the subject matter presented herein. 

Accordingly, the example embodiments described herein 
are not meant to be limiting. It will be readily understood 
that the aspects of the present disclosure, as generally 
described herein, and illustrated in the figures, can be 
arranged, substituted, combined, separated, and designed in 
a wide variety of different configurations. For example, the 
separation of features into "client" and "server" components 
may occur in a number of ways. 

Further, unless context suggests otherwise, the features 
illustrated in each of the figures may be used in combination 
with one another. Thus, the figures should be generally 
viewed as component aspects of one or more overall 
embodiments, with the understanding that not all illustrated 
features are necessary for each embodiment. 

Additionally, any enumeration of elements, blocks, or 
steps in this specification or the claims is for purposes of 
clarity. Thus, such enumeration should not be interpreted to 
require or imply that these elements, blocks, or steps adhere 
to a particular arrangement or are carried out in a particular 
order. 
I. Introduction 

Example embodiments herein are directed to systems and 
methods for implementing fully Fourier spaced spherical 
convolutional neural networks. In particular, example 
embodiments may involve use of Clebsch-Gordan trans-

of one or more continuous functions on a sphere; inputting 35 

the input data to the input layer; computing outputs of the 
input layer as covariant Fourier space activations by ana
lytically transforming the one or more continuous functions 
into spherical harmonic expansions of the data: processing 
the covariant Fourier activations from the input layer 40 

sequentially through each of the one or more intermediate 
layers of the CNN, from the first intermediate layer to the 
last intermediate layer, wherein each intermediate layer is 
configured to apply Clebsch-Gordan transforms to compute 
respective covariant Fourier space activations as input to an 45 

immediately next layer of the CNN, without computing any 
intermediate inverse Fourier transforms or forward Fourier 
transforms; and processing the respective covariant Fourier 
space activations of the last intermediate layer in the output 
layer of the CNN to compute invariant activations. 

These as well as other embodiments, aspects, advantages, 
and alternatives will become apparent to those of ordinary 
skill in the art by reading the following detailed description, 
with reference where appropriate to the accompanying 
drawings. Further, this summary and other descriptions and 55 

figures provided herein are intended to illustrate embodi
ments by way of example only and, as such, that numerous 
variations arc possible. For instance, structural elements and 
process steps can be rearranged, combined, distributed, 
eliminated, or otherwise changed, while remaining within 60 

the scope of the embodiments as claimed. 

50 forms to enable and/or facilitate keeping computations car
ried out at each intermediate layer of a CNN in Fourier 
space. For purposes of discussion herein, the term "Clebsch
Gordan CNN" is used as a descriptive shorthand for a fully 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a conceptual illustration of a projection of a 65 

planar image onto the surface of a sphere, in accordance 
with example embodiments. 

Fourier spaced spherical convolutional neural network 
based on or involving Clebsch-Gordan transforms. Example 
embodiments may described in terms of computational 
algorithms, architectural designs for CNNs, computing sys
tems in which the algorithms and architectures are carried 
out, and non-transitory computer-readable media on which 
executable instructions for carrying out the methods and 
implementing the architectures are stored. The mathematical 
details that underlie Clebsch-Gordan CNNs are described 
more detail below. 

In addition to the specific advantages of the Clebsch
Gordan approach for enabling the fully Fourier space com
putations, other aspects of the overall analytical framework 
described below are novel and/or provide advantages over 
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previous approaches as well. For example, the generalized 
SO(3)-covariant spherical CNN described herein introduces 
a novel approach to CNN architecture. For example, the 
possible ways that activations can transform at each layer 
may be constrained by "Definition 1" disclosed below. 
Specifically, the linear transform in each CNN layer must be 

8 
in the plane 100. Downward arrow pointing from the planar 
image 104 to the sphere 102 represent the projection of the 
image 104 onto the surface of the sphere 102, where the 
projected image is also shown. The broad, curved arrows 
106, 108, and 110 represent spatial rotations on the spherical 
surface corresponding to the translations and rotations of the 
image 104 in the plane 100. of a form described herein by equation (16). These math

ematical details have ramifications for practical implemen
tations of spherical CNNs. In particular, they indicate that 
certain assumptions made in previous approaches about the 
mathematical forms of the solutions appear to be arbitrary, 
and thus not necessarily generally applicable. In contrast, the 
generalized SO(3 )-covariant spherical CNN approach may 
allow the arbitrary assumptions of previous approaches to be 
removed, and thereby pave the way for more versatile and 15 

robust practical implementations. 

Other forms of input data are possible as well. For 
example, input data at given points on a sphere could 

10 correspond to vector values or vector functions. Such forms 
could be used to represent optical flow, for example. It 
should also be understood that the functions defined on a 
sphere, as discussed herein could be real or complex (i.e., 

Example embodiments disclosed herein may include 
computing systems and/or devices and methods carried out 
by the computing systems and/or devices. Example com
puting systems and/or devices may include one or more 20 

special and/or general purpose processes, volatile and non
volatile storage, including non-transient machine readable 
media, such as magnetic disk, solid state memory, among 
others. Systems may also include a user interface, including 
interactive input devices, such as keyboards, and display 25 

devices and graphical user interfaces (GUis). 
In accordance with example embodiments, Clebsch-Gor

dan CNN s may be used in computer vision tasks and 
functions that may be part of the operations of various types 
of devices and systems. Non-limiting examples of such 30 

devices and systems include servers in a network, portable 
or mobile devices such a smartphones or the like, and 
autonomous vehicles, such as self-driving cars or drones 
(e.g., aerial, terrestrial, and/or marine drones). As such, 
example computing systems and/or devices, including ones 35 

discussed by example herein, could be part of or embedded 
in one or more the non-limiting example devices and sys
tems listed above, among others. 

Input data defined on a sphere, as discussed herein, may 
be described or represented as one or more functions defined 40 

on a sphere. In such a representation, the input data may be 
considered to be functional values (or functional evalua
tions) of the one or more functions at specific points or 
locations on a sphere. For example, red, green, and blue 
channels of an imaging device, such as a digital camera, 45 

could be represented by three functions, one for each chan
nel. The input data could then be pixel values for each 
channel, which then correspond to evaluations of each of the 
three functions at specified pixel locations. For functions on 

have real and imaginary components). 
While example embodiments herein are described in 

terms of computer vision tasks such as object recognition, 
Clebsch-Gordan CNNs may be used in other tasks as well. 
Non-limiting examples include object recognition in volu
metric images, such as computer tomography (CT) or mag
netic resonance imaging (MRI) scans and/or images. 
II. Example Computing Devices and Computing Systems 

Example methods may be implemented as machine lan
guage instructions stored one or another forms of the media 
storage, and accessible by the one or more processors of a 
computing device or computing system, and that, when 
executed by the one or more processors cause the computing 
device and/or system to carny out the various operations and 
functions of the methods described herein. 

FIG. 2 is a simplified block diagram of an example 
computing device 200, according to example embodiments. 
As shown, the computing system 200 includes processor(s) 
202, memory 204, network interface(s) 206, and an input/ 
output unit 208. By way of example, the components are 
communicatively connected by a bus 220. The bus could 
also provide power from a power supply (not shown). 

Also by way of example, the memory 204 may include 
firmware, a kernel, and applications, among other forms and 
functions of memory. As described, the memory 204 may 
store machine-language instructions, such as prograniming 
code, that may be executed by the processor(s) 202 in order 
to carry out operations that implement the methods and 
techniques described herein. 

The network interface(s) 206 may provide network con
nectivity to the computing system 200, such as to the 
internet or other public and/or private networks. Networks 
may be used to connect the computing system 200 with one 
or more other computing devices, such as servers or other 
computing systems. In an example embodiment, multiple 
computing systems could be communicatively connected, 
and example methods could be implemented in a distributed 
fashion. 

Network interface(s) 206 may provide network connec
tivity to the computing system 100, such as to the internet or 
other public and/or private networks. Networks may be used 
to connect the computing system 200 with one or more other 
computing devices, such as servers or other computing 
systems. In an example embodiment, multiple computing 
systems could be communicatively connected, and example 

a sphere, the pixel locations might thus be on a spherical 50 

image surface. Note that the original source of the data
e.g., a digital imaging device-may not necessarily acquire 
the data on a spherical imaging plane. For example, a 360° 
image might be approximated from multiple flat-plane 
images acquired along multiple line-of-sight directions from 55 

a common observation point. The input data may then be the 
projection of the pixel-image data on a sphere, such that the 
points of functional evaluation on the sphere correspond to 
the projections of the image-plane pixels of the multiple 
images on the sphere. 60 methods could be implemented in a distributed fashion. 

FIG. 1 is an example, conceptual illustration of a projec
tion of a planar image 104 (or data) onto the surface of a 
sphere 102. In the illustration, the planar image 104 lies in 
a spatial plane 100 above the sphere 102. Two perpendicular, 
broad arrows in the plane 100 represent possible translation 65 

displacements in the plane 100, and the broad, curved arrow 
in the plane 100 represent possible rotational displacements 

FIG. 2 also includes a client device 222 and a database 
214. The client device may be a user client or terminal that 
includes an interactive display, such as a GUI. It may be 
used for user access to programs, applications, and data of 
the system 200. For example, a GUI could be used for 
graphical interaction with programs and applications 
described herein. 
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The database 214 could include input data, such as 
images. Data could be acquired for processing and/or rec
ognition by a neural network, including a Clebsch-Gordan 
CNN. The data could additionally or alternatively be train
ing data that may be input to a Clebsch-Gordan CNN for 5 

training, such as determination of weighting factors applied 
at various layers of the CNN. The database 214 could be 
used for other purposes as well. 
III. Clebsch-Gordan Convolutional Neural Networks 
1. Convolutions on the Sphere 

A fairly simple example of a covariant neural network is 

IO 

a classical S+ 1 layer CNN for image recognition. In each 
layer of a CNN the neurons may be arranged in a rectangular 
grid, so (assuming for simplicity that the network has just 15 
one channel) the activation of layer s can be regarded as a 
function fs: &'.2➔ IR:, with f 0 being the input image. The 
neurons compute fs by taking the cross-correlation of the 
previous layer's output with a small (learnable) filter hs, 

(I) 

and then applying a nonlinearity cr, such as the Re-LU 
operator: 

20 

(2) 25 

Defining Tx(h)(y)=hs(y-x), which is nothing but hs trans
lated by x, allows equation (1) to be rewritten as 

(3) 30 

where the inner product is ( fs-l, Tx(hs)) =Lyfs-1(y)Tx(hs 
(y)). This formula indicates that each layer of the CNN just 
does pattern matching. That is, f'(x) is an indication of how 
well the part of fs-l around x matches the filter hs. 

Equation (3) is the natural starting point for generalizing 
35 

convolution to the unit sphere, S2
. An immediate complica

tion, however, is that unlike the plane, S2 cannot be dis
cretized by any regular (by which we mean rotation invari
ant) arrangement of points. In the following, each fs and the 40 
corresponding filter hs is treated as continuous functions on 
the sphere, f'(0,<p) and hs(0,<p), where 0 and <pare the polar 
and azimuthal angles. For reasons explained below, both 
these functions may be complex valued. 

The inner product of two complex valued functions on the 45 

surface of the sphere is given by the formula 

1 (2'[ 
(g, h)s2 = 4n Jo -rr [g(0, ¢,)] • h(0, q,)cos(0)d0dq, 

(4) 

50 

where * denotes complex conjugation. Further, h (dropping 
the layer index for clarity) can be moved to any point (00 ,<p0 ) 

on S2 by taking h'(0,<p)=(0-00 ,<p-<p0 ). This suggests that the 
55 

generalization of equation (3) the sphere might be expressed 
as 

112'[ (h*f)(0, ¢,) = - [h(0 - 0o, ¢, - \i>o)l • f(0, q,)cos(0)d0dq,. 
4n O -J[ 

(S) 60 

However, this generalization would be wrong, because it 
does not take into account that h can also be rotated around 
a third axis. Instead, the correct way to generalize cross- 65 

correlations to the sphere is to define h *fas a function on the 
rotation group itself, i.e., to set 

10 

112'[ (h*f)(R) = - [hR(0, ¢,)] • f(0, q,)cos(0)d0dq, 
4n O -J[ 

R ES0(3) 

where hR is h rotated by R, expressible as 

with x being the point on the sphere at position (0,<p). 
1.1. Fourier Space Filters and Activations 

(6) 

(7) 

It has previously been observed that the double integral in 
equation (6) would be extremely inconvenient to compute in 
a neural network. As mentioned, in the case of the sphere, 
just finding the right discretizations to represent f and h is 
already problematic. As an alternative, it is natural to 
represent both these functions in terms of their spherical 
harmonic expansions 

(8) 

Here, Yt(0,<p) are the well known spherical harmonic 
functions indexed by 1=0, 1, 2, ... and mE { -1, -1+ 1, ... , 
l}. The spherical harmonics form an orthonormal basis for 
LiS2

), so equation (8) can be seen as a kind of Fourier series 
on the sphere, in particular, the elements of the f 0 , f 1 , 

f 2 , ... coefficient vectors can be computed relatively easily 
by 

1 (2'[ J7 = 4n Jo _/(0, q,)Yt(0, q,)cos(0)d0dq,, 

and similarly for h. Similarly to usual Fourier series, in 
practical scenarios spherical harmonic expansions are com
puted up to some limiting "frequency" L, which depends on 
the desired resolution. 

From noncommutative harmonic analysis, it is known that 
functions on the rotation group also admit a type of gener
alized Fourier transform. Given a function g: S0(3)➔:[; , the 
Fourier transform of g is defined as the collection of matrices 

Gr~- ( g(R)p,(R)dµ(R) f = 0, 1, 2, 
4JTJso(3J 

(9) 

where p 1:S0(3)➔:(; (2l+ll+(21+1l are fixed matrix valued func
tions called the irreducible representations of S0(3), some
times also called Wigner D-matrices. Here µ is a fixed 
measure called the Haar measure that just hides factors 
similar to the cos 0 appearing in equation (4). It may be 
noted that one dimensional irreducible representation Po is 
the constant representation po(R)=(l). % iv Fourier trans
form is given by 

While the spherical harmonics can be chosen to be real, 
the Li(R) representation matrices are inherently complex 
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valued. This is the reason that all other quantities, including 
the fs activations and hs filters are allowed to be complex, 
too. 

12 
S2➔C d_ Then. N is said to be a generalized SO(3)
covariant spherical CNN if the output of each laver s 
can be expressed as a collector of vectors 

It is noteworthy that the above notions of harmonic 
analysis on the sphere and the rotation group are closely 5 

related. In particular, it is possible to show that each Fourier 
component of the spherical cross correlation represented in 
equation (6) that is of interest to be computed is given 

f' = (!~-" !~_2, ... , J~.r1,, ;;_" J;,2, ··· , J;,ri, ··· , ··· h-1) 
f=O f=l f=L 

(14) 

simply by outer product 
10 where each f 1/E C 21

+
1 is a Prcovariant vector in the se!:se 

(IO) that if the input image is rorated by some rotation R then ft/ 
where t denotes the conjugate transpose (Hermitian conju- transforms as 
gate) operation. An approach taken in previous research in 
spherical CNNs is that instead of the continuous function f, 
it is more expedient to regard the components of the f 0 , 15 

f 0 , ... , f L vectors as the "activations" of their neural 
network, while the learnable weights or filters are the h0 , 

hi, ... , hL vectors. Computing spherical convolutions in 
Fourier space then reduces to just computing a few outer 
products. Layers s=2, 3, ... , S of the Spherical CNN operate 20 

similarly, except that fs-I is a function on SO(3), so equation 

f 1/➔p(R)-f,/. (15) 

Herein, the individual}1/ vectors are called the irreduc
ible fragments of fs, and the integer vector ts=(t0 ', 

t 1 s, ... , tLs) counting the number of fragments for each 
1 the type of Js. 

(6) must be replaced by cross-correlation on SO(3) itself, 
and h must also be a function on SO(3) rather than just the 
sphere. Fortuitously, the resulting cross-correlation formula 
is almost exactly the same: 

(11) 

apart from the fact that now F1 and H1 are matrices. 
2. Generalized Spherical CNNs 

In accordance with example embodiments, the starting 
point for our Generalized Spherical CNNs is the Fourier 
space correlation equation (10). In contrast to previous 
research in spherical CNNs, however, rather than the geom
etry, the approach taken herein focuses on its algebraic 
properties, in particular, its behavior under rotations. It is 
well known that if a spherical function is rotated by some 
RE SO(3) as in equation (7), then each vector of its spherical 
harmonic expansion just gets multiplied with the corre
sponding Wigner D-matrix: 

f/"' P,(R)-f,. (12) 

For functions on SO(3), the situation is similar. If g: 
SO(3)➔C and g' is the rotated function g'(R')=g(R-1R') 
then the Fourier matrices of g' are G'1=pi(R)G1. The follow
ing proposition shows that the matrices output by the 
cross-correlation formulae of equations (10) and (11) behave 
analogously: 

Proposition 1 Let f: S2➔iC be an activation function that 
under the action of a rotation R transforms as equation 
(7), and let h: S2➔iC be a filter. Then, each Fourier 
component of the cross correlation equation (6) trans
forms as 

(13) 

There are a few things worth noting about Definition 1. 
First, since the maps expressed in equation (15) are linear, 
any SO(3)-covariant spherical CNN is equivariant to rota
tions, as defined in the above. Second, regarding previous 
research in spherical CNNs, since the inputs are functions on 

25 the sphere, whereas in higher layers the activations are 
functions on SO(3), the previous architecture is a special 
case of Definition 1 with t 0 =(1, 1, ... , 1) and ts=(l, 3, 
5, ... , 2L+ 1) for s:2:1. 

Finally, by the theorem of complete reducibility of rep-
30 resentations of compact groups, any f' that transforms under 

rotations linearly is reducible into a sequence of irreducible 
fragments as in equation (14). This means that equation (14) 
is really the most general possible form for an SO(3) 
equivariant neural network. As noted above, technically, the 

35 terms "equivariant" and "covariant" map to the same con
cept. The difference between them is one of emphasis. The 
term "equivariant" may be used when the same group is 
acting on two objects in a way that is qualitatively similar, 

40 as in the case of the rotation group acting on functions on the 
sphere and on cross-correlation functions on SO(3). The 
term "covariant" may be used if the actions are qualitatively 
different, as in the case of rotations of functions on the 
sphere and the corresponding transformations of equation 

45 (15) of the irreducible fragments in a neural network. 
To fully define the neural network in accordance with the 

present disclosure, three things are needed: 1. The form of 
the linear transformations in each layer involving learnable 
weights, 2. The form of the nonlinearity in each layer, 3. The 

50 way that the final output of the network can be reduced to a 
vector that is rotation invariant, since that is an ultimate goal. 
The following subsections describe each of these compo
nents in tum. 

2.1 Covariant Linear Transformations 

Similarly, if f', h': SO(3),___, iC then, hr-;-"r (as defined in 55 

equation (11) transforms the same way. 

In a covariant neural network architecture, the linear 
operation of each layer must be covariant. As described 
above, in classical CNNs, convolution automatically satis
fies this criterion. Recent research has considered the more 
general setting of covariance to the action of compact 

Equation (12) describes the behavior of spherical har
monic vectors under rotations, while equation (15) describes 
the behavior of Fourier matrices. However, the latter is 
equivalent to saying that each column of the matrices 
separately transforms according to equation (12). One of the 
main concepts of the present disclosure is to take this 
property as the basis for the definition of covariance to 
rotations in neural nets. This may be captured by following 
definition. 

Definition 1 Let N be an S+ 1 layer feed-forward neural 
network whose input is a spherical function f 0

: 

60 groups. Specializing the recent results to the cases consid
ered herein leads to the following. 

Proposition 2 Let Js be an SO(3)-covariant activation 

65 

function of the form given by equation (14), and /f= 

f. (fs) be a linear function of Js written in a similar 
form. Then g2 is SO(3)-covariant if and only each gJ 
fragment is a linear combination of fragments from fs 
with the same 1. 
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Proposition 2 can be rephrased by stacking all fragments 
off corresponding to I into a (21+ 1 )x~/ dimensional matrix 
f /, and doing the same for g. Then the proposition states that 

(16) 

for some sequence of complex valued matrices W0s, . 
wLs Note that W/ does not necessarily need to be square, 
i.e., the number of fragments inf and g corresponding to I 
might be different. In the context of a neural network, the 
entries of the W/ matrices are learnable parameters. 10 

Note that the Fourier space cross-correlation formulae of 
equations (10) and (11) are special cases of equation (16) 
corresponding to taking W1=h} or W1=H/. The case of 
general W1 does not have such an intuitive interpretation in 
terms of cross-correlation. What equation (16) may lack in 15 

terms of straightforward interpretability it makes up for in 
terms of generality, since it provides an extremely simple 
and flexible way of inducing SO(3)-covariant linear trans
formations in neural networks. 

2.2 Covariant Nonlinearities: The Clebsch-Gordan Trans- 20 

form 

14 
learning physical systems, it has not previously been con
sidered in the present context of a general purpose nonlin
earity. At first sight, the computational cost of equation (17) 
(assuming that C1 1 1 has been precomputed) appears to be 
(21 1+1)(212 +1)(21~°i2). However, C

11
.z,.z is actually sparse, in 

particular [C11 .z,.zlcm
1
.m,).m =0 unless m 1 +m2=m. Denoting the 

total number of scalar entries in the F1 / matrices by N, this 
reduces the complexity of computi~g equation (18) to 
O(N2 L). 

Example embodiments of the CG transform as a differ
entiable operator in a deep learning software framework 
may be implemented as a C++ PyTorch extension. Other 
implementations may be possible as well. 

A more unusual feature of the CG nonlinearity is its 
essentially quadratic nature. Quadratic nonlinearities are not 
commonly used in deep neural networks. Nonetheless, test
ing of example implementations according to example 
embodiments indicate that the CG nonlinearity is effective in 
the context of learning spherical images. It is also possible 
to use higher CG powers, a tradeoff being increased com
putational cost. 

2.3 Limiting the Number of Channels 
Differentiable nonlinearities are essential for the opera

tion of multi-layer neural networks. Formulating covariant 
nonlinearities in Fourier space, however, is more mathemati
cally challenging than formulating the linear operation. For 
this reason, most existing group equivariant neural networks 
perform this operation in "real space." However, as dis
cussed above, moving back and forth between real space and 
the Fourier domain comes at a significant cost, and leads to 

In a covariant network, each individual Tl fragment is 
25 

effectively a separate channel. In this sense, the quadratic 
increase in the number of channels after the CG-transform 

a range of complications involving quadrature on the trans- 30 

formation group and numerical errors. 

can be seen as a natural broadening of the network to capture 
more complicated features. However, allowing the number 
of channels to increase quadratically in each layer could be 
expected to impose practical and technical challenges. 

In accordance with example embodiments, a fully Fourier 
space nonlinearity may be devised based on the Clebsch
Gordan transform. More specifically, in representation 
theory, the Clebsch-Gordan decomposition arises in the 35 

context of decomposing the tensor (i.e., Kronecker) product 

Drawing on the results discussed above, and in accor-
dance with example embodiments, the exponential increase 
in the number of channels may be counteracted by following 
the CG-transform with another leamable linear transforma
tion that reduces the number of fragments for each I to some 

of irreducible representations into a direct sum of irreduc
ibles. In the specific case of SO(3), it takes form 

P11(R)®pz,(R)~C11,z,[®H11-12,11
+

12P1lC11,z,TRES0(3) 

where C1 1 are fixed matrices. Equivalently, letting C1 1 1 

denote th~ 
2
appropriate block of colunms C1 1 

10 

,. 
Jo 2 

P1(R)~C11,z,,1T[P11(R)®p12(R)]C11,z,,1· 

The CG-transform is well known in physics, because it is 
intimately related to the algebra of angular momentum in 
quantum mechanics, and the entries of the C1 1 1 matrices 
can be computed relatively easily. The follo;i~g Lemma 
explains why this construction is relevant to creating Fourier 
space nonlinearities. 

Lemma 3 Let f 11 and f 12 be two p11 resp. p12 covariant 
vectors, and I be any integer between 11 1-12 1 and 11 +1+2. 
Then 

(17) 

is a p !-covariant vector. 

Exploiting Lemma 3, the nonlinearity used in the present 
generalized Spherical CNNs consists of computing equation 
(17) between all pairs of fragments. In matrix notation, 

----;, 

fixed maximum number -i: 1. In fact, this linear transforma-
tion can replace the transformation discussed in connection 

40 
with covariant linear transformations. Whereas in conven-
tional neural networks the linear transformation always 
precedes the nonlinear operation, Clebsch-Gordan networks 
as discussed herein advantageously facilitate a design in 
which each layer performs the CG-transform first, followed 

45 
by a convolution step as in equation (16). This approach may 
thus limit the number of fragments. 

FIG. 3 is a conceptual depiction of computations in one 
layer of CG network. By way of example, the implementa
tion is band limited to L=2. As shown, activations from layer 

50 
s-1 are the inputs to the example layer s. The inputs 
corresponding to l=0, 1, and 2 are used to compute the 
Clebsche-Gordan products for each channel. The products 
are multiplied by the respective weighting matrices to pro
duce the activations of layer s, which are then output to the 

55 
next layer. 

2.4 Final Invariant Layer 
After the S- lth layer, the activations of the CG network 

will be a series of matrices F0s- 1
, ... , FLs-l each trans

forming under rotations according to F/- 1 
>--> pz(R)F/- 1

. 

(18) 60 
Ultimately, however, the objective of the network is to 
output a vector that is invariant with respect rotations, i.e., 
a collection of scalars. In accordance with the Fourier 
theoretic language developed herein, this simply corre-

where LI denotes merging matrices horizontally. Note that 
this operation increases the size of the activation substan
tially: the total number of fragments is squared, which can 
potentially be problematic, and is addressed below. 

While the Clebsch-Gordan decomposition has been 
included in some recent discussions of neural networks for 

sponds to the Kf,1 fragments, since the l=0 representation is 
65 constant, and therefore the elements of F 0s are invariant. 

Thus, the final layer can be similar to the earlier ones, except 
that it only needs to output this single (single row) matrix. 
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Advantageously, and in contrast to architectures of other 
recent research in the area of spherical CNN that involve 
repeated forward and backward transforms, the elements of 
F0s for Clebsch-Gordan nets are guaranteed to be invariant 
to rotations of arbitrary magnitude not just approximately, 
but in the exact sense, up to limitations of finite precision 
arithmetic. This is possible owing to the fully Fourier nature 
of CG nets, and applies in both training and testing. In 
accordance with example embodiments, Clebsch-Gonan 
networks therefore provide significant advantages compared 
with other covariant architectures. 

2.5 Summary of Algorithm 
In summary, the Spherical Clebsch-Gordan network 

described herein is an S+ 1 layer feed-forward neural net
work in which apart from the initial spherical harmonic 
transform, every other operation is a simple matrix opera
tion. An example algorithm for forward pass operation may 
be described as follows. 

The inputs to the network are n;n functions f 1 °, . . . , 

16 
weight matrices may then be updated using this gradient 
with one or another of known algorithms. Non-limiting 
examples of such algorithms include "Adam" and "Ada
Grad." Custom algorithms could be developed for this 

5 purpose as well. 
FIG. 4 illustrates analytical flow of layers of a spherical 

convolutional neural network, in accordance with example 
embodiments. As indicated, the initial data, such digital 
image data, are input in the form of evaluations of spherical 

IO functions, f 1 
1

, ••• , f n;n °, on the surface of a sphere. The 
input layer transform is applied to inputs to expand them in 
terms of spherical harmonics, yielding covariant Fourier 
space activation F /, . . . , FLO as outputs. These are 
processed sequentially through intermediate Clebsche-Gor-

15 dan layers of the spherical CNN to generate each layer's 
Fourier space activation F/, ... , FL 1

, F/, ... , F/, ... 
outputs. The final layer generate the invariant activations 
F s 

O
• These may then be fed into a full connected neural 

f n °:S2➔C. For example, for spherical color images, f 1°, 20 

f }1 and f / might encode the red, green and blue channels. 
For generality, these functions may be considered complex 
valued, but they may also be real. The activation of layer s=0 

network for further processing. 
2.6 Extension of Spherical CNNs to Volumetric Convo

lution 
The CG-net spherical CNNs described above are directed 

to a two-dimensional (2D) case. Non-limiting example 
embodiments of equivariance to rotations include various is the union of the spherical transforms of these functions 

f 1°, ... , fn;no up to some band limit L i.e., 

[J~] = 2_ (
2

n[JJ°(0, q,)Yt(0, q,)cos(0)d0dq,. 
,J m 4n ) 0 -J[ 

(19) 

Therefore, the type of _{° is t 0 =(nin' nin' ... , nin and {° is 
stored as a collection of L+ 1 matrices {F0 °, F 1 °, ... , FL 0 } 

of sizes 1Xn;n,3xnin' 5Xn;n· 

25 applications to 2D image recognition. As mentioned above, 
equivariance to rotations applies to three-dimensional (3D), 
or volumetric, images. Non-limiting examples include MRI 
and CT (or CAT) scans, for which equivariance to rotations 
may be of particular importance. For example, the ability to 

30 recognize a given anatomical feature or pathology should be 
not depend on the 3D orientation of the (3D) image. 

For layers s=l, 2, ... , S-1, the Fourier space activation 35 

Translations and rotations in 3D together form the so
called special Euclidean group SE(3). Ideally, a neural 
network for object recognition, classification, detection or 
segmentation in volumetric images would be fully equiv
arient to the action of this group. However, certain features 
of this group, chiefly that it is not compact, make this task 
difficult. Recent research in this area has proposed a network 
that is approximately SE(3)-equivariant, but it is not clear 

f 5 =(F0s, F/, ... , FLs) is computed as follows: 
(a) Form all possible Kronecker products. 

G11 ,1/=F1/-'®F1/-
105/ 15/25L (20) 

Note that the size of G1 1 sis (21+1)(2+l)X(t1 s-1t 1 s-1
). 

(b) Each G1 1 sis decon~'r~osed into variant bl~cks by ,,, 
(21) 

where C1 1 t is the inverse Clebsch-Gordan matrix as 
equation (17)'. 

40 whether the proposal is computationally feasible. The recent 
research, as well as that connected with the present disclo
sure, makes use of the notion of steerability, which allows 
separating the translational and rotational part of the SE(3) 

(c) All [G1 /lt blocks with the same 1 are concatenated 
into a l~g~ matrix H/E iC 2 U+IJx~,' and this is multiplied 
by the weight matrix W/E iC r,'x~,' to give 

45 

F/=H/W/1=0,l, ... ,L (22) 50 

The operation of layer S is similar, except that the output 
type is t 5=(n0 u,,o,o, ... , 0), so components with l>0 do not 
need to be computed. By construction, the entries of F0sE 
C Ixn""' are SO(3)-invariant scalars, i.e., they are invariant to 
the simultaneous rotation of the f /, f /, ... , f n ° inputs. 55 

These scalars may be passed on to a fully connected network 

action. 
The inventors have recognized that designing rotation 

equivariant (i.e., SO(3) equivariant) volumetric CNNs is a 
desirable goal. The Spherical CNN described above 
achieves SO(3) equivariance for a single spherical shell by 
extending functions on the sphere in terms of the irreducible 
representations of SO(3) and consistently applying only two 
types of operations: 

1) Tensor products of vectors corresponding to different 
irreducible representations, followed by a Clebsch
Gordan decomposition; 

2) Linear mixing of vectors corresponding to the same 
irreducible representation. 

or plugged directly into a loss function. In accordance with example embodiments, extending this 
framework to volumetric images entails taking the spherical 
Fourier transform of the input image f(r, 0, qi) in terms of 

60 some appropriate chosen set {'Jf;(r)}i=I N of radial basis 
functions: 

The learnable parameters of the network are the {W/} s,i 

weight matrices. The matrices are initialized with random 
complex entries. The network may be trained by backpropa
gating the gradient of the loss from layer S to each of the 
weight matrices. More specifically, the Clebsch-Gordan 
CNN may be trained by backpropagation, in which the 
derivative of an error from the last layer of the network is 
backpropagated through all the Clebsch-Gordan transforms 65 

and all the matrix multiplications to compute the gradient 
with respect to every entry of every weight matrix. The 

) l2n[ = - f(0, </!, r)J/t;(r)Yt(0, q,)cos(0)d0dq,dr. 
4n O -J[ 

(23) 
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and using a total of 5 layers as described above, followed by 
a fully connected layer of size 256 by 10. A variant of batch 
normalization was used that preserves covariance in the 
Fourier layers. This method takes an expanding average of 

~ote the appearance of the extra i index of ft,t. Once these 
f 1_t vectors have been computed, they can be CG-multiplied 
in just the same way as described above for the two
dimensional (spherical surface) case, while maintaining 
equi variance. 

The difference is that for steerability, these vectors must 
5 the standard deviation for a particular fragment for all 

examples seen during training until then and divide the 
fragment by it (in testing, use the average from training); the 
parameter corresponding to the mean in usual batch nor
malization is kept to be zero as anything else will break 
covariance. Finally, the output of each F0 s was concatenated 

be computed relative to not just one center, but by placing 
the center of the spherical coordinate system at each grid 
point of a 3D grid spanning the volumetric image. Later, 
mixing vectors at different gridpoints can become compu-

10 
tationally tricky. However, for tasks such as image segmen
tation may not even be necessary. All that the neural network 
needs to learn is, for example, what constitutes the boundary 

in each internal layer (length 24 each, as each is t 0 =12 
complex numbers), as well as the original coefficient at 1=0 
(length 2), into a SO(3) invariant vector of length 122. (It of a given type of object, which can be handled locally, with 

separate Spherical/radial CNNs at each grid point. 
IV. Example Test Results 

This section describes results of example tests carried out 
in the form of numerical, programming-based experiments. 

15 may be observed that having these skip connections helped 
facilitate smooth training.) After that, we use a known batch 
normalization on the concatenated results before feeding it 
into fully connected layers of length 256, a dropout layer In particular, the test results are compared with results from 

previous research in spherical CNNs reported in a paper 
entitled "Spherical CNNs" by Cohen et al. published 2018 20 

in International Conference on Learning Representations. 
Comparison with Cohen et al may be useful, because the 
Spherical CNN proposed in Cohen et al may be considered 
as aiming at similar challenges to those addressed by the 
analytical approach developed herein. The comparison may 25 
also be instructive for two different reasons: Firstly, while 
the procedure used in Cohen et al. is exactly equivariant in 
the discrete case, for the continuous case Cohen et al. uses 

35 

with dropout probability 0.5, and finally a linear layer to 10 
output nodes. The total number of parameters was 285,772, 
the network was trained by using a known ADAM optimi-
zation procedure with a batch size of 100 and a learning rate 
of 5xl0-4. An L2 weight decay of lxl0-5 was also used on 
the trainable parameters. 

Three sets of experiments are presented in Table 1: For the 
first set both the training and test sets were not rotated 
(denoted NR/NR), for the second, the training set was not 
rotated while the test was randomly rotated (NR/R) and 
finally when both the training and test sets were rotated 
(denoted R/R). The CG-net method is denoted "FFS2CNN." 

TABLE 1 

Method NR/NR NR/R R/R 

Baseline CNN 97.67 22.18 12 
Cohen et al. 95.59 94.62 93.4 
FFS2CNN 96.4 96 96.6 

It may be observed that the baseline model's performance 

a discretization which causes the proposed network to 
partially lose equivariance with changing bandwidth and 
depth. In contrast, the CG-net approach described herein is 30 

always equivariant in the exact sense. Secondly, owing to the 
nature of the architecture and discretization devised in 
Cohen et al, that approach uses a more traditional non
linearity, i.e. the ReLU. In contrast, the CG-net approach, in 
order to maintain full covariance and to avoid the quadra
ture, uses an unconventional quadratic non-linearity in Fou
rier space. In view of these two differences, the experiments 
may demonstrate the advantages of avoiding the quadrature 
and maintaining full equivariance despite using a purport
edly weaker nonlinearity. 40 deteriorates in the three cases, more or less reducing to 

random chance in the R/R case. While FFS2CNN results are 
better than those reported in Cohen et al., they also have 
another characteristic: they remain roughly the same in the 

1. Rotated MNIST on the Sphere 
A version of MNIST was used in the experiments, in 

which the images are painted onto a sphere and two 
instances, as in Cohen et al., were used: one in which the 
digits are projected onto the northern hemisphere and 45 

another in which the digits are projected on the sphere and 
are also randomly rotated. 

The baseline model was a classical CNN with 5x5 filters 
and 32, 64, 10 channels with a stride of 3 in each layer 
(roughly 68K parameters). This CNN is trained by mapping 50 

the digits from the sphere back onto the plane, resulting in 
nonlinear distortions. The second model used in the com
parison is the Spherical CNN proposed in Cohen et al. For 
this method, the same architecture as reported by Cohen et 
al was used; i.e., having layers S2 convolution-ReLU- 55 

SO(3) convolution-ReLU-Fully connected layer with 
bandwidths 30, 10 and 6, and the number of channels being 
20, 40 and 10 (resulting in a total of 58K parameters). 

The following architecture was used in the CG-net 
approach to the experiments: A bandlimit was set according 60 

Lmax=lO, while keeping 

12 

three regimes, while those of Cohen et al. slightly worsen. 
A reason for this might be a result of the loss of equivariance 
in the method of Cohen et al. 
2. Atomization Energy Prediction 

The CG-net framework was applied to the QM7 dataset 
described in two papers: L. C. Blum and J.-L. Reymond, 
"970 million druglike small molecules for virtual screening 
in the chemical universe database gdb-13," Journal of the 
American Chemical Society, 2009 (Blum et al.); and M. 
Rupp, A. Tkatchenko, K.-R. Mi.iller, and 0. A. von Lilien
feld, "Fast and accurate modeling of molecular atomization 
energies with machine learning," Physical Review Letters. 
2012 (Rupp et al). The goal in these papers is to regress over 
atomization energies of molecules given atomic positions 
(p;) and charges (z;). Each molecule contains up to 23 atoms 
of five types (C, N, 0, S, H). In the present experiments, the 
Coulomb Matrix (CM) representation proposed by Rupp et 
al. was used, which is rotation and translation invariant but 
not permutation invariant. The Coulomb matrix CE RNxN is 
defined such that for a pair of atoms i;tj, C,J=(z;z)/(lp;-p)), 
which represents the Coulomb repulsion, and for atoms i=j, 

T/ = ✓2/ +) , 65 C;;=0.5z/.4, which denotes the atomic energy due to charge. 
To test the present algorithm the same set up as in Cohen et 
al. was used. Namely, a sphere S; was defined around P; for 
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each atom i. Ensuring uniform radius across atoms and 
molecules and ensuring no intersections amongst spheres 
during training, potential functions 

were defined for every z and for every x on S;. 
This yielded a T channel spherical signal for each atom in 

a molecule. This signal is then discretized using a grid as 
described in the paper J. R. Driscoll and D. M. Healy, 
"Computing fourier transforms and convolutions on the 
2-sphere," Advances in Applied Mathematics, 1994 
(Driscoll et al.), and using a bandwidth of b=lO. This gives 
a sparse tensor representation of dimension NxTx2bx2b for 
every molecule. 

The CG spherical CNN architecture described herein has 
the same parameters and hyperparameters as described 
above, except that 't;=l5 for all layers, increasing the number 
of parameters to 1. 1 M. Following Cohen et al, weights are 
shared amongst atoms and each molecule is represented as 
a NxF tensor where F represents scalars concatenated 
together. Finally, the approach proposed in the paper M. 
Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos. R. Salakhut
dinov, and A. Smola, "Deep sets," 2017 (Zaheer et al.) was 
used to ensure permutation invariance. The feature vector 
for each atom is projected onto 150 dimensions using a 
MLP. These embeddings are summed over atoms, and then 
the regression target is trained using another MLP having 50 
hidden units. Both of these MLPs are jointly trained. The 
final results are presented below, which show that the 
present CG-net method outperforms the Spherical CNN of 
Cohen et al. The only method that appears to provide better 
performance is a MLP trained on randomly permuted Cou
lomb matrices as reported in the paper G. Montavon, K. 
Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatch
enko, 0. A. von Lilienfeld, and K. Mi.iller, "Leaming invari
ant representations of molecules for atomization energy 
prediction," NIPS, 2012 (Montavon et al.). But as Cohen et 
al. point out, this method is unlikely to scale to large 
molecules as it needs a large sample of random permuta
tions, which grows rapidly with N. The results are presented 
in Table 2, which also reference the paper A. Raj, A. Kumar, 
Y. Mrouch, and P. T. Fletcher et al "Local group invariant 
representations via orbit embeddings," 2016 (Raj et al.). 

TABLE 2 

Method 

MLP/Random CM (Montavon et al.) 
LGIKA (RF) (Raj et al.) 
RBF Kernels/Random CM (Montavon et al.) 
RBF Kernels/Sorted CM (Montavon et al.) 
MLP/Sorted CM (Montavon et al.) 
Spherical CNN (Cohen et al.) 
FFS2CNN 

3. 3D Shape Recognition 

RMSE 

5.96 
10.82 
11.42 
12.59 
16.06 
8.47 
7.97 

Finally, results are presented for shape classification using 
the SHREC17 dataset described in the paper M. Savva, F. 
Yu, H. Su, A. Kanezaki, T. Furuya, R. Ohbuchi, Z. Zhou, R. 
Yu, S. Bai, X. Bai, M. Aono, A. Tatsuma, S. Thermos, A. 
Axenopoulos, G. Th. Papadopoulos, P. Daras, X. Deng, Z. 
Lian, B. Li, H. Johan, Y. Lu, and S. Mk, "Large-scale 3d 
shape retrieval from shapenet core55," Eurographics Work
shop on 3D Object Retrieval, 2017 (Savva et al.), which is 

20 
a subset of the larger ShapeNet dataset described in A. X. 
Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. 
Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and 
F. Yu, "Shapenet: An information-rich 3d model repository," 

5 2015 (Chang et al.) having roughly 51300 3D models spread 
over 55 categories. It is divided into a 70/10/20 split for 
train/validation/test. Two versions of this dataset are avail
able: A regular version in which the objects are consistently 
aligned and another where the 3D models are perturbed by 

10 random rotations. Following Cohen et al, the latter version 
was used each 3D mesh was represented as a spherical signal 
by using a ray casting scheme. For each point on the sphere, 
a ray towards the origin is sent which collects the ray length, 

15 cosine and sine of the surface angle. In addition to this, ray 
casting for the convex hull of the mesh gives additional 
information, resulting in 6 channels. The spherical signal is 
discretized using the grid of Driscoll et al. with a bandwidth 
of 128. The code provided by Cohen et al. was used for 

20 generating this representation. 
A ResNet style architecture was used, but with the dif

ference that the full input is not fed back but rather different 
frequency parts of it. With Lmax=l4 considered, and a block 
was trained only until L=8 using 't;=lO using 3 layers. The 

25 next block consists of concatenating the fragments obtained 
from the previous block and training for two layers until 
L=lO, repeating this process until Lmax is reached. These 
later blocks use 't;=8. As earlier, the scalars from each block 
were concatenated to form the final output layer, which is 

30 connected to 55 nodes forming a fully connected layer. 
Batch Normalization was used in the final layer, and the 
normalization discussed above in the Fourier layers. The 
model was trained with ADAM using a batch size of 100 and 
a learning rate of 5xl0-4, using L2 weight decay of 0.0005 

35 for regularization. The results of the CG-net are compare to 
some of the known, top performing models on SHREC 
(which use architectures specialized to the task) as well as 
the model of Cohen et al. The CG-net method, like the 
model of Cohen et al. is task agnostic and uses the same 

40 representation. Despite this, it is able to consistently come 
second or third in the competition, showing that it affords an 
efficient method to learn from spherical signals. The results 
are presented in Table 3; the first four methods listed are as 
described in Savva et al. 

45 
TABLE 3 

Method P@N R@N Fl@N mAP NDCG 

Tatsuma_ReVGG 0.705 0.769 0.719 0.696 0.783 

50 Furuya_DLAN 0.814 0.683 0.706 0.656 0.754 
SHREC16-Bai_GIFT 0.678 0.667 0.661 0.607 0.735 
Deng_CM-VGG5-6DB 0.412 0.706 0.472 0.524 0.624 
Spherical CNNs 0.701 0.711 0.699 0.676 0.756 
(Cohen et al.) 
FFS2CNNs 0.707 0.722 0.701 0.683 0.756 

55 

V. Example Methods 

Example methods may be implemented as machine lan-
60 guage instructions stored one or another form of the com

puter-readable storage, and accessible by the one or more 
processors of a computing device and/or system, and that, 
when executed by the one or more processors cause the 
computing device and/or system to carry out the various 

65 operations and functions of the methods described herein. 
By way of example, storage for instructions may include a 
non-transitory computer readable medium. In example 
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operation, the stored instructions may be made accessible to 
one or more processors of a computing device or system. 
Execution of the instructions by the one or more processors 
may then cause the computing device or system to carry 
various operations of the example method. 

22 

FIG. 5 is a flow chart of an example method 500, 
according to example embodiments. Specifically, example 
method 500 may be used for computationally processing 
data with a multi-layer convolutional neural network (CNN) 
implemented in the computing device and having an input 
layer, an output layer, and one or more intermediate layers. 
The steps of example method 500 may be carried out by a 
computing device, such as computing device 100. By way of 
example, the method 500 is applied to digital imaging data. 
However, application of the spherical CNN is not limited to 
digital imaging data. 

input layer, s=S corresponds to the output layer, and 
s=l, ... , S-1 corresponds to the intermediate layers, and the 
spherical harmonic expansions of the data may correspond 
to spherical harmonic functions Yt(B,cp), l=0 ... , L. With 
this arrangement, computing, for each of the CNN layers 
s=l, ... , S-1, respective covariant Fourier space activations 
from output activations of the immediately preceding layer, 
s-1, without computing any intermediate inverse Fourier 
transforms or forward Fourier transforms, may entail: form-

IO ing a plurality of I-ordered, pair-wise Kronecker products of 
the outputs of layer s-1, decomposing each Kronecker 
product into covariant blocks using a Clebsch-Gordan trans
form, and applying respective weightings to concatenations 

15 
the covariant blocks of like I. 

At step 502, the computing device may receive digital 
image data corresponding to input data that are represented 

In further accordance with example embodiments, pro
cessing the respective covariant Fourier space activations of 
the last intermediate layer in the output layer of the CNN to 
compute invariant activations may entail computing, for the in a form of evaluations of one or more continuous functions 

on a sphere. 
At step 502, the input data are taken as input to the input 

layer. 

20 s=S layer of the CNN, an invariant activation by computa
tions used for CNN layers s=l, ... , S-1, but omitting 
computations for l>0. 

At step 506, outputs of the input layer are computed as 
covariant Fourier space activations by analytically trans
forming the one or more continuous functions into spherical 25 

harmonic expansions of the data. 
At step 508, the covariant Fourier activations from the 

input layer are processed sequentially through each of the 
one or more intermediate layers of the CNN, from the first 
intermediate layer to the last intermediate layer. Specifically, 30 

each intermediate layer is configured to apply Clebsch
Gordan transforms to compute respective covariant Fourier 
space activations as input to an immediately next layer of the 
CNN, an in particular, to do so without computing any 
intermediate inverse Fourier transforms or forward Fourier 35 

transforms. 

CONCLUSION 

An SO(3)-equivariant neural network architecture for 
spherical data that operates completely in Fourier space has 
been presented herein. In accordance with example embodi
ments, this approach circumvents a major drawback of 
earlier models that need to switch back and forth between 
Fourier space and "real" space. This achieved by a novel and 
unconventionally approach that uses the Clebsch-Gordan 
decomposition as the only source of nonlinearity. While the 
specific focus is on spheres and SO(3)-equivariance, the 
approach is more widely applicable, suggesting a general 
formalism for designing fully Fourier neural networks that 
are equivariant to the action of any compact continuous 
group. 

While various aspects and embodiments have been dis-

Finally, at step 510, the respective covariant Fourier space 
activations of the last intermediate layer are processed in the 
output layer of the CNN to compute invariant activations. 

In accordance with example embodiments, computing the 
respective covariant Fourier space activations at each of the 
one or more intermediate layer and the invariant activations 
at the output layer may entail applying respective weighting 
parameters at each layer. 

40 closed herein, other aspects and embodiments will be appar
ent to those skilled in the art. The various aspects and 
embodiments disclosed herein are for purpose of illustration 
and are not intended to be limiting, with the true scope being 
indicated by the following claims. 

In further accordance with example embodiments, the 45 

input data may be training data, in which case the method 
may further entail training the CNN by learning values for 
the respective weighting parameters 

In accordance with example embodiments, the method 
may further entail inputting the invariant activations of the 50 

output layer to a fully connected neural network. 
In accordance with example embodiments, the digital 

image data may include or consist of image data on a sphere. 
As such, the evaluations of one or more continuous func
tions on a sphere may correspond to pixel values of one or 55 

more channels. In an example application, the one or more 
channels comprise a red charmel, a blue channel, and a green 
channel. However, the charmels may correspond to other 
color values. 

In accordance with example embodiments, the digital 60 

image data may include or consist of volumetric (3D) image 
data of a three-dimensional region of an object. In an 
example application with 3D images, the volumetric image 
data may be magnetic resonance imaging data and/or com
puter tomography data. 65 

In accordance with example embodiments, the CNN may 
have S+ 1 layers, s=0, ... , S, where s=0 corresponds to the 

What is claimed is: 
1. A method, carried out by a computing device, for 

computationally processing data with a multi-layer convo
lutional neural network (CNN) implemented in the comput
ing device and having an input layer, an output layer, and 
one or more intermediate layers, the method comprising: 

at the computing device, receiving digital image data 
corresponding to input data that are represented in a 
form of evaluations of one or more continuous func
tions on a sphere; 

inputting the input data to the input layer; 
computing outputs of the input layer as covariant Fourier 

space activations by analytically transforming the one 
or more continuous functions into spherical harmonic 
expansions of the data; 

processing the covariant Fourier activations from the 
input layer sequentially through each of the one or 
more intermediate layers of the CNN, from the first 
intermediate layer to the last intermediate layer, 
wherein each intermediate layer is configured to apply 
Clebsch-Gordan transforms to compute respective 
covariant Fourier space activations as input to an 
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immediately next layer of the CNN, without computing 
any intermediate inverse Fourier transforms or forward 
Fourier transforms; and 

processing the respective covariant Fourier space activa
tions of the last intermediate layer in the output layer of 
the CNN to compute invariant activations. 

2. The method of claim 1, wherein computing the respec
tive covariant Fourier space activations at each of the one or 
more intermediate layer and the invariant activations at the 
output layer comprises applying respective weighting 10 

parameters at each layer. 

3. The method of claim 2, wherein the input data comprise 
training data, and the method further comprises training the 
CNN by learning values for the respective weighting param-

15 
eters. 

4. The method of claim 1, further comprising inputting the 
invariant activations of the output layer to a fully connected 
neural network. 

5. The method of claim 1, wherein the digital image data 20 

comprise image data on a sphere, and wherein the evalua
tions of one or more continuous functions on a sphere 
comprise pixel values of one or more channels. 

6. The method of claim 5, wherein the one or more 
channels comprise a red channel, a blue channel, and a green 25 

channel. 

7. The method of claim 1, wherein the digital image data 
comprise volumetric image data of a three-dimensional 
region of an object. 

30 
8. The method of claim 7, wherein the volumetric image 

data are one of magnetic resonance imaging data or com
puter tomography data. 

9. The method of claim 1, wherein the CNN has S+l 
layers, s=O, ... , S, 

wherein s=O corresponds to the input layer, s=S corre
sponds to the output layer, and s=l, ... , S-1 corre
sponds to the intermediate layers, 
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wherein the spherical harmonic expansions of the data 
correspond to spherical harmonic functions Yt(B,cp), 40 

l=O, ... , L, 

and wherein processing the covariant Fourier activations 
from the input layer sequentially through each of the 
one or more intermediate layers of the CNN comprises: 

for each of the CNN layers s=l, ... , S-1, computing 
45 
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one or more processors; and 
memory configured to store computer-executable instruc

tions that, when executed by the one or more proces
sors, cause the computing system to carry out opera
tions including: 

implementing the multi-layer CNN in an architectural 
form having an input layer, an output layer, and one or 
more intermediate layers, from a first intermediate 
layer to a last intermediate layer; 

receiving digital image data corresponding to input data 
that are represented in a form of evaluations of one or 
more continuous functions on a sphere; 

at the input layer: 
inputting the input data to the input layer; 
computing covariant Fourier space activations by ana

lytically transforming the one or more continuous 
functions into spherical harmonic expansions of the 
input data; and 

outputting the computed covariant Fourier space acti
vations to the first intermediate layer; 

at each intermediate layer: 
receiving as input activations from an immediately

preceding layer of the CNN; 
processing the received input activations by applying 

Clebsch-Gordan transforms to compute respective 
covariant Fourier space activations without comput
ing any intermediate inverse Fourier transforms or 
forward Fourier transforms; and 

outputting the computed respective covariant Fourier 
space activations to an immediately next layer of the 
CNN; 

at the output layer: 
rece1vmg as input the computed covariant Fourier 

space activations of the last intermediate layer; 
processing the received covariant Fourier activations of 

the last intermediate layer by computing invariant 
activations; and 

outputting the computed invariant activations. 
12. The computing system of claim 11, wherein comput

ing the respective covariant Fourier space activations at each 
of the one or more intermediate layer and the invariant 
activations at the output layer comprises applying respective 
weighting parameters at each layer. 

13. The computing system claim 11, wherein the input 
data comprise training data, and wherein computing the 
respective covariant Fourier space activations at each of the 
one or more intermediate layer and the invariant activations 
at the output layer comprises training the CNN by learning 

respective covariant Fourier space activations from 
output activations of the immediately preceding layer, 
s-1, without computing any intermediate inverse Fou
rier transforms or forward Fourier transforms, by: 

forming a plurality of I-ordered, pair-wise Kronecker 
50 values for the respective weighting parameters. 

products of the outputs of layer s-1; 

decomposing each Kronecker product into covariant 
blocks using a Clebsch-Gordan transform; and 

applying respective weightings to concatenations the 55 

covariant blocks of like I. 
10. The method of claim 9, wherein processing the 

respective covariant Fourier space activations of the last 
intermediate layer in the output layer of the CNN to compute 
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invariant activations comprises: 

14. The computing system of claim 11, wherein the 
operations further include: 

implementing a fully connected neural network; and 
the output layer outputting the computed invariant acti

vations to the fully connected neural network. 
15. The computing system of claim 11, wherein the digital 

image data comprise image data on a sphere, and wherein 
the evaluations of one or more continuous functions on a 
sphere comprise pixel values of one or more channels. 

16. The computing system of claim 15, wherein the one 
or more channels comprise a red channel, a blue channel, 
and a green channel. for the s=S layer of the CNN, computing an invariant 

activation by computations used for CNN layers 
s=l, ... , S-1, but omitting computations for l>O. 

11. A computing system configured for computationally 
processing data with a multi-layer convolutional neural 
network (CNN), the computing system comprising: 

17. The computing system of claim 11, wherein the digital 
image data comprise volumetric image data of a three-

65 dimensional region of an object. 
18. The computing system of claim 11, wherein the CNN 

has S+ 1 layers, s=O, ... , S, 
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wherein s=O corresponds to the input layer, s=S corre
sponds to the output layer, and s=l, ... , S-1 corre
sponds to the intermediate layers, 

wherein the spherical harmonic expansions of the data 
correspond to spherical harmonic functions Yt(B,cp), 
l=O, ... , L, 

and wherein processing the covariant Fourier activations 
at each intermediate layer comprises: 

for each of the CNN layers s=l, ... , S-1, computing 
respective covariant Fourier space activations from 10 

output activations of the immediately preceding layer, 
s-1, without computing any intermediate inverse Fou
rier transforms or forward Fourier transforms, by: 
forming a plurality of I-ordered, pair-wise Kronecker 

15 products of the outputs of layer s-1; 
decomposing each Kronecker product into covariant 

blocks using a Clebsch-Gordan transform; and 
applying respective weightings to concatenations the 

covariant blocks of like I. 
19. The computing system of claim 18, wherein process- 20 

ing the received covariant Fourier activations of the last 
intermediate layer by computing invariant activations com
prises: 

for the s=S layer of the CNN, computing an invariant 
activation by computations used for CNN layers 25 

s=l, ... , S-1, but omitting computations for l>O. 
20. A non-transitory computer-readable medium having 

instructions stored thereon that, when carried out by one or 

26 
more processors of a computing device, cause the comput
ing device to carry out operations including: 

implementing a multi-layer convolutional neural network 
(CNN) comprising an input layer, an output layer, and 
one or more intermediate layers, from a first interme
diate layer to a last intermediate layer; 

receiving digital image data corresponding to input data 
that are represented in a form of evaluations of one or 
more continuous functions on a sphere; 

inputting the input data to the input layer; 
computing outputs of the input layer as covariant Fourier 

space activations by analytically transforming the one 
or more continuous functions into spherical harmonic 
expansions of the data; 

processing the covariant Fourier activations from the 
input layer sequentially through each of the one or 
more intermediate layers of the CNN, from the first 
intermediate layer to the last intermediate layer, 
wherein each intermediate layer is configured to apply 
Clebsch-Gordan transforms to compute respective 
covariant Fourier space activations as input to an 
immediately next layer of the CNN, without computing 
any intermediate inverse Fourier transforms or forward 
Fourier transforms; and 

processing the respective covariant Fourier space activa
tions of the last intermediate layer in the output layer of 
the CNN to compute invariant activations. 

* * * * * 


