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SUMMARY
Nearly all trait-associated variants identified in genome-wide association studies (GWASs) are noncoding.
The cis regulatory effects of these variants have been extensively characterized, but how they affect gene
regulation in trans has been the subject of fewer studies because of the difficulty in detecting trans-expres-
sion quantitative loci (eQTLs).We developed trans-PCO for detecting trans effects of genetic variants on gene
networks. Our simulations demonstrate that trans-PCO substantially outperforms existing trans-eQTL map-
ping methods. We applied trans-PCO to two gene expression datasets from whole blood, DGN (N = 913) and
eQTLGen (N = 31,684), and identified 14,985 high-quality trans-eSNP-module pairs associated with 197 co-
expression gene modules and biological processes. We performed colocalization analyses between
GWAS loci of 46 complex traits and the trans-eQTLs. We demonstrated that the identified trans effects can
help us understand how trait-associated variants affect gene regulatory networks and biological pathways.
INTRODUCTION

More than 90% of genome-wide association studies (GWASs)

loci are located in noncoding regions of the genome and are

thought to affect human traits by regulating gene expression.1–5

Nearly all of the studies to date have focused on understanding

the effects of trait-associated variants on gene expression in cis,

which only include effects on genes that are near the associated

loci. However, multiple lines of evidence suggest cis-regulatory

effects capture only a small proportion of the heritability of com-

plex traits and diseases. We previously hypothesized that trans-

expression quantitative loci (eQTLs), despite having very small

effects on each individual gene, may cumulatively account for

a large proportion of trait variance.6 Indeed, our modeling indi-

cates that trans-eQTL effects account for twice as much genetic

variance in complex traits as cis-eQTL effects.6 Thus, establish-

ing a representative map of genetic variants and their trans ef-

fects is a critical step toward understanding complex trait and

disease genetics.

Two major challenges have precluded trans-eQTL discovery.

First, trans-eQTL mapping is extremely prone to false positives

due to mapping errors that cause short sequences to map to ho-

mologous regions of the genome.7 The second challenge is by

far more difficult to overcome: trans-eQTLs are challenging to

detect compared to cis-eQTLs because (1) they have much

smaller effect sizes than cis-eQTLs6 and (2) a genome-wide

search of trans-eQTLs involves a huge number of statistical

tests, resulting in a heavy burden of multiple testing corrections.
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Previous work suggests that trans-eQTLs generally affect the

expression levels of multiple genes.8,9 The co-regulation and co-

expression patterns of genes driven by trans-eQTL have long

been recognized. There are a few studies that aimed to identify

trans-eQTLs of co-expressed genes. For example, Rotival

et al.10 used independent component analyses to identify co-

expression gene sets, and subsequently tested for the enrich-

ment of trans signals in the gene sets by hypergeometric tests.

More recently, Kolberg et al.11 tested associations between

SNPs and an ‘‘eigengene’’ (essentially the primary principal

component, PC1) of gene modules that captures the co-expres-

sion pattern. Nonetheless, PC1 has very limited power at identi-

fying genetic effects (see below). Dutta et al.12 leveraged canon-

ical correlation analysis to identify trans associations between

multiple disease-associated SNPs and multiple genes by inte-

grating with GWAS signals. However, the method has different

goals from identifying trans-eQTLs of multiple genes in specific

tissues (e.g., it is useful for identifying ‘‘core’’-like disease genes

and processes for a specific disease; see below).

Our main goal was to develop a method for detecting trans-

eQTLs associated with multiple genes in a gene module by using

multivariate association. Multivariate association methods tend

to be more powerful than univariate association methods. De-

tecting trans-eQTLs of gene modules containing multiple co-

regulated genes can also potentially improve power by reducing

multiple testing burdens, because the number of tested gene

modules is much less than the number of genes. However, there

are caveats. First, sequence similarity among distinct genomic
pril 10, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Three main steps of trans-PCO

pipeline

First, trans-PCO preprocesses RNA-seq data to

reduce false positive trans-eQTL associations.

Second, genes are grouped into gene sets, such as

co-expression modules or biological pathways.

Lastly, trans-PCO tests the association between

SNPs and gene sets by using PCO.
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regions can lead to severe false positive discovery issues in

trans-eQTL mapping.7 This is especially problematic in mapping

trans-eQTLs of co-expression genemodules because genes can

be falsely clustered due to sequence similarities.7,13 Second, the

naive way of using a single component, such as the first gene

expression PC, to represent the gene modules can significantly

reduce power. Although the PC1 captures the largest amount

of total variance in gene expressions, it can be powerless in de-

tecting significant associations than higher-order PCs.14,15

To combat this, we propose trans-PCO, a flexible approach

that uses the PC-based omnibus test15 (PCO) to combine multi-

ple PCs and improve power to detect trans-eQTLs. Trans-PCO

also carefully filters sequencing reads and genes based on

mappability across different regions of the genome to avoid false

positives due to multimapping.7,16,17 By default, trans-PCO uses

gene sets identified by weighted gene co-expression network

analysis (WGCNA),18 which clusters co-expressed genes by us-

ing the correlations of gene expression levels. It also accepts

user-defined sets—for example, genes that belong to the

same Gene Ontology,19 Kyoto Encyclopedia of Genes and Ge-

nomes pathway,20 or protein complex.21

We applied trans-PCO to gene expression data from the

Depression Genes and Networks study16 (DGN, sample size

N = 913) and the eQTLGen study9 (sample size N = 31,684) to

identify trans-eQTLs associated with co-expression gene mod-

ules and well-defined biological processes in whole blood. All

trans-eQTLs that are associated with gene co-expression net-

works and biological pathways can be found at http://www.

networks-liulab.org/transPCO.

RESULTS

Overview of the method
The trans-PCO method consists of three main steps (Figure 1).

First, trans-PCO preprocesses RNA sequencing (RNA-seq)

data to reduce false positive trans-eQTL associations due to

read multimapping errors. Specifically, trans-PCO removes all

of the sequencing reads mapped to low mappability regions of

the genome (mappability score < 1; STAR Methods) before

profiling gene expression levels. These procedures substantially

reduce the occurrence of false positive trans-eQTLs due to

sequencing alignment errors.7,17 When only summary-level

data are available (e.g., eQTLGen dataset9), trans-PCO dynam-

ically excludes from the module any genes that are cross-map-

pable to genes within 100 kb of the tested SNP.
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Second, trans-PCO groups genes into

clusters. By default, trans-PCOdetermines

the gene groupings by using WGCNA18 to
identify co-expression modules from gene expression levels

(STAR Methods). We remove covariates and confounders

(STAR Methods) from gene expression levels before grouping

gene modules. This step is necessary to ensure that the gene

modules are not primarily driven by confounding factors.

Trans-PCO also allows customization of the gene groups or

sets—for example, genes in the same pathway or protein-pro-

tein interaction network19–21 can be grouped into user-defined

gene modules.

Lastly, trans-PCO tests for association between each

SNP and the expression levels of the genes in each gene mod-

ule by adapting the PCO method, which combines multiple

gene expression PCs by using six PC-based statistical tests

(STAR Methods). Each PC-based test combines multiple PCs

uniquely, which allow signals under various genetic architec-

tures to be captured. PCO evaluates the six PC-based tests

and takes the minimum p value as the final test statistic. The

final p values are computed according to Liu and Lin15 (also

see STAR Methods). Only PCs with eigenvalues lk > 0.1 are

used in trans-PCO (Figure S1; Methods S1). To avoid identi-

fying associations driven by cis effects, we excluded from the

module all of the genes on the same chromosome as the test

SNP. To correct for multiple testing, we performed 10 permuta-

tions to establish an empirical null distribution of p values

(Methods S1).

Trans-PCOoutperforms existingmethods in simulations
We performed simulations to evaluate the power of trans-PCO in

detecting trans-eQTLs associated with multiple genes. We pri-

marily compared the power to (1) the standard univariate test

(‘‘MinP’’) and (2) the PC1-based test (Kolberg et al.11; STAR

Methods). We used a co-expression gene module consisting

of 101 genes from the DGN dataset (module 29). In power simu-

lations, we simulated a proportion of 101 genes in the module to

be causal with nonzero effects generated from a point normal

distribution (STAR Methods). We simulated the trans genetic

variance to be 0.001, which is a low and realistic per SNP herita-

bility for trans effects. In null simulations, all SNPs effects have

the same trans genetic variance but zero average effects

(STAR Methods).

Trans-PCO significantly outperformed the univariate test and

the PC1 method across different sample sizes and proportions

of causal genes (Figure 2). Specifically, the power of trans-

PCO increases rapidly with increasing sample sizes. At a sample

size of 800, assuming 30% of genes have causal effects in the

http://www.networks-liulab.org/transPCO
http://www.networks-liulab.org/transPCO


Figure 2. Power of trans-PCO across different sample sizes and

causal gene proportions, in comparison to PC1 and univariate (MinP)
methods

Points show average power across 1,000 simulations. Error bars representing

95%confidence intervals (CIs) are plotted, butmany are too small to be visible.

See numerical results in Table S2.

(A) Power comparison across various sample sizes. Trans-genetic variance

was simulated to be 0.001, and the proportion of causal genes in the gene

module was 30%.

(B) Power comparison across different proportions of causal genes in the gene

module. The simulated sample size was 500.
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genemodule, the power of trans-PCO is 74%, compared to 15%

for the univariate test and 0.0018% for the PC1 method

(Figure 2A).

We also compared the power of each method across various

causal gene proportions using a fixed sample size (500). All 3

methods have little power in detecting trans-eQTLs when the

proportion of causal genes is below 10%. However, above

this threshold, the power of trans-PCO increases dramatically:

36% at 30% causal genes and 86% at 50% causal genes. In

contrast, the univariate and the PC1 methods remain almost

powerless for nearly all of the simulated scenarios (Figure 2B).

We note that the PC1 method appears to be almost powerless

across the scenarios, which agrees with the previous observa-

tion that the PC1 can be less powerful than higher-order PCs

in GWASs.22 Simulation results at various genetic variances

can be found in the supplemental information, including at

extremely low proportions of causal genes and high trans ef-

fects (Figure S2). We found that the univariate method only out-

performs trans-PCO when the proportion of causal genes is

extremely low, such as only one causal gene in the entire

gene set, and the trans effects are large. Trans-PCO gains

more power when there are >1 causal gene because it aggre-

gates multiple weak effects to improve power. Null simulations

demonstrated that all three methods are well controlled for false

positive inflations (Figure S3).

We included comparisons to two additional methods:

ARCHIE, proposed by Dutta et al.,12 and a method by Rotival

et al.10 (Figures S4 and S5; Methods S2). We showed that

ARCHIE is not powerful at detecting trans-eQTL effects from a

SNP to multiple genes, which are the effects for which trans-

PCO was designed (Figure S4). We note that the main goal of

ARCHIE is to identify trait-specific gene sets associated with

GWAS loci, whereas trans-PCO is designed to map trans-eQTLs

for any user-specified gene sets in specific tissues or cell types

(discussion; Figure S4; Methods S2). The method of Rotival

et al.10 is based on the PC1-based approach, and we showed
that the method has limited power at identifying weak trans-

eQTL effects (Figure S5; Methods S2).

Trans-PCO identifies 3,899 trans-eSNP-module pairs
associatedwith co-expression genemodules in theDGN
dataset
We used trans-PCO to identify trans-eQTLs associated with co-

expression gene modules in RNA-seq data from whole-blood

samples of the DGN cohort (N = 913).16 WGCNA18 identified

166 co-expression gene modules, with the number of genes

in each module ranging between 625 (module 1 [M1]) and 10

(M166) (Table S1). We then performed genome-wide scans of

trans-eQTLs for each gene module. At a 10% false discovery

rate (FDR), trans-PCO identified significant trans-eQTLs for

102 of 166 gene modules, corresponding to 3,899 significant

trans-eSNP-module pairs (Table S3). Many trans-eSNPs are

in linkage disequilibrium (LD). Using LD clumping to group

trans-eSNPs into LD-independent loci (R2 < 0.2), we found

202 trans-loci-module pairs (Figures 3A and S6; Tables S3

and S4).

We compared trans-eQTL signals detected in DGN by

trans-PCO to signals identified by the univariate method in

Battle et al.16 Of the 12,132 genes analyzed by trans-PCO,

the univariate method detected 326 significant trans-eSNP-

gene pairs for 128 genes at 5% FDR.16 At the same FDR level,

trans-PCO identified 3,031 significant trans-eSNP-gene mod-

ule pairs for 75 gene modules. We compared the magnitude of

the significant trans-eQTL effects detected by trans-PCO and

the univariate method. More specifically, we compared the

maximum univariate Z scores of SNPs and each gene in sig-

nificant trans-eSNP-module pairs identified by trans-PCO to

the Z scores of significant trans-eSNP-gene pairs by the uni-

variate method. We found that the maximum Z scores of

trans-PCO signals are much smaller than Z scores of the uni-

variate method signals (Figure 3B), indicating that our multi-

variate approach can detect much smaller trans effects than

univariate methods.

We also applied the PC1 method (Kolberg et al.11) to DGN

and identified 1,483 significant trans-eSNP-module pairs (55

trans-loci-module pairs) at 10% FDR, and 1,464 pairs (99%)

were detected by trans-PCO (Figure S7A). Notably, in total,

trans-PCO identified more than twice the signals of the

PC1 method. However, the PC1 method identified more sig-

nals than expected because it was previously shown to be

powerless in the simulations. We note that we simulated

weak effects and sparse causal proportions to better reflect

common and realistic trans effects, and the PC1 method is

powerless in these settings. We performed additional simula-

tions with large effects and high causal proportions, and ef-

fects with aligned direction of the PC1,15 and the PC1

method achieved 50% power as trans-PCO or even the

best power (Figures S8 and S9; Methods S2). In addition,

we found in the DGN dataset that the univariate Z scores

of trans signals detected by the PC1 method are larger

than those of trans-PCO signals (Figures S7B–S7D). There-

fore, the trans signals detected by the PC1 method are likely

of strong trans effects, and trans-PCO is able to detect addi-

tional weak trans effects.
Cell Genomics 4, 100538, April 10, 2024 3



Figure 3. Trans-PCO identifies trans-eQTLs associated with co-expression gene modules in DGN

(A) Significant trans-eQTL signals associated with 166 co-expression modules in DGN. Chromosomal positions of trans-eSNPs are on the x axis, and gene

modules are on the y axis. Point sizes are �log10(p) values of significant trans-eQTLs. Purple and orange represent odd and even chromosomes, respectively.

(B) Comparison of the magnitude of significant trans-eQTLs effects detected by trans-PCO and the univariate method. The x axis shows signal categories: trans-

PCO specific signals (Trans-PCO), univariate test specific signals (Univariate), and signals identified by bothmethods (Both). Themaximum Z scores of each SNP

and each gene in a gene module is used to represent the SNP-module pair. The numbers on top are the number of signals in each category. Line type represents

the target type of signals (gene module vs. single gene). The y axis is the absolute value of the Z scores of the signals.

(C) Colocalization of trans-eQTLs and cis-e/sQTLs. The gray bar represents the trans-region used for colocalization analyses. The bar highlighted in blue rep-

resents the trans-region colocalized with cis-sQTLs, red for cis-eQTLs, and mixed color for either cis-eQTLs or cis-sQTLs.

(D) Colocalization of trans-eQTLs of M66 and cis-eQTLs of NFKBIA.

(E) Functional annotations of gene sets facilitate functional interpretation of trans-eQTL signals. The trans-eQTLs near NFKBIA and IKZF1 are associated with

several gene modules. The bar plots show the functional enrichments in modules. The numerical values of enrichments are in Table S7.
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Trans-eQTLs are enriched in variants with cis-
regulatory effects on transcription factors
We found that only 31 trans-eSNPs (1%) are in coding regions,

suggesting that a very small proportion of trans-eQTLs affect

gene expression levels in trans by altering protein coding se-

quences. Several studies have shown that trans-eQTLs have

cis-regulatory effects, affecting the expression levels or splicing

of nearby genes9,16; thus, we evaluated our identified trans-eQTLs

for concomitant cis-regulatory activity. We first overlapped trans-

eSNPs with cis-eQTLs and cis-splicing QTLs (cis-sQTLs) in

DGN.23 Of the 2,955 trans-eSNPs (Table S3), we found that

71% are significant cis-eSNPs in DGN and 46% are significant

cis-sSNPs, together accounting for 73% of all trans-eSNPs. To

further examine whether the cis and trans effects are driven by

the same variant, we performed colocalization analysis of

trans-eQTLs with cis-eQTLs and cis-sQTLs using coloc24
4 Cell Genomics 4, 100538, April 10, 2024
(STAR Methods). Specifically, we first grouped trans-eSNP-

gene module pairs into 179 trans-region-gene module pairs,

based on 200-kb fixed-width regions (STAR Methods). We then

performed colocalization analyses between the trans-eQTLs and

cis-eQTLs/cis-sQTLs. We found that 51 of 179 trans regions colo-

calized with a cis-eQTL (the posterior probability of colocalized

signals PP4 > 0.75; Figures 3C and S10). A total of 41 trans-re-

gions colocalized with a cis-sQTL. Overall, 60 trans-regions

shared causal variantswith at least one cis-eQTL or cis-sQTL (Fig-

ure 3C; Table S5), confirming that trans-eQTL effects are generally

mediated through cis-gene regulation. In addition, a large fraction

of trans-loci (66%) do not colocalize with cis-eQTLs or cis-sQTLs.

Although power may have limited our ability to detect colocaliza-

tion of some trans-eQTLs and cis-eQTLs, there may also exist un-

known trans-regulatory mechanisms, independent of cis-gene

expression or splicing, which is subject to future studies.
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We also investigated the types and functions of genes that are

likely tomediate trans-eQTLeffects.We found that thegenesnear-

est trans-eQTLs are highly enriched in ‘‘RNA polymerase II tran-

scription regulatory region sequence-specific DNA binding’’

(adjusted p = 1:263 10� 3) and ‘‘DNA-binding transcription

factor activity’’ (adjusted p = 1:393 10� 3; Table S6), suggesting

that transcription factors are important mediators of trans-eQTL

effects. Indeed, trans-PCO identified and replicated several well-

known master trans regulators in blood, such as IKZF1,17,25,26

NFKBIA,17 NFE2,9,17,27 and PLAGL117,26 (Figure 3A). We also

found colocalization of these trans-eQTLs with cis-eQTLs at the

NFKBIA,NFE2, andPLAGL1 loci (Figures 3DandS10), supporting

the conclusion that these genes are likely the cis-mediating genes.

High-quality map of trans-eSNP to gene module
associations improves functional interpretation
Most of the genemodules used in trans-PCO have functional an-

notations, which allows us to interpret the functional roles of the

trans-eQTLs identified by themethod. We first functionally anno-

tated the 166 co-expression modules using g:Profiler,28 which

performs functional enrichment analysis on gene sets using pre-

defined Gene Ontology and pathway annotations. This allowed

us to annotate 131 of the 166modules with at least 1 significantly

enriched Gene Ontology or pathway (Table S7).

These annotations helped us interpret the function of identified

trans effects. For example, the trans-eQTL signal near IKZF1 (on

chromosome 7) is significantly associated with 27 gene mod-

ules. IKZF1 encodes a transcription factor, IKAROS, that be-

longs to the family of zinc finger DNA-binding proteins.29 The

IKZF1 (IKAROS) trans-target gene M159 is significantly enriched

in the ‘‘positive regulation of transcription of Notch receptor

target’’ (adjusted p = 6:823 10� 3; Figure 3E).Wewere reassured

to find that it previously had been found that IKAROS is a

repressor of many Notch targets, and our trans-eQTL signal

further supports the trans regulation of Notch signaling pathway

by IKAROS.30 IKZF1 trans-target M3 is significantly enriched in

theGeneOntology term ‘‘defense response to virus’’ (Figure S11;

adjusted p = 8:73 10� 31), andM35 is significantly enriched in the

innate immune system (adjusted p = 4:093 10� 17). These data

support the conclusion that the IKZF1 locus plays a trans-regu-

latory role in immune responses (Figure 3E). The trans-eQTLs

nearNFKBIA, which encode nuclear factor (NF)-kB inhibitor sub-

unit A, are significantly associated with M66 (p < 1:83 10� 7).

Interestingly, we found that M66 is highly enriched in NF-kB

signaling pathway (adjusted p = 8:353 10� 5; Figure 3E), which

supports the trans-regulation of the NF-kB signaling pathway

by NFKBIA. The complete list of trans-eQTLs signals and func-
Figure 4. Colocalization of trans-eQTLs with GWAS loci of 42 complex

(A) The number of colocalized trans-regions associated with co-expression gene

colocalized trans-loci over 179 trans-regions.

(B) Heatmap of the number of colocalized trans-regions associated with co-exp

represent the number of colocalized regions.

(C) Colocalization of mean platelet volume-associated locus near ARHGEF3 and

(D) Heritability enrichment of M4 in blood traits. Error bars are 95% CIs.

(E) Heatmap of the number of colocalized trans-regions associated with MSigDB

(F) Colocalization of GWAS loci-associated red blood cell traits and trans-eQTLs a

are associated with heme metabolism in trans. Numerical results can be found in
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tional annotations of trans-target gene modules can be found

in Tables S4 and S7.

Trans-PCO identifies 965 trans-eSNP-module pairs
associated with well-defined biological processes
To further demonstrate the utility of trans-PCO, we applied trans-

PCO to 50 Human Molecular Signatures Database (MSigDB)

hallmark gene sets, which represent well-defined biological pro-

cesses,19 including DNA repair, coagulation, heme metabolism,

and Notch signaling (Table S8). Each gene set contains between

32 and 200 genes. In DGN, we identified 965 significant trans-

eSNP-module pairs, corresponding to 41 gene sets and 120

trans-loci-module pairs (R2 < 0.2), at a 10% FDR level (Fig-

ure S12; Tables S3 and S9).

Trans-eQTLs associated with well-defined biological pro-

cesses facilitate the interpretation of the trans-eQTL signals.

For example, we identified several trans-eQTL signals at the

NLRC5 locus (Table S9). The trans-target gene set is the ‘‘inter-

feron alpha response’’ gene set, suggesting trans regulation from

NLRC5 to the interferon signaling pathway. Earlier studies have

confirmed that NLRC5 is a master regulator for major histocom-

patibility complex (MHC) class II genes and negatively regulates

the interferon signaling pathway.31,32 The trans-eQTL signals

also validated our previous interpretations of trans-eQTLs

associated with co-expression gene modules. For example, in

agreement with our analysis of co-expression modules, we

found that the IKZF1 locus is significantly associatedwith several

immune-related biological processes, such as interferon-

gamma response (Figure 3E; Table S9).

Trans-PCO improves understanding of trans-regulatory
effects of disease-associated loci
To understand the trans-regulatory effects of genetic variants

associated with complex traits, we performed colocalization

analysis of trans-eQTL signals with GWAS loci of 46 complex

traits and diseases, including 29 blood traits and 8 other com-

mon complex traits (e.g., height, body mass index) from the

UK Biobank,27,33 provided by Neale Lab (http://www.nealelab.

is/uk-biobank/), and 9 autoimmune diseases23,34–40 (Table S10;

STAR Methods).

We grouped the trans-eSNPs into 200-kb regions (or trans-

regions) for colocalization analyses (STAR Methods). The

3,899 trans-eQTLs associatedwith co-expression genemodules

were grouped into 179 trans-region-module pairs. Of the 46

complex traits, 42 have at least 1 GWAS loci colocalized with 1

of 179 trans-region-module pairs. On average across all of

the traits, 8.8% of trans-loci colocalize with GWAS loci
traits with at least 1 colocalization region

modules with GWAS loci. The proportion of colocalization is the proportion of

ression gene modules with GWAS loci between each module and trait. Tiles

trans-eQTL of M4.

hallmark gene sets with GWAS loci.

ssociated with heme metabolism. Six loci associated with red blood cell traits

Table S14. Colocalization plots of the other loci are in Figure S13.

http://www.nealelab.is/uk-biobank/
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(Figure 4A; Table S11). We observed a higher proportion of co-

localization with blood traits (mean proportion 12.0%) than non-

blood traits (mean proportion 1.5%). Although we expect some

higher proportions of colocalization with blood traits to occur in

a whole-blood sample, our results may also indicate some resid-

ual effects due to cell composition, despite corrections for cell

composition using both gene expression PCs and estimated

cell-type proportions,16 such that some trans-eQTLs may regu-

late the abundance of cell proportions and therefore are associ-

ated genes that are specifically expressed in certain cell types

(discussion). Our results are consistent with a recent study by

the eQTLGen consortium, which has shown that trans-eQTLs

in whole blood reflect a combination of cell-type composition

and intracellular effects.9

Nevertheless, we found several trans-eQTLs that colocalized

with GWAS loci, which revealed specific interpretable pathways

or functional gene sets (Figure 4B; Table S12). For example,

trans-eQTLs associated with co-expression M4 colocalized

with 24 of 29 blood traits (Figure 4B). M4 is highly enriched for

genes involved in platelet activation (adjusted p = 1:123

10� 12; Figure S11; Table S7). One of the colocalized trans-

eSNPs associated with M4 is in the introns of the ARHGEF3

gene (Figure 4C), which has been shown to play a significant

role in platelet size inmice.41 To further support the interpretation

of colocalized signals, we estimated heritability enrichment of

M4 in blood traits using stratified LDscore regression42 (S-

LDSC; Figures 4D and S13). We reasoned that an enrichment

of trait heritability near genes in a module would strongly support

the involvement of a module in the genetic etiology of a trait.

Strikingly, we found that M4 is significantly enriched in the heri-

tability of multiple blood traits, and that the enrichment was

especially strong for platelet traits such as platelet distribution

width (odds ratio [OR] = 6:5, p = 7:03 10� 5) and mean platelet

volume (OR = 6:7, p = 1:23 10� 5; Figure 4D; Table S13). In addi-

tion, we evaluated whether M4 genes are significantly enriched

in genes associated with platelet traits, identified by transcrip-

tome-wide association studies (TWASs). There are 1,339 unique

genes significantly associated with platelet traits in the UK

Biobank.43 M4 genes are significantly enriched in TWAS genes

associated with platelet traits (88 overlap genes, p = 6.7 3

10�10, Fisher’s exact test), which further supports the role of

M4 in platelet traits. Finally, we identified that the ARHGEF3 lo-

cus is significantly associated with the MSigDB coagulation hall-

mark gene set (Table S9). These findings strengthen themodel in

which genetic variation near ARHGEF3 affects the expression

levels of multiple genes that are involved in platelet biology and

that also harbor nearby genetic variation associated with platelet

traits.

We also performed colocalization analysis of trans-

eQTLs-associated MSigDB hallmark gene sets (Figure 4E;

Table S14). One of the gene sets represents heme metabolism,

which is an essential process underlying erythroblast differenti-

ation and red blood cell counts. We found that six trans-eQTL

loci of heme metabolism significantly colocalized with GWAS

loci associated with red blood cell traits, such as hemoglobin

concentration, red blood cell count, and reticulocyte count

(PP4 = 0.76–1.00; Figures 4F and S14; Table S14). We found

that the genes in the gene sets are significantly enriched in
TWAS-significant genes associated with hemoglobin levels

in the UK Biobank (35 overlap genes, p = 8.1 3 10�4, Fisher’s

exact test), which further supports the role of the hallmark

gene set in red blood cell traits. Our results provide evidence

that these six loci regulate heme metabolism in trans, which is

an essential process underlying erythroblast differentiation

and red blood cell counts.

In another example, we found a trans-eQTL near IKZF1 for M3

that colocalizes with 11 blood traits, 7 of which are related to

white blood cells (Table S12). As mentioned previously, M3 is

significantly enriched for Gene Ontology terms, including ‘‘de-

fense response to virus’’ (adjusted p = 8:73 10� 31) and ‘‘nega-

tive regulation of viral processes’’ (adjusted p = 1:073 10� 17;

Table S7). The enrichments are driven by many genes related

to interferon (e.g., IFI6, IFI16, IRF7), which are proteins released

by host cells in response to the presence of viruses and indicate

immune-related functions (Tables S1 and S7). In addition, our

heritability analysis of genes in M3 identified enrichments for

multiple traits associated with blood cell-type count, including

neutrophil count (OR = 2:3, p = 1:73 10� 4) and white blood

cell count (OR = 2:1, p = 1:33 10� 4, Figure S15). Our analyses

support that the white blood cell associated locus IKZF1 regu-

lates immune-response pathways in trans.

Taken together, our functional map of trans-eQTLs revealed

concrete examples where genetic variants associated with com-

plex traits also influence a biological pathway or a coherent set of

genes with similar functions. Thus, trans-eQTL of gene sets have

the potential to reveal trans-regulatory mechanisms underlying

complex traits and diseases. The complete list of colocalization

signals for each trait can be found in Table S12.

Summary statistics-based trans-PCO identified 10,167
trans-eSNP-module pairs in eQTLGen
We developed summary statistics-based trans-PCO to increase

its applicability to gene expression datasets of large sample

sizes, such as eQTLGen9 (N = 31,684, whole blood). To ensure

that summary statistics-based trans-PCO signals are well

controlled for test statistics inflation and false positives, we

added two steps to the original pipeline. First, we carefully

selected gene sets to minimize the noise when approximating

the gene correlation matrices. When only summary statistics

are available, the correlation matrix of each gene set is approx-

imated with the correlations of Z scores of the insignificantly

associated SNPs of each gene. A low ratio of SNPs to genes

(<50) results in a noisy approximation of correlation matrices

and test statistics inflation (Figure 5A; STAR Methods; Methods

S3). Therefore, we only used gene modules with ratios >50 to

test for trans-eQTLs, which we show are well controlled for infla-

tion (Figures 5A and S16). Second, we removed genes in the

module that were cross-mappable to the test SNP loci (STAR

Methods) in the association test to reduce false positives caused

by multimapping reads.

The eQTLGen study performed the standard univariate trans-

eQTLmapping on a subset of 10,317GWASSNPs, and the sum-

mary statistics of these trans-eQTLs are available. We applied

the summary statistics-based trans-PCO to these summary sta-

tistics to identify trans-eQTLs-associated co-expression gene

modules and MSigDB hallmark gene sets.
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Figure 5. Trans-PCO identifies trans-eQTLs associated with co-expression gene modules and MSigDB hallmark gene sets in eQTLGen

(A) Summary statistics-based trans-PCO is well controlled for test statistics inflations.We show genemodule 1 (size 625) as an example. SNP-to-gene ratios used

for correlationmatrix estimation are in different shapes and colors. Red-yellow shades represent higher ratios (R50), and blue shades represent lower ratios. Gray

area shows 95% CIs. Trans-PCO used a minimum ratio of 50.

(B) 8,199 significant trans-eSNP-module pairs associated with co-expression modules in eQTLGen. Chromosomal positions of trans-eSNPs are on the x axis and

gene modules are on the y axis. Point sizes are �log10(p) values of significant trans-eQTLs.

(C) The majority of hub SNPs targeting >10 genes in the original eQTLGen study are identified by trans-PCO. The light blue bar represents the total number of

trans-eQTLs in the original eQTLGen study at 5% FDR level. The dark blue bar represents the trans-eQTLs also detected by trans-PCO under Bonferroni

correction that are associated with co-expression modules or MSigDB gene sets. The bar at right shows the trans-eQTLs detected only by trans-PCO.

(D) The HLA locus is associated with several immune-related gene modules in trans. The bar plots show the functional enrichment of co-expression gene

modules.
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Of the 166 co-expression gene modules identified in DGN, we

used 129 modules with reliable correlation matrix approxima-

tions to ensure that the trans-eQTL signals were well controlled

for inflation (Figures 5A and S16; STAR Methods; Methods S3).

Similarly, of the 50 MSigDB hallmark gene sets, we only used

11 gene sets with accurate correlation matrix approximations

(Figure S17). In total, there were 4,533 genes in the tested co-

expression gene modules and hallmark gene sets. For co-

expression gene modules, we identified 8,116 trans-eSNP-

gene co-expression module pairs, corresponding to 2,161

eQTLGen test SNPs and 122 gene modules (Figure 5B;

Tables S3 and S15). For hallmark gene sets, we found 2,051 sig-

nificant trans-eSNP-hallmark gene set pairs, corresponding to

1,018 SNPs and all 11 hallmark gene sets, using Bonferroni

correction (Tables S3 and S16). In eQTLGen, we did not perform

LD clumping on trans-eSNPs because they were GWAS

SNPs associated with different traits and diseases. The univari-

ate method used in eQTLGen9 identified 1,050 hub SNPs target-
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ing >10 genes at 5% FDR, 89% of which were also identified by

trans-PCO (Figure 5C).

The large sample size in eQTLGen improves the power of

trans-eQTL detection. Of the 3,899 significant trans-eSNP-co-

expression module pairs in DGN, 38 pairs were also tested in

eQTLGen. We did find that all 38 trans signals were replicated

in eQTLGen (under a replication p value cutoff of 0.1/38;

Table S17) and all association p values were highly significant

(p < 10� 12; Figure S18). In contrast, most of the trans-eQTL sig-

nals in eQTLGen were not found in DGN. For example, of the

7,577 SNP-module pairs analyzed in both datasets, there were

7,291 pairs (96%) that were uniquely identified in eQTLGen

(defined as at least 1 MB away from trans-eQTL SNPs in DGN).

This is not surprising because the association p values are

much smaller in the eQTLGen dataset due to the larger sample

size (Figure S19). Similarly, 8 significant trans-eSNP–hallmark

gene set pairs in DGN were tested in eQTLGen, and all of

them were replicated. We also compared eQTLGen signals by
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trans-PCO to those identified by ARCHIE in Dutta et al.12 (Fig-

ure S4; Methods S2).

The nearest genes of eQTLGen trans-eQTLs are significantly

enriched in DNA-binding activity (adjusted p = 3:733 10� 4)

and transcription factor binding (adjusted p = 1:743 10� 7), as

well as immune responses such as cytokine receptor activity

(adjusted p = 7:273 10� 7) or MHC class II receptor activity

(adjusted p = 9:933 10� 5; Figure 5B; Table S18). We found

that the enrichment of immune responses was driven by trans-

eQTLs in the human leukocyte antigen (HLA) region on chromo-

some 6 (e.g., HLA-DRA,HLA-DRB1; Table S15) or near cytokine

receptor genes (e.g., IL23R, IL1R1, CXCR4; genes on the che-

mokine receptor gene cluster region: CCR2, CCR3, CCR5,

etc.). These trans-eQTLs are associated with several autoim-

mune diseases, such as type 1 diabetes, autoimmune thyroid

diseases, cutaneous lupus erythematosus, and inflammatory

bowel disease (Table S15). The trans-PCO signals help us

understand the trans-regulatory mechanism of these loci. For

example, we found that the trans-target gene modules of the

HLA loci are enriched in immune-related functions, such as cyto-

kine production (M44), B cell differentiation (M54), immunoglob-

ulin E (IgE) binding (M60), tumor necrosis factor signaling

pathway (M62), T cell activation (M63 and M87), and cytokine

signaling pathway (M62 and M76; Figure 5D). The IL23R locus

is associated with cytokine signaling pathway (M76) in trans.

The chemokine receptor genes were associated with several

gene modules, including cytokine production (M44), IgE binding

(M60), and T cell activation (M87). These trans-eQTL signals sup-

port the conclusion that genetic loci associated with autoim-

mune disease regulate immune-related pathways in trans.

DISCUSSION

In summary, we developed a powerful method, trans-PCO, to

detect trans-eQTLs associated with expression levels of co-ex-

pressed or co-regulated genes. The multivariate approach of

trans-PCO can detect much smaller trans effects and is substan-

tially more powerful than existing methods.

We thoroughly compared the performance of trans-PCO

versus other methods, such as the PC1-based method by Kol-

berg et al.,11 ARCHIE by Dutta et al.,12 and Rotival et al.10 (Fig-

ures 2, S4, S5, and S7–S9; Methods S2). Trans-PCO- and the

PC1-based method are both designed to identify individual

trans-eQTLs of any gene sets containing multiple genes, and

the comparison between them is straightforward. However,

ARCHIE is different and not directly comparable to the other

two methods for several reasons (see more discussions in

Methods S2). First, ARCHIE captures only trait-specific trans-

regulations, by testing significance against a null hypothesis

based on a subset of genetic variants that are trait associated.

In contrast, trans-PCO identifies trans-eQTLs under the general

null hypothesis with no additional assumptions. Second, trans-

PCO and ARCHIE are designed to capture different trans-regu-

latory effects. ARCHIE is powerful when multiple disease-asso-

ciated variants have weak effects on a single gene or multiple

disease-associated variants have weak effects on multiple

genes (Figure 2 in Dutta et al.12), which are not co-regulated by

a shared trans genetic locus. In contrast, trans-PCO is designed
to capture weak trans signals of a variant on multiple co-regu-

lated genes (Figure S4; Methods S2). Third, ARCHIE identifies

components consisting of multiple trait-associated SNPs and

multiple genes, without knowing the exact trans-eQTL SNP

driving the trans-regulation. It is hard to further study trans-reg-

ulatory mechanisms of the trans-eQTLs. Fourth, ARCHIE takes

all of the genes as input and infers gene sets that are trans-regu-

lated by disease-associated variants, whereas trans-PCO is flex-

ible to be applied to any user-defined gene set of interest to iden-

tify trans-eQTLs. In summary, trans-PCO and ARCHIE have

different goals and are designed for detecting different types

of trans signals. However, we thoroughly compared ARCHIE

and trans-PCO in both simulations and real data analyses

(Methods S2). We believe that these comparisons will provide in-

sights into when and how these methods should best be used.

Trans-eQTLs identified in bulk tissues can be a combination of

cell composition trans-eQTLs, which are driven by cell-type pro-

portions, and intracellular trans-eQTLs, which capture trans-reg-

ulatory effects in a single cell type. In our analysis of DGN data-

set, we included the estimated cell proportions as covariates, in

addition to gene expression PCs, to obtain higher proportions of

intracellular trans-eQTLs. Co-expression gene modules could

also capture cell proportion effects. In our study, we removed

cell proportions from gene expression levels before clustering

genes into co-expression modules. Although this can correct

for cell proportion effects in the co-expression modules to

some extent, we note that it does not guarantee their complete

removal.

Many studies, including ours, seek to avoid cell composition

effects. However, by closely examining trans-eQTLs discovered

in our study, we think that cell composition trans-eQTLs can also

be biologically interesting. For example, the IKZF1 locus is signif-

icantly associated with several gene modules enriched with viral

defense and other immune-related functions in trans. The locus

is also significantly associated with white blood cell proportions.

Given the general function of white blood cells in fighting infec-

tions, these observations raise the possibility that the trans-

eQTLs near IKZF1 regulate antiviral activity by affecting white

blood cell-type proportion. Supporting this hypothesis, we found

earlier that genetic variants near IKZF1 are also associated with

expression levels of genes in M159, which are enriched in genes

involved in the Notch signaling pathway. The Notch signaling

pathway plays a central role in cell proliferation, cell fate, and

cell differentiation44; thus, our analyses reveal a plausible

mode of action whereby genetic variants near IKZF1 affect mul-

tiple immune-related functions by influencing white blood cell-

type proportions.

Identifying the network effects of genetic variants not only

shed light on molecular mechanisms of complex associated

loci, but it can also have important translational applications.

First, genes that are associated with disease-relevant path-

ways can serve as evidence for therapeutic targets of the dis-

ease. In a preliminary analysis, we examined whether allergy

drug targets are more likely to be associated with immune-

related gene sets. Among a total of 142 gene sets used for

trans-eQTL identification in eQTLGen, 19 were defined as im-

mune related. We used 55 launched allergy drug target

genes from the Broad Institute Drug Repurposing Hub
Cell Genomics 4, 100538, April 10, 2024 9
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(https://repo-hub.broadinstitute.org/repurposing), 5 of which

are near allergy-associated loci in eQTLGen. Interestingly, we

found all 5 targets to be associated with immune-related

gene sets (Table S19). Detailed analyses can be found in

STAR Methods and Methods S4. Although the enrichment is

not statistically significant (p = 0.12, Fisher’s exact test;

Table S20), it is likely due to the small number of drug targets

included in our analyses. In addition, we observed that the

trans-gene modules of drug targets converge to gene sets

whose functions are highly relevant to allergy. For example,

three drug targets (IL3, UGT3A1, and SLC37A4) are associated

with gene sets enriched for the B cell signaling pathway. Sec-

ond, network effects of disease variants can be used for repur-

posing existing drug compounds to new diseases. Drug repur-

posing can substantially reduce cost and time to develop new

treatments. If the gene expression profile of an existing drug

is enriched for genes in the trans-network of associated loci

of another disease, it can serve as evidence for repurposing.

We believe comprehensive catalogs of trans-networks effects

in human cell types and tissues will serve as important re-

sources for the interpretation of trans-regulatory effects of dis-

ease-associated loci as well as translation applications. There-

fore, we made all of the trans-PCO trans-eQTL signals, with

functional annotation of the gene sets, publicly available,

downloadable, and browsable in http://www.networks-liulab.

org/transPCO.

Limitations of the study
A limitation of multivariate association tests, including trans-

PCO, is that they do not explicitly identify which genes in the

gene sets are significantly associated with the test SNP.

Although functional annotations of gene sets facilitate our under-

standing of the trans-eQTL signals, it is possible that the genes

driving trans associations are different from the genes driving

functional enrichment of the gene sets. Therefore, the biological

interpretation of trans-eQTL signals should be supported with

other evidence before it is considered definitive. However, there

are exploratory analyses that can help prioritize genes in the

network that are key drivers of the underlying signal. For

example, by examining the univariate association p values be-

tween the trans-eQTL SNP and each gene in the network, the

user can prioritize genes with the most significant p values as

likely trans-targets. Furthermore, the users can also use the p1

statistics on the univariate p values to estimate the proportion

of genes that have true trans effects in the network. Although

the exact molecular mechanism requires further validation, the

large number of trans-eQTLs identified by trans-PCO in our study

opens up new opportunities to understand complex traits-asso-

ciated loci and underlying mechanisms.
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19. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and

Tamayo, P. (2015). TheMolecular Signatures DatabaseHallmarkGene Set

Collection. Cell Syst. 1, 417–425. https://doi.org/10.1016/j.cels.2015.

12.004.

20. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Ta-

nabe,M. (2021). KEGG: integrating viruses and cellular organisms. Nucleic

Acids Res. 49, D545–D551. https://doi.org/10.1093/nar/gkaa970.
21. Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S.,

Doncheva, N.T., Legeay, M., Fang, T., Bork, P., et al. (2021). The STRING

database in 2021: customizable protein–protein networks, and functional

characterization of user-uploaded gene/measurement sets. Nucleic Acids

Res. 49, D605–D612. https://doi.org/10.1093/nar/gkaa1074.

22. Kim, S., and Xing, E.P. (2009). Statistical Estimation of Correlated Genome

Associations to a Quantitative Trait Network. PLoS Genet. 5, e1000587.

https://doi.org/10.1371/journal.pgen.1000587.

23. Mu, Z., Wei, W., Fair, B., Miao, J., Zhu, P., and Li, Y.I. (2021). The impact of

cell type and context-dependent regulatory variants on human immune

traits. Genome Biol. 22, 122. https://doi.org/10.1186/s13059-021-

02334-x.

24. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani,

A.D., Wallace, C., and Plagnol, V. (2014). Bayesian Test for Colocalisation

between Pairs of Genetic Association Studies Using Summary Statistics.

PLoS Genet. 10, e1004383. https://doi.org/10.1371/journal.pgen.

1004383.

25. Westra, H.-J., Peters, M.J., Esko, T., Yaghootkar, H., Schurmann, C., Ket-

tunen, J., Christiansen, M.W., Fairfax, B.P., Schramm, K., Powell, J.E.,

et al. (2013). Systematic identification of trans eQTLs as putative drivers

of known disease associations. Nat. Genet. 45, 1238–1243. https://doi.

org/10.1038/ng.2756.

26. Luijk, R., Dekkers, K.F., van Iterson, M., Arindrarto, W., Claringbould, A.,

Hop, P., Boomsma, D.I., van Duijn, C.M., van Greevenbroek, M.M.J., Vel-

dink, J.H., et al. (2018). Genome-wide identification of directed gene net-

works using large-scale population genomics data. Nat. Commun. 9,

3097. https://doi.org/10.1038/s41467-018-05452-6.

27. Morris, J.A., Caragine, C., Daniloski, Z., Domingo, J., Barry, T., Lu, L., Da-

vis, K., Ziosi, M., Glinos, D.A., Hao, S., et al. (2023). Discovery of target

genes and pathways at GWAS loci by pooled single-cell CRISPR screens.

Science 380, eadh7699. https://doi.org/10.1126/science.adh7699.

28. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and

Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis

and conversions of gene lists (2019 update). Nucleic Acids Res. 47,

W191–W198. https://doi.org/10.1093/nar/gkz369.

29. Schwickert, T.A., Tagoh, H., G€ultekin, S., Dakic, A., Axelsson, E., Minnich,

M., Ebert, A., Werner, B., Roth, M., Cimmino, L., et al. (2014). Stage-spe-

cific control of early B cell development by the transcription factor Ikaros.

Nat. Immunol. 15, 283–293. https://doi.org/10.1038/ni.2828.
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d All original code, related to the trans-PCO pipeline and code to reproduce analyses presented in this work are publicly available
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DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Trans-PCO pipeline
Data processing

Trans-PCO removes all reads that are mapped to low mappability regions, in addition to multi-mapped reads marked by alignment

tools before quantifying gene expression levels. More specifically, we downloaded themappability of 36-mer of the reference human
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genome computed by the ENCODE project and defined genomic regions with a mappability score <1 (i.e., 36-mers that could be

mapped to two ormore different genomic regions) as lowmappability regions.We removed readsmapped to lowmappability regions

allowing 2 mismatches.

Following thorough read removal, trans-PCO quantifies gene expression levels as Transcript Per Million (TPM). Gene expression

levels were first quantile normalized across samples, and then normalized to a standard normal across genes. We also filtered out

genes that are not protein-coding or lincRNA genes. Finally, to control for potential confounding factors and capture the co-ex-

pressed gene modules mainly driven by genetic effects, we regressed out covariates from the expression profiles. The typical co-

variates may include biological and technical covariates, such as genotype PCs, expression PCs, and blood cell type proportions

etc.16,17

Identification of gene co-expression networks

By default, trans-PCO uses WGCNA18 to construct gene co-expression modules, where genes are connected through correlations

among their residualized expression levels. WGCNA uses hierarchical clustering to cut the network into separate gene modules with

highly correlated expression levels. We used the default parameter settings, except that we specified the minimum module size

parameter (‘minModuleSize’) to 10 to obtain small gene modules. Trans-PCO also takes other pre-defined gene sets, such as genes

in the same pathway or biological processes.

Multivariate association test

We test if a genetic variant is associated with genes in a module through trans regulations using the multivariate model as follows,

½y1/yK � = G½b1/bK � + covariates+ e

whereG is the dosage of a reference allele representing the genotype of an SNP, bk is the effect of the SNP on k-th gene in themodule

with K genes, and yk is the expression level of the k-th gene. To test if an SNP of interest is significantly associated with the module,

we test the null hypothesis,

H0 : b1 = / = bK = 0

We use a PC-based omnibus test (PCO),15 which is a powerful and robust PC-based approach aiming at testing genetic associ-

ation with multiple genes with no prior knowledge of the true effects.

Specifically, PCO combines multiple single PC-based tests in linear and non-linear ways, corresponding to a range of causal re-

lationships between the genetic variant and genes, to achieve higher power and better robustness. A single PC-based test (most

commonly the first primary PC1) is,

TPCk
= mk

TZ�N
�
mk

Tb; lk
�
; 1 % k%K

where Z is a K31 vector of univariate summary statistic Z scores of the SNP for K genes in a module, mk is the k-th eigenvector of the

covariance matrix SK3K of Z, lk is the corresponding eigenvalue, and b represents the true causal effect. PCO combines six PC-

based tests, including,

PCMinP = min1% k%Kpk ; and PCFisher = � 2
XK

k = 1

logðpkÞ;

where pk is the p value of TPCk
. These two tests take the best p value of single PC-based tests and combine multiple PC p values as

the test statistic. Other tests include,

PCLC =
XK

k = 1

TPCk

lk
;WI =

XK

k = 1

TPCk

2;Wald =
XK

k = 1

TPCk

2

lk
;VC =

XK

k = 1

TPCk

2

l2k

which are linear and quadratic combinations of each single PC-based test weighted by eigenvalues. The six tests achieve best power

in specific genetic settings with different true causal effects.15 PCO takes the best p value of the PC-based tests as the final test

statistic,

TPCO = min pfPCMinP;PCFisher;PCLC;WI;Wald;VCg

to achieve robustness under unknown genetic architectures while maintaining a high power. The p value of PCO test statistics can be

computed by performing an inverse-normal transformation of the test statistics,

pTPCO = 1 � P
�
min F� 1

�
pfPCMinP;PCFisher;PCLC;WI;Wald;VCg

�
> F� 1

�
Tobs
PCO

��

where F� 1 denotes the inverse standard normal cumulative distribution function. The p value can be efficiently computed using a

multivariate normal distribution as described in Liu et al.15

To prevent cis-regulatory effects from driving the identified trans associations between an SNP and module, we removed genes in

the module that are on the same chromosome as the tested variant. In addition, to avoid false positive signals in trans associations
e2 Cell Genomics 4, 100538, April 10, 2024
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due to alignment errors, we discarded RNA-seq reads that are mapped to multiple locations or poorly mapped genomic regions

(mappability score <1)16,17 before quantifying gene expression levels. We calculated the summary statistic Z scores using

TensorQTL.45

Simulation
We performed simulations to evaluate power and type I error of trans-PCO, a univariate test (‘‘MinP’’) and a primary PC-based test

(‘‘PC1’’). The PC1 based test takes only the first PC as the proxy of a gene module and uses it as the response variable to test for

genetic variants with significant associations. The MinP method uses the minimum p value across genes in the module to represent

the association of the gene module. More specifically, the test statistics of the PC1method is TPC1
= m1

TZ � Nðm1
Tb;l1Þ, where Z is

the vector of z scores between the SNPs and each individual gene, m1 is the first eigenvector of the covariance matrix SK of the K

genes, l1 is the corresponding eigenvalue, and b represents the true causal effect. The p value of PC1 test statistics is computed

based on Nðm1
Tb; l1Þ. The test statistics of the MinP method is TMinP = minfpg

1;/; pg
Kg, where pg

i is the association p value of

gene i. The p value of MinP test statistics is PMinP = TMinP 3 K, which uses Bonferroni correction.

We used a real gene module containing 101 genes (Module 29) from the DGN dataset in our simulations. The correlation matrix of

the 101 genes isS101. In null simulations, we simulated Z scores of 107 SNPs from the null distribution, ZNULL � Nð0;S101Þ. We applied

the three methods to the simulated Z scores and evaluated the p values to validate if the statistical tests are well calibrated for type I

error.

In power simulations, we simulated 10k Z scores of SNPs from the alternative distribution,

ZAlt � N
� ffiffiffi

n
p �

b101g;0�T ;S101

�

where n is the sample size, b is a 101g-long vector representing the causal effect of an SNP on 101 genes, and g is the proportion of

true target genes in the module with non-zero effects. We generated bk from a point normal distribution, where bk � Nð0;s2bÞ for pro-
portion g, and bk = 0, otherwise. The trans-genetic variance is s2b, which is a low and realistic per SNP heritability for trans effects. By

default, we set the sample size n to be 500, 30% genes (30) in the module are true trans target genes, and s2b to be 0.001.

To evaluate how three tests perform across different genetic architectures, we simulatedmultiple scenarios across varying sample

sizes, target gene proportions, and genetic variances. Specifically, we looked at the cases where sample size is 200, 400, 600, and

800, causal genes proportion is 1%, 5%, 10%, 30%, and 50%, and genetic variance is 0.002, 0.003, 0.004, 0.005, and 0.006. We

simulated 10k SNPs and performed 1000 simulations. To control the false discovery rate, we corrected the p values for multiple

testing based on the simulated empirical null distribution of p values, to keep it consistent with themethod used in the RNA-seq data-

set (Methods S1).We set significance levels at 10%FDR to be consistent with real data analysis. We computed power as the average

proportion of significant tests out of 10,000 simulated SNPs across 1000 simulations. An association is significant if its adjusted p

value is lower than 0.1. We computed power as the average proportion of significant tests out of 10,000 simulated SNPs across

1000 simulations.

Genotype QC of DGN dataset
We analyzed an RNA-seq dataset from whole blood.16 We performed a series of QC on individuals, genotypes, RNA-seq reads, and

genes before quantifying gene expression profiles. The QC of RNA-seq data and quantifying gene expression is included in the pre-

processing steps of trans-PCO (see above). For individual-level QC, we removed related individuals from 922 samples and kept 913

individuals in total for further analysis. For genotype-level QC, we used SNPs with genotyping rate >99%, minor allele

frequency >5%, and Hardy-Weinberg equilibrium < 10� 6. The detailed procedures were described in Liu et al.17

Summary-statistics-based trans-PCO
The eQTLGen Consortium9 has conducted the largest cis- and trans-eQTLs association analyses in blood to date. Specifically,

31,684 samples were tested for over 11 million SNPs across 37 cohorts. The summary statistics of trans-eQTLs are available for

10,317 trait-associated SNPs on 19,942 genes.

We applied our pipeline trans-PCO to eQTLGen summary statistics, using the same 166 co-expression gene modules defined in

DGN dataset. We searched for trans-eQTLs among 10,317 SNPs.

The eQTLGen summary statistics are marginal Z scores meta-weighted across multiple cohorts. Most Z scores are from studies

where the RNA-seq reads with mappability issues were not filtered out before quantifying gene expression profiles. Therefore,

directly applying trans-PCO to the summary statistics can lead to false positive signals, which are driven by the cross-mappability

between the genes in the module and the cis-gene of the test SNP. In order to reduce false positive trans signals, we removed

from the gene module genes that are cross-mappable to the cis-gene (within 100kb) of the test SNP, which is a common practice

used in previous studies.7,16,46 We further removed genes on the same chromosome as the test SNP to prevent the detected trans

effects from being dominated by cis regulations.

The gene expression profiles are not available in eQTLGen. Therefore, to estimate the gene correlationS of a module, we searched

among eQTLGen SNPs for SNPs insignificantly associated with the module (null SNPs) (see Methods S3 for details, Figure S20). We

observed that there are less null SNPs that can be found for large modules. And simulations show that the low ratio of the number of
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null SNPs used forS estimation to themodule size leads to false positive signals (Methods S3). Therefore, we removed 37 genemod-

ules with ratios lower than 50. Finally, we performed trans-PCO on the remaining 129 gene modules.

QUANTIFICATION AND STATISTICAL ANALYSIS

Colocalization of trans-eQTLs and GWAS loci
To define a region to perform colocalization, we first selected the trans-eQTL with themost significant p value and expanded a 200kb

flanking genomic region centered at the lead SNP as a region to perform colocalization analysis. We then moved on to the next most

significant SNP and expanded a 200kb flanking region. We stopped searching for lead SNPs when all trans-eQTLs were included.

This resulted in 255 trans region-module pairs. As two adjacent regions could correspond to the same colocalization signal, we

marked adjacent regions as a region group if their lead SNPs were within 200kb, which generated 179 trans-region–module pairs

in total. We ran colocalization analysis between each 200kb trans region and GWAS loci of 46 complex traits using the R package

coloc,24 assuming there is at most one causal variant for each region. We used the default priors and 0.75 as the PP4 cutoff for sig-

nificant colocalizations. We defined a merged region group as being colocalized with a trait if any of its 200kb sub-regions has sig-

nificant colocalization with the trait. We visualized the colocalized regions using LocusCompareR.47

Colocalization of trans-eQTLs and cis-e/sQTLs
We performed colocalization analysis between trans-eQTLs and cis-eQTLs (cis-sQTLs) of genes near the trans-eQTLs. We used the

same 179 trans-region–module pairs defined in the colocalization analysis of GWAS loci. For a trans loci, we searched for the genes

within 500 kb around the lead trans-eQTLs of the loci, and used these genes to perform colocalization. We used summary statistics of

cis-eQTLs and cis-sQTLs in the DGN dataset from Mu et al.23 We ran coloc24 with default priors and 0.75 as PP4 cutoff.

Trait heritability enrichment in gene modules
To investigate whether a genemodule is enriched for trait heritability, we applied stratified LD score regression42 (S-LDSC) to 166 co-

expression gene modules and 46 complex traits and diseases. Specifically, for each module we defined the annotation set as the

SNPs within genomic regions of genes in the module and also a 500 base-pair window around the genes. We also included 97 an-

notations from the baseline model. Partitioned heritability enrichment was calculated as the proportion of trait heritability contributed

by SNPs in the module annotation over the proportion of SNPs in that annotation.

Association of drug targets with disease-relevant gene sets regulated in trans

To show the translational application of trans-PCO results, we examined whether drug targets are more likely to be associated with

disease-relevant pathways or gene sets in trans (Methods S4). We first downloaded drug targets of various diseases from The Broad

Institute Drug Repurposing Hub (https://repo-hub.broadinstitute.org/repurposing). We then examined whether the drug targets are

near any SNPs that have significant trans associations with immune-related gene co-expressionmodules or hallmark gene sets in the

eQTLGen dataset.
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