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Functional protein dynamics in a crystal

Eugene Klyshko1,2,7, Justin Sung-Ho Kim1,2,7, Lauren McGough 3,
Victoria Valeeva2, Ethan Lee2,4, Rama Ranganathan 5,6 &
Sarah Rauscher 1,2,4

Proteins aremolecularmachines and tounderstandhow theywork,weneed to
understand how they move. New pump-probe time-resolved X-ray diffraction
methods open up ways to initiate and observe protein motions with atomistic
detail in crystals on biologically relevant timescales. However, practical lim-
itations of these experiments demands parallel development of effective
molecular dynamics approaches to accelerate progress and extract meaning.
Here, we establish robust and accurate methods for simulating dynamics in
protein crystals, a nontrivial process requiring careful attention to equilibra-
tion, environmental composition, and choice of force fields. With more than
seven milliseconds of sampling of a single chain, we identify critical factors
controlling agreement between simulation and experiments and show that
simulated motions recapitulate ligand-induced conformational changes. This
work enables a virtuous cycle between simulation and experiments for visua-
lizing and understanding the basic functional motions of proteins.

Protein functions in the cell, such as enzymatic activity, signaling, and
transport, are driven by conformational changes between multiple
states1–3. To understand biological processes at themolecular level, we
therefore require a precise description of protein dynamics1. Pump-
probe time-resolved X-ray methods have made it possible to observe
functionally relevant motions in a crystal environment in atomistic
detail4–7. In these experiments, the protein’s motion is a non-
equilibrium response to an external perturbation, such as reaction
initiation5, temperature-jump4, or the application of an electric field6.
The latter, known as electric field-stimulated X-ray crystallography
(EFX) can resolve protein dynamics on a sub-μs timescale by providing
structural snapshots separated by 50 to 100 ns time intervals6. These
snapshots represent ensemble averages, asproteinsmayadoptdiverse
conformations even within the crowded environment of a crystal8,9.
Because of this conformational averaging, an ensemble view is needed
to complement the dynamical information obtained in the EFX
experiment.

Molecular dynamics (MD) simulations can explicitly probe con-
formational heterogeneity, describing protein motions with a high
temporal resolution (femtoseconds) on timescales relevant to pump-

probe experiments (ns to μs)10. Therefore, MD simulations are capable
of bridging the gap between structural snapshots obtained in the EFX
experiment inorder toprovide amore completedescriptionofprotein
motions. At the same time, high-resolution crystallographic measure-
ments obtained in EFX may be used to test the performance of simu-
lation models and force fields. Such benchmarking demands an
accurate representation of experimental conditions in simulations,
including explicit modeling of the crystal environment, temperature
and the magnitude of the applied electric field.

Although MD simulations are typically used to model protein
dynamics in solution, simulating proteins in the crystalline state has
been the focus of dozens of studies11–31. The total sampling in these
simulations (quantified by the number of atoms multiplied by the
simulation length) reveals a pattern of exponential increase over time
reminiscent of "Moore’s law" (Supplementary Fig. 1), increasing by
about tenfold every five years. While earlier protein crystal studies
often involved short, single unit-cell simulations, more recent studies
have reached microsecond timescales22 and employed system sizes
that encompass multiple unit cells (or supercells)26,29, which has
improved agreementwith experimental data22,26,29. It is nowpossible to
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use simulations to aid in the interpretation of ambiguous electron
densities and the refinement of protein crystal structures30. Further-
more, protein conformational ensembles from crystalline MD simula-
tions have recently been directly compared to multi-conformer
ensemble models from X-ray diffraction9,32. Taken together, these
methodological advances have set the stage to approach modeling
non-equilibrium experiments using simulation.

In order to simulate the EFX experiment, the protein crystal must
fully relax to an equilibrium state before the dynamic response to an
electric field can be investigated. Starting a simulation from the
experimentally-resolved crystal structure placed in a lattice can lead to
μs-long relaxation25,26. This relaxation occurs because the initial con-
figuration of the lattice might not correspond to a free energy mini-
mum in the force field and the conditions simulated. For this reason, it
is crucial to obtain temporal convergence of the average protein
structure. Correlated atomic motions are another important aspect of
crystalline dynamics;29 these motions may converge more slowly in
simulations than mean atomic positions33.

In this work, we use MD simulations to study the equilibrium
ensemble of a protein in a crystal — an initial step towards simulating
the EFX experiment. As a model system, we chose a human PDZ
domain (LNX2PDZ2, Fig. 1a), which was studied in the first EFX
experiment6. PDZ domains bind the C-terminal residues of partner
proteins, resulting in the assembly of large intracellular protein com-
plexes involved in a variety of cellular processes34. Many pathogenic
viruses produce PDZ ligands that disrupt the assembly of these com-
plexes in the host organism. For example, the LNX2PDZ2 domain has
been shown to interact with the E protein of SARS-CoV-235. Because
PDZdomains exhibit local andnon-local conformational changes upon
ligand binding36–38, they are an ideal model system to investigate
functional motions and single domain protein allostery37–40.

Utilizing extensive simulations of a protein crystal, we first iden-
tify critical factors controlling the agreement between the simulations
and experiment. The conformational ensembles obtained using dif-
ferent force fields (Amber ff14SB41 and CHARMM36m42) are found to
be distinct and non-overlapping, which can be traced to a difference in
the population of specific side chain rotameric states. Importantly, we

establish that the simulations using the Amber ff14SB force field most
accurately reproduce the crystal structure. Then, we combine this data
set with equilibrium simulations of the PDZ domain in solution (apo
and ligand-bound) to describe the effects of ligand binding on the free
energy landscape. We find that the structural changes of the protein in
the crystal resemble ligand-induced conformational changes, which
suggests that the motions observed in the crystal are functionally
relevant.

Results
Optimizing the model of the protein crystal
The first aim of this study is to determine the simulation setup that
provides an accurate representation of the protein crystal at equili-
brium. To model a crystal lattice, we constructed a supercell with a
3 × 3 × 3 unit-cell layout (Fig. 1a), as simulating large supercells is
required to accurately capture protein crystal dynamics29. This layout
also prevents self-interaction of the unit cells across periodic bound-
aries, allowing each unit cell to be surrounded by independent (non-
periodic) neighbors. The supercell arrangement has the added benefit
of increased conformational sampling, as it contains 108 individual
protein chains. We used three different force fields: Amber ff14SB41

(ff14SB), CHARMM36m42 (C36m), and Amber ff9443 (ff94) to deter-
mine the one providing the highest accuracy. Additionally, we con-
sidered twoways tomodel the solvent inside the protein crystal, either
in a simplified way (water and counter-ions) or including crowding
agents present in the crystallization buffer. Detailed protocols and
descriptions of the systems studied are provided in Table 1, Methods,
and Supplementary Methods.

Before assessing accuracy, we must first ensure that the simula-
tions have reached equilibrium. Here, we specify two necessary con-
ditions for the system to be at equilibrium: (i) average structural
observables must converge for each simulation replica, and (ii) mul-
tiple replicas starting from different initial conditions must become
indistinguishable. To establish condition (ii), we simulated three
replicas of each crystal system.

To begin, we considered a simplified crystal environment, that is,
solvated with only water and ions. Using the two conditions for

Fig. 1 | Equilibrating the PDZ domain crystal. a The simulated system is a
supercell (108 protein chains) in a 3 × 3 × 3 unit-cell arrangement, where each unit
cell contains four symmetrically-related copies. The second PDZ domain of the
human E3 ubiquitin ligase LNX2 (LNX2PDZ2, PDB ID: 5E11) was used as the model
system. b–e The average RMSD with respect to the crystal structure (computed
using heavy atoms only) is shown for the simplified crystal environment using force

fields (b) C36m, (c) ff14SB, (d) ff94, and (e) for the system with crowders using
ff14SB. The standard deviation (n = 108) for each replica is represented by a shaded
envelope. Each plot shows the mean 〈RMSD〉 ( ± standard error for n = 3 replicas)
computed for the last 1 μs of simulations. Note that the simulations with ff94 (d)
and ff14SB with crowders (e) have not reached equilibrium.
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equilibrium, we analyzed the deviation of the protein from the crystal
structure based on the root-mean-squared deviation (RMSD) and the
fraction of preserved native contacts (Q). In the ff14SB simulations,
both RMSD and Q are consistent between replicas and reach a plateau
after 1.5 μs of simulation (Fig. 1c and Supplementary Fig. 2b), satisfying
both conditions for equilibrium. Next, we analyzed atomic covariance,
which is related to diffuse scattering29,33,44.We find that convergence of
the atomic covariance matrix (Supplementary Fig. 3b) requires a
timescale similar to that required for convergence of mean atomic
positions, which are captured by RMSD and Q. In the C36m simula-
tions, RMSD, Q and the atomic covariance exhibit a considerably
slower relaxation (Fig. 1b, Supplementary Figs. 2a, and 3a). Even after
10 μs, these simulations fail to satisfy both conditions for equilibrium,
as one out of three replicas did not reach a plateau.

We wanted to understand whether this slow relaxation could be
due to conformational heterogeneity resulting from the parametriza-
tion of modern protein force fields. Specifically, disordered and par-
tially folded states of proteins have been included in the development
of recent force fields41,42, while older force fields were optimized to
accurately describe folded states. To address this question, we simu-
lated the same crystal with a much older force field, ff94, which pre-
dates this type of parametrization43, and was previously reported to
provide fast (nanosecond) equilibration of protein crystals45,46.We find
that ff94 also exhibits slow relaxation ( > 2 μs), but with significantly
lower accuracy compared to ff14SB and C36m (seemean RMSD values
in Fig. 1b–d). Thus, we discontinued the ff94 simulations without
reaching convergence (Fig. 1d, Supplementary Figs. 2c, and 3c). Since
the crystal simulated with ff94 also exhibits a slow relaxation, we
conclude that it is not the approach to optimization of modern force
fields (specifically, C36m and ff14SB) that leads to the slow relaxation
of the crystal.

Prior crystal simulation studies showed equilibration times of tens
to hundreds of nanoseconds (Supplementary Table 1) with some
dependence on force field20,25, while in our study, both ff14SB and
C36m require microseconds to converge. The longer equilibration
times observed here are likely due to the large system size (a super-
cell). Indeed, in our previous simulation study of the samePDZdomain
crystal as a single unit cell (using C36m), the relaxation timewas found
to be 600 ns47, which is comparable to relaxation times observed for
systems of a similar size25. A smaller system should reach equilibrium
more quickly than a larger system because there are fewer protein-
protein interfaces — a point worth considering when simulating the
dynamics of larger supercells.

So far, we have modeled the protein crystal using a simplified
crystal environment (including only water and ions). Next, we inves-
tigated if this model could be further improved by considering more
realistic solution conditions. This is motivated by the study of Cerutti
et al.48, who found that including crowders improved the accuracy of
their crystal simulations. Using ff14SB, we simulated the supercell with
the crowders found in the crystallization buffer (PEG and glycerol, see
Methods) to determine if this setup could improve the accuracy.
However, we find that the protein exhibits a higher deviation from the

crystal structure in the system with crowders (Fig. 1e) compared to a
simplified environment (Fig. 1c). In contrast to the work of Cerutti
et al.48, explicit modeling of crowding agents does not improve (and
slightly worsens) the agreement with the crystal structure in our
simulations. For this reason, we discontinued these simulations after
1.7 μs without reaching equilibrium.

In setting up the simulations with explicit crowders, we assumed
that themolarity of the crowding agents in the lattice is the same as the
crystallization buffer. However, the actual concentrations of crowders
in the crystal might be different from the concentration in the buffer
because the crystal latticemay favor the inclusion of certainmolecules
more than others49,50. We also lack experimental information on the
location of crowders. In addition, when adding PEG to the simulation
system, there is a bias for conformations of PEG that are overly com-
pact because extended conformations will not fit in the interstices
between protein chains. Due to these challenges in modeling, adding
explicit crowders to the system will not necessarily result in improved
agreement with the experiment.

Accuracy of the simulated protein crystal
After optimizing the simulation setup to model the protein crystal
(four systems shown in Fig. 1), we assessed the agreement between
simulation and experiment across additional observables. Since the
ff14SB and C36m simulations sample a conformational ensemble clo-
sest to the equilibrium state, we focus on these two forcefields (shown
in Supplementary Movies 1 and 2). For completeness, analysis of the
other systems, ff94 and ff14SB with crowders, is presented in Supple-
mentary Notes 5, 7, and 10.

To evaluate how well the protein structure is preserved in the
simulation, we computed themean squared deviation (MSD) using the
final 1 μs of simulation (Fig. 2a). For both ff14SB and C36m, the
structure is well-preserved overall, with the loop regions and
C-terminal tail exhibiting the highest deviation from the crystal
structure. To visualize these structural differences, we computed the
ensemble-averaged structure in each force field (Fig. 2b). The RMSD
between the average structure and the experimental structure is 1.28Å
and 1.58 Å for ff14SB and C36m, respectively. Because this degree of
structural divergence is comparable to deviations between different
crystal structures of this PDZ domain (Supplementary Fig. 4), these
results indicate that the average structure is well-captured in the
simulations.When comparing the averageMD structures to each other
(Fig. 2a, gray, and Fig. 2b, right), we find a smaller RMSD (1.02Å). These
results suggest that the ensembles sampled by these two force fields
are more similar to one another than to the real crystal, at least
according to this structural metric.

Next, we focus on analysis of B-factors, which characterize the
spread of electron density in the crystal. B-factors include contribu-
tions from protein structural mobility and lattice disorder20,51. In
simulations, B-factors can be computed from the root-mean-squared
fluctuation (RMSF) of atomic positions using the equation B = 8π2/
3 RMSF2. Here, we consider two types of B-factors, Blattice and Bchain,
which depend on the degrees of freedom contributing to the

Table 1 | MD simulations of a PDZ domain in the study

# Simulation setup Force Field / Water Model No. of replicas × sim. time Total sampling for a single chain

1 crystal (water) 3 × 3 × 3 supercell C36m / TIP3P* 3 × 10μs 3300 μs

2 crystal (water) 3 × 3 × 3 supercell ff14SB / TIP3P 3 × 7 μs 2300μs

3 crystal (water) 3 × 3 × 3 supercell ff94 / TIP3P 3 × 2 μs 600 μs

4 crystal (water + crowders) 3 × 3 × 3 supercell ff14SB / TIP3P 3 × 1.7 μs 540 μs

5 solution (water) single PDZ domain C36m / TIP3P* 10 × 4.5 μs 45μs

6 solution (water) single PDZ domain ff14SB / TIP3P 10 × 3 μs 30μs

7 solution (water) single PDZ domain + ligand ff14SB / TIP3P 9 × 2 μs 18μs

* CHARMM-modified TIP3P.
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fluctuations20. Blattice represents the total atomic fluctuations within
the crystal lattice, including both atomic fluctuations within the pro-
tein chain andmotions of theprotein chain as awholewithin the lattice
(visualized in Supplementary Movies 5 and 6). Bchain captures only the
atomic fluctuations within a protein chain, ignoring the rigid-body
motions of the individual chains with respect to each other (see Sup-
plementary Methods).

The overall profile of the B-factors fromboth the ff14SB andC36m
simulations are consistent with the experimental B-factor profile
(Fig. 2c). The correlation with the experimental B-factors is high for
both Blattice (Pearson r =0.70/0.76 for ff14SB/C36m) and Bchain (Pear-
son r =0.66/0.70 for ff14SB/C36m). Both force fields accurately
describe the increased mobility of the loop regions compared to the
rest of the protein. Previous MD simulation studies of protein crystals
reported similarly high correlations of computed and experimental
B-factors25,26. Lattice B-factors (Blattice) are on average ~ 5Å2 lower than
the experimental values for both force fields. This underestimation
could be attributed to the idealized model of the lattice (a 3 × 3 × 3
supercell), which is likely insufficient to fully capture the lattice dis-
order observed in real crystals caused by impurities52. The average
difference, Blattice − Bchain = 4 ± 1 Å2 (mean ± st. dev. for n = 95 residues),
represents the contribution of rigid body motions of individual pro-
teins to the overall atomic fluctuations. This value corresponds to
lattice vibrations of ~ 0.5 Å in amplitude, which is consistent between
force fields and is typical for MD simulations of protein crystals10,25.

The atomic covariancematrix offers insights into the cooperative
motions of atomswithin the crystal. While B-factors, which depend on
the diagonal elements of the covariancematrix, describe the degree of
average atomic fluctuations, the off-diagonal elements quantify the

pairwise relationships between their movements. We analyzed the
dependence of covariance on interatomic distances (Supplementary
Fig. 6), which can be used to identify different types of internal
dynamics, ranging from rigid-body movements to liquid-like
motions17,28,44,53. We observe an exponential decay of covariance as a
function of interatomic distance with a scale factor of ~ 11 Å, which is
consistent between force fields. This scale factor indicates that the
motion in the crystal is liquid-like, consistent with previous studies28,53.

To assess how well the properties of the crystal lattice are pre-
served, inverse crystallographic transformations were applied to the
positions of each of the 108 protein chains in the supercell (see Sup-
plementary Note 7). In the ideal case of an undistorted lattice (from
which the simulations started, Fig. 1a), all points would remain at the
origin. Due to thermal motion, lattice vibrations occur and the posi-
tions of the center of mass of individual chains scatter around their
undistorted position (corresponding to the origin). The amplitude of
these deviations from the origin indicates the level of disorder in the
lattice (Supplementary Table 2). For the ff14SB simulations, the aver-
age amplitude is 1.61 ± 0.01 Å, while for the C36m simulations, it is
higher, 1.81 ± 0.05 Å (mean ± st.dev. for n = 3 replicas). To visualize the
lattice disorder, we projected transformed chain positions onto the ac
crystallographic plane (Supplementary Movies 5 and 6). Representa-
tive frames are shown in Fig. 2d. In the unit cell, two protein chains
oriented in the same direction (Fig. 1a) are shifted by 2–4 Å relative to
the other two chains, oriented in the opposite direction. This shift,
whichwe refer to as crystal symmetrymelting, is causedby anisotropic
pressure coupling, which scales the simulation box vectors and
reshapes the lattice (see Supplementary Note 8). The motivation for
using an NPT simulation setup in the first place was to accurately

Fig. 2 | Assessing theaccuracy of the ff14SB andC36mcrystal simulations. aThe
average MSD of protein Cα positions relative to the crystal structure, with the
shaded envelope representing the mean +/- standard deviation (n = 324 chains = 3
replicas × 108 copies); theMSDbetween averageMD structures (ff14SB vs C36m) is
shown in gray. b Comparison between the crystal structure (dark gray) and the
averageMDstructures computed from the simulation ensembles. RMSD (including
all heavy atoms) is indicated for each pair of structures. c Comparison between

simulation (Blattice and Bchain) and experimental (Bexp) B-factors computed for Cα
atoms. Note that bars are overlaid, not stacked. d Projection of protein centers-of-
mass on the ac unit cell plane via inverse crystal transformations, where the origin
represents positions in an undistorted lattice. A representative snapshot of the
supercell at t = 5 μs of simulation replica 1 was used. For details, see Supplementary
Note 7. e The fraction of preserved crystallographic water sites in simulations
grouped by experimental B-factors.
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replicate the conditions of the experiment. It is known that pump-
probe experiments can cause perturbations to the unit cell
dimensions4. We note that the changing unit cell parameters preclude
a direct comparison to experimental structure factors due to the lack
of isomorphism between unit cells.

To further investigate the observed changes in the crystal lattice,
we analyzed changes in the protein-protein interfaces during the
simulation (Supplementary Fig. 10, Supplementary Table 3). Due to
melting symmetry, the crystal lattice adopts a more favorable con-
formation with several broken and newly formed inter-protein con-
tacts (Supplementary Fig. 10). We located specific regions of the
protein where inter-molecular interactions are reformed (Supple-
mentary Table 3); these regions exhibit the highest deviation from the
crystal structure (Fig. 2a). These results demonstrate the coupling
between protein structure and crystal lattice geometry. In particular,
perturbations of the protein structure, followed by changes to the
protein-protein interfaces, lead to the distortion of the crystal lattice,
and vice versa.

Another important aspect of crystal dynamics is the ordered sol-
vent. Crystallographic water sites (CWS) are the positions of ordered
water molecules that are resolved in a crystal structure. These loca-
tions can be detected in MD trajectories and compared to the crystal
structure to benchmark the accuracy of modeling crystals in
simulations47,54,55. We developed a method called local alignment for
water sites (LAWS) to conduct this type of analysis by explicitly
accounting for protein motion in the lattice47. The LAWS algorithm
determines if CWS are preserved in a simulation based on the local
water density around these sites.

Using LAWS, we find that the proportion of preserved CWS is
71 ± 1% (mean ± st. dev. forn = 3 replicas) for both the ff14SB andC36m
force fields (Supplementary Table 4), which is consistent with our
study of the same PDZ domain crystal modeled as a single unit cell47.
For both force fields, the CWS with higher confidence (lower experi-
mental B-factors) are found to be more frequently preserved in
simulations than the CWS with lower confidence (higher B-factors), as
shown in Fig. 2e. Analysis of the water sites that are not preserved in
simulations demonstrates that they are nearly all coordinated by
flexible protein regions at perturbed protein-protein interfaces (Sup-
plementary Tables 3 and 5). These observations suggest that ordered
water molecules in the crystal are strongly affected by protein
dynamics and changes in the crystal geometry.

Dimensionality reduction elucidates force field differences
While ff14SB and C36m exhibit similar accuracy in capturing various
properties of the protein crystal, there are notabledifferences, namely,
in the protein structure (Fig. 2b) and at least a ten-fold difference in
relaxation time (Fig. 1b, c). To better understand these differences in
structure and dynamics, we compared the conformational ensembles
of the PDZ domain across all simulations carried out in this study
(Table 1) using dimensionality reduction techniques. Ramachandran
angles ϕ/ψ and Janin angles χ1/χ2 for each residue, normalized by the
sin/cos transformations56, were used in the feature vector (see
Methods).

Firstly, we carried out principal component analysis (PCA) to
capture the sources of variability present in the simulations (Fig. 3a).
The PCA projection linearly separates the ensembles generated using
different force fields (ff14SB, C36m, and ff94) into distinct, nearly non-
overlapping basins. The separation between force fields is not limited
to the crystal but extends to the ensembles obtained in solution
(Fig. 3a), indicating that the protein conformational space strongly
depends on the force field irrespective of the environment. Interest-
ingly, we would be able to deduce which force field was used to gen-
erate a protein conformation with near certainty by projecting it onto
this PCA space. While, in general, it is reasonable to expect that force
fields will generate ensembles that differ, the extent of these

differences (i.e. the fact that the ensembles are nearly non-over-
lapping) is surprising.

The crystal structure of the PDZ domain, from which all simula-
tions were initialized, is located in the ff14SB region of the PCA pro-
jection (black circles, Fig. 3a). Consistent with other assessments of
accuracy (Figs. 1, 2), this result suggests that the ff14SB ensemblemore
accurately represents the crystal structure than the other force fields.
To account for uncertainty, we projected all 16 alternative conforma-
tions of the crystal structure on the PCA space. These structures
indicate the degree of variation in the ground-state crystal structure,
outlining a convex region of the PCA space where all of these struc-
tures are located. For the ff94 and C36m simulations, the transition
from the initial crystal structure to the corresponding force field basin
in the PCA projection occurs within the first 1 ns. The fact that these
transitions occur soquickly suggests that they involve local rather than
global conformational changes. Indeed, when alternative featuriza-
tions are used, particularly those that only characterize the backbone
structure without accounting for side chains (Supplementary Fig. 12),
the force field ensembles have significantly more overlap.

To understand the separation of force field ensembles, we ana-
lyzed the coefficients of the first principal component (PC 1), which
identifies features with the highest contribution to the variance in the
dataset (Supplementary Fig. 13). When considering the backbone
dihedral angles, the residues that contributemost toPC 1 are located in
the protein regions that show significant deviation between the aver-
age MD structures (Fig. 2a and Supplementary Fig. 13a). When con-
sidering the side chain dihedral angles, we find that all five glutamine
and several glutamic acid residues have a high contribution to PC 1
(Supplementary Fig. 13b). As an independent approach to study the
force field differences, we used linear discriminant analysis (LDA,
Supplementary Fig. 15a). In contrast to PCA, LDA takes into account
class information (in this case, force field) and finds linear combina-
tions of features that maximize the separation between classes. Con-
sistent with PCA, the results obtained with LDA suggest that the side
chain dihedral angles of glutamine and glutamic acid residues are
primarily responsible for the separation between the two force fields
(Supplementary Fig. 15b). Indeed, when analyzing the χ1 and χ2 dis-
tribution for these two residues, we find significant differences
between the forcefields in termsof the populations of rotameric states
(Fig. 3c). The control distributions of rotamers for the least important
residues (according to PC 1) are consistent between ff14SB and C36m
(Supplementary Fig. 16), establishing that the differences between
force fields observed for glutamine and glutamic acid residues are
meaningful.

In order to determine if the difference in rotameric states for
these two residues is unique to this PDZ domain, or a more general
discrepancy between ff14SB and C36m, we extended this analysis to
MDsimulations of twoother protein systems (SupplementaryNote 15).
Similar to the results for the PDZ domain, these simulations also show
significant differences between force fields for the glutamine side
chains (Supplementary Fig. 17), demonstrating that these differences
arenotunique to either protein crystal simulations or this PDZdomain.
The difference between ff14SB and C36m in other simulation systems
is found to be less pronounced for glutamic acid residues (Supple-
mentary Fig. 17). Next, to uncover which of the two force fields more
accurately captures glutamine rotameric states, we carried out the
same analysis on the Top8000 dataset57, which includes high-
resolution crystal structures of diverse proteins from the Protein
Data Bank (PDB). The ff14SB force field is more consistent with the
Top8000 dataset compared to C36m (Fig. 3c and Supplementary
Fig. 17). We note that this analysis is limited, as the backbone depen-
dence of rotameric states is not taken into account here. Nevertheless,
the comparison to the Top8000 dataset suggests that ff14SB more
accurately represents the populations of the side chain rotameric
states of glutamine residues.
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Accurately capturing the correct populations of rotameric states
is important when using MD simulations to understand the functional
mechanism of proteins. For example, the rotameric state distribution
of a specific glutamic acid residue in the potassium channel MthK was
found to differ between ff14SB andC36m58. In our analysis, several (but
not all) glutamic acid residues are found to be important (Supple-
mentary Figs. 13b, 14b, and 15b). Taken together, these results suggest
that the C36mdihedral energy parametersmay need to be reevaluated
to more accurately represent populations of side chain rotameric
states (see Supplementary Note 16 for additional analysis).

Characterizing slow relaxation
While our analysis with PCA and LDA yields important insights into
force field differences, this approach is limited in capturing con-
formational states within each force field’s ensemble (Fig. 3a). We
therefore turned to universal manifold approximation and projection
(UMAP), which is a non-linear dimensionality reduction algorithm that

aims to preserve the internal structure ofmultidimensional datasets in
a low-dimensional space59 and has been used for structural classifica-
tionof biomolecules in simulations60,61. Consistentwith PCA, theUMAP
projection of the same feature space (Fig. 3b) separates the con-
formational ensembles into distinct regions based on the force field,
withUMAP axis 1 corresponding to rapid side chain rearrangements. In
addition to the insights offered by PCA, UMAP yields a detailed
representation of the conformational ensemble.

To explore global conformational changes as the crystal system
relaxes towards equilibrium in each force field, we employed aMarkov
state model (MSM) approach. MSMs have been used to identify con-
formational transitions, estimate transition timescales, predict equili-
brium state populations62,63, and have been successfully applied toMD
trajectories to describe slow processes such as protein folding64. For
both ff14SB and C36m ensembles, we constructed MSMs using the
UMAP projection to classify structures into states (see Methods). A
large number of microstates were identified, providing a fine-grained

Fig. 3 | Force field differences elucidated with two-dimensional projection of
theprotein conformational space andMarkov statemodels. a Two-dimensional
PCA. Normalized dihedral angles56 (Ramachandran and Janin) were used as fea-
tures. The first two principal components account for 14% of the total variance in
the data set. Each point represents the structure of the PDZ domain sampled from
the crystal or solution simulations using one of the force fields: ff14SB, C36m or
ff94. Crystal structures (PDB 5E11 and 5E21) are shown with black markers. b Two-
dimensional UMAPprojection of the same feature spacewith the same legend as in
(a). c Distributions of χ1 and χ2 rotameric states for glutamine and glutamic acid
residues in the ff14SB and C36m simulations, as well as the population of these

rotameric states in the Top8000 dataset57. Error bars represent standard error over
n = 3 replicas. In most cases, the error bars are smaller than the line width. d The
characteristic timescales of transitions in the coarse-grained 10-state MSMs built
for crystal simulations shown in Supplementary Figs. 18 and 19. The gray area
represents the timescales of transitions which are faster than the lag time used
(τ = 500 ns). e Superimposed representative conformations from the three domi-
nant states (initial state, state 1, and 2) of the coarse-grained MSMs are shown for
the ff14SB and C36m simulations. Green arrowswith labels indicate protein regions
exhibiting the highest deviation between states, as estimated from the distance
maps (Supplementary Fig. 20).
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decomposition of the conformational ensemble (Supplementary
Fig. 18). These microstates were subsequently grouped into 10 meta-
stable states using kinetic lumping, with only a few states showing
significant equilibrium populations (Supplementary Figs. 18 and 19).

The MSM analysis shows that conformational transitions that
involve global structural changes are notably slow in the crystal,
occurring over μs to ms timescales (Fig. 3d). Except for one instance,
all characteristic rates in ff14SB are significantly faster than those in
C36m (Fig. 3d and Supplementary Fig. 18c). This difference in char-
acteristic rates explains the faster convergence of structural metrics,
such as mean atomic coordinates and covariations, observed in ff14SB
compared to C36m (Fig. 1 and Supplementary Fig. 3). In the ff14SB
simulations, an extremely slowprocess involving the opening of the β1-
β2 loop has a characteristic timescale of τ ≈ 570μs. However, given that
this timescale is much longer than our simulations (570μs≫ 7μs), the
impact of this slow conformational change on average structural
metrics is negligible compared to faster transitions, such as those
involving theC-terminal tail (Fig. 3e, left). For instance, the populations
of these conformational states converge exponentially with char-
acteristic timescales of ~ 3 μs (Supplementary Fig. 19a), corresponding
to the second slowest process (Supplementary Fig. 19c). Unlike ff14SB,
C36m exhibits dominant transitions not only in the β1-β2 loop but also
in the β2-β3 loop and the α2 helix (Fig. 3e, right), which occur on
timescales of 18.6 μs (Supplementary Fig. 19b, d).

We note that even though average atomic positions and covar-
iances have converged in the ff14SB simulations, the equilibrium
populations have not yet been reached. On the other hand, both
structural metrics and state populations have not converged in C36m;
C36m displays slower dynamics overall in the crystal. A slower con-
vergence of C36m compared to ff14SB is also observed in simulations
of the PDZ domain in solution (Supplementary Fig. 28a). We speculate
that the different rates of global conformational change in the two
forcefields canbe attributed to the difference in the functional formof
the potential energy. In contrast to ff14SB, C36m and its predecessors
incorporate a CMAP correction, introducing a statistical energy term
that aligns the distribution of backbone dihedrals with those derived
from experimental and quantum mechanical methods41,42,65. While the
CMAP corrections have led to improved agreement with
experiment42,66, this additional term in the potential energy can impact
the dynamics of the protein backbone (see Supplementary Fig. 21 for
analysis of the backbone dihedrals). However, it remains unclear which
force field more accurately captures the timescales of conformational
transitions in the crystal.

Taken together, the results shown in Fig. 3 provide a detailed
account of the conformational changes involved in the equilibra-
tion of the PDZ domain crystal. Starting from the crystal structure,
the proteins in the lattice undergo fast (ns-timescale) conforma-
tional changes involving reorientation of the side chains. These fast
conformational changes result in the separation of the ensembles
into distinct force field regions in both the PCA and UMAP projec-
tions, and they are followed by slow (μs-timescale) rearrangements
of the backbone structure. It is the slow backbone conformational
changes that correspond to the long timescales required to reach
equilibrium.

Functional relevance of the protein motions in the crystal
Based on the comparison to experimental data and the structural
analysis presented above, the supercell simulatedwith ff14SB provides
themost suitablemodel for the crystal. Using this simulation setup, we
have accumulated nearly 2 ms of sampling for a single protein chain
(Table 1), which can be used to study conformational heterogeneity
and motions in the crystal. To determine the motions with the largest
amplitudes, we analyzed the PCA projection of the converged portion
of protein trajectories (Fig. 4a), where pairwise Cα distances were
chosen as features that inherently account for pairwise interactions.

The coefficients of the first PC indicate that the dominant con-
formational change corresponds to the motion of the β1-β2 loop
(Supplementary Fig. 22a), which is also the slowestmotion identified in
theMSManalysis (Fig. 3e). The second PC represents themuch smaller
motion of the β2-β3 loop (Supplementary Fig. 22b). The relative posi-
tion of the β1-β2 loop can be described by a single distance between
two residues, Ser14 and Gly78, spanning a range from 4 to 15 Å (indi-
cated in Fig. 4b, c). The large amplitude ofmotion for this loop (10Å) is
remarkable given the tightly packed environment of the crystal. Such a
high conformational heterogeneity cannot be inferred from the crys-
tallographic data alone, as a significant amount of information
regarding the flexibility and motions of proteins is lost during the
refinement process67,68.

To identify conformational states, we applied UMAP to the same
features as used in PCA (Supplementary Fig. 23). We find that there are
three states in the ensemble that are well-described by the position of
the β1-β2 loop (Fig. 4b, c). The distributions of the Ser14-Gly78 distance
indicate that these states correspond to closed, intermediate, and open
loop conformations (Fig. 4b). While the open state is characterized by
stable contacts between the loop and the α1 region, the closed state
instead forms contacts between the loop and the α2-β6 region (Fig. 4c
and Supplementary Fig. 24).

Our next goal was to understand whether the three conforma-
tional states found in the crystal are related to the functional activity of
the PDZ domain — namely, binding of a ligand, which is known to
induce conformational changes in PDZ domains40,69. The functional
relevance of these conformational states can be addressed by com-
paring ligand-bound and ligand-free ensembles of the protein.
Accordingly, two additional systems of the PDZ domain in solution
were simulated: ligand-bound and ligand-free. Note that the supercell
simulations represent a ligand-bound form, as the C-terminal tail of
each chain is bound to its neighbor’s ligand binding site (see Methods
and Fig. 1a). With these three simulation systems, in addition to the
effect of ligand binding, we can study the effect of environment
(crystal vs. solution) on the conformation of the β1-β2 loop. Repre-
sentative simulations for each of the three systems are shown in Sup-
plementary Movies 1, 3, and 4.

From the distributions of the Ser14-Gly78 distance in the three
simulation systems (Fig. 4d–f), we candetermine the population of the
β1-β2 loop states. In the crystal lattice (ligand-bound), the closed state
dominates the ensemble, while the open state is rarely observed (0.3%,
Fig. 4d). We note that the population of the open state has not yet
converged and, based on the MSM analysis, has a small predicted
population of 7% at equilibrium (Supplementary Fig. 19a). In contrast,
the open state is highly populated in solution for both the ligand-
bound and ligand-free simulations (Fig. 4e, f). The β1-β2 loop in the
crystal exhibits a much lower structural diversity than in solution, as
demonstrated by estimates of conformational entropy from the Ser14-
Gly78 distance distributions, Scryst ≈ 3 vs. Ssol(bound) = Ssol(unbound)≈ 7
(refer to Fig. 4d–f and Methods for details). The crowded crystal
environment stabilizes a more compact state of the protein, with a
closed β1-β2 loop, due to inter-protein contacts. The crystal environ-
ment also perturbs the structure of the β2-β3 loop, but the effect is less
pronounced than the effect on the β1-β2 loop (Supplementary Fig. 25).

Next, we address the effects of ligand binding on the conforma-
tional ensemble of the PDZ domain in solution. The presence of a
ligand in the active site results in a two-fold increase in the population
of the closed state (Fig. 4e, f). The free energy profiles show that the
ligand decreases the free energy of the closed state by ~ 1 kBT and
lowers the free energy barrier separating the closed and intermediate
states by ~ 2 kBT (Fig. 4g). Therefore, ligand binding stabilizes the
closed state, suggesting that the β1-β2 loop motion is important in the
functional activity of the PDZ domain. Indeed, the “clamping” of the β1-
β2 loop upon ligand binding has been observed in other PDZ
domains69–72, supporting the functional relevance of these states.
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We have shown that the slowest motion in the crystal (β1-β2 loop
motion) is functionally relevant.We extendedour analysis to probe the
functional relevance of the other equilibriummotions in the crystal. In
particular, we assessed the similarity between the conformational
changes occurring in the crystal simulations and those induced by
ligand binding across crystal structures of the PDZ domain family. The
overall profile of observed atomic deviations in the simulated
ensemble correlates strongly with the pattern of ligand-induced
structural changes in other PDZ domains (Fig. 5a; Pearson r =0.7 for
n = 84 residues, P < 0.0001). We find that the conformational changes
in our simulations are the most pronounced in the β1-β2 and β2-β3
loops, aswell as the α1 region, consistent with crystal structures of PDZ
domains (Fig. 5a, b). We note that the motions of the same loops are
also captured by the PCA (Fig. 4a). Furthermore, the same regions are
identified using an analysis of strain energy (Supplementary Fig. 26),
which is a measure that does not require explicit structural alignment
of the protein conformations. More generally, these findings are in
agreement with previous studies, both computational22 and
experimental4,6, demonstrating that functionally relevant protein
motions occur in the crystal environment.

Collectively, our results suggest that the global pattern of equili-
brium protein motions in the crystal is consistent with both local and

non-local (allosteric) conformational changes induced by ligand
binding. These changes mainly occur in conserved functional sites of
the PDZ domain family, specifically in the β1-β2 and β2-β3 loops, and the
α1 region

70. Remarkably, these are the same regions where conforma-
tional changes were observed in response to an electric field in the EFX
experiment6. By projecting the electric-field-induced crystal structures
onto the PCA and UMAP space (Fig. 3a, b), we find that they fall inside
the region sampled by the ff14SB simulations. Likewise, projecting the
simulated ensemble onto the PC space computed from these crystal
structures (Supplementary Fig. 27) reinforces this observation; the
electric field-stimulated protein conformations are contained within
our simulated ensemble (without an electric field). These findings
suggest that regardless of the type of perturbation, whether caused by
ligand binding, electric fields, or thermal fluctuations in the crystal, the
dynamic response of the protein seems to be consistent. Therefore,
from equilibrium simulations alone, it may be possible to study the
functionally relevant conformational changes that are probed in the
non-equilibrium pump-probe experiments.

Discussion
Motivated by recent methodological advances in X-ray crystal-
lography, the main purpose of our study is to obtain an accurate

Fig. 4 | Effect of environment and ligation state on the β1-β2 clamping motion.
a A two-dimensional PCA projection (using pairwise Cα distances) of the protein
conformational space in the ff14SB crystal simulations, colored by the Ser14-Gly78
distance. The first principal component (15% of the variance) represents themotion
of the β1-β2 loop, while the second principal component (7% of the variance) pri-
marily captures the fluctuations of the β2-β3 loop. The crystal structure is shown
with a black star. b The distribution of the Ser14-Gly78 distance in the crystal for
each of the three states: open, intermediate, and closed. c Representative struc-
tures of the three loop states, colored as in (b). The ligand-binding site (indicated) is

occupied by the C-terminal tail of the neighboring chain. d–g The distribution of
the Ser14-Gly78 distance, p(x), and free energy profile, G(x), in each simulation
ensemble: crystal (ligand-bound, d), solution (ligand-bound, e) and solution
(ligand-free, f). The percent populationof each state is indicated on each plot (d–f).
Conformational entropy is computed for each Ser14-Gly78 distance distribution
p(x) as S= � R

pðxÞ log½pðxÞ�dx (see Methods). g Free energy is computed as
GðxÞ= � kBT logpðxÞ. The solid line represents the mean and the shaded envelope
represents standard error computed from bootstrapping with n = 5.
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ground state ensemble of the PDZ domain in a crystal, which is the
necessary first step in modeling the EFX experiment6. Simulating the
crystalline state is required for a direct comparison to crystallographic
data to assess the accuracy of alternative models. In addition to our
results addressing this original goal, our study has a second important
outcome – the finding that the pattern of motions in the crystal
resembles the functional motions observed in solution.

In this work, we have studied the equilibrium dynamics of a PDZ
domain in a crystal supercell with a total sampling time of over 7 ms.
We address two major methodological challenges: (1) accurate
modeling of the crystal environment, and (2) the long timescales
required for equilibration. Using experimental data, we find that
Amber ff14SB outperforms other force fields in modeling accuracy,
consistent with a previous work by Janowski et al.25. In determining
the most accurate simulation setup for the protein crystal, we find
that structural ensembles generated by two widely used force fields
(Amber ff14SB and CHARMM36m) occupy distinct regions of con-
formational space due to differences in side chain dihedral angles.
We show how dimensionality reduction and MSMs can be applied to
elucidate these force field differences and estimate timescales of
global motions. In general, global conformational transitions happen

much more slowly in CHARMM36m than in Amber ff14SB. We spec-
ulate that this difference could be attributed to the CMAP correction
of the CHARMM36m force field, which influences backbone dynam-
ics. While it remains unclear which force field is more accurate in
capturing the rates of conformational transitions, comparison to the
time-resolved data of the EFX experiment6may offer away to address
this question. Our study provides a technical foundation for these
next steps and presents a realization of a ground-state conforma-
tional ensemble in the crystal, which can be perturbed by an electric
field in silico and compared to the crystal structures obtained in the
pump-probe experiment.

We note that placing a protein in the crystal lattice in our simu-
lations acts as a type of perturbation, leading to a fast reorientation of
side chains on a ns-timescale followed by a slower change of the
backbone structure over several microseconds. Importantly, the
motions observed in the crystal simulations recapitulate the functional
motions of PDZ domains, validating their use for probing intramole-
cularmechanisms. This observation aligns with the findings of a recent
study of an enzyme using temperature-jump crystallography4. Wolff
et al. demonstrated that enhanced atomic vibrations caused by a
temperature increase on a nanosecond timescale propagate into glo-
bal functional motions on a μs timescale and beyond. However, an
inhibitor bound to the enzyme’s active site generates an “orthogonal”
perturbation and changes the dynamic response of the protein crystal
to the temperature-jump4. In the context of our study, the crystal
environment represents a perturbation that is “orthogonal” to ligand
binding. Specifically, we show that the crystal environment alters the
free energy landscapeof theprotein observed in solutionby stabilizing
a functional loop in the state more favored in the ligand-bound than
apo simulations in solution.

The fact that all three functional states are present in the crystal
simulations, even if sparsely populated, contributes to our under-
standing of “hidden” states of proteins. These states, which are typi-
cally not resolvedbyX-ray crystallography, canbedetected usingNMR
spectroscopy and solution simulations73–75. Furthermore, our crystal-
line ensemble simulated in the absence of an electric field includes
conformations resembling electric-field-induced crystal structures
(Fig. 3a, Supplementary Fig. 27), suggesting the existence of weakly-
populated excited states at equilibrium. Exploring how these excited
state populations change with an applied electric field will yield valu-
able insights and provide a unique perspective on proteinmotions not
easily attained through experimental methods alone.

It is worth pointing out the critical importance of sub-μs motions
in understanding protein function, both in terms of the dynamics
defining the reaction coordinate and associated with allosteric reg-
ulation. Access to protein dynamics on this timescale and with atomic
resolution has been themotivating rationale for the pump-probe time-
resolved diffraction experiments4,6. While effective, the practical
complexities of these experiments demand a parallel validated com-
putational strategy to make predictions and to reduce the data such
that intuition about protein mechanisms can emerge. The present
study illustrates a virtuous cycle between molecular simulations and
experiments to systematically analyze the dynamics associated with
protein function. Finally, our work reiterates the significance of char-
acterizing proteins as dynamic entities navigating a free-energy land-
scape that can be altered by external perturbations1. This dynamic
behaviour is not only observed in solution but also extends to the
crystal environment, emphasizing the need for an ensemble view in
representing a protein’s free-energy landscape.

Methods
Model building
The second PDZ domain of the human E3 ubiquitin ligase Ligand-of-
Numb protein X2 (LNX2PDZ2) was used as a simulation system. The
protein structure (PDB ID: 5E11)6 with the highest occupancy was used

Fig. 5 | The relationship between equilibrium motions in the crystal and PDZ
domain function. a The deviation profile for the simulated ensemble in the crystal
(purple), which was calculated as the mean deviation between Cα atoms in
N = 2000 randomly sampled pairs of structures. The ligand-induced deviation for a
set of PDZ homologs (black). Ten pairs of crystal structures were used (apo and
ligand-bound) with a residue numbering to match that of LNX2PDZ2. Refer to Sup-
plementary Methods for additional details. b Deviations due to thermal fluctua-
tions in the crystal ensemble mapped onto the Cα atoms of the LNX2PDZ2 crystal
structure (PDB ID: 5E11).
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among alternative conformations. The CHARMM-GUI web-server76

was used to add atoms thatweremissing in the crystal structure and to
reconstruct a triclinic unit cell of the C121 space group with four
symmetrically-related copies of the protein (Fig. 1a). The unit cell
parameters were a = 65.30 Å, b = 39.45 Å, c = 39.01 Å and α = γ = 90°,
β = 117.54°. For all crystal simulations, a supercell layout was used,
which consisted of a 3 × 3 × 3 layout of unit cells (Fig. 1a). Two types of
solution simulations were carried out: ligand-bound and ligand-free.
The ligand is a four-residue peptide (Glu-Ile-Glu-Leu), as in the crystal
structure6. The solution simulation system consisted of a single pro-
tein chain in a rhombic dodecahedron simulation box, with the dia-
meter of the system based on themaximum distance between protein
atoms plus 30 Å. The protonation states of the protein residues were
determined using PROPKA77 at pH 4.5, consistent with the conditions
of the EFX experiment6. Na+ and Cl− ions were used to neutralize each
system at a salt concentration of 35 mM. To solvate the crystal lattice,
we used a simplified crystal environment (water) and an environment
with crowders to match the experimental conditions of the crystal-
lization buffer6 (for details see Supplementary Methods). Three force
field/water model combinations were used in simulations: (i) Amber
ff14SB41 + TIP3P78 watermodel, (ii) Amber ff9443 + TIP3P78 watermodel,
and (iii) CHARMM36m52 + CHARMM-modified TIP3P79 water model.
The total number of atoms in each system is provided in Supple-
mentary Table 6.

Simulation protocol
All simulations were conducted using GROMACS version 2019.180.
Periodic boundary conditions were employed. The time step of the
simulation was 2 fs. The LINCS algorithm was used to constrain the
covalent bonds involving hydrogen atoms81. The cut-off for short-
range electrostatics and van der Waals interactions was 9.5 Å. The
smooth particlemesh Ewald (PME)methodwith a Fourier spacing of
1.2 Å and a fourth-order interpolation82 was utilized. The velocity
rescaling thermostat83 was employed for constant temperature
simulations (T = 289 K). Compressibility values of 2.5 × 10−5 bar−1 and
4.5 × 10−5 bar−1 were used for the supercell and solution simulations,
respectively84. For the supercell simulations, the following simula-
tion protocol was used. Following energyminimization, simulations
with position restraints on all protein atoms (1000 kJ/mol nm2) were
carried out, followed by a simulation in the NVT ensemble for 10 ns.
Two types of NPT simulations were then performed: (i) 10 ns of
simulation using an isotropic Berendsen barostat85 at P = 1 bar,
followed by (ii) a 40 ns simulation using the anisotropic Parrinello-
Rahman barostat86. These simulations were continued for produc-
tion. For the solution simulations, the same simulation protocol was
used except that isotropic pressure coupling was used in the
Parrinello-Rahman barostat rather than anisotropic. Three replicas
were run for each supercell system, 10 replicas for each apo solution
simulation, and 9 replicas for ligand-bound simulations in solution.
All of these systems were initialized from the same atomic coordi-
nates and randomly seeded velocities. The total simulation time and
combined sampling for an individual PDZ domain are listed in
Table 1. Additional details on model building and simulations are
provided in Supplementary Methods.

Analysis
The structural analysis of the MD trajectories was carried out using
the MDAnalysis 2.087 package for Python 3.7. The detailed algo-
rithms for computing RMSD, MSD, B-factors, residue contacts, and
motivation for the choice of parameters are provided in Supple-
mentary Methods. Visual Molecular Dynamics (VMD) 1.9.488 and
UCSF ChimeraX 1.6.189 were used for visualizing structures. The
LAWS algorithm47 was used to determine if CWS were preserved in
the supercell simulations.

Dimensionality reduction
To represent protein conformational space in the crystal (Fig. 3), 108
individual chainswere isolated from the supercell. Normalized from -1 to
1 by sine and cosine transformations56, 93 Ramachandran (ψ,ϕ) and 60
Janin (χ1, χ2) pairs of angles result in a (93 + 60) × 2 × 2 =612 dimensional
feature vector for each protein chain. Protein conformations were
sampled every 10 ns from all simulation trajectories (Table 1), resulting
in 726,912 protein conformations in total. PCA90,91 andUMAP59 were then
applied to the combined ensemble sampled in crystal and solution
simulations (Fig. 3a, b). To assess feature importance using LDA, each
feature was standardized using the pooled within-group variance92. The
sklearn 1.2.0 Python package93 was used to perform PCA and LDA. The
umap-learn 0.4.6 package with parameters min_dist=0.1 and n_neigh-
bors=25 was used to compute the UMAP projection. The resulting
embeddings were not sensitive to the variation of these parameters.

Markov state models
AMarkov statemodel62 approachwas used to understand the dynamic
processes involved in the equilibrationof the supercell. Specifically, we
investigated the conformational changes that occur in the protein
crystal as a result of the system’s relaxation towards equilibrium. The
slowest rates of these conformational transitions (Fig. 3d) provide the
estimates for simulation times required to reach equilibrium.

For the purpose of constructing MSMs, all protein chains in the
supercell are considered tobe independent. Although this assumption is
not strictly true due to the interaction between chains, it is a reasonable
approximation as all chains experience nearly identical environments.
MSMs for the crystal systems were constructed from the trajectories of
isolated protein chains projected on the UMAP space (Fig. 3b). For each
force field, a total of 324 individual trajectories (3 replicas × 108 chains)
with 4096 frames per trajectory were used. A geometric clustering with
theMini-Batch K-Means94 algorithmwas used to definemicrostates. The
state decomposition was optimized based on the generalized matrix
Rayleigh quotient (GMRQ) score95 using MSMBuilder 3.8.096. A lag time
of 500 ns was chosen according to the convergence of the microstates
transition timescales vs. lag time graph (Supplementary Fig. 31a, b)97.
Next, each model was optimized for the number of microstates using a
10-fold cross-validation procedure (Supplementary Fig. 31c, d). As a
result, n= 300 and n=80 microstates were found to be optimal for the
ff14SB and C36m models, respectively, providing a fine-grained state
decomposition of the conformational space (Supplementary Fig. 18).
Transition timescales and equilibriumpopulationswere computed from
the eigenvalues of the transition matrix62.

The coarse-graining of the MSM for each force field was carried
out using kinetic lumping to reduce the number of macrostates to
n = 10 (Supplementary Fig. 18a, b). The PCCA+ algorithm was used for
this purpose, which by design captures metastable states and the
timescales of the slowest transitions by hierarchically combining
microstates exhibiting fast interconversion98. In these 10-statemodels,
the population gradually transitions from the initial state into other
states with high probability inflow in the MSM eigenvectors (Supple-
mentary Fig. 19).

Equilibrium protein motions
Only the converged portion (t > 1.5μs) of the supercell simulations
using the ff14SB force field was used in the analysis of equilibrium
protein motions (Figs. 4 and 5). PCA was carried out using pairwise
distances between Cα atoms as a feature vector in order to identify the
dominant motions in the system. We excluded the C-terminal tail
(residues 89–95) from this analysis for two reasons: (i) the C-terminal
tail is not part of the native protein and was included to promote
crystallization by serving as a self-binding motif extension6,99, and (ii)
this tail is shown in theMSM(Supplementary Fig. 20a) as being involved
in a long timescale conformational relaxation. The conformational
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space was projected onto the two-dimensional PCA (Fig. 4a) and UMAP
(using parameters min_dist=0.0 and n_neighbors=20, Supplementary
Fig. 23). In the analysis of the of the β1-β2 loopmotions, the distribution
p(x) of the Ser14-Gly78 distance (Fig. 4d-f) was computed using a his-
togram estimator with n = 50 bins from 2 to 18 Å, providing a bin width
of 0.32 Å. Standard error for p(x) was calculated using bootstrapping
with n = 5. Free energy profiles were calculated using the formula
GðxÞ= � kBT logpðxÞ. The conformational entropy for the loopmotion
was defined as the Shannon entropy, given by the formula
S= � R

pðxÞ log½pðxÞ�dx. It was approximated by the sum
S= � Σipi logðpiÞ, where pi is the probability value of the Ser14-Gly78
distance in the i-th bin from the histogram estimator. We note that the
results (i.e. that the entropy in solution is greater than in crystal) are not
sensitive to the choice of bins.However, the absolute valueof estimated
entropy depends on the number of bins.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Full details of computational methods and supplementary notes are
provided in Supplementary Information. The MD simulation data (the
initial and final coordinates) for all systems have been deposited to the
Zenodo repository and are available from https://doi.org/10.5281/
zenodo.7987473. The data underlying Figs. 1–5 are available in the
Source Data file. The crystallographic data used in this study are
available from the Protein Data Bank under accession code 5E11
[https://doi.org/10.2210/pdb5E11/pdb] (Ground state of the PDZ2
domain) and 5E21 [https://doi.org/10.2210/pdb5E21/pdb] (PDZ2
domain in electric field). The Top8000 dataset used in this study for
assessing dihedral angle distributions in the crystal environment is
available from GitHub [https://github.com/rlabduke/reference_
data]. Source data are provided with this paper.
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