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N E U R O S C I E N C E

A digital twin of the infant microbiome to predict 
neurodevelopmental deficits
Nicholas Sizemore1, Kaitlyn Oliphant2, Ruolin Zheng1, Camilia R. Martin3,  
Erika C. Claud2,4, Ishanu Chattopadhyay1,5,6,7*

Despite the recognized gut-brain axis link, natural variations in microbial profiles between patients hinder defini-
tion of normal abundance ranges, confounding the impact of dysbiosis on infant neurodevelopment. We infer a 
digital twin of the infant microbiome, forecasting ecosystem trajectories from a few initial observations. Using 16S 
ribosomal RNA profiles from 88 preterm infants (398 fecal samples and 32,942 abundance estimates for 91 micro-
bial classes), the model (Q-net) predicts abundance dynamics with R2 = 0.69. Contrasting the fit to Q-nets of typical 
versus suboptimal development, we can reliably estimate individual deficit risk (Mδ) and identify infants achieving 
poor future head circumference growth with ≈76% area under the receiver operator characteristic curve, 95% ± 1.8% 
positive predictive value at 98% specificity at 30 weeks postmenstrual age. We find that early transplantation might 
mitigate risk for ≈45.2% of the cohort, with potentially negative effects from incorrect supplementation. Q-nets are 
generative artificial intelligence models for ecosystem dynamics, with broad potential applications.

INTRODUCTION
The human microbiome, a complex community hosting trillions 
of microorganisms such as bacteria, archaea, viruses, and various 
microbial eukaryotes, plays a crucial role in maintaining general 
health and homeostasis (1, 2). Increasing evidence suggests that 
microbial dysbiosis contributes to the development and progression 
of numerous diseases (3), ranging from facilitating essential diges-
tive processes (4) to regulating the central nervous system through 
the microbiota-gut-brain axis (5–7) (table S1). Despite the wealth of 
detailed -omics profiles available on various microbiome taxa, our 
comprehension of the early-life ecosystem development remains 
limited. While the microbiome’s role in brain development (7) and 
the significance of microbial dysbiosis in neuroinflammation and 
neurodevelopmental disorders have been observed [including in 
preterm births (8–10)], the specific mechanistic pathways operating 
along the gut-brain axis are yet to be fully understood (11).

Building upon the limited understanding of the early-life micro-
biome development, researchers have been exploring predictive 
models that can help in diagnosing and understanding the implica-
tions of dysbiosis on various health outcomes in pediatric popula-
tions. Predictive models for serious pediatric intestinal diseases, 
such as necrotizing enterocolitis, have been studied by analyzing the 
infant microbiome through standard deep learning architectures 
(12, 13). Other research has investigated the predictive diagnosis 
of early childhood cognitive deficits based on observed dysbiosis, 
typically by comparing the microbiomes of children with and with-
out a target disorder (14). However, focusing on subjects already 
diagnosed with cognitive deficits provides limited insights into 
potential early clinical interventions. Data-driven identification of 
the microbial ecosystem’s organizational rules presents a formidable 

challenge (15); the immense complexity of potential interactions 
within the microbial ecosystem makes it impractical to discover its 
organizational rules through experimentation alone, although some 
targeted experiments for determining causal relationships do exist 
(16). Moreover, the relatively high cost and time-consuming nature 
of microbiome profile collection result in limited dataset sizes, 
further complicating automated inference. Current analyses often 
concentrate on inferring coarse correlative associations (17–19), 
with limited ability to discern subtle predictive patterns and non-
linear relationships (20, 21).

The rapid maturation of the infant microbiome, which occurs 
over days to weeks, adds to the challenge by limiting the number of 
time-course data points that can be realistically collected. Various 
approaches to the longitudinal analysis of microbiome profiles have 
been documented, using classical statistical methods (22, 23) and 
dynamical systems theory, such as generalized Lotka-Volterra mod-
els (24) and probabilistic graphical methods like dynamic Bayesian 
networks (DBNs) (25). However, applicability to the general prob-
lem of analyzing noisy, sparse, high-dimensional microbiome data 
may be limited (26). While efforts have been made to address some 
of these concerns (26–28), state-of-the-art results in microbiome 
forecasting have been largely limited to synthetic or simulated data 
(24, 27) and nonhuman hosts (29–31) and might necessitate simpli-
fying assumptions that limit the complexity of inferred interactions 
(24–29, 31). A comparison of some major existing methods found 
in the literature is provided in table S2. In addition, the common 
lack of an out-of-sample validation cohort, which is crucial for 
claiming predictive ability and generalizing beyond the training 
data, is problematic.

Here, we hypothesize that to delineate the impact of gut microbi-
ome maturation trajectories on cognitive development [assessed via 
the well-established proxy of head circumference growth (HCG)] 
(11, 32–37) in preterm infants, a more profound understanding 
of the underlying rules of microbial organization is essential. To 
achieve this goal, we developed a computational framework that 
learns n-way time-aware dependencies among ecosystem inhabit-
ants without imposing any a priori restrictions on the nature of in-
teractions. This framework creates a digital twin of the ecosystem at 

1Department of Medicine, University of Chicago, Chicago, IL 60637, USA. 2Depart-
ment of Pediatrics, University of Chicago, Chicago, IL 60637, USA. 3Division of Neo-
natology, Weill Cornell Medicine, New York, NY 10021, USA. 4Neonatology Research, 
University of Chicago, Chicago, IL 60637, USA. 5Committee on Quantitative Methods 
in Social, Behavioral, and Health Sciences, University of Chicago, Chicago, IL 60637, 
USA. 6Committee on Genetics, Genomics and Systems Biology, University of Chicago, 
Chicago, IL 60637, USA. 7Center for Health Statistics, University of Chicago, Chicago, IL 
60637, USA.
*Corresponding author. Email: ishanu@​uchicago.​edu

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution License 4.0 
(CC BY). 

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 12, 2024

mailto:ishanu@​uchicago.​edu
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adj0400&domain=pdf&date_stamp=2024-04-10


Sizemore et al., Sci. Adv. 10, eadj0400 (2024)     10 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 20

the level of microbial classes for this case study (although any taxo-
nomic level can be modeled). In engineering design, a digital twin 
represents a complex system comprehensively and accurately in a 
digital form, enabling the simulation of perturbations; study of tra-
jectories, aberrations, and failures; and the execution of high-fidelity 
simulation experiments that would otherwise be unattainable in the 
real world. Rather than answering a single question, a digital twin 
aims to mirror the entire system, distinguishing it from typically 
more limited standard machine learning models.

We found that our digital twin, which we refer to as the Q-net, 
successfully generates reliable long-term forecasts of coupled trajec-
tories for key microbial classes in realistic patient populations. Fur-
thermore, it unveils meaningful patterns that increase the risk of 
future suboptimal cognitive development. The detailed dependen-
cies across bacterial classes that we identify provide interpretable 
insights unattainable through a standard predictive model alone. In 
contrast to existing methods, our digital twins serve more than just 
a forecasting function; we explicitly use them to determine patient-
specific risk measures that can be assessed early enough to design 
targeted clinical interventions, validated out-of-sample from a sec-
ond independent study site.

RESULTS
Data source
Our first data source comes from a cohort of 58 preterm infants 
born less than 35 weeks gestational age, recruited (11) from Univer-
sity of Chicago’s Comer Children’s Hospital to join the Microbiome 
in Neonatal Development (MIND) study, referred to as the UChicago 
cohort. This dataset consists of longitudinal fecal samples of micro-
bial relative abundances obtained from the subjects via 16S ribo-
somal RNA (rRNA) gene sequencing (38, 39) measured weekly 
from birth to term-equivalent age for each patient [24 to 36 weeks 
postmenstrual age (PMA), see fig. S1 for a mapping between weeks 
of life and PMA], as well as a variety of clinical variables such as 
delivery mode, feeding type, antibiotic usage, etc. (see Fig. 1 for the 
overall scheme of the study). Technical details of sequencing and 
data processing described in (11) are also given in the “Data sources” 
section and descriptions of the variables measured in the study are 
enumerated in table S10.

For out-of-sample validation, a second cohort of 30 preterm in-
fants born less than 35 weeks gestational age from the MIND study 
were recruited at the Beth Israel Deaconess Medical Center, Boston, 
MA (referred to as the Boston cohort). For both cohorts, we target a 
clinical response of the classification of patients by level of cognitive 
development reflected by the proxy of head circumference growth 
(HCG), which is assessed here via difference in head circumference 
z score from birth to term-equivalent age (36 weeks postmenstrual 
age) to the Fenton growth curve (35, 40).

We consider two clinical phenotypes (11): infants who ultimate-
ly attain appropriate (≥ −0.5 z score difference) versus suboptimal 
(< −0.5 z score difference) HCG (AHCG and SHCG, respectively). 
Overall patient characteristics are presented in Table 1. Notably, the 
phenotype distribution of the UChicago cohort was nearly bal-
anced, with 28 infants classified as AHCG and 30 classified as 
SHCG; similarly, it was nearly balanced with respect to sex distribu-
tion: the cohort contained 30 females and 28 males. Similarly, the 
Boston cohort also had a relatively balanced distribution of 18 in-
fants with AHCG and 12 infants with SHCG, and an equal male/

female ratio. With respect to the observed taxonomy, across both 
cohorts, samples contained microbial entities from 44 unique phyla 
and 91 distinct classes. Table 1 contains a listing of the most abun-
dant entities by class in separate subcohorts induced by HCG clas-
sification; notably, ≈10 entities are sufficient to capture 99% of mean 
relative abundance.

We chose to obtain our generative model at the taxonomic level 
of microbial classes. To address the compositional nature of relative 
abundance data, we quantize all observations into a finite number of 
bins corresponding to quantiles of the range of relative abundance 
values recorded over the entire time period for the specific micro-
bial class. Our model operates on these quantized observations; for 
subsequent interpretation, we map relevant quantized values back 
to continuous relative abundances (see the “Q-net construction 
from relative abundance profiles” section).

Digital twin construction from longitudinal 
microbiome profiles
We construct our models using the relative abundance profiles 
observed in the UChicago cohort, and carry out out-of-sample vali-
dation of these models for doing long-term forecast of microbiome 
maturation, as well as predicting the risk of suboptimal develop-
mental outcomes in the Boston cohort. The different digital twins 
produced in this study are represented in table S14. Note that the 
Q-net inference algorithm is not deterministic, and inferred models 
exhibit small variance with respect to connections and generative 
probabilities. Thus, to ensure robustness/validity, our results are 
based on an ensemble of models generated by re-fitting multiple 
times on the same underlying data (see the “Q-net model regenera-
tion” section).

Relative abundances of the microbes vary under emergent 
constraints of competition, amensalism, cooperation, commensal-
ism, and exploitation, and many of these dependencies are unknown 
or poorly understood a priori. From the observed time-stamped 
samples of microbiome profiles, we aim to maximally infer these 
complex rules (see the “Q-net construction from relative abundance 
profiles” section) as follows. For each patient, we treat observed rela-
tive abundances of each microbial class at a specific time point 
(identified by the PMA of the subject at the time of sample collec-
tion) as a distinct variable or “feature.” The Q-net, inferred from 
these data, consists of a set of distinct predictors, each modeling the 
expected probability distribution of the relative abundance of a spe-
cific variable (a microbial class at a specified time point or a class-
time point pair), conditioned on the remaining variables, i.e., the 
rest of the microbial relative abundances recorded possibly at differ-
ent time points. No locality restrictions on temporal dependence are 
made, and the model is free to infer dependencies present between 
different entities across all past time points. Thus, we may have as 
many estimators as the number of observed microbial classes times 
the number of discrete time stamps, i.e., for our dataset: 91 classes 
× 12 time points = 1092 (although not all classes had nonzero 
observations at all time points).

In each Q-net, we infer our component predictors described 
above as conditional inference trees (41, 42), which use explicit sta-
tistical tests to ensure that each node split during the tree construc-
tion is significant at a preset level and thus limits overfitting. Each of 
these decision trees aims to predict the relative abundance level of a 
specific bacterial class at a specific time point and uses as features 
other bacterial classes similarly coupled with corresponding time 
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Fig. 1. Scheme of the study. (A and B) Longitudinal fecal samples from infants born <35 weeks PMA subjected to 16S rRNA gene sequencing, along with infant head 
circumference growth (HCG) measurement. (C) Microbiome abundance data are quantized into 26 levels between measured maxima for each observed taxonomic class, 
and is used to infer a digital twin, reflecting complex emergent dependencies across the classes via learning a recursive forest of conditional inference trees (the Q-net). 
Component trees in the Q-net (two examples shown) are inter-dependent, where nonleaf node can recursively expand to its own tree. (D) Complex dependencies inferred 
for typically developing sub-cohort across classes and observation time points. Each inferred dependency rule probabilistically relates an a priori unspecified number 
of entities (>2), and together specify a generative model of ecosystem trajectory and its dynamical operation. (E) Applications enabled by the inferred digital twin, with 
out-of-sample validation and important mechanistic insights.
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stamps. A fragment of a Q-net is shown in Fig. 1C, where the pre-
dictor for Bacilli at 34 weeks PMA is shown on the right, which uses 
as features “Unclassified Bacteria at 34 weeks,” “Coriobacteriia at 
32 weeks,” and “Gammaproteobacteria at 31 weeks” as predictive 
features; i.e., these are the variables that appear in the internal nodes 
of the tree. Note that the feature “Coriobacteriia at 32 weeks” has its 
own predictor as shown on the right, and uses as features “Actino-
bacteria at 32 weeks,” “Unclassified Bacteria at 32 weeks,” “Bacilli 
at 33 weeks,” and “Gammaproteobacteria at 32 weeks.” Thus, any 
nonterminal node of a component tree for an inferred Q-net can 
in general be “expanded” to its own tree. Owing to this recursive 

expansion, a complete Q-net is difficult to visualize simultaneously, 
but it nevertheless substantially captures the complexity of the rules 
shaping the ecosystem as evidenced by our out-of-sample valida-
tion. (Note that there is always imprecision with regard to the timing 
of these events, partly due to the possibility of ≈1- to 2-week ambi-
guity in postmenstrual age of the infants, and hence we consider 
features with time stamps 2 weeks in future to affect an entity. This 
“flexibility” is only allowed in the inference stage and not in testing 
and thus does not affect prediction results.) The set of features that a 
particular estimator uses is identified automatically, and the inferred 
ensemble of conditional inference trees maximally captures the 

Table 1. Demographic and clinical characteristics of study subjects in MIND cohort. 

Characteristic Description

Clinical target variable Infant’s head circumference growth (HCG)

Clinical cohorts (2) Appropriate HCG versus suboptimal HCG

Patient age range 24–36 weeks postmenstrual age (PMA)

Frequency of data collection ≈ weekly

Unique microbial phyla 44

Unique microbial classes 91

Characteristic UChicago Boston

Number of patients 58 30

Average fecal samples/patient 4.13 5.27

UChicago Boston

AHCG (n = 28) SHCG (n = 30) AHCG (n = 18) SHCG (n = 12)

Gestational age at birth 
(weeks), mean ± SD

28.32 ± 2.60 26.9 ± 2.64 29.78 ± 2.82 29.333 ± 2.99

Male, n (%) 13 (46.43%) 15 (50%) 9 (50%) 6 (50%)

Birth weight, g, mean ± SD 1021.96 ± 382.91 998.3 ± 423.45 1328.89 ± 394.77 1488.33 ± 632.74

Birth head circumference, cm, 
mean ± SD

24.875 ± 2.88 24.57 ± 3.26 27.32 ± 2.22 28.25 ± 3.27

Vaginal delivery, n (%) 12 (42.86%) 4 (13.33%) 6 (33.33%) 4 (33.33%)

Length of NICU stay, days, 
mean ± SD

77.89 ± 34.77 103.27 ± 61.21 66.13 ± 27.94 72.09 ± 33.61

Postmenstrual age at NICU 
discharge, weeks, mean ± SD

39.04 ± 3.80 41.13 ± 6.80 39.33 ± 2.09 39.27 ± 2.94

UChicago Boston

Microbial class (mean rel. 
abund.)

AHCG (n = 28) SHCG (n = 30) AHCG (n = 18) SHCG (n = 12)

Gammaproteobacteria 0.647963 0.505579 0.650564 0.519976

unclassified_Bacteria 0.076359 0.149064 0.067438 0.077718

Clostridia 0.073411 0.033252 0.027653 0.128344

Bacteroidia 0.063502 0.009749 0.018662 0.053227

Bacilli 0.046029 0.174091 0.123372 0.127355

Negativicutes 0.036066 0.044133 0.069160 0.045433

Actinobacteria 0.027100 0.031281 0.035964 0.037978

unclassified_Proteobacteria 0.009649 0.040266 0.000010 0.000083

Alphaproteobacteria 0.007616 0.003534 0.002703 0.001581

Fusobacteriia 0.006863 0.003711 0.001340 0.005913

Verrucomicrobiae 0.000532 0.000810 0.000117 0.000158

Vicinamibacteria 0.000491 0.000901 0.000547 0.000402

Nitrospiria 0.000196 0.000364 0.000159 0.000169

Oxyphotobacteria 0.000144 0.000051 0.000024 0.000074
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organizational structures emergent in the observed microbiome 
profiles. The rich tapestry of multi-way time-aware cross-talk that 
we infer is depicted in Fig. 1D.

With our inferred models, we carried out five computational 
interrogations, namely, (i) forecasting microbiome maturation tra-
jectories for out-of-sample subjects, with very few initial observa-
tions; (ii) out-of-sample prediction of the phenotypic fate of infants 
with regard to their cognitive development from their forecasted 
microbiome maturation trajectories to evaluate the relative risk of 
suboptimal development at a time point early enough for potential 
intervention; (iii) uncovering a directional influence network con-
necting the observed taxa, to determine critical ecosystem constitu-
ents that differentiate phenotype from both their relative influence 
on microbiome maturation trajectories and changes in network 
connectivity at each time point, a concept that moves beyond defin-
ing important taxa through changes in relative abundance toward 
their relative role in ecosystem dynamics over time; (iv) interro-
gating the role of key clinical factors in shaping microbiome matu-
ration and dysbiosis over time (Fig.  1E); and (v) determining 
microbiome or clinical interventions that could reduce risk of 
SHCG on a personalized level. Reasoning with the patterns that 
the Q-net inferred is made possible via two key computations: (i) 
sampling the digital twin to impute missing data in a manner that 
obeys the inferred probabilistic constraints, and (ii) quantitatively 
assessing the dissimilarity of two distinct microbiome trajectories, 
via an intrinsic distance induced by the Q-net model. Here, a 
“microbiome trajectory” refers to time-stamped relative abundance 
values of all observed microbial classes, possibly with missing entries.

Sampling the digital twin for imputation and forecasting
The inferred Q-net allows us to impute missing relative abundance 
values that maximally exploit the learned dependencies across taxa. 
Our procedure is conceptually equivalent to the well-known Gibbs 
sampling scheme (43, 44). We can estimate the missing relative 
abundance value of a specific bacterial class at a given time, by draw-
ing a sample from the conditional distribution for the correspond-
ing variable, i.e., a class–time stamp pair, as estimated by the Q-net. 
As is the case for Gibbs sampling, if repeated such samples are being 
drawn, in the limit, we are sampling from the joint distribution of all 
variables, i.e., the space of all feasible microbiome trajectories. We 
use this imputation scheme to forecast maturation dynamics: fixing 
a set of initial conditions corresponding to all observed relative 
abundances at times t < 28 weeks PMA, we treat future relative 
abundances from 28 weeks PMA and later as unknown or missing, 
which we can then impute iteratively, with the new values obtained 
essentially being the predicted relative abundances.

Validation and comparison of forecast performance for 
microbiome maturation trajectories
We evaluate the quality of these predictions by assessing the coeffi-
cient of determination or the R-squared measure (R2) between ob-
served mean relative abundance and model-predicted values from 
initial conditions specified by separate independent datasets before 
28 and 31 weeks PMA. We achieve average R2 > 0.85 on forecasts of 
the UChicago cohort (in-sample) starting from 28 weeks PMA and 
average R2 = 0.89 for the 31-week PMA forecasts. For the out-of-
sample Boston cohort, we achieve an average R2 = 0.69 at the 31-week 
PMA prediction, while the results for out-of-sample prediction at 
28 weeks PMA are somewhat worse as expected (mean R2 = 0.35). 

The results are shown in Fig. 2, with 95% confidence bounds. It is 
important to note that if we allow relative shift between the pre-
dicted and observed time courses of ±1 week, then the mean R2 = 
0.52 for predictions at 28 weeks (the prediction at 31 weeks does 
not improve with this possibility of relative shifts), indicating 
some degree of uncertainty in PMA estimates of the infants, espe-
cially for those who are born earlier than 30 weeks. Increased 
challenge of determining PMA for early preterm births has been 
reported before (45).

To place these results in context, we compute the coefficient of 
determination R2 obtained by DBNs, which represent the state-
of-the-art framework in longitudinal forecasting of relative abun-
dances of microbial taxa. We implemented a direct comparison 
(see the “Forecasting coupled microbiome maturation” section) 
of our Q-net–based approach to DBNs, exploring various levels 
of DBN model complexity. These results are shown in fig. S2 and 
table  S4, which depict the forecasting performance of DBNs of 
increasing depth from two-stage to six-stage architectures on 
both the UChicago cohort (in-sample) and Boston cohort (out-
of-sample). Forecasts are made at 28 and 31 weeks PMA for all 
models; we found that all of the DBNs evaluated attained R2 less 
than half of the corresponding Q-net–based approach. This sub-
stantial reduction in R2 is demonstrative of a concurrent substan-
tial reduction in the ability of DBNs to model these data in 
comparison to the Q-net approach.

Quantifying future risk Mδ of anomalous deviation in 
microbiome maturation
In our study, we recognize that the infant microbiome maturation 
trajectory is influenced by prominent stochastic components, with 
any observed trajectory being just one possible realization. Anoma-
lous deviations from a typical maturation path are not merely 
changes from the observed one, as multiple healthy trajectories 
might be feasible, and a precise characterization of all such typical 
trajectories is not known a priori. At the same time, we know 
that arbitrary perturbations to an observed profile might not be fea-
sible, as evidenced by the challenges of making desired changes to 
a microbiome profile via various microbial manipulations (46). 
Qualitatively, if two trajectories lead to healthy outcomes, i.e., are 
exchangeable, then we wish to identify them to be similar, 
whereas if one ultimately leads to poor outcomes, then our aim 
here is to be able to recognize the increased clinically meaningful 
dissimilarity.

With the ability to learn digital twins separately for sub-cohorts 
corresponding to typical and suboptimal development respectively, 
we quantify clinically meaningful similarity between two stable 
microbiome trajectories x, y as the odds of an observed trajectory 
x being spontaneously replaced by another y by random chance 
(which is plausible given that observed trajectories are sample paths 
from underlying stochastic processes). Thus, in our approach, the 
higher the probability Pr(x → y), the more similar they are. We esti-
mate Pr(x → y) by crafting an intrinsic distance between microbi-
ome trajectories. The q distance θ(x, y) between two microbiome 
trajectories is defined (Definition 3 in Materials and Methods) as the 
square root of the Jensen-Shannon divergence (47) of the condition-
al relative abundance distributions induced by the inferred Q-net 
for a specific class at a specific time, averaged over all class–time 
stamp pairs. We show from theoretical considerations (Theorem 1 
in Materials and Methods) that the q distance approximates the 
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log-likelihood of spontaneous change in the microbiome trajecto-
ries, i.e., θ(x, y) ≈ constant × logPr(x → y).

With this notion of the q distance, we can quantify the risk Mδ of 
future anomalous deviation for individual patients to address the 
following question: Given an observed current trajectory of a spe-
cific patient (typically with few initial observations), estimate their 
risk of developing with a cognitive deficit as opposed to proceeding 

with typical development. We estimate Mδ risk as the ratio of the 
log-likelihood of an observed trajectory x (for a given patient) being 
realized in the suboptimally developing cohort to the log-likelihood 
of the same trajectory being realized in a typically developing co-
hort. Thus, our risk estimate quantitatively assesses which of the two 
models explain the data observed so far for individual patients. To 
demonstrate the effectiveness of our risk measure, we validate its 

Fig. 2. Trajectory forecasts. Population-level forecasting of mean abundance trajectories of select taxonomic classes (defined by having mean relative abundance >0.01 
in the training set) from a set of observations restricted to <28 weeks PMA. (A) Forecasts generated from initial conditions specified by the UChicago cohort (from which 
the Q-net was inferred). Average R2 across these taxa is ≈0.856 at 28 weeks, and ≈0.896 at 31 weeks. (B) Forecasts generated using initial conditions specified by the 
Boston cohort (fully out-of-sample data that were not used for inference). Average R2 across these taxa is ≈0.350 (which increases to ≈0.378 when allowing for a temporal 
shift of 1 week) at 28 weeks, and ≈0.689 at 31 weeks. In both cases, explained variance is typically high in these important classes, suggesting that the Q-net model suc-
cessfully captures the complicated dynamical trajectories.
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ability to predict the HCG phenotype in out-of-sample data (the 
Boston cohort), where the two digital twins corresponding to the 
typical and suboptimal development, i.e., the AHCG and the SHCG 
cohorts, are constructed using the UChicago samples.

Validation of Mδ risk as a measure of future suboptimal HCG
To validate our risk measure predicting future anomalous devia-
tions, we set up a classification problem to predict the eventual HCG 
phenotype of individual patients. We found that classification based 
on the Mδ risk yields significantly and substantially improved 
performance over naive baselines based on microbial relative abun-
dances and clinical factors (baseline model: random forest), as 
described next. On the UChicago (training) cohort (58 patients, 
158 fecal samples, and 18,564 abundance measurements), we 
achieve peak area under the receiver operator characteristic curve 
(AUC) at 32 weeks of 87.6% (measured by the out-of-bag score, a 
proxy for out-of-sample performance; performance achieved using 
the only Mδ risk; compared to median AUC 39.3% for a baseline 
classifier trained using only delivery mode without the risk score; 
results at different weeks of prediction with additional clinical vari-
ables are shown in table S3). At 80% specificity, we achieve a sensi-
tivity of 75.9%, a positive likelihood ratio of 3.79, and a negative 
likelihood ratio of 0.3, while at 90% specificity, we achieve a sensi-
tivity of 61.7%, a positive likelihood ratio of 6.17, and a negative 
likelihood ratio of 0.43. On the Boston (validation) cohort (30 patients, 
248 fecal samples, and 14,378 abundance measurements), we 
achieve a peak AUC of 75.7% (performance achieved using the Mδ 
risk and the clinical variables delivery mode, birth weight, birth 
head circumference, and estimated gestational age; compared to a 
median AUC of 62.4% for a baseline classifier using the same clini-
cal variables but without the risk score) with a sensitivity of 53.3% at 
80% specificity, a positive likelihood ratio of 2.67, and a negative 
likelihood ratio of 0.58 (Fig. 3, A to F). We note that our inferred 
classifier may be operated with different choice of specificity versus 
sensitivity trade-offs. For example, we might choose to operate the 
model at the maximum achievable PPV at a set value of the false-
positive rate. The variation of these performance measures at vari-
ous possible operating points at 30 weeks PMA is enumerated in 
Table  2, along with 95% confidence bounds. We note that at 2% 
false-positive rate (98% specificity), we achieve 95 to 96% PPV, and 
a positive likelihood ratio 17.2 ± 9, which implies that for a patient 
flagged to be at high risk for developmental deficit, their risk is 
greater than 9 to 26 times that of the general population. Detailed 
performance at 32 weeks PMA is shown in table S13. The trade-offs 
between specificity and sensitivity obtained at different time points 
measured in weeks PMA is shown in Fig. 3A. Figure 3B shows the 
trade-offs between positive predictive values (PPVs) and sensitivity, 
and Fig. 3C shows the trade-offs between the positive and negative 
log-likelihood ratios. Figure  3F shows the improvement of AUC 
with patient age, which is expected as more information is collected 
over time.

Importance of different taxa in determination of 
HCG phenotype
To investigate how specific bacterial classes modulate HCG, we per-
form a Shapley Additive Explanation (SHAP) analysis (48, 49), a 
model-agnostic method of computing feature importances where 
the impact of each feature on the model is uncovered using the 
game-theoretic Shapley values (50, 51). The SHAP analysis (Fig. 3, G 

and H) found that the top influencers (exerting both positive and 
negative influences) are most impactful before 30 weeks PMA as 
evidenced by the time stamps of the top 10 risk increasers (Fig. 3G) 
and top 10 risk decreasers (Fig. 3H), which are between 28 and 31 
weeks PMA. Here, by the standard interpretation of SHAP values, 
increasing the relative abundance of the microbial classes in Fig. 3G 
(with positive SHAP values) would increase the risk of a cognitive 
deficit (and thus these microbes are over-abundant at their corre-
sponding observation times), while those in Fig. 3H (with negative 
SHAP values) would decrease risk if made more abundant, and are 
thus under-abundant at their corresponding time stamps. In par-
ticular, increasing the 26 weeks PMA levels of Bacteroidia and the 
26 weeks PMA levels of Actinobacteria will decrease risk on average, 
while increasing the 27 weeks PMA levels of Gammaproteobacteria 
and the 28 weeks PMA levels of Clostridia will increase risk on aver-
age. It is notable that the SHAP analysis finds that some of the 
microbial taxa most contributive to risk, e.g., Negativicutes and 
Coriobacteriia, exhibit an increasing effect on risk at one time point 
and a decreasing effect on risk at a different time point, suggesting 
that Q-nets are capable of capturing subtle variations in the key 
drivers of risk over time. It is important to note that these average 
impacts to perturbations are not recommendations that may be 
used for supplanting the microbiome, as we demonstrate later that 
such actions necessarily need to be personalized, and what is benefi-
cial for one infant might be detrimental for another.

Network analysis to uncover across-taxa directional 
influence on abundance fluctuations
To better interpret the inherently asymmetric directional influences 
between taxa in the ecosystem, we compute what we refer to as the 
Local Marginal Regulation (LOMAR) coefficient(s) for each pair 
of observed interacting bacterial classes. The LOMAR coefficients 
represent the up-regulatory/down-regulatory influence of a source 
taxonomic class on a target class, where regulation effects are caus-
ally localized in time (future cannot affect the past), and where 
potential confounding effects from other taxa are averaged out. Us-
ing this notion, we can inspect the “influence network” recovered by 
the Q-net, allowing us to visualize the major differences between the 
digital twins inferred for the optimal and suboptimal cohorts.

After computing the set of LOMAR values for each model (see 
the “LOMAR of microbial relative abundance” section for details 
and tables S5 to S8 for the computed LOMAR values), we plot the 
asymmetric relations directed graphs in Fig.  4. Comparing these 
networks in early stages of development (27 to 30 weeks PMA, 
Fig. 4, A and B), we see that the optimal and suboptimal models are 
quite distinct, with different roles being played by Actinobacteria 
and Verrucomicrobia as hub nodes, and in general, the SHCG model 
has more interactions.

Role of clinical factors and diet in modulating HCG 
phenotypic outcome
To assess the importance of clinical factors in modulating microbi-
ome maturation trajectories, we carried out a SHAP analysis of a 
random forest regression model, with the Mδ risk as the dependent 
variable, and all available clinical factors as explanatory variables or 
features (Fig. 5). We observe that factors such as longer time until 
total enteral feeding is achieved, sex being male, the total number of 
morbidities, number of days on Cephalosporins, number of days on 
Vancomycin, lower gestational age at birth, and total formula in diet 
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substantially raise risk on average. We found vaginal delivery (VD) 
as the only substantially risk-reducing factor, with a mild benefit 
from increasing the proportion of human milk in diet. We note that 
some factors that reduce risk on average increased risk for some 
participants and vice versa, suggesting the complex contextual im-
pact of these environmental variables. One such example is the total 
amount of enteral feeds, which highly increased risk of SHCG in a 

small subset of individuals. Nevertheless, male sex emerges as a key 
factor driving HCG outcomes.

Designing personalized interventions to reduce risk of poor 
HCG outcome
The SHAP analysis of the digital twins inferred for the optimal 
and suboptimal cohorts lays the foundation for designing early 

A B C

D E F

G H

Fig. 3. Classification performance out-of-sample. (A) Classification performance to recognize infants with eventually suboptimal HCG. The AUC is maximum at 32 weeks PMA 
reaching 87.6% for the UChicago cohort (in-sample data), and 75.9% for the Boston cohort. (B) Precision-recall curves. (C) Trade-off between positive (LR+) and negative (LR−) likeli-
hood ratios. (D) Change in LR+ with sensitivity or recall. (E) Comparison of PPV versus NPV at different PMA weeks. (F) Fitting the computed AUCs over time, we note that the AUC > 
80% stabilizes approximately over 30 weeks PMA for the UChicago cohort. (G) Top positive SHAP values for the Mδ risk driving HCG classification at 36 weeks PMA, and (H) top nega-
tive SHAP values for risk. Positive (negative) SHAP values indicate if an individual’s abundance of a specific entity increases (decreases) the risk (compared to baseline samples) of a 
positive diagnosis of the target disease; thus, the observed levels of Gammaproteobacteria and Clostridia (among others) are often associated with increased individual risk while 
Bacteriodia and Actinobacteria (among others) are similarly implicated with decreased risk. Note, however, that several taxa appear on both lists, suggesting complex dependencies 
of risk on entity abundances that vary over time.
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personalized interventions based on supplanting specific microbial 
taxa in infant diet. Note that a positive SHAP value of a variable (in 
this case, the relative abundance of a specific taxa at a specific time 
point) implies that increasing the value of the variable (i.e., the rela-
tive abundance of the taxa in question at the particular time point 
associated with that variable) will increase risk on average, and vice 

versa. Also note that many of the bacterial taxa appear in Fig. 3 (G 
and H), i.e., based on the time point, they can be either risk increas-
ing or risk decreasing if their relative abundances are increased. 
However, not all bacterial taxa have this time-dependent impact, 
and here we focus on microbial classes that have a consistent aver-
age negative SHAP value (i.e., risk-decreasing impact) over time to 

Table 2. Performance measures for classification at 30 weeks PMA. 

UChicago

fpr tpr ppv acc npv LR+ LR−

0.02 0.466 ± 0.015 0.961 ± 0.009 0.714 ± 0.008 0.633 ± 0.004 23.288 ± 0.767 0.545 ± 0.016

0.04 0.541 ± 0.031 0.935 ± 0.009 0.743 ± 0.016 0.661 ± 0.01 13.516 ± 0.773 0.479 ± 0.032

0.06 0.56 ± 0.033 0.909 ± 0.01 0.743 ± 0.017 0.666 ± 0.013 9.328 ± 0.55 0.468 ± 0.035

0.08 0.582 ± 0.029 0.886 ± 0.009 0.745 ± 0.015 0.672 ± 0.011 7.27 ± 0.357 0.455 ± 0.031

0.1 0.598 ± 0.021 0.865 ± 0.007 0.744 ± 0.011 0.676 ± 0.008 5.981 ± 0.206 0.447 ± 0.023

0.12 0.614 ± 0.021 0.846 ± 0.007 0.742 ± 0.011 0.68 ± 0.009 5.116 ± 0.173 0.439 ± 0.024

0.14 0.63 ± 0.02 0.828 ± 0.007 0.741 ± 0.011 0.684 ± 0.009 4.498 ± 0.146 0.431 ± 0.024

0.16 0.645 ± 0.021 0.812 ± 0.007 0.739 ± 0.011 0.688 ± 0.009 4.032 ± 0.134 0.422 ± 0.026

0.18 0.66 ± 0.021 0.797 ± 0.007 0.737 ± 0.011 0.692 ± 0.01 3.665 ± 0.117 0.415 ± 0.026

0.2 0.675 ± 0.023 0.784 ± 0.007 0.735 ± 0.012 0.697 ± 0.011 3.376 ± 0.114 0.406 ± 0.028

Boston

fpr tpr ppv acc npv LR+ LR−
0.02 0.345 ± 0.181 0.95 ± 0.018 0.651 ± 0.094 0.586 ± 0.069 17.231 ± 9.072 0.669 ± 0.185

0.04 0.367 ± 0.166 0.916 ± 0.02 0.653 ± 0.086 0.589 ± 0.065 9.163 ± 4.156 0.66 ± 0.173

0.06 0.395 ± 0.145 0.887 ± 0.02 0.658 ± 0.075 0.595 ± 0.059 6.588 ± 2.409 0.643 ± 0.154

0.08 0.418 ± 0.124 0.862 ± 0.02 0.66 ± 0.064 0.598 ± 0.052 5.221 ± 1.55 0.633 ± 0.135

0.1 0.441 ± 0.116 0.841 ± 0.019 0.662 ± 0.06 0.602 ± 0.05 4.406 ± 1.165 0.622 ± 0.129

0.12 0.47 ± 0.1 0.821 ± 0.019 0.668 ± 0.052 0.609 ± 0.046 3.917 ± 0.837 0.602 ± 0.114

0.14 0.483 ± 0.094 0.802 ± 0.018 0.665 ± 0.049 0.61 ± 0.044 3.448 ± 0.671 0.601 ± 0.109

0.16 0.5 ± 0.089 0.785 ± 0.016 0.664 ± 0.046 0.612 ± 0.042 3.123 ± 0.555 0.596 ± 0.106

0.18 0.516 ± 0.079 0.77 ± 0.015 0.663 ± 0.041 0.614 ± 0.039 2.868 ± 0.438 0.59 ± 0.096

0.2 0.532 ± 0.078 0.756 ± 0.016 0.661 ± 0.04 0.616 ± 0.04 2.661 ± 0.391 0.585 ± 0.098

A B

Fig. 4. Network structure comparison between typical and suboptimal cohorts. Change in inferred directional dependencies between prominent taxa in early develop-
ment (≦31 weeks) between optimal and suboptimal HCG, visualized via computing LOMAR coefficients. (A) AHCG to (B) SHCG. The bold edges highlight some key struc-
tural changes in Actinobacteria interactions. The edges in red show that the key changes in Actinobacteria or Bacteroidia are supplanted as potential interventions in 
suboptimal HCG. Dashed edges for Actinobacteria are interactions that emerge later than their corresponding nondashed ones (tables S5 to S8). Notably, SHCG interactions 
are both more complex and strongly connected.
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define effective interventions. Inspecting Fig. 3H, we conclude that 
Bacteroidia and Actinobacteria are the only two taxa that are sub-
stantially and consistently risk decreasing on average, and early sup-
plantation of these taxa is expected to reduce risk of suboptimal 
outcomes in HCG.

As before, the average trend is not representative for every par-
ticipant. Because the SHAP values are patient-specific (Fig. 3, G and 
H showing averaged values over the UChicago cohort), we can use 
the notion of consistent impacts as defined above to deduce patient-
specific interventions. Using this notion, we end up identifying 
three intervention phenotypes: (i) Early Bacteroidia supplantation, 
(ii) Early Actinobacteria Supplantation, and (iii) Null, or patients for 

whom no such time-independent interventions can be found that 
would tend to reduce risk. Figure  6 (A to C) illustrates specific 
patients in these three categories. We found that 31.04% of the 
UChicago cohort fell into the Bacteroidia supplantation category, 
with 6.9% in the Actinobacteria category and 62.07% in the Null 
category (Fig. 6D). The corresponding numbers in the Boston cate-
gory were 80% amenable to Bacteroidia supplantation, and the rest 
in the Null category (Fig. 6E). Overall, we found that considering all 
patients in the suboptimally developing cohorts, 42.9% would have 
had a risk reduction from early Bacteroidia supplantation, and 2.4% 
from early Actinobacteria supplantation, while the remaining 54.8% 
of the patients did not have any time-independent risk-reducing 

A

B C

D

Fig. 5. Impact of clinical variables and diet. (A) Impact on Mδ risk of suboptimal HCG. We find that, on average, being male, use of antibiotics, and enteral feed in amount 
and number of days maximally increase such risk. (B) shows the distribution of SHCG patients by the types of intervention found to decrease their risk (microbiome-based 
supplantation intervention and/or feeding-based intervention). (C) depicts SHAP values for variables defining feeding and supplantation interventional categories in the 
SHCG cohort. (D) shows that supplantation features are associated with greater decreases in risk than feeding, but that among feeding interventions, total enteral feed is 
associated with the maximum decrease in risk.

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 12, 2024



Sizemore et al., Sci. Adv. 10, eadj0400 (2024)     10 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

11 of 20

interventions (Fig.  6F). In addition, we found that categories are 
mutually exclusive, implying that choosing the incorrect intervention 
could be counterproductive, increasing the risk of suboptimal HCG.

We also investigated such potential intervention designs using 
the modifiable factors that relate to diet. In particular, we consider 
the impact of the amount of total enteral feed, total formula fed, 
total human milk fed, human milk fed as a percentage of total feed, 
and the number of days the subject received total parenteral nutri-
tion. Examining the SHAP values for these factors (Fig. 5, B and C), 
we find that the majority of patients (94.4%) with suboptimal HCG 
have at least one negative SHAP value. Of these, 66.7% do not have 
a supplantation intervention, while 26.7% may respond to both 
feeding and supplantation interventions. Thus, our results suggest 
that most patients with suboptimal HCG may experience possible 
reduction in risk due to a subset of these specific feeding interven-
tions. While these dietary factors do not appear to have as strong 
of an effect as supplantation (mean SHAP value of −0.06 versus 
−0.03 for risk decreasing supplantation samples compared to risk 
decreasing feeding samples), the feeding interventions are perhaps 
more broadly applicable. Among the feeding interventions, we find 
that the greatest risk-decreasing effect from such interventions (on 
average) appears due to the amount of total enteral feed, which has 
a mean SHAP of −0.09 compared to ≤ − 0.01 for each of the other 
variables (Fig. 5D). Note, however, that there is individual variation 
present (Fig. 5C) with some individuals appearing to have increased 
risk from this factor, stressing the importance of a personalized, 
targeted approach to any interventional strategy.

DISCUSSION
Despite increasing evidence of the critical role of the gut microbi-
ome in pediatric health, the remaining challenges in inferring inter-
actions across diverse microbial taxa obfuscate identification of 
actionable colonization patterns that might foreshadow poor clini-
cal outcomes. These limitations hinder the design of clinical inter-
ventions in vulnerable populations, such as preterm infants, that 
might otherwise prove effective in ameliorating developmental defi-
cits. Recent work demonstrating the connections between relative 
abundance of key microbiome taxa and cognitive development in 
preterm infants (11) suggests that subtle patterns in relative abun-
dance data can provide actionable clinical insights. Here, we work 
toward uncovering these connections via a novel machine learning 
approach to infer a generative detailed model of the developing eco-
system. Our model is structurally rich, allowing complex time-
dependent patterns to emerge, yet sufficiently interpretable to be 
clinically meaningful.

Considering the problem of uncovering the role of gut microbiota 
of preterm infants in cognitive development, our key findings are as 
follows: (i) reliably forecast the coupled development of microbial 
communities for weeks from very limited initial observations, (ii) 
obtain clinically useful predictive performance (demonstrated 
through out-of-sample validation on an external cohort) for predic-
tion of suboptimal phenotypes of cognitive development from 
microbiome relative abundance profiles, (iii) identify statistically 
significant direction-specific relationships between entities within the 
maturing ecosystem, (iv) investigate the relative importance of promi-
nent clinical factors and diet in modulating maturation trajectories, 
and (v) suggest a principled approach to personalized early interven-
tions that can reduce the risk of suboptimal HCG.

These capabilities are enabled via inferring complex temporal 
relationships among microbial classes without an a priori fixed 
parametric structure. Instead of modeling the observed relative 
abundances to answer specific questions, we learn an approximate 
yet sufficiently detailed model of multi-way interactions in the eco-
system, yielding a digital twin that enables imputation of missing 
data, trajectory forecasts, and estimates of future risk of poor devel-
opmental outcomes. In addition, our explicit representation of tem-
poral dependencies enables us to identify variations in predictive 
performance over time, which provide insights into the timing of 
fundamental shifts in ecosystem development. The ability to extract 
such digital twins is a substantial improvement over techniques 
used in the literature, as clearly demonstrated by contrasting our 
significant outperformance against baseline models such as DBNs. 
In particular, our ability to replicate high predictive performance in 
an out-of-sample cohort, comprising patients recruited in a differ-
ent site, in a different geographical region with very different demo-
graphic makeup, provides strong confidence in the robustness of 
our models and predictions.

It is theoretically possible to use a DBN instead of a Q-net to 
analyze our data (which we have demonstrated in fig.  S2), but it 
would be inefficient, with poor performance (as we found), for the 
reason that the DBN would be substantially more complex in struc-
ture, there being no reasonable approach to remove edges a priori. 
Thus, the complexity of inference scales poorly, with the number of 
edges being quadratic in the number of vertices. The increased 
number of parameters limits the ability to infer an accurate model 
from a dataset of fixed size. A standard simplification used by DBN 
methods (26) is to limit the time lag of the model (essentially the 
temporal memory) to two or three steps. The Q-net scales substan-
tially better, because it requires no such assumptions, and we can 
easily infer dependencies that may be present across arbitrary time 
scales, but is substantially less complex, with edges being added 
more judiciously, leading to better inference of a smaller number of 
parameters, and in effect, better predictive performance.

Our results and insights here for predicting preterm infant HCG 
are in many cases extensions of known or suspected results, which 
provides further corroboration of our findings. For example, we 
achieve high performance for predicting future HCG phenotype 
from around 30 weeks PMA, which agrees with earlier work identi-
fying this time point at which developmental trajectories diverge 
(11). However, going beyond known results, we are able to flag indi-
vidual patients early and reliably for the risk of developmental defi-
cits. While previous work demonstrated a strong correlation of 
microbial relative abundances with preterm infant HCG after devel-
opmental trajectory divergence (11), and indeed our approach 
mirrors these results with substantial differences between microbi-
ome architecture for infants with AHCG versus SHCG, our model 
extends beyond these findings through leveraging these differences 
for early predictive diagnoses.

Going beyond patient-specific early predictions of future HCG 
phenotype, our analysis begins to unravel the complex dynamical 
processes that drive these outcomes. This is a hard problem, because 
relative abundance differences across AHCG and SHCG cohorts 
may not sufficiently explain the differential outcomes. It is well 
recognized that universal benchmarks for microbial relative abun-
dance ranges are challenging to obtain due to the diversity of micro-
bial communities, which vary significantly between and within 
individuals over time (52), making it difficult to define a universally 
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A

B
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D

E

F

Fig. 6. Design of personalized early interventions to reduce risk of suboptimal HCG. (A to C) SHAP profiles of three patients who have suboptimal HCG, but have three 
distinct intervention phenotypes, namely, where supplanting Bacteroidia reduces risk (A), supplanting Actinobacteria reduces risk (B), and where no time-independent 
consistent supplantation can be obtained from our SHAP analysis (C). Both Actinobacteria and Bacteroidia have opposing effects on risk at different time points. (D and 
E) The breakdown of these three intervention phenotypes in UChicago and Boston cohorts. (F) Breakdown of intervention phenotypes among all patients with subopti-
mal HCG, showing that 45.2% of patients have discernible interventions.
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“healthy” range (53) for any taxa. The balance and interaction 
among different microbial species often play a far more crucial role 
in determining the health of the ecosystem than their individual 
relative abundance levels, and factors such as age, diet, environment, 
and genetics can influence what constitutes a “healthy” microbial 
community for a particular individual (54). We offer a solution to 
this problem via shifting our focus to how patient-specific perturba-
tions of the relative abundances of specific microbial classes modu-
late the estimated risk of suboptimal developmental outcomes. 
Using a standard SHAP analysis of our model, we show that increas-
ing Bacteroidia and Actinobacteria relative abundances in early 
life is expected to reduce future risk on average, while Clostridia and 
Gammaproteobacteria increase typically increases risk. Thus, we 
can conclude that Bacteroidia and Actinobacteria are under-
abundant, while Clostridia and Gammaproteobacteria are over-
abundant in early life of preterm infants who experience suboptimal 
HCG. Other microbial classes such as Negativicutes and Coriobac-
teriia also modulate risk, but do so in a more complex time-
dependent and patient-specific manner.

These conclusions are in line with the observations that Bacte-
roidia was depleted in preterm infants with SHCG and Actinobacte-
ria was further diminished in preterm infants with moderately 
severe SHCG, as reported on earlier analyses conducted on the 
UChicago dataset (11). The importance of these taxa to infant devel-
opment has been substantiated through multiple observational and 
in vivo studies. For example, the relative under-abundance of Bacte-
roidia has been associated with autism spectrum disorder (9) and 
attention deficit/hyperactivity disorder (55). Mechanistically, Bacte-
roidia may affect neurodevelopment by strengthening intestinal 
barrier integrity and changing the systemic metabolite profile, as 
treatment of the maternal immune activation mouse model of au-
tism spectrum disorder with Bacteroides fragilis has been directly 
shown to ameliorate behavioral defects, increase intestinal tight 
junction protein expression, and alter metabolite levels in the sera 
(10). In addition, the principal genus of Actinobacteria in the infant 
gut is Bifidobacterium, whose relative abundance has been impli-
cated or associated with improved temperamental traits [extraver-
sion (56) and soothability (57)] and fine motor skills (58). In terms 
of mechanism, treatment of the propionic acid rat model of autism 
spectrum disorder with Bifidobacterium longum has been shown to 
rescue social deficits and normalize brain-derived neutrophic factor 
levels in the hippocampal region of the brain (59). Our approach, 
and conclusions, adds to these results by revealing the interactivity 
of these key taxa within normal and dysbiotic infant gut microbial 
ecosystems, thus providing the tools for operationalizing these find-
ings via a personalized approach.

While the intricacies of our inferred digital twins are difficult 
to interpret directly (often an unavoidable artifact of large-scale 
modeling using predictive analytics), we are able to distill direction-
al dependencies emerging in early life into more simplified networks 
of key interactions, for AHCG and SHCG cohorts separately, via 
our LOMAR analysis, which obtain directional up-regulatory and 
down-regulatory influences between taxa pairs, marginalizing out 
the impact of other taxa (see Fig. 4). These networks offer an expla-
nation as to why a personalized approach for microbiome interven-
tions is warranted. For example, infants with eventual SHCG that 
have Coriobacteriia relatively over-abundant in their early microbi-
omes may not benefit from an intervention with Bacteroidia as the 
Coriobacteriia can inhibit Bacteroidia proliferation and potentially 

its engraftment into the ecosystem. Likewise, an Actinobacteria 
intervention for infants with eventual SHCG that have Clostridia 
relatively over-abundant in their early microbiomes might be detri-
mental as the Actinobacteria would promote the high relative 
abundance of Clostridia. Such network inferences are useful for 
hypothesis generation of which important infant gut microbial eco-
system interactions should be the subject of future experimental 
validation.

Finally, we explored the possibility of designing early patient-
specific interventions, comprising microbe supplantation. Our 
strategy in this direction leveraged our patient-specific analysis that 
reveals how perturbation of specific microbial classes modulates the 
Mδ risk. We considered only interventions that are not time depen-
dent, which could be specified simply, e.g., early supplantation of a 
specific bacterial class, and we ended up with three intervention 
phenotypes. The first two suggest early supplantation of Bacteroidia 
and Actinobacteria, the third represent patients for whom no such 
time-independent risk-decreasing perturbation could be found. The 
supplant-Bacteroidia phenotype appeared as much more common 
compared to the supplant-Actinobacteria phenotype, and the Mδ 
risk for more than 40% of SHCG patients could actually be reduced 
in this manner. We found that these phenotypes are mutually exclu-
sive, and the wrong intervention can increase the risk of anomalous 
maturation of the gut microbiota.

The need for a personalized approach to microbiome interven-
tion in preterm infants is supported by recent randomized con-
trolled trials of probiotic supplementation with Bifidobacterium spp. 
(an Actinobacteria) in neonatal intensive care units (NICUs), which, 
while demonstrating some benefit for preterm infants in improving 
intestinal barrier function (60) and reducing inflammatory markers 
in the intestinal milieu (61), ultimately reducing the incidence of 
necrotizing enterocolitis and the length of hospital stay (62), have 
also documented rare adverse events related to probiotic bacteremia 
(63). Furthermore, the efficacy of Bifidobacterium spp. probiotic 
supplementation in the NICU in improving the risk of neurodevel-
opmental impairment is currently unclear (64). Together, these data 
suggest that although Bifidobacterium spp. probiotics will be benefi-
cial for some preterm infants, applying them universally as a pro-
phylactic may not improve neurodevelopmental outcomes overall 
and can even lead to adverse consequences in certain preterm in-
fants. Our work lends support to these findings, and lays the path 
to designing additional interventional strategies of Bacteroidia sup-
plantation and enteral feeding that are likely to be more broadly 
applicable.

These findings underscore the need for high-resolution bacterial 
profiling in neonatal care. While our results point toward the effec-
tiveness of Actinobacteria or Bacteroidia supplantation in specific 
patients, the complexity of the neonatal gut microbiome necessitates 
a more granular bacterial profile that vigilantly exclude potentially 
pathogenic organisms (65, 66). Despite the limited resolution of the 
recommendations demonstrated here, our methodology highlights 
the importance of targeted microbiome interventions and shows 
that supplantations beneficial for one may be detrimental for 
another. These results align with the decreasing popularity of 
the classical one-size-fits-all approach that has shown limitations, 
as evidenced by mixed outcomes in the universal application of 
Bifidobacterium probiotics in neonates (67, 68). Thus, while we 
outline a framework for designing safe personalized interven-
tions, further research, particularly in understanding the long-term 
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impacts of these microbial supplantations on neurodevelopmental 
outcomes in preterm infants, and replicating the results at higher 
taxonomic resolution, is needed in the future.

Finally, investigating the relative importance of clinical and diet 
variables, we found that a longer time to achieve total enteral nutri-
tion, the use of antibiotics, being male, and not having a VD sub-
stantially increased the risk of anomalous deviation in microbiome 
maturation trajectories (Fig. 5). These findings, as before, are well 
corroborated in the literature (69–73). The absolute impact of these 
variables, with the exception of infant sex, were small, complement-
ing previous work on preterm infants that demonstrated that the 
dispersal of microbes in the limiting NICU environment supersedes 
the effects of habitat filtering factors such as diet and antibiotics in 
shaping microbiomes (11). It is also important to note that the Mδ 
measure we propose here makes precise prediction based on micro-
biome profiles, demonstrated to be affected marginally by diet and 
environmental and clinical variables, underscoring the potential 
utility of our approach. As an example, we found that most preterm 
infants would benefit from increased enteral feeding amounts as 
expected, but the reduction in risk of SHCG was not as impactful as 
microbiome supplantation, and further, there was a smaller subset 
of infants for which increasing enteral feeding amounts would 
greatly increase the risk of SHCG. Feeding intolerance of preterm 
infants has been linked to dysbiosis of the gut microbiome (74, 75), 
and certain randomized controlled trials of probiotic administra-
tion to preterm infants in the NICU demonstrate decreased inci-
dences of feeding intolerance (76–78). Therefore, our methodology 
is additionally able to resolve when non–microbiome-based inter-
ventions may be more appropriate, and also when such interven-
tions would likely be inappropriate given the underlying microbiome 
structure of the infant such as ramping up enteral feeds.

Our study had some limitations. We were unable to ascribe a 
potential preventative intervention that could substantially reduce 
risk of SHCG for a portion of preterm infants among both UChicago 
and Boston cohorts. This finding is not unexpected as neurodevel-
opment is multifactorial with certain risk drivers likely being inde-
pendent of the microbiome and thus were not considered in this 
study. Examples of such drivers include but are not limited to intra-
uterine growth restriction or maternal health, and respiratory, car-
diovascular, or eye diseases (79, 80). Furthermore, while our results 
were well replicated in two different sites, we did not primarily aim 
to investigate site-specific effects and the effects of all clinical vari-
ables or to compare cohorts. Future work could investigate the 
layered influence of clinical factors using larger datasets from mul-
tiple sites that would contain more variation in clinical variable 
combinations. Furthermore, it would be of interest to follow micro-
biome maturation and neurodevelopment of infants after NICU 
discharge, as the home environment might alter the relative impact 
of clinical variables on microbiome trajectories compared to the 
NICU environment. The NICU stay is but one part of the critical 
time window of preterm infant neurodevelopment, and although 
HCG in the NICU is strongly correlated with later infant outcomes 
(35), phenomenon such as catch-up growth or later growth failure 
has been reported after NICU discharge (32). The Q-net could be 
constructed for longer time courses in the future to solve these 
knowledge gaps for revealing key time points and risks of microbi-
ome trajectory deviation throughout development. The scalability 
of the algorithm suggests that we can explore the gut microbiota at 
lower taxonomic levels or use more detailed clinical factors (e.g., 

donor milk versus mom’s own milk and use of fortifiers and supple-
ments for enteral feeding) to obtain sharper interventional prescrip-
tions. In addition, we note that larger sample sizes, with more 
longitudinal observations per participant, will also help to fur-
ther characterize uncertainty and robustness properties of the in-
ferred models.

Using the Q-net framework, we demonstrated clinically interest-
ing performance in reconstructing digital twins of healthy and dys-
biotic microbiome maturation trajectories for prediction of infant 
developmental outcomes, despite the relatively small number of 
patients and samples. Nonetheless, application of larger datasets in 
the future will examine microbiomes at finer taxonomic resolutions 
where there is more variability among subjects. Furthermore, larger-
cohort clinical and experimental validation of our modeling frame-
work is warranted to establish robust utility in predictive diagnostics 
and in designing therapeutic interventions, respectively. Ultimately, 
this study lays the foundation of a new set of tools to analyze relative 
abundance data, with the possibility of future predictive screening 
for serious disease from microbial profiles and designing precise yet 
effective clinical interventions.

MATERIALS AND METHODS
Data sources
To test our approach, we utilize microbiome profiles obtained from 
cohorts of (i) 58 preterm infants born less than 35 weeks gestational 
age recruited (11) (see Table 1) from University of Chicago’s Comer 
Children’s Hospital, and (ii) 30 preterm infants born less than 
35 weeks gestational age recruited from the Beth Israel Deaconess 
Medical Center (Boston, MA) as part of the MIND study. Longitu-
dinal fecal samples were sent for genomic DNA extraction and Illu-
mina 16S rRNA gene sequencing. (38, 39) Data were processed 
and merged by the sample inference tool DADA2 (81) using QIIME2 
version 2019.7 (82), then classified to the genus level by the IDTAXA 
method (83) with the R package DECIPHER version 2.14.0 using 
the Genome Taxonomy Database (84) version 89, and additionally 
into species-like groups by the online NCBI Nucleotide Basic Local 
Alignment Search Tool (85) (BLAST) with an identity threshold of 
≥97%. After classification, low-quality samples with <1000 total 
sequence counts were removed, and then species-like groups that 
represented <0.1% mean abundance were culled. We utilize the 
relative abundances of microbes from these samples (taken at the 
taxonomic level of Class, though we note that our approach can be 
applied at arbitrary—even mixed—taxonomic levels).

Definitions and notation
We describe the details of Q-net construction and inference in a 
general context. The Q-net is a model of the ecosystem structure 
present in collections of mutually dependent discrete (or discretized) 
features, such as quantized microbiome relative abundance profiles. 
The Q-net explicitly estimates individual conditional distributions 
of each feature (which collectively serve as a model of the full joint 
distribution of the ecosystem).

Definition 1 (Q-net). Let X~P be an n-​dimensional discrete random 
vector supported on a finite set Σ and following distribution P, i.e.

X = (X1, … ,Xn)∼P, supp(X)=Σ=

n
∏

i=1

Σi with ∣Σ∣ <∞
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For i = 1, …, n, let Pi ≔ P(Xi∣Xj = xj  for  j ≠ i) denote the condi-
tional distribution of Xi given the values of the other components of 
X. Finally, for each i = 1, …, n, let ΦP

i
 denote an estimate of the 

distribution Pi. Then, the set ΦP ≔ {ΦP
i
}n
i=1

 is called a Quasinet 
(Q-net) for the population P.

When P is clear from context, we may omit the superscript and 
simply write Φ = {Φi} to denote the Q-net. The motivation for Defini-
tion 1 is that the collection of all estimators Φ = {Φi} contained in a 
Q-net represents the set of all inferred dependencies from the ob-
served ecosystem. While the definition allows for arbitrary method of 
algorithm to construct the estimators Φi, the utility of a Q-net clearly 
depends primarily on the properties of the Φi. Here, we aim to mini-
mize the set of a priori assumptions on the overall model structure to 
allow the complex dependencies present in P to emerge. To that end, 
throughout this work, all Q-nets are computed using conditional in-
ference trees (42) (a variant of classification and regression trees) to 
compute each Φi. In general, each Q-net component Φi is computed 
independently from the other Φj, which allows a network structure to 
form among these estimators. Given a Q-net Φ, it is of interest to 
determine intrinsically how well Q-net represents the data. Here, we 
define an explicit model membership test to address this.

Definition 2 (Membership Probability). Given a population P 
inducing the Q-net ΦP and a vector x = (x1, …, xn), the membership 
probability of x in the set of samples modeled well by the Q-net

which represents the probability that the Q-net generates the sample x.
We can assess the goodness of fit of an inferred Q-net by testing 

if the null hypothesis H0: “samples have a higher probability of being 
generated by randomly selecting responses, compared to being gen-
erated by the inferred Q-net” is rejected.

The Q-net allows us to rigorously compute bounds on the prob-
ability of a spontaneous change from one vector to another, in-
duced by chance variations. Not all perturbations in a vector are 
either likely or biologically meaningful. With an exponentially ex-
ploding number of possibilities in which a vector over a large set of 
items can vary, it is computationally intractable to directly model 
all possible dynamics; nevertheless, we can constrain the possibili-
ties using the patterns distilled by the Q-net construction. A key 
piece of this approach is to design an intrinsic distance between 
vectors, which is reflective of the underlying biological structure of 
the network.

Definition 3 (q distance). Let ΦP = {ΦP
i
}n
i=1

 and ΦQ = {Φ
Q
i
}n
i=1

 
denote Q-nets on the distributions P and Q, and suppose x = (x1, …, 
xn) and y = (y1, …, yn) are samples of X~P and Y~Q, respectively. 
Then, the q distance θP, Q(x, y) between x and y is

where �
1

2 denotes the Jensen-Shannon distance induced by Jensen-
Shannon divergence (86).

For brevity, we may write θP instead of θP,P or simply θ if the 
distribution(s) are clear from context. Because the Jensen-Shannon 
distance �

1

2 is a metric (87) on the set of probability distributions, and 
θ inherits nonnegativity and symmetry, and respects the triangle 

inequality, it follows that q distance is a (pseudo)-metric on Σ. Note 
that, being a pseudo-metric implies that we may have θ(x, y) = 0 for 
x ≠ y; i.e., distinct vectors can induce the same distributions over 
each index, and thus have zero distance. This is in fact desirable, 
because we do not want our distance to be sensitive to changes that 
are not biologically relevant. The intuition is that not all variations 
are equally important or likely. Moreover, we show in Theorem 1 that 
the log-likelihood of a vector x transitioning to y scales with a(x, y), 
allowing us to directly estimate the probability of spontaneous (or 
sequential) jumps between relative abundance profiles.

The ability to estimate the probability of spontaneous jump be-
tween relative abundance profiles in terms of θ has crucial implica-
tions for our study of evolving microbial ecosystems, as it gives us 
the ability to simulate realistic forecasts of microbial evolution from 
any given initial profile and generate estimates of the risk of occur-
rence of a suboptimal clinical phenotype.

Theorem 1 (Probability Bound). Given a vector x of length n 
from P that transitions to y from Q, we have the following bounds at 
significance level α

where ωQ
y

 is the membership probability of y in the population Q 
(Definition 2), and θ(x, y) is the q distance between x, y (Definition 3).

Remark 1. This bound can be rewritten in terms of the log-likelihood 
of the spontaneous jump and constants independent of the initial 
sequence x as

where the constants are given by

Theorem  1 gives theoretical backing to the claim that samples 
generated by the Q-net indeed reflect likely perturbation possibili-
ties from the current state. Thus, we can use the Q-net to draw bio-
logically realistic samples that respect the underlying feature 
dependencies arising from the constraints of the underlying net-
work (that is, the Q-net-inferred conditional distributions can be 
used to approximately generate samples from the population P). 
This has several implications, such as the ability to easily handle 
missing/incomplete data.

Q-net construction from relative abundance profiles
In applying the Q-net construction to microbiome data, we use sam-
ple data D = {xk∣k = 1, …, d} consisting of a set of d = 58 patient 
vectors of the form xk = (xk1, …, xkn), where xkj denotes the relative 
abundance of the jth entity in the kth sample. Because the samples 
are longitudinal measurements of the patients, some of the xkj repre-
sent measurements of the same microbial entity at different time 
points in the kth patient’s observed history. Thus, in this case, Σ rep-
resents the quantized relative abundances of all measured microbi-
ome entities across all weeks and each sample xk consists of all 
relative abundances of across all weeks for a given individual. Note 
that we do not impute or fill in missing observations when construct-
ing the Q-net.

ωP
x
≔ Pr(x ∈ P) =

n
∏

i=1

ΦP
i
(Xi = xi ∣Xj = xj, j ≠ i) (1)

θP,Q(x, y)≔
1

n

n
∑

i=1

[�
1

2 (ΦP

i
(Xi ∣Xj=xj, j≠ i)∥ΦQ

i
(Yi|Yj= yj, j≠ i)]

ωQ
y
e

√

8N2

1−α
θ(x,y) ≧ Pr(x→ y) ≧ ωQ

y
e−

√

8N2

1−α
θ(x,y) (2)

∣logPr(x→ y) − C0∣ ≦ C1θ(x, y) (3)

C0 = log ωQ
y (4)

C1 =

√

8N2

1 − α
(5)
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Again, while the Q-net allows for essentially arbitrary choice of 
features, including the ability to specify different taxonomic levels 
for different entities in its construction, here we fix all entities at the 
Class level as described before. To deal with the compositional 
nature of microbial abundance data, we first quantize the relative 
abundance estimates into a finite number of bins corresponding to 
quantiles of the range of each entity-specific relative abundance. 
This step transforms ratios of observations to categorical variables 
that interpret magnitudes in terms of how they are distributed over 
the population distribution, and thus are substantially more stable. 
More precisely, if βt denotes the set of all observations of a particular 
microbial taxa at time t, then for quantization of βt into k bins, we 
first fix a bin width of Δ ≔ 1.002 ⋅ range(βt)/k. Letting m∗ = min (βt) 
− 0.001 ⋅ range(βt), we then quantize observations via the mapping

defined by ψ(bt) = Ai if and only if bt ∈ (m∗ + (i − 1)Δ, m∗ + iΔ]. 
For specificity, we often use k = 26 throughout our computations 
(aiming to have a high quantization resolution) and utilize the stan-
dard letters of the alphabet A, …, Z as categorical labels in place of 
A1, …, A26. A graphical example of the quantization ranges com-
puted for several key microbial taxa is shown in fig. S3. The model 
and its subsequent inference tasks operate directly on these quan-
tized (categorical) data; however, for some applications, it is desir-
able to convert from quantized to numeric relative abundances; for 
this dequantization, we return the midpoint of the corresponding 
interval used in the mapping ψ.

Q-sampling: Efficient high-dimensional sampling 
of the Q-net
From the Q-net, we have inferred approximations to the full condi-
tional distributions. As the collection of full conditionals can be 
shown to uniquely determine the full joint distribution [by the 
Hammersley-Clifford theorem (88)], we can then take the Q-net 
approximations as a model of the joint distribution. Specified in 
this form, we obtain an efficient method of sampling the (high-
dimensional) model.

In particular, while it would be computationally difficult to di-
rectly sample a model distribution over hundreds or thousands of 
variables, we leverage the inferred conditionals in a natural way. In 
particular, starting from a known sample, we may iteratively update 
its indices by sampling the corresponding conditional distribution 
in the Q-net. We then proceed to sample the next index, now using 
the value generated in the previous step.

This procedure can be used to both generate new, realistic sam-
ples reflecting the model dependencies and impute missing values 
that may be present in the data. To clarify, suppose the kth sample is 
xk = (xk1, …, xkn). We may define an indicator of missing values 
mk = (mk1, …, mkn), where mkj = 1 if xkj is missing and mkj = 0 other
wise. The q-sampling routine is then:

1. Choose an index j ∈ {1, …, n} for which mkj = 1 and impute 
feature xkj by sampling the distribution Φk(Xk∣Xi = xi, k ≠ i).

2. Go back to step 1, until no unobserved entity remains.
This kind of sampling algorithm is not entirely unprecedented. 

Schematically, this procedure is similar to the well-known Gibbs 
sampling routine (43, 89), which also uses iterative samples from 
full conditional distributions to generate samples from the joint 
distribution asymptotically. However, unlike Gibbs sampling, q-
sampling uses fixed approximate conditional distributions inferred 

by the Q-net and initializes from a known sample, which can allow 
q-sampling to converge faster (without the burn-in period often 
observed with arbitrary initialization of Gibbs sampling).

Q distance induced risk stratification
Here, we use the q distance to define a risk measure Mδ to track 
anomalous deviations from typical microbiome maturation.

Definition 4. Suppose P and Q are distributions with common 
finite support Σ and inducing Q-nets ΦP and ΦQ. Let x = (x1, …, xn) 
denote a sample realization of X = (X1, …, Xn) where X is a discrete 
random variable with supp(X) = Σ. Let 0P denote a vector sampled 
from P with all features missing; similarly, we denote 0Q. Then, we 
define the P-risk of x as

In view of Theorem  1, the P-risk is analogous to a likelihood 
ratio; high values of the P-risk indicate that x is more likely to have 
been generated by P. Here, we take P to represent the clinical cohort 
that attains suboptimal HCG and Q to represent the group attaining 
optimal HCG.

Risk-based prediction of suboptimal cognitive development
To use the risk measure Aδ for classification of clinically suboptimal 
phenotype, we first compute the corresponding Q-nets ΦP and ΦQ 
for the suboptimal and appropriate HCG cohorts, respectively. 
From this, we can compute the P-risk of each sample x.

We expect that infants with higher values of Aδ(x) have a higher 
risk of developing suboptimal HCG. It is in fact possible to generate 
a classifier that performs well (in-sample) by fixing a decision 
boundary on the value of Aδ. However, to determine how informa-
tive Aδ is as a part of a possible clinical screening tool, we train a 
random forest classifier using Aδ and a limited selection of clinical 
factors known at the time of birth (for the UChicago cohort, we use 
only the delivery mode; for the Boston cohort, we also include birth 
weight, birth head circumference, and gestational age). For these 
classifiers, we then assess the median AUC as a function of the week 
of classification, with Aδ computed using only the values observed 
before the specified week. Then, to assess the impact of individual 
bacterial classes on the risk, we perform a standard SHAP analysis, 
estimating the Shapley values of each xi using the Kernel SHAP 
(48) method.

Forecasting coupled microbiome maturation
As our features correspond to relative abundance measurements at a 
given time point, we can generate forecasts of the variation of rela-
tive abundance of a specific class over time. When forecasting eco-
system maturation either on average among a host population or 
within individual hosts, we must only apply causal rules in comput-
ing the predictions (i.e., we must not use features with values in 
the future). The Q-net framework makes applying this restriction 
straightforward. We assume a period of initial observation (say 4 to 
8 weeks) and fix a time t from which to initiate forecasting. Then, in 
the desired individual or cohort, we mask out all features corre-
sponding to times >t (treating the corresponding missing variable 
indicators mkj as unity). We then iteratively sample the Q-net to 
get estimates of relative abundance levels at a particular time, pro-
ceeding as follows:

ψ : β
t
→ {A1,A2, … ,Ak}

Aδ(x) =
θP(x, 0P)

θQ(x, 0Q)
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• Choose randomly an index from the indices corresponding to 
time t for which the indicator mkj = 1; generate a q-sampling from 
the corresponding distribution at time t − 1;

• Go back to step 1 and choose a new index, unless all missing 
values at time t have been imputed

Once all observations at this time step t have been obtained as 
above, we move to the next time step t + 1, assuming that all prior 
observations are now available.

To evaluate the efficacy of this approach to forecasting using 
Q-nets, we compared results attained to an approach using DBNs. 
For this experiment, DBNs of model depths 2, 3, 4, 5, and 6 were 
constructed from the UChicago data. Models were fit using extttR 
(90) version 4.1.1 with packages dbnR (91) and bnlearn (92). Us-
ing the models trained on the UChicago cohort, forecasts were gen-
erated from 28 and 31 weeks, respectively, from initial conditions 
specified by the time lag of the model under both the UChicago 
(in-sample forecasting) and Boston (out-of-sample forecasting) co-
horts. For DBNs of depths 4 to 6, 28-week forecasts are not gener-
ated because the time lag prevents proper specification of initial 
conditions (we only utilize relative abundance measurements oc-
curring from ages ≥25 weeks PMA).

LOMAR of microbial relative abundance
For any given entity Xi, the Q-net provides a natural estimate of the 
conditional dependence on other entities via the inferred predictor 
Φi. By examining the specific/localized pairwise interactions im-
plied by these dependencies, we may further use these predictors to 
generate estimates of the marginal change in relative abundance of 
Xi (the “target” entity) resulting from changes to the relative abun-
dance of another entity Xj (the “source” entity). As the relative abun-
dances are real-valued and the Q-net’s distributions are discrete 
(categorical), we must both marginalize out other entities and pass 
to a continuous distribution to generate these estimates.

Specifically, we first marginalize out all other entities from Φi to 
generate the conditional response as a function of xj alone, i.e., 
Φ

j

i
(Xi ∣Xj = xj) (recall this is a discrete distribution supported on 

Σi). We then de-quantize the support of Xi, generating a discrete dis-
tribution supported on [0,1] (relative abundance values).

To identify the marginal contribution of small perturbations of 
Xj to the relative abundance of Xi, we would like to estimate the 
derivative of the unknown regression function f(xj) ≔ E[Xi∣Xj = xj] 
(analogous to fitting a local linear regression model to f); however, 
rather than samples near xj, we have a (discrete) distribution Φj

i
 , 

which is an approximation of the true continuous distribution. To 
generate additional samples, we then draw from N(μ

j

i
, σ

2j

i
) , where μj

i
 

and σ2j
i

 denote the sample mean and variance of the discrete dis-
tribution.

Q-net model regeneration
Because our approach to determining the Q-net dependency struc-
ture is probabilistic, we can empirically estimate the variability of 
our approach. In particular, for each result, the analytical pipeline 
was regenerated in accordance with table S16 to assess consistency/
robustness of the stated results.

Software availability
To facilitate Q-net–based analysis of microbiome data, we developed 
a Python package, which is installable from PyPi (https://pypi.org/

project/qbiome/). The package includes functions for constructing 
models and performing analysis of longitudinal datasets. We have 
written example notebooks demonstrating basic utilization of the 
package—including model construction and quantization of rela-
tive abundance data, which are available in the package repository 
(https://github.com/zeroknowledgediscovery/qbiome/tree/main/
examples). These notebooks demonstrate the usage of the package 
to perform analytical methods utilized above, and are also made 
available at https://github.com/zeroknowledgediscovery/qbiome/
tree/main/examples/publication_examples; in particular, these dem-
onstrate the following:

1. Forecasting of microbiome trajectories (https://github.com/
zeroknowledgediscovery/qbiome/tree/main/examples/publication_
examples/forecasting_trajectories/generate_forecasts_trajecto-
ries.ipynb)

2. Computation of Mδ (https://github.com/zeroknowledgedis-
covery/qbiome/tree/main/examples/publication_examples/risk/
compute-risk.ipynb)

3. Computation of LOMAR coefficients (https://github.com/
zeroknowledgediscovery/qbiome/tree/main/examples/publica-
tion_examples/lomar/compute-lomar.ipynb)

4. Computation of SHAP values to identify possible patient-
specific microbiome interventions (https://github.com/zeroknowl-
edgediscovery/qbiome/tree/main/examples/publication_examples/
shap/compute-shap-profiles-phenotypes.ipynb)

5. Computation of SHAP values to identify possible patient-
specific clinical interventions (https://github.com/zeroknowledge-
discovery/qbiome/tree/main/examples/publication_examples/
clinical_shap/shap-clinical-factors.ipynb)

For these examples, we provide prequantized relative abundance 
data from the UChicago and Boston cohorts; when applying to new 
data, users may utilize the provided quantization methods to quan-
tize data for analysis.

Ethics statement
Data collection and research were reviewed and approved by the Uni-
versity of Chicago Institutional Review Board with IRB number IRB16-
1431, covering both sites. Participating subjects were enrolled after 
receiving written informed consent from the subject’s legal guardian, 
and the language of the consent form was approved by the IRB 
of record.
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Figs. S1 to S3
Tables S1 to S16
References

REFERENCES AND NOTES
	 1.	 J. F. Cryan, T. G. Dinan, Mind-altering microorganisms: The impact of the gut microbiota 

on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
	 2.	 M. E. DiBartolomeo, E. C. Claud, The developing microbiome of the preterm infant.  

Clin. Ther. 38, 733–739 (2016).
	 3.	L . Lu, Y. Yu, Y. Guo, Y. Wang, E. B. Chang, E. C. Claud, Transcriptional modulation of 

intestinal innate defense/inflammation genes by preterm infant microbiota in a 
humanized gnotobiotic mouse model. PLOS ONE 10, e0124504 (2015).

	 4.	 J. R. Baranowski, E. C. Claud, Necrotizing enterocolitis and the preterm infant 
microbiome. Adv. Exp. Med. Biol. 1125, 25–36 (2019).

	 5.	 A. L. Carlson, K. Xia, M. A. Azcarate-Peril, B. D. Goldman, M. Ahn, M. A. Styner,  
A. L. Thompson, X. Geng, J. H. Gilmore, R. C. Knickmeyer, Infant gut microbiome 
associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 12, 2024

https://pypi.org/project/qbiome/
https://pypi.org/project/qbiome/
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/forecasting_trajectories/generate_forecasts_trajectories.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/forecasting_trajectories/generate_forecasts_trajectories.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/forecasting_trajectories/generate_forecasts_trajectories.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/forecasting_trajectories/generate_forecasts_trajectories.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/risk/compute-risk.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/risk/compute-risk.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/risk/compute-risk.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/lomar/compute-lomar.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/lomar/compute-lomar.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/lomar/compute-lomar.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/shap/compute-shap-profiles-phenotypes.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/shap/compute-shap-profiles-phenotypes.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/shap/compute-shap-profiles-phenotypes.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/clinical_shap/shap-clinical-factors.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/clinical_shap/shap-clinical-factors.ipynb
https://github.com/zeroknowledgediscovery/qbiome/tree/main/examples/publication_examples/clinical_shap/shap-clinical-factors.ipynb


Sizemore et al., Sci. Adv. 10, eadj0400 (2024)     10 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

18 of 20

	 6.	 A. Burokas, R. D. Moloney, T. G. Dinan, J. F. Cryan, in Advances in Applied Microbiology 
(Elsevier, 2015), vol. 91, pp. 1–62.

	 7.	 J. Lu, S. Synowiec, L. Lu, Y. Yu, T. Bretherick, S. Takada, V. Yarnykh, J. Caplan, M. Caplan,  
E. C. Claud, A. Drobyshevsky, Microbiota influence the development of the brain and 
behaviors in C57BL/6J mice. PLOS ONE 13, e0201829 (2018).

	 8.	 J. Lu, E. C. Claud, Connection between gut microbiome and brain development in 
preterm infants. Dev. Psychobiol. 61, 739–751 (2019).

	 9.	D .-W. Kang, J. G. Park, Z. E. Ilhan, G. Wallstrom, J. LaBaer, J. B. Adams, R. Krajmalnik-Brown, 
Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic 
children. PLOS ONE 8, e68322 (2013).

	 10.	E . Y. Hsiao, S. W. McBride, S. Hsien, G. Sharon, E. R. Hyde, T. McCue, J. A. Codelli, J. Chow,  
S. E. Reisman, J. F. Petrosino, P. H. Patterson, S. K. Mazmanian, Microbiota modulate 
behavioral and physiological abnormalities associated with neurodevelopmental 
disorders. Cell 155, 1451–1463 (2013).

	 11.	 K. Oliphant, M. Ali, M. D’Souza, P. D. Hughes, D. Sulakhe, A. Z. Wang, B. Xie, R. Yeasin,  
M. E. Msall, B. Andrews, E. C. Claud, Bacteroidota and lachnospiraceae integration into 
the gut microbiome at key time points in early life are linked to infant 
neurodevelopment. Gut Microbes 13, 1997560 (2021).

	 12.	T . Hooven, Y. C. Lin, A. Salleb-Aouissi, Multiple instance learning for predicting 
necrotizing enterocolitis in premature infants using microbiome data. Proc. ACM Conf. 
Health Inference Learn. 2020, 99–109 (2020).

	 13.	 M. R. Olm, N. Bhattacharya, A. Crits-Christoph, B. A. Firek, R. Baker, Y. S. Song,  
M. J. Morowitz, J. F. Banfield, Necrotizing enterocolitis is preceded by increased gut 
bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci. Adv. 5, eaax5727 
(2019).

	 14.	H . E. Laue, S. A. Korrick, E. R. Baker, M. R. Karagas, J. C. Madan, Prospective associations of 
the infant gut microbiome and microbial function with social behaviors related to 
autism at age 3 years. Sci. Rep. 10, 15515 (2020).

	 15.	 M. S. Matchado, M. Lauber, S. Reitmeier, T. Kacprowski, J. Baumbach, D. Haller, M. List, 
Network analysis methods for studying microbial communities: A mini review. Comput. 
Struct. Biotechnol. J. 19, 2687–2698 (2021).

	 16.	 M. A. Fischbach, Microbiome: Focus on causation and mechanism. Cell 174, 785–790 
(2018).

	 17.	 K. Faust, J. Raes, Conet app: Inference of biological association networks using cytoscape. 
F1000Res. 5, 1519 (2016).

	 18.	 Y. Deng, Y. H. Jiang, Y. Yang, Z. He, F. Luo, J. Zhou, Molecular ecological network analyses. 
BMC Bioinformatics 13, 113 (2012).

	 19.	 J. Friedman, E. J. Alm, Inferring correlation networks from genomic survey data.  
PLOS Comput. Biol. 8, e1002687 (2012).

	 20.	H . Fang, C. Huang, H. Zhao, M. Deng, Cclasso: Correlation inference for compositional 
data through lasso. Bioinformatics 31, 3172–3180 (2015).

	 21.	 Y. Ban, L. An, H. Jiang, Investigating microbial co-occurrence patterns based on 
metagenomic compositional data. Bioinformatics 31, 3322–3329 (2015).

	 22.	 P. Gajer, R. M. Brotman, G. Bai, J. Sakamoto, U. M. E. Schütte, X. Zhong, S. S. K. Koenig,  
L. Fu, Z. S. Ma, X. Zhou, Z. Abdo, L. J. Forney, J. Ravel, Temporal dynamics of the human 
vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).

	 23.	 P. S. La Rosa, B. B. Warner, Y. Zhou, G. M. Weinstock, E. Sodergren, C. M. Hall-Moore,  
H. J. Stevens, W. E. Bennett Jr., N. Shaikh, L. A. Linneman, J. A. Hoffmann, A. Hamvas,  
E. Deych, B. A. Shands, W. D. Shannon, P. I. Tarr, Patterned progression of bacterial 
populations in the premature infant gut. Proc. Natl. Acad. Sci. 111, 12522–12527 
(2014).

	 24.	T . Gibson, G. Gerber, Robust and scalable models of microbiome dynamics. PMLR 80, 
1763–1772 (2018).

	 25.	 M. J. McGeachie, J. E. Sordillo, T. Gibson, G. M. Weinstock, Y. Y. Liu, D. R. Gold, S. T. Weiss,  
A. Litonjua, Longitudinal prediction of the infant gut microbiome with dynamic bayesian 
networks. Sci. Rep. 6, 20359 (2016).

	 26.	 J. Lugo-Martinez, D. Ruiz-Perez, G. Narasimhan, Z. Bar-Joseph, Dynamic interaction 
network inference from longitudinal microbiome data. Microbiome 7, 54 (2019).

	 27.	T . A. Joseph, A. P. Pasarkar, I. Pe'er, Efficient and accurate inference of mixed microbial 
population trajectories from longitudinal count data. Cell Syst. 10, 463–469.e6 (2020).

	 28.	D . Ruiz-Perez, J. Lugo-Martinez, N. Bourguignon, K. Mathee, B. Lerner, Z. Bar-Joseph,  
G. Narasimhan, Dynamic bayesian networks for integrating multi-omics time series 
microbiome data. mSystems 6, e01105-20 (2021).

	 29.	V . Bucci, B. Tzen, N. Li, M. Simmons, T. Tanoue, E. Bogart, L. Deng, V. Yeliseyev,  
M. L. Delaney, Q. Liu, B. Olle, R. R. Stein, K. Honda, L. Bry, G. K. Gerber, Mdsine: Microbial 
dynamical systems inference engine for microbiome time-series analyses. Genome Biol. 
17, 121 (2016).

	 30.	 M. Alshawaqfeh, E. Serpedin, A. B. Younes, Inferring microbial interaction networks from 
metagenomic data using sglv-ekf algorithm. BMC Genomics 18, 228 (2017).

	 31.	 X. Gao, B.-T. Huynh, D. Guillemot, P. Glaser, L. Opatowski, Inference of significant 
microbial interactions from longitudinal metagenomics data. Front. Microbiol. 9, 2319 
(2018).

	 32.	 K. Raghuram, J. Yang, P. T. Church, Z. Cieslak, A. Synnes, A. Mukerji, P. S. Shah, for the 
Canadian Neonatal Network, Canadian Neonatal Follow-Up Network Investigators, Head 
growth trajectory and neurodevelopmental outcomes in preterm neonates. Pediatrics 
140, e20170216 (2017).

	 33.	 K. C. K. Kuban, E. N. Allred, T. M. O'Shea, N. Paneth, S. Westra, C. Miller, N. P. Rosman,  
A. Leviton, Developmental correlates of head circumference at birth and two years in a 
cohort of extremely low gestational age newborns. J. Pediatr. 155, 344–349.e3 (2009).

	 34.	V . Neubauer, T. Fuchs, E. Griesmaier, K. Kager, U. Pupp-Peglow, U. Kiechl-Kohlendorfer, 
Poor postdischarge head growth is related to a 10% lower intelligence quotient in very 
preterm infants at the chronological age of five years. Acta Paediatr. 105, 501–507 (2016).

	 35.	E . G. Cordova, S. Cherkerzian, K. Bell, K. E. Joung, C. T. Collins, M. Makrides, J. Gould,  
P. J. Anderson, M. B. Belfort, Association of poor postnatal growth with 
neurodevelopmental impairment in infancy and childhood: Comparing the fetus and 
the healthy preterm infant references. J. Pediatr. 225, 37–43.e5 (2020).

	 36.	 M. Hack, N. Breslau, B. Weissman, D. Aram, N. Klein, E. Borawski, Effect of very low birth 
weight and subnormal head size on cognitive abilities at school age. N. Eng. J. Med. 325, 
231–237 (1991).

	 37.	 M. B. Belfort, S. L. Rifas-Shiman, T. Sullivan, C. T. Collins, A. J. McPhee, P. Ryan,  
K. P. Kleinman, M. W. Gillman, R. A. Gibson, M. Makrides, Infant growth before and after 
term: Effects on neurodevelopment in preterm infants. Pediatrics 128, e899–e906 (2011).

	 38.	 W. Walters, E. R. Hyde, D. Berg-Lyons, G. Ackermann, G. Humphrey, A. Parada, J. A. Gilbert, 
J. K. Jansson, J. G. Caporaso, J. A. Fuhrman, A. Apprill, R. Knight, Improved bacterial 16s 
rrna gene (v4 and v4-5) and fungal internal transcribed spacer marker gene primers for 
microbial community surveys. mSystems 1, e00009–e00015 (2016).

	 39.	 J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. Owens, 
J. Betley, L. Fraser, M. Bauer, N. Gormley, J. A. Gilbert, G. Smith, R. Knight, Ultra-high-
throughput microbial community analysis on the illumina hiseq and miseq platforms. 
ISME J. 6, 1621–1624 (2012).

	 40.	T . R. Fenton, J. H. Kim, A systematic review and meta-analysis to revise the fenton growth 
chart for preterm infants. BMC Pediatr. 13, 59 (2013).

	 41.	T . Hothorn, K. Hornik, A. Zeileis, Unbiased recursive partitioning: A conditional inference 
framework. J. Comput. Graph. Stat. 15, 651–674 (2006).

	 42.	 A. Sarda-Espinosa, S. Subbiah, T. Bartz-Beielstein, Conditional inference trees for 
knowledge extraction from motor health condition data. Eng. Appl. Artif. Intel. 62, 26–37 
(2017).

	 43.	 S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian 
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741 (1984).

	 44.	 G. Casella, E. I. George, Explaining the gibbs sampler. Am. Stat. 46, 167–174 (1992).
	 45.	 P. M. Dietz, L. J. England, W. M. Callaghan, M. Pearl, M. L. Wier, M. Kharrazi, A comparison 

of lmp-based and ultrasound-based estimates of gestational age using linked california 
livebirth and prenatal screening records. Paediatr. Perinat. Epidemiol. 21, 62–71 (2007).

	 46.	 J. Lopez, A. Grinspan, Fecal microbiota transplantation for inflammatory bowel disease. 
Gastroenterol. Hepatol. 12, 374–379 (2016).

	 47.	T . M. Cover, J. A. Thomas, Elements of Information Theory (Wiley Series in 
Telecommunications and Signal Processing) (Wiley-Interscience, 2006).

	 48.	 S. M. Lundberg, S.-I. Lee, in Advances in Neural Information Processing Systems 30, I. Guyon, 
et al., Eds. (Curran Associates, Inc., 2017), pp. 4765–4774.

	 49.	 S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams, D. E. Liston,  
D. K. W. Low, S. F. Newman, J. Kim, S. I. Lee, Explainable machine-learning predictions for 
the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

	 50.	E . Štrumbelj, I. Kononenko, Explaining prediction models and individual predictions with 
feature contributions. Knowl. Inf. Syst. 41, 647–665 (2014).

	 51.	 A. E. Roth, The Shapley Value: Essays in Honor of Lloyd S. Shapley (Cambridge Univ. Press, 
2009).

	 52.	E . Zaura, B. J. Keijser, S. M. Huse, W. Crielaard, Defining the healthy "core microbiome" of 
oral microbial communities. BMC Microbiol. 9, 259 (2009).

	 53.	C . A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, R. Knight, Diversity, stability 
and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

	 54.	T . Yatsunenko, F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Contreras,  
M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, A. C. Heath, B. Warner, J. Reeder,  
J. Kuczynski, J. G. Caporaso, C. A. Lozupone, C. Lauber, J. C. Clemente, D. Knights,  
R. Knight, J. I. Gordon, Human gut microbiome viewed across age and geography.  
Nature 486, 222–227 (2012).

	 55.	 A. Prehn-Kristensen, A. Zimmermann, L. Tittmann, W. Lieb, S. Schreiber, L. Baving,  
A. Fischer, Reduced microbiome alpha diversity in young patients with adhd. PLOS ONE 
13, e0200728 (2018).

	 56.	 M. Fox, S. M. Lee, K. S. Wiley, V. Lagishetty, C. A. Sandman, J. P. Jacobs, L. M. Glynn, 
Development of the infant gut microbiome predicts temperament across the first year of 
life. Dev. Psychopathol. 34, 1914–1925 (2022).

	 57.	 Y. Wang, X. Chen, Y. Yu, Y. Liu, Q. Zhang, J. Bai, Association between gut microbiota and 
infant’s temperament in the first year of life in a Chinese birth cohort. Microorganisms 8, 
753 (2020).

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 12, 2024



Sizemore et al., Sci. Adv. 10, eadj0400 (2024)     10 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

19 of 20

	 58.	I . Acuña, T. Cerdó, A. Ruiz, F. J. Torres-Espínola, A. López-Moreno, M. Aguilera, A. Suárez,  
C. Campoy, Infant gut microbiota associated with fine motor skills. Nutrients 13, 1673 
(2021).

	 59.	 S. Abuaish, N. M. al-Otaibi, T. S. Abujamel, S. A. Alzahrani, S. M. Alotaibi, Y. A. AlShawakir, 
K. Aabed, A. el-Ansary, Fecal transplant and Bifidobacterium treatments modulate gut 
Clostridium bacteria and rescue social impairment and hippocampal BDNF expression in 
a rodent model of autism. Brain Sci. 11, 1038 (2021).

	 60.	 B. Ma, S. Sundararajan, G. Nadimpalli, M. France, E. McComb, L. Rutt, J. M. Lemme-Dumit, 
E. Janofsky, L. S. Roskes, P. Gajer, L. Fu, H. Yang, M. Humphrys, L. J. Tallon, L. Sadzewicz,  
M. F. Pasetti, J. Ravel, R. M. Viscardi, Highly specialized carbohydrate metabolism 
capability in Bifidobacterium strains associated with intestinal barrier maturation in early 
preterm infants. MBio 13, e0129922 (2022).

	 61.	 J. Samara, S. Moossavi, B. Alshaikh, V. A. Ortega, V. K. Pettersen, T. Ferdous, S. L. Hoops,  
A. Soraisham, J. Vayalumkal, D. Dersch-Mills, J. S. Gerber, S. Mukhopadhyay,  
K. Puopolo, T. A. Tompkins, D. Knights, J. Walter, H. Amin, M. C. Arrieta, 
Supplementation with a probiotic mixture accelerates gut microbiome maturation 
and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe 
30, 696–711.e5 (2022).

	 62.	 R. L. Morgan, G. A. Preidis, P. C. Kashyap, A. V. Weizman, B. Sadeghirad, Y. Chang,  
I. D. Florez, F. Foroutan, S. Shahid, D. Zeraatkar, Probiotics reduce mortality and morbidity 
in preterm, low-birth-weight infants: A systematic review and network meta-analysis of 
randomized trials. Gastroenterology 159, 467–480 (2020).

	 63.	 A. Acuna-Gonzalez, M. Kujawska, M. Youssif, T. Atkinson, S. Grundy, A. Hutchison,  
C. Tremlett, P. Clarke, L. J. Hall, Bifidobacterium bacteraemia is rare with routine 
probiotics use in preterm infants: A further case report with literature review. Anaerobe 
80, 102713 (2023).

	 64.	 S. E. Jacobs, L. Hickey, S. Donath, G. F. Opie, P. J. Anderson, S. M. Garland, J. L. Y. Cheong, 
ProPremsStudy Groups, Probiotics, prematurity and neurodevelopment: Follow-up of a 
randomised trial. BMJ Paediatrics Open 1, e000176 (2017).

	 65.	 S. Khanna, C. S. Kraft, Fecal microbiota transplantation: Tales of caution. Clin. Infect. Dis. 
72, e881–e882 (2020).

	 66.	L . Michailidis, A. C. Currier, M. Le, D. R. Flomenhoft, Adverse events of fecal microbiota 
transplantation: A meta-analysis of high-quality studies. Ann. Gastroenterol. 34, 802 
(2021).

	 67.	 A. Ohishi, S. Takahashi, Y. Ito, Y. Ohishi, K. Tsukamoto, Y. Nanba, N. Ito, S. Kakiuchi,  
A. Saitoh, M. Morotomi, T. Nakamura, Bifidobacterium septicemia associated with 
postoperative probiotic therapy in a neonate with omphalocele. J. Pediatr. 156, 679–681 
(2010).

	 68.	E . Weber, Q. Reynaud, F. Suy, A. Gagneux-Brunon, A. Carricajo, A. Guillot,  
E. Botelho-Nevers, Bifidobacterium species bacteremia: Risk factors in adults and infants. 
Clin. Infect. Dis. 61, 482–484 (2015).

	 69.	 W. Xu, M. P. Judge, K. Maas, N. Hussain, J. M. McGrath, W. A. Henderson, X. Cong, 
Systematic review of the effect of enteral feeding on gut microbiota in preterm infants.  
J. Obstet. Gynecol. Neonatal. Nurs. 47, 451–463 (2018).

	 70.	 M. Reyman, M. A. van Houten, R. L. Watson, M. L. J. N. Chu, K. Arp, W. J. de Waal,  
I. Schiering, F. B. Plötz, R. J. L. Willems, W. van Schaik, E. A. M. Sanders, D. Bogaert,  
Effects of early-life antibiotics on the developing infant gut microbiome and resistome: A 
randomized trial. Nat. Commun. 13, 893 (2022).

	 71.	 M. K. Gibson, T. S. Crofts, G. Dantas, Antibiotics and the developing infant gut microbiota 
and resistome. Curr. Opin. Microbiol. 27, 51–56 (2015).

	 72.	 G. D. P. Coelho, L. F. A. Ayres, D. S. Barreto, B. D. Henriques, M. R. M. C. Prado,  
C. M. D. Passos, Acquisition of microbiota according to the type of birth: An integrative 
review. Rev. Lat. Am. Enfermagem 29, e3446 (2021).

	 73.	E . Jašarević, K. E. Morrison, T. L. Bale, Sex differences in the gut microbiome–brain axis 
across the lifespan. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150122 (2016).

	 74.	 X. Hu, Y. Chang, Z. Wang, W. Bao, Z. Li, Altered gut microbiota is associated with feeding 
intolerance in preterm infants. Turk. J. Pediatr. 63, 206–217 (2021).

	 75.	L . Liu, D. Ao, X. Cai, P. Huang, N. Cai, S. Lin, B. Wu, Early gut microbiota in very low and 
extremely low birth weight preterm infants with feeding intolerance: A prospective 
case-control study. J. Microbiol. 60, 1021–1031 (2022).

	 76.	 A. Mitha, S. S. Kruth, S. Bjurman, A. Rakow, S. Johansson, Neonatal morbidities and 
feeding tolerance outcomes in very preterm infants, before and after introduction of 
probiotic supplementation. Nutrients 14, 3646 (2022).

	 77.	 B. Alshaikh, J. Samara, S. Moossavi, T. Ferdous, A. Soraisham, D. Dersch-Mills, M.-C. Arrieta, 
H. Amin, Multi-strain probiotics for extremely preterm infants: A randomized controlled 
trial. Pediatr. Res. 92, 1663–1670 (2022).

	 78.	L .-X. Qiao, W.-Y. Zhu, H.-Y. Zhang, H. Wang, Effect of early administration of probiotics on 
gut microflora and feeding in pre-term infants: A randomized controlled trial. 
 J. Matern. Fetal Neonatal Med. 30, 13–16 (2017).

	 79.	T . Zhao, H.-M. Feng, B. Caicike, Y.-P. Zhu, Investigation into the current situation and 
analysis of the factors influencing extrauterine growth retardation in preterm infants. 
Front. Pediatr. 9, 643387 (2021).

	 80.	 S. P. Bae, E. K. Kim, J. Yun, Y. M. Yoon, S. H. Shin, S. Y. Park, Retinopathy of prematurity 
requiring treatment is closely related to head growth during neonatal intensive care unit 
hospitalization in very low birth weight infants. Neonatology 119, 176–183 (2022).

	 81.	 B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, S. P. Holmes, Dada2: 
High-resolution sample inference from illumina amplicon data. Nat. Methods 13, 
581–583 (2016).

	 82.	E . Bolyen, J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, G. A. al-Ghalith,  
H. Alexander, E. J. Alm, M. Arumugam, F. Asnicar, Y. Bai, J. E. Bisanz, K. Bittinger,  
A. Brejnrod, C. J. Brislawn, C. T. Brown, B. J. Callahan, A. M. Caraballo-Rodríguez, J. Chase, 
E. K. Cope, R. da Silva, C. Diener, P. C. Dorrestein, G. M. Douglas, D. M. Durall, C. Duvallet, 
C. F. Edwardson, M. Ernst, M. Estaki, J. Fouquier, J. M. Gauglitz, S. M. Gibbons, D. L. Gibson, 
A. Gonzalez, K. Gorlick, J. Guo, B. Hillmann, S. Holmes, H. Holste, C. Huttenhower,  
G. A. Huttley, S. Janssen, A. K. Jarmusch, L. Jiang, B. D. Kaehler, K. B. Kang, C. R. Keefe,  
P. Keim, S. T. Kelley, D. Knights, I. Koester, T. Kosciolek, J. Kreps, M. G. I. Langille, J. Lee,  
R. Ley, Y. X. Liu, E. Loftfield, C. Lozupone, M. Maher, C. Marotz, B. D. Martin, D. McDonald, 
L. J. McIver, A. V. Melnik, J. L. Metcalf, S. C. Morgan, J. T. Morton, A. T. Naimey,  
J. A. Navas-Molina, L. F. Nothias, S. B. Orchanian, T. Pearson, S. L. Peoples, D. Petras,  
M. L. Preuss, E. Pruesse, L. B. Rasmussen, A. Rivers, M. S. Robeson II, P. Rosenthal,  
N. Segata, M. Shaffer, A. Shiffer, R. Sinha, S. J. Song, J. R. Spear, A. D. Swafford,  
L. R. Thompson, P. J. Torres, P. Trinh, A. Tripathi, P. J. Turnbaugh, S. Ul-Hasan,  
J. J. J. van der Hooft, F. Vargas, Y. Vázquez-Baeza, E. Vogtmann, M. von Hippel, W. Walters, 
Y. Wan, M. Wang, J. Warren, K. C. Weber, C. H. D. Williamson, A. D. Willis, Z. Z. Xu,  
J. R. Zaneveld, Y. Zhang, Q. Zhu, R. Knight, J. G. Caporaso, Reproducible, interactive, 
scalable and extensible microbiome data science using qiime 2. Nat. Biotechnol. 37, 
852–857 (2019).

	 83.	 A. Murali, A. Bhargava, E. S. Wright, Idtaxa: A novel approach for accurate taxonomic 
classification of microbiome sequences. Microbiome 6, 140 (2018).

	 84.	D . H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski, P. A. Chaumeil,  
P. Hugenholtz, A standardized bacterial taxonomy based on genome phylogeny 
substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

	 85.	 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search 
tool. J. Mol. Biol. 215, 403–410 (1990).

	 86.	T . M. Cover, J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).
	 87.	 B. Fuglede, F. Topsoe, in Proceedings of the International Symposium on Information 

Theory, 2004 (IEEE, 2004), p. 31.
	 88.	 J. Besag, Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. B. 

Methodol. 36, 192–225 (1974).
	 89.	 A. E. Gelfand, A. F. Smith, Sampling-based approaches to calculating marginal densities. 

J. Am. Stat. Assoc. 85, 398–409 (1990).
	 90.	 R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for 

Statistical Computing, 2021).
	 91.	D . Quesada, dbnR: Dynamic Bayesian Network Learning and Inference (2022). R package 

version 0.7.8.
	 92.	 M. Scutari, Learning Bayesian networks with the bnlearn R package. arXiv:0908.3817 

[stat.ML] (2009).
	 93.	N . M. Vogt, R. L. Kerby, K. A. Dill-Mc Farland, S. J. Harding, A. P. Merluzzi, S. C. Johnson,  

C. M. Carlsson, S. Asthana, H. Zetterberg, K. Blennow, B. B. Bendlin, F. E. Rey, Gut 
microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

	 94.	 S. Jangi, R. Gandhi, L. M. Cox, N. Li, F. von Glehn, R. Yan, B. Patel, M. A. Mazzola, S. Liu,  
B. L. Glanz, S. Cook, S. Tankou, F. Stuart, K. Melo, P. Nejad, K. Smith, B. D. Topçuolu,  
J. Holden, P. Kivisäkk, T. Chitnis, P. L. De Jager, F. J. Quintana, G. K. Gerber, L. Bry,  
H. L. Weiner, Alterations of the human gut microbiome in multiple sclerosis.  
Nat. Commun. 7, 12015 (2016).

	 95.	H . Jiang, Z. Ling, Y. Zhang, H. Mao, Z. Ma, Y. Yin, W. Wang, W. Tang, Z. Tan, J. Shi, L. Li,  
B. Ruan, Altered fecal microbiota composition in patients with major depressive disorder. 
Brain Behav. Immun. 48, 186–194 (2015).

	 96.	 R. R. Stein, V. Bucci, N. C. Toussaint, C. G. Buffie, G. Rätsch, E. G. Pamer, C. Sander,  
J. B. Xavier, Ecological modeling from time-series inference: Insight into dynamics and 
stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

	 97.	 J. Mounier, C. Monnet, T. Vallaeys, R. Arditi, A.-S. Sarthou, A. Hélias, F. Irlinger, Microbial 
interactions within a cheese microbial community. Appl. Environ. Microbiol. 74, 172–181 
(2008).

	 98.	D . B. DiGiulio, B. J. Callahan, P. J. McMurdie, E. K. Costello, D. J. Lyell, A. Robaczewska,  
C. L. Sun, D. S. A. Goltsman, R. J. Wong, G. Shaw, D. K. Stevenson, S. P. Holmes,  
D. A. Relman, Temporal and spatial variation of the human microbiota during pregnancy. 
Proc. Natl. Acad. Sci. 112, 11060–11065 (2015).

	 99.	 J. Lloyd-Price, C. Arze, A. N. Ananthakrishnan, M. Schirmer, J. Avila-Pacheco, T. W. Poon,  
E. Andrews, N. J. Ajami, K. S. Bonham, C. J. Brislawn, D. Casero, H. Courtney, A. Gonzalez,  
T. G. Graeber, A. B. Hall, K. Lake, C. J. Landers, H. Mallick, D. R. Plichta, M. Prasad,  
G. Rahnavard, J. Sauk, D. Shungin, Y. Vázquez-Baeza, R. A. White III, IBDMDB Investigators, 
J. Braun, L. A. Denson, J. K. Jansson, R. Knight, S. Kugathasan, D. P. B. McGovern,  
J. F. Petrosino, T. S. Stappenbeck, H. S. Winter, C. B. Clish, E. A. Franzosa, H. Vlamakis,  

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 12, 2024



Sizemore et al., Sci. Adv. 10, eadj0400 (2024)     10 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

20 of 20

R. J. Xavier, C. Huttenhower, Multi-omics of the gut microbial ecosystem in inflammatory 
bowel diseases. Nature 569, 655–662 (2019).

	100.	 F. Turroni, C. Peano, D. A. Pass, E. Foroni, M. Severgnini, M. J. Claesson, C. Kerr,  
J. Hourihane, D. Murray, F. Fuligni, M. Gueimonde, A. Margolles, G. de Bellis, P. W. O’Toole, 
D. van Sinderen, J. R. Marchesi, M. Ventura, Diversity of bifidobacteria within the infant 
gut microbiota. PLOS ONE 7, e36957 (2012).

	101.	T . Sybille, Z. June, K. Michael, M. Roy, M. L. Marco, The intestinal microbiota in aged mice 
is modulated by dietary resistant starch and correlated with improvements in host 
responses. FEMS Microbiol. Ecol. 83, 299–309 (2013).

	102.	 J. Xu, F. Lian, L. Zhao, Y. Zhao, X. Chen, X. Zhang, Y. Guo, C. Zhang, Q. Zhou, Z. Xue, X. Pang, 
L. Zhao, X. Tong, Structural modulation of gut microbiota during alleviation of type 2 
diabetes with a chinese herbal formula. ISME J. 9, 552–562 (2015).

	103.	 A. Rivière, M. Selak, D. Lantin, F. Leroy, L. De Vuyst, Bifidobacteria and butyrate-producing 
colon bacteria: Importance and strategies for their stimulation in the human gut.  
Front. Microbiol. 7, 979 (2016).

	104.	 F. De Filippis, N. Pellegrini, L. Vannini, I. B. Jeffery, A. L. Storia, L. Laghi, D. I. Serrazanetti,  
R. D. Cagno, I. Ferrocino, C. Lazzi, S. Turroni, L. Cocolin, P. Brigidi, E. Neviani, M. Gobbetti, 
W. Paul, O'Toole, D. Ercolini, High-level adherence to a mediterranean diet beneficially 
impacts the gut microbiota and associated metabolome. Gut 65, 1812–1821 (2016).

	105.	 J. Zhang, Z. Guo, Z. Xue, Z. Sun, M. Zhang, L. Wang, G. Wang, F. Wang, J. Xu, H. Cao, H. Xu, 
Q. Lv, Z. Zhong, Y. Chen, S. Qimuge, B. Menghe, Y. Zheng, L. Zhao, W. Chen, H. Zhang,  
A phylo-functional core of gut microbiota in healthy young Chinese cohorts across 
lifestyles, geography and ethnicities. ISME J. 9, 1979–1990 (2015).

	106.	T . Zhang, Q. Li, L. Cheng, H. Buch, F. Zhang, Akkermansia muciniphila is a promising 
probiotic. J. Microbial. Biotechnol. 12, 1109–1125 (2019).

Acknowledgments: We acknowledge the Center for the Science of Early Trajectories (SET) at 
the Department of Pediatrics, University of Chicago, for providing resources and support. 
Funding: This study was partially supported by NIH grants P30DK042086 (Center for 
Interdisciplinary Study of Inflammatory Intestinal Disorders), R01HD105234 (E.C.C.), 
institutional support from the Biological Sciences Division, and the resources provided by 
the Research Computing Center (RCC) of the University of Chicago. Author contributions: 
E.C.C., C.R.M., and I.C. procured funding and directed research. K.O., E.C.C., and C.R.M. 
collected data and processed raw samples to procure microbial profiles. N.S., R.Z., and I.C. 
developed the modeling framework and the software implementation. N.S., K.O., E.C.C., 
C.R.M., and I.C. interpreted results and wrote the paper. Competing interests: The authors 
declare that they have no competing interests. Data and materials availability: All data 
needed to evaluate the conclusions in the paper are present in the paper and/or the 
Supplementary Materials. Q-net models are available at the permanent links https://doi.
org/10.5281/zenodo.7453696 and https://doi.org/10.5281/zenodo.7942501. Complete 
software is available as a python installable application at https://pypi.org/project/qbiome/ 
(also deposited to a permanent repository, accessible as https://doi.org/10.5281/
zenodo.7459014), which includes installation notes, and examples to run the inference and 
computation of Mδ risk for individual patients. Q-net models inferred for the key results in 
this study are available at the permanent links https://doi.org/10.5281/zenodo.7453696 and 
https://doi.org/10.5281/zenodo.7942501.

Submitted 2 June 2023 
Accepted 6 March 2024 
Published 10 April 2024 
10.1126/sciadv.adj0400 D

ow
nloaded from

 https://w
w

w
.science.org on A

pril 12, 2024

https://doi.org/10.5281/zenodo.7453696
https://doi.org/10.5281/zenodo.7453696
https://doi.org/10.5281/zenodo.7942501
https://pypi.org/project/qbiome/
https://doi.org/10.5281/zenodo.7459014
https://doi.org/10.5281/zenodo.7459014
https://doi.org/10.5281/zenodo.7453696
https://doi.org/10.5281/zenodo.7942501

	A digital twin of the infant microbiome to predict neurodevelopmental deficits
	INTRODUCTION
	RESULTS
	Data source
	Digital twin construction from longitudinal microbiome profiles
	Sampling the digital twin for imputation and forecasting
	Validation and comparison of forecast performance for microbiome maturation trajectories
	Quantifying future risk Mδ of anomalous deviation in microbiome maturation
	Validation of Mδ risk as a measure of future suboptimal HCG
	Importance of different taxa in determination of HCG phenotype
	Network analysis to uncover across-taxa directional influence on abundance fluctuations
	Role of clinical factors and diet in modulating HCG phenotypic outcome
	Designing personalized interventions to reduce risk of poor HCG outcome

	DISCUSSION
	MATERIALS AND METHODS
	Data sources
	Definitions and notation
	Q-net construction from relative abundance profiles
	Q-sampling: Efficient high-dimensional sampling of the Q-net
	Q distance induced risk stratification
	Risk-based prediction of suboptimal cognitive development
	Forecasting coupled microbiome maturation
	LOMAR of microbial relative abundance
	Q-net model regeneration
	Software availability
	Ethics statement

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


