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ABSTRACT: We demonstrate the feasibility of using a stochastic solver, full configuration
interaction quantum Monte Carlo with the initiator approximation (i-FCIQMC), to
converge fragment embedding calculations, namely bootstrap embedding (BE). We first
propose and test a general protocol for converging BE-i-FCIQMC calculations and then
suggest how the quality of the calculation compares against that of deterministic BE-FCI
using different numbers of walkers. We then demonstrate that BE-i-FCIQMC can perform
as well as BE-FCI in the large walker limit and how different factors, including the size of
the Hilbert space of the fragments, the number of walkers, and the nature of the chemical system, affect the achievable matching
error. We finally perform BE-FCI calculations in realistic systems like benzene and cyclohexane using a double-ζ basis set. This work
demonstrates the potential of performing FCI quality calculations in realistic systems using BE.

There are a number of methods for tackling the electronic
structure problem, such as Hartree−Fock theory (HF),1,2

density functional theory (DFT),3,4 coupled cluster theory,5−9

and full configuration interaction (FCI). Among them, FCI has
long been known as the method that can provide numerically
exact solutions to the time-independent Schrödinger equation
under a specific basis set.3,10−12 Nevertheless, its exponential
scaling with the number of electrons and orbitals prevents it
from being used to calculate the energies of larger systems. In
this work, we combine a stochastic method, full configuration
interaction quantum Monte Carlo (FCIQMC),13−16 and the
fragment embedding method, bootstrap embedding (BE),17−21

to calculate molecular energies at the FCI level and examine the
scaling relationship between the size of the Hilbert space of the
fragments and the number of walkers required to maintain the
quality of the solution.

We first outline the key principles behind FCIQMC and BE.
FCIQMC is a stochastic electronic structure method that is
inspired by projector Monte Carlo.22 If a Wick rotation is
performed on the time-dependent Schrödinger equation
(TDSE) and ℏ os defined to be 1, the TDSE can be
reformulated22 as

H E( ) ( )= |
(1)

where τ = it. Defining the state |Ψ(τ = 0)⟩ = |Φ0⟩ and
decomposing |Φ0⟩ in the basis of the Hamiltonian eigenfunc-
tions, Ĥ|Ψi⟩ = Ei|Ψi⟩, gives |Φ0⟩ = ∑ici|Ψi⟩. Assuming that
eigenfunctions are ordered according to the energy |Ψ0⟩ is the
ground state with energy E0 and requiring that c0 be non-zero,
one can show that when τ → ∞
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thus recovering the ground state wave function; the correspond-
ing energy value can be computed variationally from H0 0

0 0

| |
|

or

by projection from H0 0

0 0

| |
|

. Therefore, if the FCI wave function

ansatz, |ΨFCI⟩ = ∑iCi|Di⟩, is propagated through time, one can
obtain the corresponding updating equation for each coefficient,
Ci, via finite difference
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where Hij = ⟨Di|Ĥ|Dj⟩ and S has replaced E to take the role of a
population control parameter. Coefficients, Ci, are represented
by populations of “walkers” on Slater determinants, and the goal
of population control is to make sure that the number of walkers
is controlled to be below a certain value. FCIQMC then uses the
corresponding spawning and death steps to perform this
propagation stochastically, resulting in the FCI solution. Several
important modifications can improve the performance of
FCIQMC, including the initiator method (i-FCIQMC),
introduced in 2010 by Cleland et al.,14 that made it possible
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to converge the calculation with a lower number of walkers, and
a further modification known as the adaptive shift method23 can
reduce the initiator error and allows one to obtain near-FCI
quality results for systems that have a Hilbert space size of ≤1035

using 2 × 108 walkers, which is 1025 times larger than the largest
FCI calculation reported to date.24 Additionally, semistochastic
adaptations of FCIQMC make it possible to deterministically
propagate a number of determinants (usually the most
populated ones), which dramatically reduces the stochastic
noise.25,26

BE attempts to break down the calculation of a whole
molecule into overlapping fragments. For a chemical system
described by a second-quantized Hamiltonian

H h c c V c c c c
1
2v

N

v v
v

N

v v= +† † †

(4)

where h and V are the standard one- and two-electron integrals
between the N orbitals, respectively, and cμ

† (cμ) creates
(annihilates) an electron in a local orbital (LO), |ϕμ⟩. The
LOs can be obtained from the Foster−Boys localization
method,27 using intrinsic atomic orbitals (IAOs),28 etc., and
form an orthonormal basis. Suppose the HF solution of the
Hamiltonian Ĥ is |Φ0⟩. We define a fragment A by specifying a
subset of NA LOs on A, {ϕμ}μ∈A. Typically, NA ≪ N as the
number of electrons, NA, on an embedding fragment is always
smaller than that in a molecule, which is N. Then it can be shown
that the HF state of a molecule can be decomposed as the
following product:
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Equation 5 is called a Schmidt decomposition (SD) of |Φ0⟩ on
fragment A and divides the system into three parts: the fragment
orbitals (FOs) {f p

A}p=1
NA that we choose to be the fragment LOs

{ϕμ}μ∈NdA
, the bath orbitals (BOs) {bp

A}p=1
NA that are entangled with

the FOs, and the frozen core |Φ0
env,A⟩ that is disentangled with

the FOs. The 2NA FOs + BOs are called the embedding orbitals
(EOs). It is worth mentioning that all of the BOs are assumed to
be entangled with FOs, which means that 0 < ηp

A < 1 for all p.
The embedding Hamiltonian can be derived by realizing that

the EOs span an active space, with the environment being a
spectator. The form of it is shown below:

H h a a V a a a a
1
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where
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(7)

where TA = [Tf,A|Tb,A] is the coefficient matrix of {|f p
A⟩} and {|

bp
A⟩} expanded in the set of LOs. As the size of ĤA is usually

much smaller than the original Hamiltonian due to the inclusion
of fewer orbitals (if 2NA < N), computational resources will be
reduced in fragment embedding calculations when compared to
a full system calculation using the same wave function solver.

Density matrix embedding theory (DMET) is another
method that utilizes fragment embedding to estimate the wave
function and the energy of a molecule. The main difference
between DMET and BE is the matching condition. Because
DMET normally uses non-overlapping fragments, it aligns the
density matrix of the mean field with that of the correlated wave
function computation for each fragment. On the contrary, BE
utilizes overlapping fragments and aligns the density matrix of
one fragment with that of another within their shared region of
overlap. Therefore, matching in BE can be expressed mathemati-
cally as a collectively restricted optimization problem. To briefly
describe how this is done, consider two overlapping fragments, A
and B, which is shown in Figure 1.

Let A be the set of edge LOs of A (LO 1 and 3 in Figure 1)
and B be the center LOs of B (LO 3 in Figure 1). Then, A ∩ B
denotes the overlapping region where the density matrix of A to
that of B should be matched, which is LO 3 in Figure 1. If only
matching of the elements of the 1-PDM of different fragments is
considered, the fragment calculation of A is then constrained as
follows:

Hmin
A

AA (8)

subject to

a a P p q B A, , ,p
A

q
A

A pq
B

A B=†
(9)

where ⟨···⟩A = ⟨ΨA|···|ΨA⟩. As ΨA is the wave function of
fragment A, Ppq

B can then be defined as the 1-PDM of the
overlapping orbitals between fragments A and B. We loop over
all fragments B ≠ A to enumerate all of the matching conditions
for A. One can apply this to all fragments, leading to the
following Lagrangian for constrained optimization when
summing over all of the fragments:
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in which {λpq
A } are the Lagrange multipliers for the density

matching and μ is a global chemical potential that fixes the total
number of electrons for non-overlapping fragment centers. The
stationary points of eq 10 are described by the eigenvalue
equation for fragment A:

Figure 1. Schematic illustration of the BE matching conditions on a
one-dimensional lattice model.
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which, in addition to the embedding Hamiltonian ĤA (see eq 4),
includes local effective potential term λ̂A, as well as a global
chemical potential μ term. An iterative scheme can be designed
to adjust μ and λ̂A to converge the calculation by reducing the
root-mean-square error, or the matching error ε, which is
defined as
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decreases below some threshold value τBE (where Ncons is the
total number of constraints). One can then obtain the BE energy
value using the 1- and 2-PDMs of the fragments. The accuracy of
the calculation will ultimately depend on the choice of the
embedding fragments and the high-level solver.

When BE and FCIQMC are combined, they can calculate not
only larger fragments at the FCI level but also larger systems by
breaking them down into smaller fragments. This lets BE-
FCIQMC calculate FCI quality energies in even larger
molecules while using much less memory than an FCI
calculation in the whole molecule, for this paper a program
that interfaced between NECI29 to perform FCIQMC and the
in-house BE code to carry out the calculations.

As a proof of concept, calculations were performed in linear
H8 using the STO-3G basis set, with the type of BE being BE2.
The meaning of n in BEn in terms of fragment partition means
that in addition to the central atom, other atoms that are in the
(n − 1)th coordination shell are also included in a fragment.
Therefore, with respect to partitioning a chain-like molecule via
BE2, each fragment always contains three atoms, including the
central atom and the two nearest neighbors around this atom. A
more detailed description of the partitioning scheme for
arbitrary systems can be found in the relevant literature.20

Figure 2 shows the structure of linear H8 and how the molecule

is partitioned via BE2. Because bath orbitals are also involved in
the embedding process, there are six orbitals and six electrons
(instead of three) in each BE equation that needs to be solved,
and the Hilbert space of the embedding fragment is 400 Slater
determinants. Intrinsic atomic orbitals (IAO) are used as the
LOs in the fragments.28 The Schmidt decomposition of the
molecular wave function and the partitioning of the fragments
were performed using in-house code, while NECI was interfaced
and used to solve the BE equations stochastically. More
simulation details, including how the integrals are generated
and how the 1- and 2-PDMs are sampled, are available in the
Supporting Information and the relevant literature.15 In
addition, the initiator approximation is used to accelerate the

calculation, making the solver i-FCIQMC, and for every BE-i-
FCIQMC calculation, all of the determinants up to doubles are
allowed to propagate deterministically to reduce the stochastic
error.

To test how the number of walkers affects the matching error
and the quality of the calculation, five different numbers of
walkers were chosen, namely, 50, 100, 250, 500, and 1000. Four
test calculations were first carried out in parallel to see how to
minimize the matching. The results are shown in Figure 3.

One can see that there is a sharp decrease in the minimum
matching error, which can be explained by the increase in the
granularity of the i-FCIQMC wave function as the number of
walkers increases. The thresholds of the matching error to
converge a calculation are therefore set to 2.0 × 10−3, 8.0 × 10−4,
5.0 × 10−4, 2.5 × 10−4, and 2.0 × 10−4 for five different numbers
of walkers. Figure 4 shows the proportion of the average
correlation energy recovered from six parallel calculations
relative to a deterministic BE-FCI, in which the convergence
threshold is set to 1 × 10−6. It is worth noticing that before the
stochastic noise significantly affects the matching error, i.e., at a
similar order of magnitude, the number of iterations needed to
converge the BE-FCI and BE-i-FCIQMC to a designated
matching error is similar.

According to the figure, one can deduce that the quality of the
calculation is improved by increasing the number of walkers as
the recovered correlation energy is closer to 100% and the
stochastic error decreases. Both of these observations are
similarly results of an increase in the granularity of the wave
function with the number of walkers. It should be expected that
this phenomenon is universal regardless of the chemical system,
because the deviation in the values from the FCIQMC density
matrix to the FCI density matrix should be zero in the large
walker limit.

After performing the calculation in this simple test system, we
set our sights on the scaling considerations of BE-i-FCIQMC,
which is essential to understand if one wishes to perform BE-i-
FCIQMC in realistic systems. The key question that needs to be
answered is how the number of walkers scales with the Hilbert
space if one wishes to maintain the same matching error and thus
the overall quality of the calculation.

To answer this question, one might first hypothesize that to
maintain the same matching error, the number of walkers should
scale with the size of the Hilbert space of the fragments, meaning
that the scaling is still exponential. Nevertheless, problems with
respect to whether a reduced prefactor exists in the exponential
scaling of walkers like FCIQMC and i-FCIQMC still arise. To
answer them, seven larger systems are chosen so BE calculations
can be performed on them with larger fragment sizes that
contain 8, 12, or 16 atoms. Linear systems are chosen to exploit
locality; while most of the atoms in the chains are hydrogen,
some are replaced by either neon or fluorine atoms in a few
systems, such that the Hilbert space sizes are identical for each of
the fragments, which eases subsequent analysis; how the systems
are constructed is outlined in Figure 5. BE2 and BE3 calculations
are used in 8- and 12-atom system calculations, respectively. For
BE3, as all of the atoms in the second coordination shells are
considered, the fragment of a linear system now includes the
central atom, two nearest neighbors, and two second-nearest
neighbors, therefore containing five atoms. Similarly, one can
argue that the type of embedding “BE4” that is used in
calculating a 16-atom systems utilizes fragments that contain
seven atoms. The coordinates of the systems are shown in the
Supporting Information.

Figure 2. Structure of linear H8 as well as a depiction of the
fragmentation of the molecule, where the interatomic separation
between adjacent hydrogen atoms is 1 Å.
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After obtaining the relationship between the number of
walkers and the minimum matching error that it can achieve, one
can then plot to obtain an expression of the form log(y) = a + b ×
log(x), where x is the number of walkers and y is the matching

error. This is naturally justified, as using an infinite number of
walkers can, in theory, reduce the matching error to zero and
work just like a deterministic FCI calculation. The Hilbert space
sizes of individual fragments and the fitted parameters of the
equations between the number of walkers and the matching
error for the investigated systems are listed in Table 1. Excellent
agreement can be seen from the fact that every R2 value in the
plot for all of the eight systems investigated is ≥0.95, although it
should be noted that these parameters are approximate due to
the stochastic nature of BE-i-FCIQMC. Several conclusions can
be reached using Table 1, which will be outlined below.

According to the table, regardless of the sign of parameter a,
the sign of parameter b is always negative. This means that the
magnitude of matching error decreases monotonically with the
number of walkers. This can be explained by an increase in the
quality of the function and the decrease in the initiator error that

Figure 3. Relationship between the number of walkers and the minimum matching error with the error bars shown in H8.

Figure 4. Relationship between the number of walkers and the percentage of correlation energy recovered relative to BE-FCI with error bars shown in
H8.

Figure 5. Way in which the systems are constructed to ensure that the
fragment size is the same in H6A2, H8A4, H10A2, and H8A2B2, in which A
and B are atoms other than hydrogen. The heteroatoms are colored red
or blue.
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is caused by the selected generation of particles, which is true
regardless of the system.

In nonsubstituted systems such as H8, H12, and H16 in this
work, the number of walkers required to reduce the matching
error to 1.00 × 10−4, 1.00 × 10−5, and 1.00 × 10−6 can be
calculated from the extrapolated parameters listed in Table 1.
The relationship between the size of the Hilbert space and the
amount of walkers required to achieve to the aforementioned
matching error is plotted in Figure 6. According to the figure,

one can see that the number of walkers required to converge to
all three matching errors monotonically increases with the size of
the Hilbert space of the fragment.

Interestingly, one can observe that when the two types of
heteroatoms, fluorine and neon, are included in the pure-
hydrogen system, parameter a decreases significantly despite the
sharp increase in the size of the fragment’s Hilbert space. The
same phenomenon can also be observed in 12-atom systems.
This means that lower matching errors can be achieved initially
when compared to those of the pure-hydrogen chains, even
though the corresponding Hilbert space sizes are larger for the
fragments in these systems.

One might also plot the relationship between how the number
of walkers scales with the Hilbert space when the target
matching error is the same in the form of log(y) = a + b × log(x),
where x is the size of the fragment’s Hilbert space and y is the
number of walkers. The fitted parameters are listed in Table 2.

Although the value of R2 suggested that the correlation is not
so strong due to the dramatic difference among these systems,
one can still see the positive correlation between the size of the
Hilbert space and the number of walkers. In addition, one can
see that both the intercept and the slope increase when the target
matching error decreases, meaning that the advantage brought
by a reduced prefactor decreases. This is not surprising, as the
nature of the calculation would be closer to a deterministic FCI
calculation.

Finally, to examine the ability of applying BE-i-FCIQMC in
calculating realistic systems, two organic molecules, namely,
benzene and cyclohexane, are chosen, and the level of theories
are BE1-FCIQMC/6-31G* and BE1-i-FCIQMC/6-31G, re-
spectively. As the sizes of the Hilbert space for the fragments are
1.40 × 1015 and 7.31 × 1012, they are too large for any
deterministic FCI solvers to be implemented. BE1-i-FCIQMC
calculations are done for benzene and cyclohexane using 5 × 105

and 3 × 105 walkers, respectively. The matching error thresholds
for convergence are set to 1 × 10−4 for both of the compounds.
The recovered correlation energies are then compared with
deterministic BEn-CCSD (n = 1∼3), in which unrelaxed 1-
PDMs are used due to their simplicity of generation, and all-
electron CCSD and CCSD(T) using the same basis set. The
results are shown in Figures 7 and 8, in which all of the
correlation energy values are compared with the all-electron
CCSD(T) correlation energy.

It can be shown from the graphs that even if the type of BE is 1,
which is technically equivalent to density matrix embedding
because there are no overlapping fragments, and each fragment
contains only one carbon atom and its connected hydrogen
atom(s), BE1-i-FCIQMC is already capable of recovering the
correlation at the all-electron CCSD level in benzene and the all-
electron CCSD(T) level in cyclohexane. BE1-CCSD performs
poorly in both benzene and cyclohexane perhaps because of the
incomplete sampling of the Hilbert spaces of the fragments.
Although BE2-i-FCIQMC calculations are expected to perform
better in these systems, the fragment Hilbert space sizes for
benzene and cyclohexane would increase to 2.83 × 1027 and 9.40
× 1027, respectively, which are too large for the available
computational resources to handle. Despite this, the afore-
mentioned observations clearly demonstrate the potential of
applying BE-i-FCIQMC in realistic molecules.

To summarize, we have successfully harnessed a stochastic
solver to solve the BE equations and converge the BE
calculations. To achieve this on a general system, one should
first perform test calculations to determine the achievable
matching error and then the threshold of the matching error to
converge the calculations. We have first demonstrated that BE-i-
FCIQMC calculations can perform as well as BE-FCI in the
large walker limit, as both the quality of correlation energy
recovered and the stochastic error monotonically decrease with
an increase in the number of walkers. We then extended the

Table 1. Hilbert Space Sizes of an Individual Fragment and
Fitted Parameters in the Nine Chemical Systems in Matching
Error Estimations

chemical system Hilbert space of a fragment a b R2

H8 400 −1.526 −0.782 0.95
H12 6.35 × 104 0.197 −0.840 0.99
H16 1.18 × 107 −0.685 −0.464 0.99
H6F2 4.41 × 104 −2.644 −0.440 0.96
H6Ne2 7.06 × 103 −2.209 −0.708 0.99
H8Ne4 1.86 × 106 −1.172 −0.549 0.96
H10F2 9.02 × 106 −1.140 −0.549 0.97
H8Ne2F2 1.91 × 107 −1.837 −0.557 0.98

Figure 6. Relationship between the size of the Hilbert space of the
fragment and the number of walkers required to reduce the matching
error to 1.00 × 10−4, 1.00 × 10−5, and 1.00 × 10−6 in systems H8, H12,
and H16.

Table 2. Fitted Relationship between the Size of the
Fragment’s Hilbert Space and the Number of Walkers to
Reach a Matching Error

matching error a b R2

1.00 × 10−4 1.433 0.533 0.46
5.00 × 10−5 2.382 0.570 0.47
1.00 × 10−5 2.789 0.586 0.47
5.00 × 10−6 3.739 0.623 0.44
1.00 × 10−6 4.146 0.639 0.43

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c00634
J. Phys. Chem. Lett. 2024, 15, 4249−4255

4253

https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig6&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00634?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


calculation to a wider range of systems to show how the size of
the fragment’s Hilbert space and the inclusion of other non-
hydrogen atoms affect the number of walkers required to achieve
the desired matching error. We finally implement BE-i-
FCIQMC in realistic molecules, and it is inspiring to see that
even BE1-i-FCIQMC can recover a similar amount of
correlation energy or more correlation energy than BE3-
CCSD, which utilizes much larger fragments. Future work
should aim to use BE-i-FCIQMC to compute more realistic
systems using more extensive computational resources to make
calculations using BE2 or BE3-i-FCIQMC feasible, implement a
stochastic solver in DMET, and use the stochastic analogue of
coupled cluster theory, namely coupled cluster Monte Carlo
(CCMC),30 as well as its variants31−34 in fragment embedding.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634.

Method with which the 1- and 2-PDMs are sampled and
coordinates of the chemical systems (PDF)
Transparent Peer Review report available (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Yi Sun − Department of Chemistry, Chicago Center for
Theoretical Chemistry, James Franck Institute, and Institute
for Biophysical Dynamics, The University of Chicago, Chicago,

Figure 7. Relationship between the level of theory and the percentage of correlation energy recovered in benzene calculations. The all-electron
CCSD(T)/6-31G* correlation energy is used as the reference value.

Figure 8. Relationship between the level of theory and the percentage of correlation energy recovered in cyclohexane calculations. The all-electron
CCSD(T)/6-31G correlation energy is used as the reference value.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c00634
J. Phys. Chem. Lett. 2024, 15, 4249−4255

4254

https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.4c00634/suppl_file/jz4c00634_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.4c00634/suppl_file/jz4c00634_si_002.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00634?fig=fig8&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00634?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Illinois 60637, United States; orcid.org/0000-0002-9789-
4498; Email: ys327@uchicago.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpclett.4c00634

Notes
The author declares no competing financial interest.

■ ACKNOWLEDGMENTS
The author acknowledges The University of Chicago Depart-
ment of Chemistry for the Summer Research Fellowship and
computational resources. In addition, the author acknowledges
Dr. Alex Thom for his suggestions in improving the quality of
this paper and Prof. Troy Van Voorhis for the code for
performing BE calculations.

■ REFERENCES
(1) Hartree, D. R.; Hartree, W. Self-consistent field, with exchange, for

beryllium. Proc. R. Soc. A 1935, 150, 9−33.
(2) Roothaan, C. C. J. New developments in molecular orbital theory.

Reviews of modern physics 1951, 23, 69−89.
(3) Parr, R. G. Density functional theory. Annu. Rev. Phys. Chem. 1983,

34, 631−656.
(4) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for density

functional theory. Chem. Rev. 2012, 112, 289−320.
(5) Bishop, R. An overview of coupled cluster theory and its

applications in physics. Theoretica chimica acta 1991, 80, 95−148.
(6) Bartlett, R. J.; Musiał, M. Coupled-cluster theory in quantum

chemistry. Rev. Mod. Phys. 2007, 79, 291−352.
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