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There has always been a close relation between
thermodynamic theory and sociological theory,
although they repeatedly part company and later
rejoin. I discuss some of the most important ways
in which the two have been in contact, focusing
on the potential passage from theories of energy to
theories of information and vice versa. I close by
discussing how a closer engagement with classic
thermodynamics may continue to be fruitful for
sociological theorizing.

This article is part of the theme issue
’Thermodynamics 2.0: Bridging the natural and
social sciences (Part 2)’.

1. Energy and information, dispersion and
organization

This will not be an intellectual history of the use of
notions from thermodynamics in sociology; unfortunately,
so far as I know, no such history yet exists, and I
am not in a position to produce one. Instead, this is
a selective discussion of ways in which the logic of
thermodynamics has proven especially influential or
relevant for sociological theory, focusing on the most
prominent uses.

To begin, we have an unusual circumstance here
in that the same basic mathematical formulae might
be interpreted in very different ways. In particular, in
social theory, there has been a distinction between those
who use the template of energy as their paramount
way of bringing thermodynamic equations or visions
into social science, and those who use the template
of information. (There is also a distinction between
those in either camp and those who remained with
a more mechanical view, but I return to that below.)

2023 The Author(s) Published by the Royal Society. All rights reserved.
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One might imagine that the concept of energy would be a straightforward one: for Aristotle,
energeia, ‘being at work’, was contrasted with dynamis, the potential to be something or to do
something. The actuality of energy thus led it initially to be less metaphysically freighted than
this latter notion of potential—a reality that was not actual. But, when translated into early modern
thought, energy became attractive to the more ideationally open, and hence more impressionistic,
thinkers. This is because the mathematicization of energy had led to a recasting of the notion of
potential as itself a form of energy: whatever it was, it certainly could be expressed in the same
units as energy, even if one did not claim that it was literally a form of energy. Thus, absences (e.g.
the absence of motion of a projectile at its apogee), so long as they are explainable in terms of an
overall configuration, could have theoretical value.

This interest in potentials tended to distinguish those oriented to energy from somewhat
more traditional (Hobbesian/Cartesian) thinkers who were more likely to use momentum as their
archetype for thinking about things undergoing change. Although momentum is simply the
derivative of kinetic energy, perhaps because of the absence of potential, those oriented to the
Cartesian template frequently appeared to be more rigid and deterministic thinkers, while those
oriented to energy tended to have a greater acceptance of poetic abstraction. The momentum-
minded tended towards a billiard ball model of independent masses interacting via contact, while
the energy-minded (e.g. [1, p. 241]) were more likely to think in terms of configurations, and it
was this relational emphasis on configurations that became crucial for the generation of novel
theoretical approaches.

In addition to these vague families of orientations, there was a second form of energy-based
thinking in the social and behavioural sciences, one that focused on the putative zero-sum nature
of energy. Conservation of energy was interpreted as a maxim for individuals and for groups:
if psychic energy was dissipated, most worrisomely, into too much sexual activity (e.g. [2]), not
enough might be left for undertaking bold civilizational plans, such as draining swamps and
building bridges. Although this version of ‘energetics’ was influential in the nineteenth century, it
lacked the capacity to provoke the elaboration of social theory, in part because adherents refrained
from any real engagement with thermodynamics. Further, this vision of energy, often treating
energy as if it were a mass of fluids stored up, as opposed to something generated by a particular
configuration (akin to a potential difference), tended to be sociologically inert—leading to models
of relatively self-contained units with limited battery charges, not the theory of the creation of
voltage itself.

Interpretations of thermodynamic equations in terms of information came after those
interpretations based on ideas of energy. Indeed, it was really only with Shannon’s [3]
important work on the theory of communication that information theory was born, and
used to reinterpret some of the mathematical results from thermodynamics. Information,
paradigmatically understood as a relation between two units across a channel, obviously was
a theory ready-made for social thought, and the convenient assumptions that (i) talk was
communication of information and (ii) communication of information could always be explicated
as if it were a form of talk, led academics—who tend to talk a lot and may indeed think that the
more talk, the more pay—to happily spin out theories in which communication or information
was at the heart of social life.

Despite the obvious tendencies towards ideological distortion and tedious narcissism
coming from the focus on communication (the replacement of Homo faber with Homo
blabber), the information-theoretic approach turned out to be extremely generative. Like the
energy approaches, at its core were fundamental results from statistical mechanics, results that
also connected to the fundamentals of the statistics that were forming the method of the new
emerging social sciences.

Yet there was a bizarre ambivalence about how to interpret these statistics, a rift in the first
generation of sociologists that was barely understood, because interpretations of statistics were
still being worked on. On the one hand, there was the interpretation that statistics was a theory
of random error, and that error was equivalent to irrelevant and un-interesting departures from
a fundamental social law. According to this line of thinking, statistics might help us correct our
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theory of the average, but everything, to the extent that it departed from the average, was a bit like
Mary Douglas’s [4] ‘dirt’—something not in its proper place. This interpretation was strongest in
France and guided the development of orthodox academic sociology.

By contrast, there were others who saw the distribution itself as significant, while the average
was unimportant, or even petty, compared with the extreme (that is, the positive extreme) of
a distribution. This interpretation was stronger in England, where Francis Galton’s adoption
of statistics was used in furthering his quest to understand the nature of true genius, and in
Germany, where philosophers often mocked the French for worshipping the average as the moral.

In other words, according to one way of thinking about things, all variation is basically
error, and not social, and therefore not of interest for the development of social theory.
According to the other way of thinking, the social is all about variation—the absence of
variation is equivalent to the collapse of the social to a single point. Such a collapse—the end
of the disagreeably unpredictable, disorderly and irrational action paths of their stubbornly
independent countrymen—had long been seen as a valuable goal to French utopians. This tension
over how to see variation was preserved in later work, including work in information theory, that
honestly puzzled over the question of whether equiprobability was complete order, or complete
disorder!1 Would a utopian world of complete equality be the ultimate achievement of the
rational reconstruction of an orderly society, or equivalent to the heat death of a universe whose
entropy had been maximized? Is all organization non-randomness, and is all non-randomness
organization? These questions still drift around in social theory. To try to clarify, I will give a brief
and selective recap of how thermodynamic ideas entered the social sciences, concentrating on
sociology, and then consider what possibilities there are for future thought.

2. The early days of social statistics
It is true that early social scientific thought was inspired by physics, but it is not true that such
thought was inspired by thermodynamics. In fact, the reverse is true: thermodynamics was
inspired by social thought and took its ideas not from the mathematics whereby they had first
been worked out in astronomy, but indirectly, via social science.

The famous law of errors, the inverse square law, had already been developed when the young
Belgian scientist Adolphe Quetelet2 went to Paris to learn astronomy. He made the creative
transfer of the mathematics he learned there, mathematics for the repeated observations of a
single unit subject to error, to the different case of single measurements for repeated units. What
is the difference, he said, between measuring a single statue 10 times with poor instruments and
measuring 10 different people? In either case, we have a bell-shaped distribution with an average
and a quantifiable standard deviation, and the interpretations can be similar. Nature, he said,
shoots for the average man the way a marksman shoots for target—the variation that exists in our
heights, chest lengths, chest widths, and so on, simply result from the fact that nature’s gun has
too short a barrel [9].

These ideas, especially as popularized by the Englishman Henry Buckle’s History of Civilization,
rippled through the educated world and proved to be vital for the development of statistical
mechanics. Boltzmann and Maxwell both—apparently independently (in this paragraph I rely
on [8]: 111ff)—used the analogy to individuals to explain their reasoning as they developed
the statistical mechanics of gases. Boltzmann proposed that ‘The molecules are like so many
individuals, having the most various states of motion, and the properties of gases only remain
unaltered because the number of these molecules which on the average have a given state of
motion is constant. The determination of averages is the task of the calculus of probability.’

1A similar confusion also arises for some in the fact that the classes of indistinct states that are the ‘most probable’ (in that they
are most likely to be observed) are not necessarily those with the highest ‘probability’ (greatest entropy), since there may be
more equivalent configurations that lead to somewhat lower entropy states than the single possible macrostate of maximum
entropy. It is unlikely that we would get something that likely.
2Excellent sources for the history of statistics and the relation across sciences are Stigler [5], Hacking [6], and the various
essays collected in Kruger, Daston & Heidelberger [7]. However, my chief source for the relation between thermodynamics
and social statistics is Porter [8].
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Maxwell similarly pointed to the ways in which the social statisticians of his time were using
census data. ‘The number of individuals is far too great to allow of their tracing the history of
each separately, so that, in order to reduce their [statisticians’] labour within human limits, they
concentrate their attention on. . . the varying number of individuals in each group, and not the
varying state of each individual. . . But the smallest portion of matter which we can subject to
experiment consists of millions of molecules, not one of which ever becomes individually sensible
to us. . . so that we are obliged to abandon the strict historical method, and to adopt the statistical
method of dealing with large groups of molecules.’

If techniques for social analysis could inspire thermodynamics, surely, there is no reason to
be concerned if we let thermodynamics inspire social thought. Still, such cross-fertilization was
not universally acclaimed. The two fields of inquiry only connected in the joint reliance on the
probabilistic approach to aggregate statistics, and such ideas were not accepted by all social
thinkers. First, we must remember that at the time, one could be interested in ‘statistics’—that
is, information on populations that generally had been gathered by governments—and reject
the notion that such human statistics were amenable to analysis via probability. Auguste Comte,
the putative father of sociology, was probably not alone when he characterized this as a ‘radical
inanity’ ([10, p. 492]).

Even more, despite the developing tie between these statistics and thermodynamics, there
was (so far as I know) very little interest in thinking about the implications for social life of the
thermodynamic laws of entropy. The assumption of progress as an obvious and incontestable
feature of the globe, or of the west, or perhaps only of Anglo American societies, would likely
have made any such inquiries seem silly. In fact, Herbert Spencer, in his First Principles [11, p.
327], emphasized the exact opposite law—what we might consider a law of reverse entropy.
Take a beaker of a fluid warmed to a homogeneous temperature throughout and set it out on
a table, Spencer directed. If you do, you will see that after a while the temperature is no longer
homogeneous. This, he said, was an inherent law of nature—to go from indifferent homogeneity
to organized heterogeneity. We might say that this was because Spencer was looking at one part
of an open system, and he would have agreed. It is because one system interacts with another that
they internally differentiate. Thus, the sort of systems theory being developed by Spencer—one
based on the model of individual organisms struggling with their environment—at this point led
away from any close engagement with thermodynamic thinking, and instead, towards a version
of systems theory that would prove compatible with evolutionary biology (which only later was
able to draw on the findings of statistical mechanics [for a review, see [12]]). This was to change
in the first half of the twentieth century, at least among a small group of systems theorists.

3. Related influences from physical science
The Durkheimians, perhaps influenced by the work of the philosopher Émile Boutroux ([13,
p. 158]; admittedly, Comte had had similar ideas), emphasized the distinctiveness of different
sciences and their functional independence. No one science had to kowtow to any other, and
no one would get points for importing principles from a more advanced science. This became the
orthodoxy of the social sciences in the second half of the twentieth century, when the Durkheimian
model, after having been stalled as a result of the wars, was really established and reimported into
the United States and into England (there, it had already been institutionalized in anthropology; in
the US, the neo-Durkheimian vision was actually put forward by Talcott Parsons, who claimed to
be following the ideas of the very different Max Weber). According to this view, directly building
on, or appealing to, or even simply importing ideas from a more advanced science, especially
physics, was considered to be très gauche. However, there was always more methodological
anarchy in theory building than there was in the definition of core methodological research
practices, and there were various repeated attempts to ransack the sciences for good ideas. Given
the centrality of statistical mechanics to other formal models in the physical sciences, I briefly note
these directions, and how they opened potential avenues for the exploration of thermodynamic
analogies.
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Not surprisingly, some social scientists were enamoured of ideas having to do with relativity.
They themselves had been earlier than the physicists in terms of climbing on the relativism
bandwagon, and, even if one cannot completely accept Paul Foreman’s [14] thesis that the
interpretation of quantum mechanics as incomplete was due to general cultural trends in Weimar
Germany, as opposed to following naturally from the mathematics, still, it certainly is true that
general social interest in issues of relativism, on the one hand, and indeterminacy, on the other,
fuelled the misplaced conviction with which some social scientists expected to be able to support
some of their ideas by appeals to relativity theory, or to quantum electrodynamics, or both. Most
such efforts were weak and stillborn, though there were some more mathematically sophisticated
borrowings, including an early piece in the American Journal of Sociology on the use of Riemann
surfaces for social thought! [15]3.

The interplay between the physics of energy and social thought for the case of economics—the
partial affinity between theories of the conservation of energy (on the one hand) and economic
principles of the zero-sum nature of exchange—has been told by Philip Mirowski [16]; here I
wish to concentrate on a few moves towards accepting inspiration from the sciences related
to thermodynamics that were to leave significant descendants in sociology. First, there were
some who, like Mirowski’s economists, thought that a social science could be built on energy
flows. Although the anthropologist Leslie White [17] was hardly the first to say that human
development involved the progressive harnessing of energy (think of Marx’s theory of the
continual development of the productive forces), he posited a direct relation between energy-
per capita and cultural development, and insisted that social formations that could trigger large
releases of energy with small (highly leveraged) inputs had an advantage over those that could
not. More, his underlying vision of social life as sets of energy flows—a vision now returning to
the new environmental sociologists and kindred spirits in sister disciplines—was inspirational
to radical political economists looking for a way to nail down their belief in the inequality of
economic exchange relations between the third and first worlds, a goal that had seemed to become
unreachable with the abandonment of the labour theory of value (here see, e.g. [18]). This notion
then entered into the sociology of development (e.g. [19]), where it joined other ideas about global
flows of commodities, power, labour and, later, nitrogen, calories and carbon.

Second, there was an attempt to take seriously the lawfulness not of errors from a social law,
but of distributions, most notably in the case of language by George Zipf, then generalized to
other cases such as city sizes and incomes. This vision of distributions as inherently theoretically
generative seems to have stemmed from statistical mechanics, although few seemed determined
to work through the analogies. (Indeed, spatial and regional sciences, most importantly the
work of Isard [20], suggested the tractability of certain systemic problems using a rigorous
mathematical analysis, but the results were generally more complicated and substantively
focused than most social scientists had patience for.)

One important case where ideas in physics that were thermodynamics-adjacent were being
used to inspire social thought came in German Gestalt psychology (the best review is [21]).
Although they were fundamentally influenced by the idea of field, and here directly drawing
on Maxwell, Faraday and Einstein, their interpretation of the significance of the field for human
visual perception first and foremost involved attention to configurations.4 The field that they
were most interested in was what they considered a field of tension—Spannungsfeld—that had
something akin to a distribution of potential energy. The optic system of an animal or human
had a tendency to try to fall into a state of minimal tension. Seeing two near-semicircles almost
touching was considered to have more tension than seeing a circle with an occluding but edgeless
rectangle placed across them.

3As far as I can tell, Hewes was a student of Albion Small’s and made this amazing argument in class that impressed him so
much that he asked her to write it up for the journal—he was, I believe, desperate for material.
4While economists—most importantly ([22]: 5, 9, 17f)—understood the relation between their use of energetic/hydrodynamic
metaphors and a field analysis, Mirowski’s [16] point is that the weakness of their approach resulted from not more rigorously
following through on this insight, and deriving conservation from the nature of a conservative field. Some of the Gestalt
theorists, especially Köhler [23], did.
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This notion of the field emerging via cascaded local interactions of domains not only built upon
Faraday’s interpretation of magnetic lines of force, but implied the possibility of a thermodynamic
approach in several ways. First, if one were to treat these domains as units, and subject them
to a law of the conservation of energy, one has a tractable thermodynamic problem. In other
words, focusing on the nature of the potential energy in a field could bridge to some of the
dynamics underlying generalizations of the Boltzmann model. Further, the very focus on local
interactions suggested compatibility with a kinetic model. However, those attracted towards field
theory tended to be those who were not enthusiastic about drawing on mechanics, which was
associated with narrow-minded determinism. Even more significant for the development of this
school, the very focus on the concrete and the intuitively accessible empirical research, and the
eagerness of the émigré psychologists (most had to flee the Nazi regime) to respect the procedures
and vocabulary of their hosts, led Gestalt psychology to mutate into a form of social psychology,
divorced from the earlier neurological (and physical) speculations of Wolfgang Köhler [24].

The more audacious thinking inspired by analogies to science and thermodynamics came
in the motley set of writers, and sometimes researchers, associated with systems theory (for
example, [25]). This systems theory (the key work being [26]) drew from fundamentally biological
understandings of systems, but wed them with a close reading of modern information theory.
One, more technical, branch, influenced by the turn to examining the thermodynamics of open
systems pioneered by Ilya Prigogine, was the ancestor of what became the complexity science
in the Santa Fe model. Another, more impressionistic, entered sociology and anthropology as
a mishmash of different ideas about systems and moving equilibria. It would be a disservice
to posterity not to indicate that also included in this mix were general countercultural themes,
number theory, interest in Eastern mysticism, the least tenable aspects of psychoanalysis and tens
of thousands of micrograms of lysergic acid. What a surprise, then, that systems theory was at the
same time being brought into social science by one of the more sedate characters in the postwar
field, Talcott Parsons (first in [27]) at Harvard, claiming to be linking this to the mathematical
visions of the great Italian economist and grouch Vilfredo Pareto.

Parsons—who had begun his first major work [28] by excoriating Spencer’s vision of systems
theory—later realized that he was only a stone’s throw away from Spencer (see his introduction
to [29]). Parsons’s approach to systems theory turned on more or less generalizing economics in
such a way that it had a greater variety of substances, and fewer equations. It was also loosely
coupled with informational theory, although Parsons did occasionally appeal to ideas of energy
and entropy and so on. It was his great disciple from across-the-pond, the German theorist Niklas
Luhmann (e.g. [30]), who, deliberately drawing on one of those countercultural systems-type
theorists, George Spencer Brown [31], attempted to bring information theory into sociology—and
in a mathematically generative, if somewhat unspecific, way. This approach remains theoretically
vibrant, especially in Germany, but has not yielded much advance in terms of formalization.

These various theoretical directions, then, represented some of the influential ways in which
thermodynamic thought might be able to influence sociological theory.5 But at the same time
that these theories were arising, and crumbling, and sometimes being revived, there was a more
successful, and more direct, borrowing of thermodynamic principles in the social sciences. This
involved turning to the mathematics of entropy to solve a number of different technical problems
in social statistics.

4. Mathematical uses of entropy and thermodynamics
Thermodynamic thinking re-entered social statistics in two ways—descriptive statistics and
techniques of model fitting. Regarding the former, entropy-based measures might be used to
quantify segregation or its inverse, diversity. The long interest in residential segregation at different

5There were other uses of thermodynamics in sociology, some in Eastern Europe, and one in the West Coast of the US, as
Kenneth Bailey tried to go further than Parsons in developing a general systems theory that had some relation to entropy
(for a brief statement, see [32]), but, like Parsons’s, lacking a real mathematical connection to actual data, the effort did not
influence others.
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scales led some to use entropy-based measures, although the closely related Herfindahl was
usually preferred for its interpretability. But entropic-based measures had an advantage in their
theoretical clarity and their decomposability. First, they could be decomposed easily across
hierarchically nested areas (see [33]). Second, they could also be decomposed into (i) the entropy
at the level of the marginals and (ii) the mutual information between, which was theoretically
relevant when the measures were used for subjective data (e.g. [34]). Ecology also made use of
entropy-based measures for descriptive purposes, as these turned out to be good for quantifying
the diversity in flora and fauna at different scales (e.g. [35]). A large family of related measures
generalizing the Shannon entropy was developed and has also been applied to social statistics
(recently, [36]).

However, there were also ways in which entropy could be used to gain insight on statistical
distributions. The twentieth century saw the development of a coherent modelling framework
for, first, categorical and then non-categorical, data based on information-theoretic perspectives
[37], perspectives that could rival the Bayesian (e.g. [38]). The basic notion was that the
mutual information of variables in a contingency table of cross-classifications could be used
to reject certain hypotheses of independence. There was also a fascinating attempt to use pure
combinatorics for at least certain data structures by Harrison White [39], but this, along with most
of the information-theoretic approaches, was edged out by the computationally simpler version
of loglinear analysis developed by Leo Goodman.

Still, there might be ways in which such information-theoretic approaches are, for some
problems, more interpretable, or more theoretically generative, than loglinear models, despite
the computational advantages of the latter (see, for example, [40]). However, the most important
use of thermodynamic methods in statistics turned out not to be the ways of quantifying
independence, but a much deeper engagement with core issues in the quest of solving complex
statistical maximization problems.

The great problem in social statistics has long been the estimation of parameters of a generating
model given a set of data. While it is child’s play to construct the probability of any set of data
given a stochastic model, going the other way—what R. A. Fisher called ‘inverse probabilities’—
and finding the probability of a model or a vector of parameters given a set of data is quite
complex.6 Thermodynamic principles turn out to be relevant for this work in two significant
ways.

First, the problem of estimating parameters is often accomplished by trying to maximize the
likelihood—to choose the parameters that, of all such parameters in a set, maximize the likelihood
that we would observe the data that we did observe. This can also be understood as minimizing
the deviations of the observed data from those that would be predicted under the model (whether
through minimization of a penalty function like an R2 or some other criterion like the likelihood-
based deviation, or indirectly via maximization of the likelihood itself). But this turns out to be
very similar to the project of maximizing the conditional entropy of the ensemble subject to certain
constraints. (And in one particular class of relevant distributions the maximum entropy is the
maximum likelihood.) Further, in information-theoretic terms, we can also quantify the degree of
difference of a set of data from theoretical predictions in terms of the information divergence ala
Kullback.

Many of the methods that were developed to estimate such parameters (and their standard
errors) worked quite well on sets of data in which the units could be assumed to be statistically
independent, but were not necessarily unbiased in more complex data structures. Such data
structures commonly arose in spatial settings, but also in non-spatial networks, in which some
units were interdependent in some ways upon (at least) their neighbours. Here, it proved possible
to rely on fundamental thermodynamic models to find alternative ways of making such estimates.

Specifically, let us return to the Boltzmann equation (or the ‘canonical ensemble’), which, as
we recall, was inspired by Quetelian social statistics. This links the probability of the ith state to

6Note that not all statisticians or epistemologists agree that a model can have a probability; assent to this plank is usually
restricted to orthodox Bayesians and those who have not really thought about it.
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[1/Z]exp(−εi/kT), where εi is the ‘energy’ of the state, T the temperature, k Boltzmann’s constant
and Z is a normalizing constant, the sum of the main term across all possible states. However,
the intractability of coming up with a closed-form solution for Z in most cases means that the
actual probability of any state cannot be calculated. Even could this problem be solved, attempts
to use random simulation (Monte Carlo methods) of possible states become implausible for high-
dimensional cases, as almost all of the probability mass is concentrated in one area, and thus
almost all randomly chosen points have negligible probability, and do not contribute to a solution.
Somehow, there has to be a more guided exploration of the space.

Metropolis et al. [41]7 realized that it was possible to produce the probability distribution over
all i, and hence any of the descriptive statistics for such an ensemble (which are weighted by the
probability and appear as an integration problem), by setting up Markov chains that would go
from one state to another according to a symmetric function based on their relative probabilities
(no need to estimate Z). If the new state j was of lower energy, the system would shift to that
state, but if the new state was of higher energy, it would shift with probability exp(−[εj – εi]/kT).
They demonstrated that the system’s probability distribution would asymptotically approach the
Boltzmann equation.

Boltzmann had turned to combinatorics to develop this fundamental thermodynamic result
precisely because he understood that there was a non-independence across the various particles
in an ensemble of a given energy. And this basic approach turned out to be vital for dealing with
tractable cases of statistical non-independence. The key development that brought this into social
statistics (though quite slowly) was the Hammersley–Clifford theorem (here, like everyone else, I
rely on the ‘simpler’ proof worked through by [42]). By definition, it is possible to factor the ratio
of two different joint probabilities as a ratio of the products of each’s conditional probabilities.
This is then also true if the distribution in the denominator is the probability of the null state (all
observations zero); this ratio then becomes the key quantity at hand.

Now, by the Möbius inversion lemma, this ratio can be factored into a large set of terms
pertaining to all the different possible subsets of the observations—leading to a sprawling set
of terms too large to be tractable. However, if the observations are arranged in such an order that
some are neighbours of others, and that non-neighbours are conditionally independent, it can be
shown that all the subsets that include at least one pair of non-neighbours cancel out, leading to
a much simpler factorization. This then can be shown to imply an exponential distribution with
terms for the cliques of non-independent observations, which turns out to be equivalent to the
Gibbs notation for the Boltzmann equation. Because of the restriction of the non-independencies
of the overall configuration to those originating from neighbour relations, the ensemble is known
as a Markov Random Field, and the Hammersley–Clifford theorem is thus glossed as ‘if some X
is a Markov Random Field, its probability function may be written as a Gibbs distribution, and
vice-versa.’

This led to the development of Markov Chain Monte Carlo techniques for estimating posterior
probabilities, and the explosion of applied Bayesian methods (some of this story is told in
an unpublished MA thesis by Tiani Li [MAPSS, University of Chicago, 2022]); however, these
techniques were generally used in the social sciences to better estimate existing classes of models
whose theoretical bases were independent of the underlying physical model involved. The one
possible case in which there might be theoretical cross-fertilization would seem to be the field of
social network analysis. This is because the same mathematics that underlay the processes used
to fit the model also underlay the model itself.

Frank & Strauss [43] realized that the Hammersley–Clifford theorem also had implications
for the attempt to construct probability distributions for social network data, a project that
had engaged many of the most creative minds in social statistics (here, see, e.g. [44]), but had
run into problems identical to those bedevilling Metropolis et al., namely the determination of

7The Metropolis algorithm got its wonderful name by the fact that Nicholas Metropolis controlled the computer at Los
Alamos, but more central in the development of the method was the last author, Edward Teller, father of the H-bomb and
inspiration for the insane physicist in the movie Dr. Strangelove. The computer they worked on was named MANIAC. As Fred
Kwan said, ‘It’s the simple things in life you treasure.’
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the Z constant allowing for the estimate of absolute probability. Making assumptions as to the
homogeneity of indistinguishable structural states led to what was first called the p∗ model, a
family of probability models for social networks marked by the Markov assumption (e.g. [45]).
The estimation first employed—pseudolikelihood, also developed by Besag [46] and adapted by
Strauss & Ikeda [47]—turned out to be have greater bias than expected. The natural response was
to attempt to follow Metropolis and others and estimate the Z (or get around requiring such an
estimate) via brute force, by using the ratio of probabilities to generate Markov walks not on the
original Markov field, but on the network of possible states.

But why would this make any sense? The Metropolis algorithm was developed to estimate
integration problems over ensembles of particles, e.g. pressure of some gas at a certain volume
and temperature, not to estimate parameters of a model. But Geman & Geman [48] made use of
the Hammersley–Clifford theorem to solve a practical problem in image restoration—given an
image realized with noise, how do we recreate the true underlying scene of which it is an image?
This can be understood as a question of inverse probabilities on a Markov Random Field, if we
assume that any pixel is independent of any other conditional on its relations with its immediate
neighbours. Rather than maximize the likelihood of the observed data given the model, they took
a Bayesian approach and attempted to find the mode of the conditional posterior probability of
the underlying ‘model’ conditional on the data. Since, for any degree of average energy, the Gibbs
distribution can be derived by maximizing entropy, this turned out to be a convenient way of
solving maximum entropy problems [48, p. 727].

This was a breakthrough in generalizing the application of these thermodynamic models more
widely, but it may also contain a useful template for visualizing future theories, as we tend to be
most comfortable using visual metaphors and cases of planar surfaces for organizing our thoughts
about social life. I am thus going to close by suggesting that social science may find theoretical
inspiration in these methods—the Gibbs distribution and its underlying composition—just as
Quetelet found inspiration in the Gaussian curve and its underlying dynamics.

5. Theory now for the future
In a way, the curses of the current social sciences are twain. First, there has been the capacity to
envisage all problems as variations on a form of equation in which a set of estimable parameters
and observed data on the right-hand side generate predictions on the left that can, in turn, be
compared with data. The realization that frequency tables with a multinomial distribution could
be recast as models for frequencies following a Poisson distribution killed off one of the last
remaining alternative ways of thinking, one that inherently tended to lead to a focus on the
joint distribution of the given data as opposed to the (hypothesized) generator of individual
observations. Now almost all statistical methods follow Quetelet and privilege as the theoretically
crucial entity the (conditional) mean—the variation around the prediction is simply an error
distribution often chosen for reasons of mathematical convenience or empirical fit.

The second curse has been computing power. It has become nearly trivial to estimate more or
less any mildly identified model that one can write down, and hence there has been an explosion
of terms on the right-hand side. The result is not only thousands of incomparable ‘models’ that
really are bereft of any strong interpretation, but a mistaken vision of science as progressing
by increasing the number of concrete determinants—as if Galileo could be criticized for only
thinking about point masses, and not also including balloons, feathers and magnets when he did
his (fictional) experiments [49]. This has led us to prefer models that seem to possess realism,
but interfere with our capacity to understand more elegant, and more theoretically generative,
simplifications that might speak to the nature of distributions.

Consider the theoretical clarification that came after Quetelet’s development of the statistics
for social phenomena. He was struck by the fact that a predictable mathematical shape arose
in a population. He had made a reasonable stab at explaining the compatibility of this putative
lawfulness and free will, but his ideas could not but give rise to the notion, put forward by his
popularizer Henry Buckle, that, e.g. a certain number of people had to kill themselves, and if one
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resisted the dark urges, another would find them all the more pressing. Even Emile Durkheim
was not free from this interpretation.

But Wilhelm Lexis pointed out that this was a fundamental misinterpretation of the nature of
the distribution. If there was actually a non-independence such that the individuals could not be
seen as completely free, it would appear in the form of under-dispersion (a tighter distribution
than generated under the simplest Gaussian process). The very simplicity and elegance of most
of the curves Quetelet studied should reassure us: ‘No one is therefore, for example, required to
hang himself, in order to complete the budget for suicides’ ([50, p. 19]).

And, indeed, in most sociological distributions, we find over-dispersion, indicating that,
relative to our paltry understandings, what we are missing is less external shaping, and more
the heterogeneity of our samples. Such a result seems to me far more theoretically generative
than knowing to what extent the income of college graduates born in the Netherlands to the same
parents but differing by one year of education will vary.

Could we continue to gain theoretical insight not from predicting particular cases, but focusing
on the theoretically generative aspects of different distributions? Although there has long been
interest among statisticians in using over-dispersion as an indication of the influence of omitted
variables (though this can also be true for under-dispersion), such tests are usually conducted
for purposes of robustness—not as a way of pursuing competing theoretical visions. One case,
however, in which this has been done pertains to the ‘log-log’ (or ‘scale-free’) distribution, which
arises under conditions of what Merton [51] called the ‘Matthew effect’—those where current
increase is a function of past stocks: large cities grow faster than small, people add links to popular
websites proportionally more than they do to less popular sites, and so on.

It is true that one can indeed have a scale-free distribution where such dynamics are not present
(indeed, as the name ‘scale-free’ indicates, it can arise simply because the data are collected from
units of widely different scales); eyeballing distributions is rarely an important technique.8 What
is more important is theorizing the antecedents, processes and consequences that are associated
with the arising of certain distributions. For many of the phenomena most of interest to social
scientists—political polarization, inequality, forms of mismatch—are inherently distributional
issues.

Take the case of income inequality, often examined in sociology using thermodynamic-based
entropy measures of concentration, but with no clear theoretical argument. Imagine that we were
to actually propose that the distribution of incomes was akin to a Boltzmann distribution (for
example, see [53]), and that economic upturns—perhaps especially those coming from directions
that could be considered exogenous to the economic system (the classic though controversial
example in European political economy was the discovery of the silver mines in South America
as part of the colonial invasion). We might propose that the distribution of incomes pi would shift
in accordance with a raising of T, yet tend to assume a Gibbs distribution. If we went further, we
might propose that the significant characteristics of this distribution would be wholly due to the
non-independence of certain configurations.

In no way am I suggesting that we should be inattentive to microinteractions. But often we
move theory forwards more when we come up with stylized interactants from equivalence classes
defined by well-understood properties, and not when we attempt to do justice to the full empirical
richness of cases. It was attention to the underlying kinetic relations of gaseous molecules that
allowed Maxwell not merely to derive distributions of the velocities of particles and of the free
paths travelled, but to come up with the very counterintuitive conclusion that the friction within
the gas should be independent of density—something Maxwell himself initially imagined could
not possibly be true ([8, p. 117]).

Of course, as they say, Garbage In, Garbage Out—theories that begin from false axioms are
bad theories, but there is a difference between partiality and falsity. Rational action theory has
proven a good theory for cases where its partiality is conformable to the institutional strictures

8Another case in which distributions were seen as more theoretically generative than they actually were involves the logistic
growth curve and scientific developments. For a discussion of these issues, see Martin [52].
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that shape action, and less than useless where it does not. We might also want good theories that
ignore certain aspects of reality so as to proceed unencumbered by complications when these
theories then allow us to develop non-trivial and testable conclusions—those that are at variance
with the conclusions drawn from other sets of plausible axioms. I would like to end by sketching,
hastily and roughly, one possible way in which we may be able to draw renewed inspiration from
thermodynamic theory for sociological thought.

One of the difficulties with using ideas from statistical mechanics is that they appear in so
many different guises that it may encourage an undisciplined assimilation of different substantive
domains to one another, leading to a mushy porridge. Still, with suitable caution, it might be
worth taking seriously the interchangeability of energy and information for some purposes.9 Here,
the exciting implication would not be that the second law of thermodynamics implies that we
are moving to a world without meaning or knowledge. Although (as Leo Szilard proved in 1929
[55, p. 139]) it is true that the energy loss required to gather information can be theoretically
significant (it provides the solution to the puzzle of Maxwell’s demon), any facile critique of
systems theory as an interchange of information that must actually end in heat death (or brain
death) takes us in the wrong direction: no one denies that the earth is an open system, and
hence may have increasing local organization. Instead, the interesting direction might involve a
somewhat awkward bridging of thermodynamics and field theory, for if a field is indeed a set of
organized potential energy, it may also be understood as a latent capacity to generate information.
(Compare the different be related, and inspiring, ideas of [56, p. 213].)

A field can organize a distribution that, in aggregate, may also be compatible with a
Boltzmann–Gibbs model. Of course, a field is not actual energy, but potential energy. But rather
than positing merely a single macro distribution, a field involves structured variation in the
strength of the potential. What might be a possible way forwards is to consider some ways
in which the same overall distribution, and the same total field strength, can be differentially
organized. Perhaps the simplest such approach is the range of order (to what extent nearby
areas’ potential vectors are similarly oriented), which could be (after temperature) a second macro
property that is theoretically generative (here see [57]).

But it might be that we can go further in taking seriously the notion that a field is an
organization of potential energy. Randall Collins [58] has proposed a theory of the generation
of ‘emotional energy’ as a general template for thinking about social action; this theory has,
at the most general level, certain homologies with the field theory of Pierre Bourdieu, which
also is in some ways a generalization of certain action theories (for those unfamiliar with his
work, the best starting place is [59]; the technically field-theoretic nature of Bourdieu’s approach
is defended in [60]). Collins envisions actors going from one ‘interaction ritual’ to another,
with successful interaction rituals increasing the emotional energy of at least some participants.
The phenomenological, indeed, physiognomic, plausibility of an account of emotional energy is
impressive—we not only feel buoyed up in some situations, but depression and stress take their
toll on the physical structure of the body.

However, if we take the notion of emotional energy as literally as we can, we must puzzle over
the question of how it is stored—the person who was buoyed up returns to calm, but may re-start
social interactions the next day with more confidence.10 Perhaps this question turns out to be
the same that a rigorous field-theoretic interpretation of Bourdieu would begin with: How does
the potential energy in fields develop? While recognizing the great difference between the uses of
‘field’ in these two senses (that of classic field theory and that of a Markov Random Field), it might
help to imagine the sorts of interaction rituals that Collins discusses as specific social groups that
are technically cliques, and that the total social energy of some social order can be partitioned into
that associated with such different cliques in a Gibbs distribution that is correlative to a Markov
Random Field. Such an outrageously abstract claim might seem worse than useless, if it only

9There are a few theorists who have understood the theoretically generative nature of the fact that one may move between
considering non-independence as a flux of information or a flux of energy, and that we are free to layer an informational
interpretation on top of an energetic distribution. Here see Granger [54].
10It was Benjamin D. Zablocki who brought this issue to my attention.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 A

pr
il 

20
24

 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220292

...............................................................

gives us the sense that we have precision where in fact we are completely at sea. But it might also
suggest the key issue for social research: to find something that in analogous to the ‘displacement
currents’ that Maxwell deduced—ways that a slightly compressible fluid might hold energy, even
if it involved electric currents existing in empty space. It might be that the equivalence between
energy and information could allow us to, vaguely and impressionistically at first, hopefully more
precisely with time, understand how human action shapes these sorts of configurations.
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