
PRX QUANTUM 4, 020327 (2023)

Speeding Up Learning Quantum States Through Group Equivariant
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We develop a theoretical framework for Sn-equivariant convolutional quantum circuits with SU(d) sym-
metry, building on and significantly generalizing Jordan’s permutational quantum computing formalism
based on Schur-Weyl duality connecting both SU(d) and Sn actions on qudits. In particular, we utilize
the Okounkov-Vershik approach to prove Harrow’s statement on the equivalence between SU(d) and Sn

irrep bases and to establish the Sn-equivariant convolutional quantum alternating ansätze (Sn-CQA) using
Young-Jucys-Murphy elements. We prove that Sn-CQA is able to generate any unitary in any given Sn

irrep sector, which may serve as a universal model for a wide array of quantum machine-learning prob-
lems with the presence of SU(d) symmetry. Our method provides another way to prove the universality of
the quantum approximate optimization algorithm and verifies that four-local SU(d)-symmetric unitaries
are sufficient to build generic SU(d)-symmetric quantum circuits up to relative phase factors. We present
numerical simulations to showcase the effectiveness of the ansätze to find the ground-state energy of the
J1-J2 antiferromagnetic Heisenberg model on the rectangular and kagome lattices. Our work provides
the first application of the celebrated Okounkov-Vershik Sn representation theory to quantum physics
and machine learning, from which to propose quantum variational ansätze that strongly suggests to be
classically intractable tailored towards a specific optimization problem.
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I. INTRODUCTION

The combination of new ideas from machine learning
and recent developments in quantum computing has lead
to an impressive array of new applications. [1–13]. Promi-
nent examples of this interplay are the variational quantum
eigensolver (VQE) and quantum approximate optimization
algorithm (QAOA) [14–16], which are considered among
the most promising quantum machine-learning approaches
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in the noisy intermediate-scale quantum (NISQ) [17] era.
VQEs and QAOA have shown tremendous promise in
quantum simulation and quantum optimization [18–23].

One of the most important neural-network architectures
in classical machine learning are convolutional neural net-
works (CNNs) [24–28]. In recent years, CNNs have also
found applications in condensed-matter physics and quan-
tum computing. For instance, Ref. [29] proposes a quan-
tum convolutional neural network with log N parameters
to solve topological symmetry-protected phases in quan-
tum many-body systems, where N is the system size. One
of the key properties of classical CNNs is equivariance,
which roughly states that if the input to the neural net-
work is shifted, then its activations translate accordingly.
There have been several attempts to introduce theoreti-
cally sound analogs of convolution and equivariance to
quantum circuits, but they have generally been somewhat
heuristic. The major difficulty is that the translation invari-
ance of CNNs lacks a mathematically rigorous quantum
counterpart due to the discrete spectrum of spin-based
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quantum circuits. For example, Ref. [29] uses the quasilo-
cal unitary operators to act vertically across all qubits.

In quantum systems there is a discrete set of transla-
tions corresponding to permuting the qudits as well as a
continuous notion of translation corresponding to spatial
rotations by elements of SU(d). Combining these two is
the realm of so-called permutational quantum computing
(PQC) [30]. Therefore, a natural starting point for realiz-
ing convolutional neural networks in quantum circuits is
to look for permutation equivariance. In one of our related
works [31], we argued that the natural form of equiv-
ariance in quantum circuits is permutation equivariance
and we introduce a theoretical framework to incorporate
group-theoretical CNNs into the quantum circuits, build-
ing on and generalizing the PQC framework to what we
call PQC+ [31].

In this paper, we further explore PQC+ and its signifi-
cance for machine-learning applications. Roughly speak-
ing, the PQC+ machine consists of unitary time evo-
lutions of k-local SU(d)-symmetric Hamiltonian. As a
feature, Schur-Weyl duality between the aforementioned
Sn and SU(d) actions on qudit systems appears natu-
rally and is used throughout the paper. Most importantly,
it indicates that any SU(d)-symmetric quantum circuits
can be expressed in Sn irreducible representations (irreps).
Exploiting the power of Sn representation theory in quan-
tum circuits towards NISQ applications is thus the central
theme of the paper. The representation theory of Sn has
been found to be a powerful tool in various permutation-
equivariant learning tasks, e.g., learning set-valued func-
tions [32] and learning on graphs [33,34]. Most appli-
cations of permutation-equivariant neural networks work
with a subset of representations of Sn. In contrast, in physi-
cal and chemical models where the Hamiltonian exhibits
global SU(d) symmetry, such as the Heisenberg model,
it is necessary to consider all the Sn irreps (a detailed
explanation of this significant insight can be found in
Sec. V). However, even the best classical fast Fourier
transforms (FFTs) over the symmetric group Sn require
at least O(n!n2) operations [35,36], which dashes any
hope of calculating the Fourier coefficients even for rel-
atively small n. Indeed, despite increasing realization of
the importance of enforcing SU(2) symmetry, none of the
neural-network quantum state (NQS) ansätze are able to
respect SU(2) symmetry for all SU(2) irreps, due to the
superpolynomial growth of the multiplicities of irreps and
the superexponential cost to compute Fourier coefficients
over Sn. Finding variational ansätze respecting continuous
rotation symmetry is desirable because it not only helps to
gain important physical insights about the system but also
leads to more efficient simulation algorithms [37,38].

Motivated by the class of problems with a global
SU(d) symmetry, in Sec. III, we construct what we
call the variational Sn-equivariant convolutional quan-
tum alternating ansätze (Sn-CQA), which are products of

alternating exponentials of certain Hamiltonians admitting
SU(d) symmetry. This is a concrete example of the PQC+
framework and may also be thought as a special case
of QAOA with SU(d) symmetry. Using the Okounkov-
Vershik approach [39] to Sn representation theory as well
as other classical results from the theory of Lie group and
Lie algebra [40,41] we prove that Sn-CQA generates any
unitary matrix in each given Sn-irrep block decomposed
from an n-qudit system, hence it acts as a restricted uni-
versal variational model for problems that possess global
SU(d) symmetry (Theorem 1). Consequently, it can be
applied to a wide array of machine learning and optimiza-
tion tasks that exhibit global SU(d) symmetry or require
explicit computation of high-dimensional Sn irreps, pre-
senting a quantum superexponential speedup. Our proof
techniques are of independent interest and we provide
two more applications. It is shown in Refs. [42,43] that
QAOA ansätze generated by simple local Hamiltonians are
universal in the common sense. Forgetting the imposed
symmetry, we use our techniques to derive the univer-
sality for a different but related class of QAOA ansätze
with a richer set of mixer Hamiltonians (Theorem 2). In
addition, we find a four-local Sn-CQA model, which is uni-
versal to build any SU(d) symmetric quantum circuits up
to phase factors (Theorem 3) with awareness of the fact
that two-local SU(d)-symmetric unitaries cannot fulfill the
task when d ≥ 3 [44,45]. Consequently, when compared
with other SU(d)-symmetric ansätze, products of expo-
nentials of SWAPs (eSWAPs) proposed in Ref. [46] admit
the restricted universality with SU(d) symmetry only when
d = 2 and the CQA model is universal in general cases
when restricted to any one of Sn irreps.

In Sec. IV we explore more details about Schur-Weyl
duality on qudit systems. To be specific, talking about Sn
or SU(d) irrep blocks in a qudit system requires using the
Schur basis, instead of the computational basis. The Schur
basis can be constructed by either SU(d) Clebsch-Gordon
decomposition [30,47,48] or by the Sn branching rule
[49–51], which yields two ways to label the basis elements
by either SU(d) Casimir operators or by the so-called
YJM elements used in the Okounkov-Vershik approach.
We rigorously demonstrate the equivalence of these label-
ing schemes (Theorem 4), first conjectured in Harrow’s
thesis [47], (see also discussions by Bacon, Chuang, and
Harrow [52] and Krovi [51]). As a result, we find a state-
initialization method, using constant-depth qudit circuits,
to produce linear combinations of Schur-basis vectors,
which may be preferred in NISQ devices rather than imple-
menting a quantum Schur transform (QST). We show that
the measurements taken for variationally updating param-
eters in Sn-CQA can be efficiently calculated on the Schur
basis, while a similar conclusion is unlikely to be drawn
classically.

In the numerical par,t Sec. V, we illustrate the poten-
tial of this framework by applying it to the problem of
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finding the ground-state energy of J1-J2 antiferromagnetic
Heisenberg magnets, a gapless system with no known sign
structure or analytical solution in quantum many-body the-
ory. We compare our model with classical and quantum
algorithms like Refs. [38,46,53]. We emphasize the conse-
quence of the failure of the Marshall-Lieb-Mattis theorem
[54–56] in the frustrated region with which classical neu-
ral networks struggle to discover the sign structure to an
admissible accuracy due to violation of global SU(2) sym-
metry [57,58]. We include numerical simulation to show
the effectiveness of the Sn-CQA ansätze in finding the
ground state with frustration using only O(pn2) param-
eters for p alternating layers. Noisy simulations are also
provided to show the robustness of Sn-CQA.

Our theoretical results about SU(d) symmetry can be
reversed to exhibit Sn permutation symmetry. We define
SU(d)-CQA on SU(d)-irrep blocks and leave it to future
research work to explore its theoretical and experimen-
tal potential. All statements and theorems discussed in the
main text are proved in full detail in the Appendix.

II. BACKGROUND ON REPRESENTATION
THEORY OF THE SYMMETRIC GROUP

In this section we define some of the mathematical con-
cepts and notations used in the rest of the paper. Further
details can be found in Refs. [49,50,59].

Let V be a d-dimensional complex Hilbert space with
orthonormal basis {e1, . . . , ed}. The tensor-product space
V⊗n admits two natural representations: the tensor-product
representation πSU(d) of SU(d) acting as

πSU(d)(g)(ei1 ⊗ · · · ⊗ ein) := g · ei1 ⊗ · · · ⊗ g · ein ,

where g · eik is the fundamental representation of SU(d),
and the permutation representation πSn of Sn acting as

πSn(σ )(ei1 ⊗ · · · ⊗ ein) := ei
σ−1(1)

⊗ · · · ⊗ ei
σ−1(n)

.

We treat V⊗n as the Hilbert space of an n-qudit system.
The so-called Schur-Weyl duality reveals how the above
two representations are related.

Schur-Weyl duality is widely used in quantum com-
puting [60], quantum information theory [47], and high-
energy physics [61]. In particular, in quantum chromody-
namics it was used to decompose the n-fold tensor product
of SU(3) representations. In that context, standard Young
tableaux are referred to as Weyl tableaux and labeled by
the three isospin numbers (u, d, s). The underlying Young
diagrams containing three rows λ = (λ1, λ2, λ3) are used to
denote an SU(d) irreducible representation (irrep). There is
another way using Young diagrams λ′ = λ1 − λ3, λ2 − λ3)

labeled by Dynkin integers via the highest weight vec-
tors. In short, there are two conventions in the literature to
denote SU(d) irreps. On the other hand, Sn irreps can also

FIG. 1. Young diagrams λ = (6, 3, 1) and λ′ = (5, 2) represent
the same SU(3)-irrep of highest weight (3, 2). However, in the
context of Schur-Weyl duality, λ corresponds to an S10 irrep
while λ′ gives an S7 irrep.

be denoted by Young diagrams [59]. Schur-Weyl duality
says that irreps of SU(d) and Sn are dual in the follow-
ing sense and denoted by the same Young diagrams with n
boxes and at most d rows.

Theorem (Schur-Weyl duality): The action of SU(d) and
Sn on V⊗n jointly decompose the space into irreducible
representations of both groups in the form

V⊗n =
⊕

λ

Wλ ⊗ Sλ,

where Wλ and Sλ denote irreps of SU(d), respectively, Sn,
and λ ranges over all Young diagrams of size n with at
most d rows. Consequently,

πSU(d) ∼=
⊕

μ

Wμ ⊗ 1mSU(d),μ , πSn
∼=

⊕

λ

1mSn ,λ ⊗Sλ,

where mSU(d),μ = dim Sμ and mSn,λ = dim Wλ.

One can easily verify that πSU(d) and πSn commute (fur-
ther properties are described in the Appendix). Consider
the symmetric group algebra C[Sn] consisting of all for-
mal finite sums f = ∑

i ciσi. Its representation is then
π̃Sn(f ) = ∑

i ciπSn(σi). When there is no ambiguity, we
denote by Uσ or simply σ the representations πSn(σ ).

Working from the perspective of Schur-Weyl dual-
ity requires, at least theoretically, using the Schur basis
rather than the computational basis. A conventional way
to build such a basis is conducting sequential coupling and
Clebsch-Gordan decompositions of SU(d) representations
[30,47,48], which transform common matrix representa-
tions of SU(d) into irrep matrix blocks like in Fig. 2(a).
Since our focus are ansätze, operators, and quantum cir-
cuits with SU(d) symmetry, which commute with πSU(d),
and since Schur-Weyl duality and the double commutant
theorem (see Appendix) say that they must be established
from the group algebra C[Sn], we need to explore Sn irreps
blocks as in Fig. 2(b) however. We are going to introduce a
method to decompose permutation matrices in this picture
and explain basic notions in Sn representation theory and
the Okounkov-Vershik approach, since they are essential
to understand the theoretical results in this paper.

We first consider the so-called permutation module Mμ.
In the case of qubits, permutation modules correspond
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(c)(b)(a)

FIG. 2. (a) Decomposition of (C2)6 with respect to SU(2) action while (b) is for S6 by Schur-Weyl duality. (c) Arrangement of (b),
which respects both permutation modules and S6 irreps.

to sets of Schur-basis elements having different readout
on total spin components. Fortunately there is an acces-
sible way to understand Mμ in the tensor-product space
V⊗n. To make things simpler, consider the d = 2 case of
SU(2)− Sn duality on (C2)⊗n. Only two-row Young dia-
grams λ = (λ1, λ2) appear in this duality and the half of
difference 1

2 (λ1 − λ2) between the lengths of the two rows
gives the total spin of the SU(2)-irrep Wλ. The permuta-
tion module Mμ is isomorphic with the linear span of all
computational basis vectors with z-spin components equal
to 1

2 (μ1 − μ2).
Note that, (C2)⊗n = ⊕

μ Mμ and each Mμ is invari-
ant under Sn permutation. Furthermore, Mμ can be further
decomposed into Sn irreps. For two-row Young diagrams
[SU(2)− Sn duality], the decomposition is easy: Mμ =⊕

λ≥μ Sλ where λ,μ have the same size n and we use the
dominance order λ� μ if λ1 ≥ μ1. In summary, we have

(C2)⊗n =
⊕

μ

Mμ =
⊕

μ

⊕

λ�μ
Sλ ∼=

⊕

λ

1mSn ,λ ⊗Sλ.

Isomorphic copies of Sλ come from different permuta-
tion modules. The largest permutation module contains all
distinct Sn irreps in (C2)⊗n [see e.g., Fig. 2(c)]. For gen-
eral Young diagrams, decompositions of Mμ would have
nontrivial multiplicities [50,59].

Each Sλ can be decomposed further with respect to
Sn−1 ⊂ Sn as Sλ = ⊕

ρ Sλρ , where Sλρ denotes an Sn−1
irrep of Young diagram ρ (with n − 1 boxes) contained
in the Sn irrep Sλ. The so-called branching rule guaran-
tees that the decomposition is multiplicity-free, i.e., each

distinct Sn−1-irrep Sλρ appears only once in the decom-
position. The so-called Bratteli diagrams in Fig. 3 show
how how different irreps are decomposed. Continuing the
decomposition process for Sn−2, . . . , S1, the original space
Sλ will be written as a direct sum of one-dimensional
subspaces (S1 irreps are one dimensional):

Sλ =
⊕

Sn−1,ρ

Sλρ = · · · =
⊕

Sn−1,ρ

· · ·
⊕

S1,τ

Sλρσ ···τ .

......

FIG. 3. Bratteli diagram for S6. Upper Young diagrams con-
necting by arrows to lower ones arise from the decomposition.
Orange arrows form a path. Note that diagrams with more than
two rows cannot appear in SU(2)− S6 duality.
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FIG. 4. Standard Young tableau defined by the path in Fig. 3.

Each one-dimensional subspace Sλρσ ···τ can be represented
by a nonzero vector in it. Normalizing them, we obtain
an orthonormal basis {|vT〉} of Sλ called the Gelfand-
Tsetlin basis (GZ) or Young-Yamanouchi basis. Indices
λ, ρ, σ , . . . , τ form a path in the Bratteli diagram (see
Fig. 3) and can be used to define a standard Young tableau
T (Fig. 4). Young-basis vectors are in one-to-one corre-
spondence with standard Young tableaux [59]. The branch-
ing rule is also discussed in SU(d) representation theory
and some authors refer to the SU(d)-irrep basis as the GZ
basis if it is constructed in a similar manner. A more com-
prehensive discussion about building Schur basis by SU(d)
Clebsch-Gordon decomposition and by Sn branching rule
is postponed in Sec. IV.

Let us introduce the central concept used in our work.
The Schur basis, GZ basis, and Young basis elements are
in fact synonyms of each other. In what follows we use the
name Young basis elements.

Definition 1: For 1 < k ≤ n, the Young-Jucys-Murphy
element, or YJM element for short, is defined as a sum
of transpositions Xk = (1, k)+ (2, k)+ · · · + (k − 1, k) ∈
C[Sn]. We set X1 = 0 as a convention.

As the name indicates, this concept was developed by
Young [62], Jucys [63], and Murphy [64]. Okounkov and
Vershik showed that YJM elements generate the Gelfand-
Tsetlin subalgebra GZn ⊂ C[Sn] [39], which is a maximal
commutative subalgebra consisting of all centers Z[Sk] of
C[Sk] for k = 1, . . . , n. Another striking fact is that all
YJM elements are strictly diagonal (indeed, representa-
tion of GZn consists of all diagonal matrices) in a Young
basis {|vT〉} whose eigenvalues can be read out directly
from the standard Young tableaux T. To be precise, let
λ be a Young diagram. Since this is a two-dimensional
diagram, we can naturally assign integer coordinates to
its boxes. The content of each of its boxes is determined
by the x coordinate minus y coordinate. Suppose T is a
standard Young tableau of λ. Arranging all contents with
respect to T, we obtain the content vector αT. For instance,
the Young diagram λ = (4, 2) has contents 0, 1, 2, −1.
The specific standard tableau T in Fig. 4 has content
vector αT = (0, −1, 1, 2, 0, 3). Let |vT〉 denote a Young-
basis vector corresponding to T. Measuring by YJM ele-
ments, we have X1 |vT〉 = 0, X2 |vT〉 = − |vT〉 , X3 |vT〉 =
|vT〉 and so forth. Each Young-basis vector is determined
uniquely by its content vector (see Refs. [39,50] for more
details).

III. Sn CONVOLUTIONAL QUANTUM
ALTERNATING ANSÄTZE

Consider the YJM elements {X1, . . . , Xn} introduced
in Sec. II, which generate the maximally commuting
subalgebra GZn. The use of YJM elements allows us to
design the following mixer Hamiltonian:

HM =
∑

i1,...,iN

βi1···iN Xi1 · · · XiN . (1)

This YJM Hamiltonian is still strictly diagonal under the
Young basis. As there is an efficient quantum Schur trans-
form USch (QST), which transforms the computational
basis to Schur basis even for qudits with gate complex-
ity Poly(n, log d, log(1/ε)) [47,51,52]. It is reasonable to
assume that we can initialize any Young-basis element
|
init〉 from Sn irreps via QST. Moreover, given a problem
Hamiltonian HP with SU(d) symmetry, it can be written
as HP = π̃(f ) for some f ∈ C[Sn] by the double com-
mutant theorem and Wedderburn theorem (see Sec. II and
Appendix). Inspired by QAOA (Pauli X is diagonal with
respect to |+〉⊗n) [14], we thus propose the following
ansatz:

· · · exp(−iHM ) exp(−iγHP) exp(−iHM )

× exp(−iγ ′HP) · · · .

To summarize, we define a family of mixer operators
HM parameterized by βi1···iN , which is diagonal under the
Young basis and naturally preserves each Sn irrep deter-
mined by the initialized states. Following Refs. [65,66] and
one of our results [31], which interpret quantum circuits
as natural Fourier spaces, we call this family of ansätze
Sn-CQA.

Deviating from the original purpose of using QAOA
to solve constraint satisfaction problems, our Sn-CQA
are applied to problems with global SU(d) symmetry or
permutation equivariance, as long as the problem Hamil-
tonian HP can be efficiently simulated in the circuit model.
Indeed, most practical examples involve only two- or
three-local spin interactions, such as the Heisenberg model
studied in Sec. V, and thus by Theorem 2 of Ref. [31]
can be efficiently simulated. On the other hand, the k-
dependent constant in Corollary 1 from Ref. [31] has
exponential scaling. So in practice, we would like to have
three- or at most four-local terms for the YJM-Hamiltonian
simulation in ansätze. We focus on the following mixer
Hamiltonian consisting of only first- and second-order
products of YJM elements:

HM =
∑

k≤l

βklXkXl, (2)
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whose evolution can be efficiently simulated in O(n4 log
(n4/ε)/ log log(n4/ε)). Below, we prove that with a mix-
ture as in Eq. (2), the Sn-CQA ansätze are able to approx-
imate any unitary from every Sn-irrep block [Fig. 2(b)].
This can be seen as a restricted version of universal quan-
tum computation to Sn irreps. Since the 4-local Sn-CQA
is an all-you-need approximation algorithm within PQP+,
it is strongly suggestive that the PQP+ class proposed in
Ref. [31] contains circuits that can approximate matrix ele-
ments of all the Sn Fourier coefficients, for a polynomial
number of alternating layers p . Moreover, the four-local
Sn-CQA is also the universal approximator for solutions
of the problem with global SU(d) symmetry, such as the
Heisenberg models, due to its nature as variational ansätze.

A. Restricted universality of Sn-CQA ansätze in Sn
irreps

We now present the main theoretical result of this
paper: the Sn-CQA ansätze approximate any unitary in
any Sn irrep decomposed from the system of qudits. This
restricts universal quantum computation on U(dn) to Sn-
irrep blocks [Fig. 2(b)] because our ansätze preserve SU(d)
symmetry. This is of interest for three reasons: (a) the
density result indicates that Sn-CQA ansätze is a univer-
sal approximator in PQP+ proposed in Ref. [31] and it
is the theoretical guarantee of our numerical simulations.
(b) The result is valid for qudits under SU(d)− Sn duality
and we show the advantage of working with Sn as there is
no need to deal with complicated SU(d) symmetry, gen-
erators in the proof. (c) When changed from the Young
basis to the computational basis, i.e., forgetting the SU(d)
symmetry, our results form a new proof to the universal-
ity of a broad class of QAOA ansätze. (d) It is shown
in a recent work [45] that SU(d)-invariant and symmetric
quantum circuits with d ≥ 3 cannot be generated by two-
local SU(d)-invariant unitaries. With the focus on locality,
we verify that Sn-CQA ansätze can be built by four-local
SU(d)-invariant unitaries and four-locality is enough to
generate any SU(d)-invariant quantum circuit up to phase
factors.

Mathematically, we aim to show that the subgroup gen-
erated by Sn-CQA ansätze is equal to the unitary group
U(Sλ) restricted to Sλ decomposed from V⊗n. However,
arguing directly on the level of the Lie group is compli-
cated. Instead, we prove that the generated Lie algebra
is isomorphic with the unitary algebra u(Sλ) restricted to
Sλ. Then combining with some classical results from the
theory of Lie group [40,41] and the Okounkov-Vershik
approach to Sn-representation theory [39], we complete the
proof. We outline our results here and put all the proof
details into the Appendix.

Our first step is motivated by a classical result from
the theory of Lie algebra: any semisimple Lie algebra can
be generated by only two elements [40]. Finding these

elements would be tricky and encoding them by a quantum
circuit would even be infeasible, so we adopt a different
routine and solve these problems gradually. We first work
on the complex general linear algebra gl(d, C) which is
not semisimple, but facilitates our proof. To begin with, it
is easy to find its Cartan subalgebra—the collection d(d)
of all diagonal matrices. Let M be a matrix with nonzero
off-diagonal elements cij . It can be thought of as a perturba-
tion from d(d). We want to know how large the subalgebra
generated by M and d(d) would be. More precisely, as the
following.

Lemma 1: Let Eij ∈ gl(d, C) be the matrix unit with
entry 1 at (i, j ) and 0 elsewhere. Given any matrix M, let
I ⊂ {1, . . . , d} × {1, . . . , d} be the index set correspond-
ing to nonzero off-diagonal entries cij of M. Then the Lie
subalgebra generated by d(d) and M contains

d(d)⊕
( ⊕

(i,j )∈I
Rij

)
,

where Rij is the one-dimensional root space spanned
by Eij .

Intuitively speaking, GZn defined in Sec. II corresponds
precisely to the Cartan subalgebra of gl(dim Sλ, C). In
proving Lemma 1, we are required to use all basis elements
of GZn rather than the n YJM generators [39]. Thus we
need to employ all high-order products Xi1 · · · XiN of YJM
elements (as dim Sλ increases exponentially for a large
number of qudits Fig. 9) and that pose the first problem
for a practical ansatz design, which requires k-local C[Sn]
Hamiltonian in order to be efficiently simulated by quan-
tum circuits [31]. This problem is solved in Lemma 2.6
in the Appendix with the help of the Okounkov-Vershik
theorem [39,50]. We prove that the collection {Xi, XkXl}
of first- and second-order YJM-elements, while in gen-
eral cannot form a basis for GZn, are enough to establish
Lemma 1. As a reminder, merely taking the original YJM
elements Xi is not sufficient and we provide counterexam-
ples in the Appendix. As Xi are two local, this result also
provides some insights on the fact that two-local SU(d)-
invariant unitaries cannot generate all quantum circuits
with SU(d) symmetry in the general case [44,45,67].

As another ingredient of Sn-CQA ansätze, the problem
Hamiltonians HP of interest are complicated in general and
hard to diagonalize classically. It also forms the other part
(the matrix M ) in generating the Lie algebra in Lemma
1. For the purpose of easy implementation, we show in
Lemma 2 that HP needs only to be path connected or irre-
ducible in the language of graph theory. A Hamiltonian is
of this kind if its associated index graph GHP is connected.
For example, the Pauli X and Y are path connected while Z
is not. We further prove in Lemma 3.1 in the Appendix that
the two-local Hamiltonian HS = ∑n−1

i=1 (i, i + 1) defined by
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all adjacent transpositions (i, i + 1) ∈ Sn is path connected.
We discuss path connectedness further after Theorem 1 as
well as in Sec. V. It is also seen in the famous Perron-
Frobenius theorem and applied to graph theory.

Lemma 2: Let HP be a path-connected Hamiltonian. Then
the generated Lie algebra 〈d(d), HP〉 = gl(d, C). Consider
dR(d) consisting of all real-valued diagonal matrices.
Generated over R, 〈idR(d), iHP〉R = u(d).

Since YJM elements as well as their high-order products
have real diagonal entries under Young basis, we con-
cretize d(d) by {Xi, XkXl}. With all these preparations, we
consider the subgroup H defined in pure algebraic sense by
alternating exponentials of iXkXl and iHP where HP is path
connected. To verify that H is a Lie group (with smooth
structures [68]), we apply another classical theorem due to
Yamabe [41,69] and conclude with the following.

Theorem 1: Restricted to any Sλ with isomorphic copies
decomposed from V⊗n, the subgroup generated by XkXl
with any path-connected Hamiltonian HP equals U(Sλ).
Then a Sn-CQA ansatz is written as

· · · exp

⎛

⎝−i
∑

k,l

βklXkXl

⎞

⎠ exp(−iγHP)

exp

⎛

⎝−i
∑

k,l

β ′
klXkXl

⎞

⎠ exp(−iγ ′HP) · · · , (3)

where we redefine X1 as I with which any first-order YJM
element Xi can be written as XiX1.

Consider the case when HP is not path connected. That
is, HP is block diagonal (after a possible re-cording of basis
elements) in Sλ. It is straightforward to check that Theorem
1 still holds within each sub-block of HP. Suppose our task
is to find the lowest eigenstate |v0〉 of HP within Sλ. There
is generally no prior knowledge about which sub-block
v0 is in. The brute-force way to find the minimum is by
taking a collection of initial states from each of these sub-
blocks and applying the theorem repeatedly. One way to do
this is by implementing the efficient QST, which gives us
access to all Young-basis elements. The state initialization
proposed in Sec. IV B with constant depth may take a hit
(forcing the depth of the circuit to increase) if the problem
Hamiltonian is not path connected.

B. Universality of QAQA

The first proof of the universality of the QAOA ansätze
was given in Ref. [42], where the authors considered the
problem Hamiltonian of the first-order and second-order
nearest-neighbor interaction. References [43] subsequently

generalized the result to broader families of ansätze defined
by sets of graphs and hypergraphs. We now describe a new
proof based on the techniques developed in this paper that
covers a novel, broader family of QAOA ansätze. More
precisely, we change to the computational basis {|ei〉}2n

i=1
in which all tensor products Z̃r1···rs := Zr1 ⊗ · · · ⊗ Zrs of
Pauli basis can span any diagonal matrix. In the language
of Lie algebra, Zi generates the Cartan subalgebra d(2n) of
gl(2n, C) [comparing with the case of GZn = d(Sλ) under
Young basis]. Let HX be the uniform summation of Pauli-
X operators (we do not write its explicit form to avoid any
confusion with the notation of YJM elements). The Hamil-
tonian HX is path connected under {|ei〉}. To restrict the use
of high-order Pauli Z operators analogously as we did for
YJM elements, we prove in Lemma 5.1 that the Hamil-
tonian HZ composed by {Zi, ZkZl} are enough to establish
Lemmas 1 and 2 with HX in the present setting. Unlike the
HZ used in Ref. [42], which contains only nearest-neighbor
terms Zj Zj +1, we take all second-order products ZkZl in our
proof. The resulting Hamiltonian HZ is still simple though
and the proof works for both an odd and even number of
qubits [43]. Moreover, replacing HX by any other path-
connected Hamiltonian, e.g., an unfrustrated Heisenberg
Hamiltonian with boundary condition [56], still guarantees
the universality, and this fact enables one to experiment
with a wide range of mixer Hamiltonians. In summary,

Theorem 2: Let HX be any path-connected Hamilto-
nian on computational basis, the group generated by the
QAOA-ansatz with HX , HZ = ∑

βklZkZl equals U(2n), i.e.,
it is universal.

C. Four-locality of SU(d)-symmetric quantum circuits

A well-known result in Ref. [70] states that any quantum
circuit can be generated by two-local unitaries for qubits
as well as for qudits. It has been shown in a recent work
[45] that this statement fails to hold when we impose the
SU(d) symmetry on the qudit system with d ≥ 3. Let Vk
denote the subgroup generated by k-local SU(d)-invariant
unitaries, so V2 �= Vn, where Vn stands for all the irrep
blocks from Fig. 2(b). On the other hand, we use U(Sλ) in
Theorem 1, which specifies one (with equivalent copies) of
them in searching ground state of Heisenberg Hamiltonian
in Sec. V.

Counting all inequivalent Sλ is an interesting problem
of its own, especially when studying the subgroups Vk ⊂
U(dn) induced by symmetry, but it would cause a phase
factor problem: one may not be able to manipulate rel-
ative phase factors of unitaries generated in inequivalent
Sλ arbitrarily. We could simply ignore these phase factors
as they make no difference in measurements respecting
the symmetry. Then we consider SVk ⊂ Vk restricted to
SU(Sλ) for all Sλ decomposed from V⊗n. It is shown in
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Refs. [44,67,71,72] that SV2 = SVn when d = 2. How-
ever, Refs. [44,67] prove in a pure math flavor by Brauer
algebra from representation theory that the statement fails
when d ≥ 3 and Ref. [45] shows by constructing a coun-
terexample based on the qudit-fermion correspondence
that V2 is not even a 2-design. That is, the distribution of
unitaries generated by random two-local unitaries cannot
converge to the Haar measure of Vn. With results about
CQA developed above, we prove the following theorem.

Theorem 3: Ignoring phase factors, SU(d)-invariant
quantum circuits can be generated by four-local SU(d)-
invariant unitaries for any d ≥ 2. Using group-theoretical
notation, SV4 = SVn ⊂ CQA.

We sketch the proof strategy and leave the details in
the Appendix: we define the subgroup generated by CQA,
still denoted by CQA for simplicity, by a two-local path-
connected Hamiltonian HS = ∑n−1

i=1 (i, i + 1) mentioned in
Sec. III A. Since second-order YJM elements are at most
four-local, one can intuitively conclude that SV4 = SVn.
Moreover, in contrast to Theorem 1, which addresses the
universality restricted to one fixed Sλ, we now consider
all inequivalent Sλ from V⊗n and our method handles only
the problem when ignoring phase factors. Thus we claim
that SV4 = SVn and they are all included in CQA because
CQA contains generators with nontrivial phases: e.g., eiθ I .
We discuss more details about the phase-factor problem by
Sn representation theory and show that CQA is a compact
subgroup of V4 � Vn generally in the Appendix.

IV. CORRESPONDENCE BETWEEN SPIN LABELS
AND CONTENT VECTORS

As introduced in Sec. II, Young-basis vectors are labeled
by content vectors via YJM elements. A similar phe-
nomenon is also seen for the SU(d) irrep basis vectors con-
structed by Clebsch-Gordon decompositions [30,47,48]
under which the space decomposes as Fig. 2(a): they are
labeled by d − 1 Casimir operators [73]. We now turn to
the question whether these two labeling schemes are equiv-
alent in a certain sense explained in the following. This
was conjectured to be true in Ref. [47] and surfaced again
in Ref. [51] when the author introduced an efficient quan-
tum Schur transform (QST). An affirmative answer to this
conjecture is crucial in this work for three reasons: (a) The
Young basis is algebraic. Thus, the gate action drawing
from the group algebra C[Sn] is basis independent. In par-
ticular, it can be implemented directly in the computational
basis without computing the Fourier coefficients—this is a
key observation that underpins the superexponential quan-
tum speedup. (b) This identification allows us to apply
both classical tools from SU(d) representation theory as
well as the Okounkov-Vershik approach to Schur basis no
matter how it is established. As an example, we show in

Sec. IV B an efficient algorithm to generate Schur-basis
states required for optimization and learning tasks. (c)
A detailed examination on Schur basis enables us covert
all the previous results about Sn-CQA to, what we call,
SU(d)-CQA with Sn symmetry.

For two-row Young diagrams, this conjecture was
shown to be correct in Ref. [74], where the author studied
the question by 1

2 -spin eigenfunctions instead of YJM ele-
ments. The general case for SU(d)− Sn duality still holds
and can be proven in a surprisingly easy way using YJM
elements and the Okounkov-Vershik approach. We present
details in the Appendix.

Lemma 3: Under SU(d)− Sn duality, sequentially cou-
pled Casimir operators commute with YJM elements.

As a brief illustration of this result, let us consider
the sequentially coupled total spin basis |j1, . . . , jn; m〉
of SU(2). The spin component m and spin labels jk are
determined by spin operator Sn

z as the summation of
all half Pauli-Z matrices 1

2 Zi at each i site and sequen-
tial coupled Casimir operators J 2

k = (Sk
x)

2 + (Sk
y)

2 + (Sk
z )

2,
respectively, [we abuse our language for simplicity as true
eigenvalues of J 2

k are jk(jk + 1)]. Since they commute with
YJM elements, J 2

k Xi |j1, . . . , jn, m〉 = XiJ 2
k |j1, . . . , jn; m〉. It

is well known from linear algebra that commutative oper-
ators can be simultaneously diagonalized and we elaborate
this fact with the following theorem.

Theorem 4: YJM elements are strictly diagonal under
the SU(d) irrep basis built by sequential Clebsch-Gordon
decompositions. Conversely, sequentially coupled Casimir
operators are strictly diagonal under the Young basis
decomposed by branching rule.

We now illustrate by examples the correspondence
between spin labels and content vectors for the simplest
SU(2)− Sn duality, then we go to the general case. Let
|j1, . . . , jn; m〉 be any SU(2)-irrep basis vector. Theorem 4
says that it is also a Young basis element, thus we can talk
about its eigenvalues (content vector) (αT(1), . . . ,αT(n))
with respect to the YJM elements (recall that T denotes
a denotes a standard Young tableau, or equivalently the
corresponding GZ path from the Bratteli diagram like that
from Figs. 3 and 4). An equivalence between two label-
ing schemes means the spin label J = {j1, . . . , jn} uniquely
determines the content vector αT = (αT(1), . . . ,αT(n)) and
vice versa.

SU(2) case: for brevity, let us denote SU(2)-irrep basis
vectors by |J ; m〉. It is possible to find two basis ele-
ments |J ; m〉 , |J ′; m〉 with the same spin component m but
different spin labels. This is due to the fact that (C2)⊗n

would decompose into copies of isomorphic SU(2) irreps
[Fig. 2(a)]. On the other hand, a Young basis element is
then denoted by |αT;μ〉 where μ, as explained in Sec. II,
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comes with choosing the permutation module Mμ. It is
also possible to find two basis elements |αT;μ〉 , |αT;μ′〉
with the same content vector αT but from different permu-
tation modules Mμ [Fig. 2(c)]. Let us forget the problem
of copies or multiplicities for a while and only focus on
the correspondence between J and αT. We then come back
to discuss this in Sec. IV A. Let |αT;μ〉 be a Young-basis
element such that αT equals (0, −1, 1, 2, 0, 3) in Fig. 4. It
is also an SU(2)-irrep basis vector. Acted on by J 2

1 , the
first spin label is definitely j1 = 1

2 . To measure the second
spin label, let us apply Schur-Weyl duality to the sub-
set system consisting of only the first two qubits. Since
|αT;μ〉 is constructed by branching rule, it can be seen as a
Young-basis element of S2 irreps of Young diagram λ ==
(λ1, λ2) = (1, 1) (read off from the first two elements of
αT). Schur-Weyl duality says that |αT;μ〉 should stay in the
SU(2) irrep denoted by the same Young diagram, hence
j2 = 1

2 (λ1 − λ2) = 0. Inductively, j3 = 1
2 and we obtain

J = ( 1
2 , 0, 1

2 , 1, 1
2 , 1). As a brief comment on multiplici-

ties, since the total spin (last spin label) is 1, there are
three possible choices of z-spin components m = 1, 0, −1.
Correspondingly, μ from |αT;μ〉 can be three different per-
mutation modules [Fig. 2(c)]. The mechanism for reading
off content vectors from spin labels is similar.

SU(3) case: note that the pattern of constructing SU(2)
spin labels is simply the familiar branching rule seen in
SU(2) irreps [48,75]. We now instantiate with d = 3 to
show how this pattern generalizes. Let 0, 3, 3, 8 denote
the trivial, the fundamental, the conjugate and the adjoint
representations of SU(3). Then we consider the following
coupling scheme:

3 ⊗ 3 = 3 ⊕ 6 ⇒ 3 ⊗ 3 = 0 ⊗ 8 ⇒ 0 ⊗ 3 = 3,

where we couple four qudits in which we take the GZ path
corresponding to αT = (0, −1, −2, 1) and ended up with
the Young diagram λ = (2, 1, 1).

The group SU(3) has two Casimir operators

C1 =
8∑

i=1

T2
i , C2 =

8∑

i,j ,k

dijkTiTj Tk, (4)

where Ti = 1
2λi are half of the Gell-Mann matrices and dijk

are determined by the anticommutation relation {Ti, Tj } =
1
3δij + dijkTk. Thus the kth sequential coupling of these
operators, denoted by (C1, C2)k, corresponds to the YJM
element Xk and they are used to record irreps like 3, 3, 0, 3
appearing in the above example and yield “spin labels”
(1, 0), (0, 1), (0, 0), (1, 0), which are highest weights for
SU(3) irreps. For a general SU(d)− Sn duality, each YJM
element Xk corresponds to a pair of d − 1 Casimirs [73]
for the kth sequential coupling. It is therefore more con-
cise to use YJM elements in the general case as sequential

coupling and branching rule decomposition are equivalent
in describing Schur basis.

A. More facts about state labeling and CQA with Sn
symmetry

With spin label-content vector correspondence, we
denote a Schur-basis vector by |αT;μS〉, where αT is its
content vector. In the Sn picture, αT tells us exactly the path
to restrict an Sn irrep determined by the Young diagram T
to Sn−1 irrep and so forth. However, there are copies of that
Sn irrep decomposed from the entire Hilbert space and μS
labels the multiplicity. One may wish to distinguish these
isomorphic copies by permutation modules like Fig. 2(c).
However, as mentioned in Sec. II, when d ≥ 3 isomorphic
copies of Sn irreps can even be found from the same per-
mutation module Mμ [50,59] and hence the superscript μ
is no longer enough to identify μS.

Interestingly, this problem can be solved in the SU(d)
picture, in which αT tells us exactly the path to cou-
ple SU(d) irreps sequentially. Our final destination Wλ is
uniquely determined by the path, but we now need to label
|αT;μS〉 as a state in Wλ. When d = 2, μS is simply taken
as the spin-z component m. When d ≥ 3, we use classical
results by Gelfand and Tsetlin [76] and Biedenharn [77].
We illustrate the main idea for d = 3: consider weight dia-
grams of SU(3) irreps on Fig 5. Each dot in a diagram
stands for a basis vector of the irrep [49,78]. With αT
being determined by YJM elements, we need only to iden-
tify which dot |αT;μS〉 corresponds to the weight diagram
of Wλ. Diagrammatically, these dots have planar coordi-
nates, which are rigorously called weights measured by the
isospin I3 and hypercharge Y operator of SU(3) [49,78] just
like measuring spin components by Sz of SU(2). However,
being different from the SU(2) case, some weight vec-
tors (dots) occupy the same positions. It is known as the
branching rule for SU(3) that dots with the same horizon-
tal coordinate form irreps of SU(2) ⊂ SU(3). For instance,
two brown dots in Fig. 5 form a spin-1/2 irrep while the
other four red dots from the same horizontal line form
a spin-3/2 irrep. Thus after measuring weights and posi-
tions by I3, Y, we simply need to apply the SU(2) Casimir
operator J 2 to discern dots occupying the same position.

In Ref. [77], authors provide the recipe to find these
operators for a general SU(d) group. Roughly speaking, we

FIG. 5. Typical weight diagrams of SU(3) irreps. Some weight
vectors (dots) may occupy the same positions.
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first employ d − 1 operators μi, which span its Cartan sub-
algebra, to label the weights of a given basis vector. Then
we take Casimir operators of SU(2) ⊂ · · · ⊂ SU(d − 1)
to distinguish dots that occupy the same position. Their
eigenvalues, which we record as μS, form the so-called
Gelfand-Tsetlin pattern [76], which is widely used to study
SU(d) irreps. To construct a CQA model with Sn symme-
try, we replace the YJM elements labeling any Sλ basis
states by the the following ones labeling any Wλ basis
states:

μ1, . . . ,μd−1, CSU(d−1)
1 , . . . , CSU(d−1)

d−2 , . . . , CSU(2)
1 = J 2.

The number of required operators to build a SU(d)-CQA
ansatz is 1

2 d(d − 1)—a constant for fixed d, no matter
how many qudits the system contains. However, Casimir
operators of SU(d − 1) are supported on d − 1 qudits [see
Eq. (4) and [78]]. Applying the same proof method from
Theorem 1, SU(d)-CQA is thus made of 2(d − 1)-local
Sn-symmetric unitaries. As a simple example, SU(2)-irrep
basis states are uniquely determined by the summation
Sn

z of spin operator 1
2 Zi on each site i. Without having

to employ the Casimir operator, Sn
z , (Sn

z )
2 and a problem

Hamiltonian HP already form a SU(2)-CQA model. More
precisely, as follows.

Corollary 1: Let HP be any path-connected Hamilto-
nian on the SU(2)-irrep basis, the CQA-ansatz gener-
ated by HP, Sn

z , (Sn
z )

2 is dense in each SU(2)-irrep block
U(dim Wλ).

B. State preparation for Sn-CQA ansätze

To investigate evaluation of the matrix elements of Sn
Fourier coefficients, we are confined to the Young basis,
which requires the implementation of quantum Schur
transform [47,51,52]. However, for a wide variety of quan-
tum machine learning and optimization tasks, such as
determining the ground-state sign structure of frustrated
magnets, it is often advantageous to relax the constraints
and ask how easy it is to initialize the states that live in
any given Sn irrep. An algorithm to initialize a state in the
Sn irrep with Young diagram being (n/2, n/2), is given in
Ref. [46]. We generalize this result to an arbitrary Sn irrep
in general SU(d)− Sn duality. The key is to utilize dif-
ferent permutation modules and multiplicities of Sn irreps
as in Fig. 2(c). Similar to the previous subsection, we
construct the algorithm inductively: we first consider the
SU(2)− Sn duality in which a (λ1, λ2)-Sn irrep is dual to a
spin-(λ1 − λ2)/2 irrep. Let

|
init〉 = |0 · · · 0︸ ︷︷ ︸
k many

〉 ⊗ |s〉 ⊗ · · · ⊗ |s〉︸ ︷︷ ︸
[(n−k)/2] many

, (5)

where |s〉 = 1√
2
(|01〉 − |10〉) is one of the Bell states and

we assume n − k is even. Then we have the following.

Lemma 4: Let μ = λ = [(n + k)/2, (n − k)/2]. The ini-
tialized state |
init〉 is contained in Sλ and belongs to the
permutation module Mμ.

Proof. Acting by the spin operator Sz = ∑
i Sz

i , it is easy
to check that the spin component of |
init〉 equals j = k/2
hence it belongs to Mμ. By Theorem 4 and discussion from
the previous subsection, we have the expansion |
init〉 =∑

T cT |αT; k/2〉. Since by definition J+ |
init〉 = 0, the
Young diagram underlying each αT from the summation
must be the same and equals λ. �

We now illustrate by several examples how to expand
|
init〉 as a linear combination of Young-basis elements:
(a) let |
init〉 = |s〉⊗(n/2). This is the state used in Ref. [46].
One can check by YJM elements that it is a single Young-
basis element. (b) For a more involved case, consider the
(4, 2) irrep of S6 and write

|
init〉 = |00〉 ⊗ |s〉 ⊗ |s〉

= 2
3

|αT1 ; 1〉 −
√

2
3

|αT2 ; 1〉 −
√

2
3

|αT3 ; 1〉

+ 1
3

|αT4 ; 1〉 ,

where αTi corresponds to GZ paths in Fig. 6.
The first two boxes in Fig. 6 correspond to trivial irrep

of S2 acting on the subsystem formed by the first two
qubits. Indeed, S2 acts trivially on |00〉 from |
init〉. As
it would be more apparent to see how to get αTi in the
SU(2) picture, we use the spin label-content vector dual-
ity and trace the path of spin coupling. As the total spin
of |00〉 and |00〉 ⊗ |s〉 are identical (Lemma 4), there are
two ways to add two more boxes: putting the third box
on the rhs of the first two and then putting the fourth on
the bottom or conversely. Tensoring again with the singlet
|s〉, we retrieve four branching paths in total. Moreover,
by the same reason, it is easy to see that reordering ten-
sor products of |0 · · · 0〉 and |s〉 in Eq. (5) yields a different
expansion of Young-basis elements for the same Sn irreps.
Figure 7 illustrates two more cases: |s〉 ⊗ |0〉 ⊗ |s〉 ⊗ |0〉
and |s〉 ⊗ |00〉 ⊗ |s〉.
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FIG. 6. Decomposing the initial state by content vectors and
spin labels.
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FIG. 7. Reordering tensor products yields different Young-
basis expansions.

This method can be generalized to SU(d)− Sn duality.
For instance, when d = 3 to initialize states for three-row
Young diagrams, let us consider the upper, down, strange
states u, d, s of 3. Let

|
0〉 = |u · · · u︸ ︷︷ ︸
k many

〉 ⊗ (ud − du)⊗ · · · ⊗ (ud − du)︸ ︷︷ ︸
[(n−k)/2] many

.

This state lies in the (n + k, n − k, 0) irrep. Tensoring
with SU(3) singlet |s〉 = (uds − usd + dsu − dus + sud −
sdu)/

√
6, |
init〉 = |
0〉 ⊗ |s〉⊗l is a state from the (n +

k + l, n − k + l, l)-irrep. Its expansion can still be tracked
by the branching rule as in Figs. 6 and 7. An S6-CQA quan-
tum circuit with state initialization described above can be
seen in Fig. 8.

C. Quantum superpolynomial speedup

For variational algorithms, typically one would make
many measurements with updated parameters {θμ} by

some classical gradient descent scheme:

θμ(t + 1) = θμ(t)−
∑

ν

ημ(t)A−1
μν (θ(t))

∂

∂θν
〈H 〉θ(t), (6)

where the learning rate tensor Aμν(θ(t)) is often taken as
the identity matrix while ημ = η is the learning rate. The
quantity 〈H 〉θ(t) is the expectation value to minimize and
(∂/∂θν)〈H 〉θ(t) is the derivative with respect to θν . With an
explicitly parameterized unitaries such as in our case, we
can utilize the quantum circuits to measure the gradient of
the expectation.

Here, we refer taking one measurement at time t as a
query and query complexity as the total time T in order
to converge. The query complexity can be analyzed by
recent development of the quantum neural tangent kernel
[79]. Though it would be an interesting case to consider
the bound on the query complexity to converge, in this
work we focus only on showing that the circuit complexity
per query can be efficiently simulated on quantum circuits
while this is not known in classical regime.

Theorem 5: Let U(p)
CQA denote the CQA ansätze with

p alternating layers and let H ∈ C[Sn] be a SU(d)-
symmetric k-local Hamiltonian with most N terms. Then
for any Sn irrep Sλ, the Fourier coefficients:

∂

∂θμ
〈αT′ ,μS| U(p)†

CQA(θ)HU(p)
CQA(θ) |αT,μS〉 , (7)

where T, T′ are standard tableaux of λ (Figs. 3 and 4) and
μS records the multiplicity of Sλ (Sec. IV A), can be simu-
lated in O(pN (θn4 + k2)) with θ being the largest absolute
values of parameters.

The proof is also given in the Appendix. Precisely, we
assume that there exists an efficient Schur transform (QST)

FIG. 8. S6-CQA circuit with state initialization in Fig. 6.
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[47,51,80] with a polynomial overhead to prepare |αT,μS〉.
Calculating the Fourier coefficients over Sn is a classically
difficult question and the best classical algorithms Sn-FFT
requires a factorial complexity [35,36] as Sn has n! group
elements and so is the dimension of its regular represen-
tation (see the Wedderburn theorem in the Appendix for
more details). Therefore, comparing with the complexity
of Sn-FFT, there is a superexponential quantum speed per
query. However as a caveat, the entire Hilbert space of
n qudits only scales exponentially with n and Sn irreps
decomposed from the system by Schur-Weyl duality also
scales exponentially. Therefore, it would be more reason-
able and cautious to refer to a superpolynomial quantum
speedup for Sn-CQA.

Except comparing with Sn-FFT, recent work from
Refs. [10,81] proposes the notion of dequantization to
compare the efficiencies of classical and quantum algo-
rithms. Roughly speaking, with well-prepared quantum
initial states, quantum algorithms can always be exponen-
tially faster than the best counterpart classical algorithms.
Assume classical algorithms also have efficient access to
input. If the output can now be evaluated with at most
polynomially larger query complexity then the quantum
analogy, it is said to be dequantized with no genuine
quantum speedup. In our case, let us assume our initial
states—Schur-basis elements |αT,μS〉 or their linear com-
binations can be efficiently accessed with classical meth-
ods. Even though, dequantization still unlikely happens.
Except conducting Sn-FFT, matrix representations of σ ∈
Sn can also be efficiently sampled [48,75], but the method
works exclusively for a single group element. To sample
U(p)

CQA(θ) |αT,μS〉 processed after Sn-CQA from Eq. (3),
the time evolution of CQA Hamiltonians is expanded and
approximated by at least superpolynomially many Sn group
elements (see the Appendix for more details) and hence is
still thought to be classically intractable.

V. C[Sn] SYMMETRIES OF THE J1-J2
HEISENBERG HAMILTONIAN

The spin-1/2 J1-J2 Heisenberg model is defined by the
Hamiltonian:

Ĥp = J1

∑

〈ij 〉
Ŝi · Ŝj + J2

∑

〈〈ij 〉〉
Ŝi · Ŝj , (8)

where Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) represents the spin operators at

site i of the concerned lattice. The symbols 〈· · · 〉 and
〈〈· · · 〉〉 indicate pairs of nearest- and next-nearest-neighbor
sites, respectively. The J1-J2 model has been the subject
of intense research over its speculated novel spin-liquid
phases at frustrated region [82]. The unfrustrated regime
(J2 = 0 or J1 = 0) for the antiferromagnetic Heisenberg
model is characterized by the bipartite lattices, for which
the sign structures of the respective ground states are

analytically given by the Marshall-Lieb-Mattis theorem
[54–56]. As an important result, ground states of unfrus-
trated bipartite models are proven to live in the Sn irrep
corresponding to the Young diagram λ = (n/2, n/2). By
Schur-Weyl duality, this subspace is often referred to as
the direct sum of SU(2)-invariant subspaces with total spin
J = 0 in the context of physics [cf. Figs. 2(a) and 2(b)].
With this fact, algorithms like Ref. [38] has been designed
to enforce SU(2) symmetry at J = 0 and solve Heisenberg
models without frustration.

The system is known to be highly frustrated when
J1 and J2 are comparable J2/J1 ≈ 0.5 [83] and near the
region of two phase transitions from Neel ordering to
the quantum paramagnetic phase and from quantum para-
magnetic to colinear phase, where no exact solution is
known. Moreover, little is known about the intermediate
quantum paramagnetic phase—recent evidence of decon-
fined quantum criticality [84,85] sparked further interest
in studying these regimes. Gaining physical insights in the
intermediate quantum paramagnetic phase requires solving
the problem of the ground-state sign structure the system
approaches the phase transition. Recently, there were a
number of numerical attempts to address the existence of
the U(1) gapless spin-liquid phase, using recently the ten-
sor networks [86], restricted Boltzmann machine (RBM)
[87], convolutional neural network (CNN) [57,58,88], and
graphical neural network (GNN) [89]—all yielding partial
progress. As a significant difference from the unfrustrated
case, the Marshall-Lieb-Mattis theorem does not hold gen-
erally and there is no guarantee that the ground state still
lives at J = 0 or equivalently λ = (n/2, n/2), which urges
us to preserve the global SU(2) symmetry, which fur-
ther gives us access to search in all inequivalent Sn irreps
decomposed from the system by Schur-Weyl duality.

Global SU(2) symmetry and challenges in NQS
ansätze

Taking advantage of the global SU(2) symmetry, we
address this problem in a different way: we recast the
Hamiltonian in Eq. (8) by the following identity:

π((ij )) = 2Ŝi · Ŝj + 1
2

I , (9)

with Ŝi being further expanded as the half of standard
Pauli operators {X , Y, Z}. Equation (9) was first discov-
ered by Heisenberg himself [90,91] (an elementary proof
can be found in the Appendix) and more recently noted
by Ref. [46] in analyzing the ground-state property of the
1D Heisenberg chain. As designed by products of expo-
nentials of SWAPs (eSWAPs), the method proposed in
Ref. [46] truly preserves the global SU(2) symmetry. As
a brief comparison with Sn-CQA, eSWAP ansätze are uni-
versal in relevant sectors given by the SU(2) symmetry.
However, this property no longer holds for qudits with
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FIG. 9. Scaling properties of small total spin irreps dimen-
sion, respectively. The graph shows the scale: 2n/ dim Sλ with the
partitions λ1 = (n/2, n/2) (red), λ2 = (n/2 + 1, n/2 − 1) (gray),
λ3 = (n/2 + 2, n/2 − 2) (orange). The orange dashed line is
exp(−n/8) the exponential decay, since the plot starts at n = 8.

d ≥ 3 (Sec. III C). As eSWAPs are noncommutative oper-
ators in general, there are various ways to place them in
a quantum circuit. A more suitable perspective to describe
the ansatz might be sampling them as two-local SU(2) ran-
dom circuits [45]. On the other hand, the Sn-CQA ansatz
is designed by alternating exponentials of the problem
and mixer Hamiltonians HP, HM just like the framework
of QAOA. Similar to QAOA, Sn-CQA at large p corre-
sponds to a form of adiabatic evolution with global SU(d)
symmetry, which could hint a theoretically guaranteed
performance as p is large (see Sec. VII in the Appendix).

An immediate consequence of using Eq. (9) is that the
resulting Heisenberg Hamiltonian can be expressed in the
Young basis where every Sn irrep is indexed by the total
spin label j . Mapping to this basis can be done using
the constant-depth circuit state initialization in Sec. IV B.
Using our C[Sn] variational ansatz leads to a more effi-
cient algorithm by polynomially reducing the space. In the

NISQ application, especially between 10 to 50 qubits, we
have much better scaling, see Fig. 9.

Numerous efforts in applying NQS variational archi-
tecture to represent the complicated sign structure in the
frustrated regime essentially use the energy as the only
criterion for assessing its accuracy. This would result in
the optimized low-energy variational states in frustrated
regime still obeying the Marshall sign rules even though
the true ground state is likely to deviate from it signif-
icantly [58], or breaks the SU(2) symmetry [57]. The
preservation of spatial symmetry has been the core topic of
discussion in the literature, with proposed C4 equivariant
CNN. However, on the two-dimensional model Heisen-
berg model, the spatial symmetry consideration can only
reduce the search space redundancy by a constant fac-
tor, thus scaling very poorly at even intermediate n. By
reinforcing SU(2) symmetry, we achieve a polynomial
reduction of Hilbert space and ensure the result to be physi-
cally reasonable, hence offering a second criterion to assess
the variational ansätze.

The number of qubits scaling linearly with the number
of qubits naturally circumvent the issue of having gener-
alization property, a crucial property for the NQS ansätze
to function [92]. In fact, in a related work of us [31], we
showed that, making use of the representation theory of the
symmetric group, this leads to the superexponential quan-
tum speedup. To this end, it is unlikely that any classically
trained ansätze are capable to reinforce the global SU(2)
symmetry of the system.

A. Numerical simulation

We provide numerical simulations to showcase the
effectiveness of the Sn-CQA ansätze, using a JAX auto-
matic differentiation framework [93]. The implementation
of the Sn-CQA ansätze utilizes the classical Fourier-space
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FIG. 11. For the 3 × 4 lattice, in either case, the Sn-CQA ansätze are able to converge to the ground state at least 10−4 precision
with explicitly reinforced SU(2) symmetry. This can be seen from the expectation of Sn-CQA never falls below the exact ground
state, while nonsymmetry respecting algorithms inevitably do. The numerical results are subject to room for further development, for
instance, with better gradient-descent algorithms such as to utilize the Hessian, since we have only 200–500 learnable parameters to
optimize. Therefore, we expect the performance and convergence rate of Sn-CQA ansätze to further increase with perhaps more refined
tuning.

activation by working in the Sn irreducible representation
subspace where the ground-state energy lies. This would
impact the stability of the numerical simulations, which
imply the best-suited models are with 8–16 spins. This bot-
tleneck in computational resource, as shown in Sec. III,
presents no issue for a potential larger-scale implementa-
tion on quantum computers. The benchmarked examples
with RBM and group-equivariant convolutional neural net-
work (GCNN) [53] are drawn from NetKet [94] tutorial
[95], which form the baseline comparison. Note that we
implement no explicit global SU(2) or U(1) symmetry
for these benchmark algorithms. For numerical simula-
tion of Sn-CQA, we perform random initialization of the
parameters. We find that the random initialization already
returns the energy, which is within roughly 10−2 precision
within ED ground-state energy and nonoscillating descents
around the ED ground-state energy comparing with that of

GCNN and RBM. This is likely due to the fact that we use
the Sn-Fourier space activation with real-valued trial wave
functions with explicit SU(2) symmetry. We record the
optimized energy for the Sn-CQA ansätze every five iter-
ations, and we set the number of alternating layers p = 4
for the 3 × 4 lattice and p = 6 for the 12-spin kagome lat-
tice. In the implementation, we shift the Hamiltonian to
H̃(λ) = H(λ)+ m 1dλ to ensure H̃(λ) is positive semidef-
initeness in the Sn irrep specificity by the partition λ =
(λ1, λ2) with the total spin label j = (λ1 − λ2)/2 (Sec. II),
where m is the total number of transpositions. We take only
the real (normalized) part of the wave function Re(ψ) =
ψ + ψ∗. This can be seen as a postprocessing step for
the realization of Sn-CQA on a quantum computer. We
use the Nesterov-accelerated Adam [96] for the Sn-CQA
optimization with hyperparameters: betas = [0.99, 0.999].
We also utilize NetKet’s exact diagonalization (ED) result
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for the comparison with the exact ground-state energy.
The ground state is additionally calculated in the Young
(Schur) basis by diagonalizing the Heisenberg Hamilto-
nian H(λ) in the irrep λ where the ground state lives. It
is worth mentioning that our optimized ground state is
strictly real valued and has explicitly SU(2) symmetry,
offering the missing yet essential physical interpretation.
We provide code and Jupiter notebook in open access on
Github in python. The numerical simulations are run in
the CPU platform with the 9th-Gen 1.4-GHz Intel Core i5
processors.

3 × 4 rectangular lattice

In frustrated region of J2/J1 = 0.5, J2/J1 = 0.8, we find
that the ground state lives entirely in the total spin 0 irrep,
corresponding to the partition λ = (4, 4). In the case of
J2 = 0.5, we report that the Sn-CQA ansätze are able to
smoothly converge to the ground state, with error to the
exact ground-state energy 9.1049e−5. For J2 = 0.8, the Sn-
CQA returns 5.0587e−4 precision to the ED ground-state
energy. We notice that the Sn-CQA seem always to con-
verge to the ground state with reasonable good accuracy
without the issue of trapping in local minima, regardless of
initialization (random initialization from Gaussian is used).
The learning rate used here is 0.01. For the GCNN layers
in both J2 values we set the feature dimensions of hidden
layers (8, 8, 8, 8) and 1024 samples with the learning rate
set for 0.02. For the RBM model, we fix the learning rate
0.02 with 1024 samples.

12-spin kagome lattice

We find by comparing with the ED result that the ground
state of 12-spin kagome lattice lives in the total spin-2
irrep, corresponding to partition [8, 4] in J2 = 0, which
suggests it to be fivefold degenerate. For both frustration
levels J2/J1 = 0.5 and J2/J1 = 0.8, the ground state lives
in total spin-0 irrep, which appear to be nondegenerate. We
aim to learn the ground state for the 12-spin kagome lattice
at J2/J1 = 0.5 and J2/J1 = 0.8. In the case of J2/J1 = 0.5,
the optimized ground-state energy by the Sn-CQA ansätze
at the end of iteration returns 1.5721e−4 precision to the
ED result. In the case J2/J1 = 0.8, we have the final opti-
mized energy 6.2065e−5 precision to the ED ground-state
energy. The learning rate is set for 0.01 for the J2/J1 = 0.5
and 0.8. We set the GCNN in both frustration points of fea-
ture dims (8, 8, 8, 8) with 1024 samples. The learning rate
in both frustrations is set to be 0.02. The RBM implemen-
tation uses 1024 samples with a learning rate of 0.02 for
both cases.

VI. DISCUSSION

In this paper, we introduce a framework to design
non-Abelian group-equivariant quantum variational ansätze
as an example of PQC+ extended from permutational

quantum computation. The restricted universality of the
Sn-CQA ansätze makes it applicable to a wide array of
practical problems, which would explicitly encode permu-
tation equivariant structure or exhibit global SU(d) sym-
metry. Our proof techniques can be used to show the uni-
versality of QAOA and verify the four locality of generic
SU(d) symmetric quantum circuits. Moreover, we illus-
trate the remarkable efficacy of our approach by finding the
ground state of the Heisenberg antiferromagnet J1-J2 spins
in a 3 × 4 rectangular lattice and 12-spin kagome lattice in
highly frustrated regimes near the speculated phase tran-
sition boundaries. We provide strong numerical evidence
that our Sn-CQA can approximate the ground state with
a high degree of precision, and strictly respecting SU(2)
symmetry. This opens up new avenues for using represen-
tation theory and quantum computing in solving quantum
many-body problems.

A. Open problems

We conclude with several interesting open problems:
(a) We would like to find out the computational power of
PQC+. In particular, it is interesting to investigate whether
quantum circuits can (in polynomial time) approximate
matrix elements of any Sn Fourier coefficients. A natural
starting place is perhaps based on the restricted univer-
sality of Sn-CQA ansätze in each Sn irrep by asking if a
polynomial bounded number of alternating layers p are
able to approximate any matrix element of Sn Fourier coef-
ficients. Or we may further lose the condition by asking
if a polynomial bounded number of alternating layers p
would form an approximate k design for subgroups U(Sλ)
restricted from U(V⊗n) when imposing the global SU(d)
symmetry. A detailed study of this question will shed
some light on the nature and scope of the prospective
quantum advantage. (b) In the Appendix we show that
Sn-CQA ansätze at large p can simulate certain quantum
adiabatic evolution with random path-dependent coupling
strengths. It would be important to investigate whether
the path-dependent coupling strength parameters βkl lead
to potential amplitude amplification of the spectral gap in
the adiabatic path. In particular, one might need to address
the physical dynamics of the random path-dependent cou-
pling strengths. (c) More generally, the quantum speedup
we demonstrate here is inherently connected to the PQC+.
Are there other quantum speedups within this framework?
In particular, (b) suggests a possible route related to quan-
tum annealing. Another possible route may have to do with
measurement-based quantum advantage. For instance, see
Ref. [97]. Therefore, one might want to ask if our Sn-
CQA ansätze have other sources of quantum exponential
speedup. (d) Another open direction would be to bench-
mark the performance of the Sn-CQA ansätze in various
Heisenberg models and to implement the Sn-CQA ansätze
on a quantum device.
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CODE AVAILABILITY

The codes for the numerical simulation can be
found at https://github.com/hanzheng98/Sn-CQA. The
C++ implementation of Sn operations can be found at
https://github.com/risi-kondor/Snob2. Data availability is
upon request by emailing hanz98@uchicago.edu.
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