
Article https://doi.org/10.1038/s41467-024-46986-2

Mapping cell-to-tissue graphs across human
placenta histology whole slide images using
deep learning with HAPPY

Claudia Vanea 1,2 , Jelisaveta Džigurski 3, Valentina Rukins 3, Omri Dodi4,
Siim Siigur5, Liis Salumäe5, Karen Meir6, W. Tony Parks 7,
Drorith Hochner-Celnikier4, Abigail Fraser8,9, Hagit Hochner 10, Triin Laisk 3,
Linda M. Ernst11,12, Cecilia M. Lindgren2,13,14,15,16 & Christoffer Nellåker 1,2,16

Accurate placenta pathology assessment is essential formanagingmaternal and
newborn health, but the placenta’s heterogeneity and temporal variability pose
challenges for histology analysis. To address this issue, we developed the ‘His-
tology Analysis Pipeline.PY’ (HAPPY), a deep learning hierarchical method for
quantifying the variability of cells andmicro-anatomical tissue structures across
placenta histologywhole slide images. HAPPYdiffers frompatch-based features
or segmentation approaches by following an interpretable biological hierarchy,
representing cells and cellular communities within tissues at a single-cell reso-
lution across whole slide images. We present a set of quantitative metrics from
healthy term placentas as a baseline for future assessments of placenta health
and we show how these metrics deviate in placentas with clinically significant
placental infarction. HAPPY’s cell and tissue predictions closely replicate those
from independent clinical experts and placental biology literature.

Accurate placenta pathology assessment is essential for clinical man-
agement of mother and newborn health1–3. Placental pathology
informs immediate clinical treatment, predicts recurrence risk in
subsequent pregnancies and long-term maternal and child adverse
outcomes, and explains underlying causes of pregnancy loss3,4.
Ongoing placental pathology research can determine new biomarkers
of disease, such as the recently identifiedSARS-CoV-2placentitis5,6, and
improve our understanding of the biological mechanisms of healthy
development and disease processes3.

Despite its importance, the placenta remains a relatively under-
studied and poorly understood organ1,7–16. It is the first organ formed
by the developing foetus and is heterogeneous17–19 and rapidly
evolving2,7,20,21. The placenta’s high spatial and temporal variability
presents a challenge for robust, reproducible histological analysis and
detection of pathological changes. The difficulty of this task is reflec-
ted in low interobserver reliability among pathologists for many
diagnostically-relevant placental features (i.e. gestational age22, villus
maturity23, maternal vascular malperfusion24–26). Placenta histology
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slides commonly contain upwards of a million cells comprising tens of
thousands of tissue microstructures. High-throughput, quantitative
and objective metrics of placental biology are therefore valuable for
placental investigations in both clinical and research settings.

Digital pathology has the potential to provide these high-
throughput metrics, allowing for automated processing of histology
slides at scale. In recent years, deep learning is becoming a gold
standard for digital pathology, with success in cancer survival
analysis27–29 and tumour micro-environment modelling30–34. However,
there has been little application of these approaches to placenta
histology19,35–37, where reliable quantification of micro-anatomical
structures across slides is vital to determining key features of health
assessment such as placental maturity18,20,21,38.

Established deep learning approaches for quantifying micro-
anatomical structures in histology have been largely based on tissue
segmentation39–43 or prediction at the patch level34,44–46. Tissue seg-
mentation typically requires a large amount of precise manually
curated annotations to perform well40–43 and while patch-based
approaches only require patch-level labels, prediction resolution is
limited to patch size. Additionally, as both approaches operate within
fixed patches, they are unable to utilise contextual information
external to a patch and are vulnerable to changes in patch
construction45.

In recent years, the representation of cells as a spatial graph28,47–57

has emerged as a promising way to discover new cellular
phenotypes49,53,57, make slide-level predictions28,48,51,56, and hier-
archically cluster cells into tissuemicrostructures31,50,54,55. However, for
the most common imaging modality, Hematoxylin and Eosin (H&E)
stained histology, these have only been applied for patch-level31,50,52

and slide-level prediction28,48,51,56 or on graphs restricted to fixed
subregions50,54. Here we present a pipeline for analysing tissue micro-
structures at the single-cell level by building whole slide spatial cell
graphs across H&E histology with dynamic sampling of graph regions
and learnt cellular community aggregation. This pipeline leverages the
relatively large cell sample size within a slide to overcome uncertainty
and variance in any one classification and to achieve robust tissue
microstructure classification.

Results
Automated quantification of healthy variability in placenta
histology
We present HAPPY (Histology Analysis Pipeline.PY), a method for
quantifying cells and micro-anatomical tissue structures across
Hematoxylin and Eosin (H&E) stained placenta histology whole slide
images (WSIs). Our approach is inspired by the biological hierarchy of
the organ, from locating all nuclei across a WSI, to classifying their cell
types, to identifying the tissue microstructures that those cells com-
prise. HAPPY can facilitate large-scale morphometric studies of pla-
centa histology, a currently manual, expert-requiring, labour-
intensive task.

HAPPY classifies all cells in a placenta parenchymaWSI into one of
11 cell types and 9 tissue microstructure categories. We train and
validate nuclei localisation and cell classification models on 11,755
nuclei and 13,842 cells and evaluate on aheld-out test set of 2754nuclei
and 2743 cells. We train and validate a graph neural network tissue
classification model on 468,869 nodes and evaluate on a held-out
portion of 179,095 test nodes acrossmicrostructures. We compare the
tissue classification model’s performance with the labels and Cohen’s
kappa agreement scores of four practising perinatal pathologists over
180 tissues and we use these to validate the ground truth training
annotations andmodel performance.We showhow in30WSIs from30
healthy term placentas the predicted proportions of cells, tissues, and
composition of tissues correspond to expectations from our current
understanding of placental biology. We present these findings as new
quantitative metrics for placental health. Finally, we present a pilot

case study of clinically significant placental infarction in 12 WSIs from
eight term placentas and show how HAPPY identifies biologically-
relevant differences in cell and tissuemicrostructures compared to the
healthy group.

HAPPY is structured as a deep learning pipeline in three stages: i)
an object detection model for nuclei localisation, ii) an image classifi-
cation model for cell classification, and iii) a graph neural network
(GNN) for tissue classification (Fig. 1). From the nuclei locations and
cell predictions, we construct a spatial cell graph across the WSI. To
model the interactions of cells within tissue microstructures, we use
inductive message-passing node classification across the constructed
cell graph. This hierarchical, message-passing approach induces our
models to use the constituent cellular information to understand tis-
sue microstructures. By reducing the WSI dimensionality to cell
representations we are able to model tissue microstructures at the
single cell resolution. The trained tissue model, based on an inductive
GNN, is robust to input graphs of any shape or size allowing for
application across other WSIs. We apply this methodology to auto-
mated whole slide-scale quantification of cells and tissue micro-
structures in placenta histology (Fig. 2).

The HAPPY codebase, training data, and trained models for pla-
centa histology are available at (https://github.com/Nellaker-group/
happy). The codebase supports themost commonly usedWSI scanner
formats58–60, has additional utilities for creating datasets and visualis-
ing outputs, and we provide tutorials for training and inference
workflows. HAPPY is presented here applied to the placenta, but by
design the codebase can be directly applied to other organ histology,
given organ-specific training data. To show that this is valid in princi-
ple, we have additionally conducted a preliminary investigation of our
nuclei localisation and cell classification models across WSIs of a pla-
centamembrane roll, umbilical cord, a second-trimester placenta with
chorioamnionitis, and also across WSIs of other organs in the GTEx
dataset (Supplementary Fig. 1).

Evaluation of model performance
We evaluate the deep learning model from each stage of the pipeline
on respective unseen held-out test sets (Table 1). The nuclei localisa-
tion model achieves a 0.884 F1 score across 2754 nuclei within 38
images, comparable to F1 scores reported by other state-of-the-art
nuclei detection models trained for other organs (HoVer-Net achieves
an F1 score of 0.756 on the CoNSeP dataset61 and 0.800 on the Pan-
Nuke dataset62, SONNET63 achieves an F1 score of 0.855 on the MoN-
uSAC dataset64). The cell classification model, evaluated across 2743
cells for 11 placental cell types, achieves an overall accuracy of 84.29%
and a top-2 accuracy of 94.90%, with a 0.9773 macro-averaged
Receiver Operating Characteristic Area Under Curve (ROC AUC). We
show (Fig. 3a) that most misclassifications are within closely related
cell differentiation pathways. See Supplementary Fig. 2 for visualisa-
tions of predictions across WSIs of healthy-term placentas.

The graph neural network tissue classification model, evaluated
across 149,425 cell graph nodes for 9 tissue types, achieves an overall
accuracy of 68.34% and a top-2 and top-3 accuracy of 91.14% and
97.10%, with a 0.8868 macro-averaged ROC AUC. We show (Fig. 3b)
that misclassifications of tissues fall primarily within developmentally
similar microstructures. Misclassifications of villus types are typically
confused with other villus types which correspond to similarities in
villus growth and branching morphology20,21. For example, mature
intermediate villi, from which terminal villi grow, are mistaken for
terminal villi 37% of the time. Likewise, anchoring villi, which are a
subcategory of stem villi and have the same cellular composition, are
mislabelled as stem villi 21% of the time. Avascular villi, which are
commonly associated with the presence of fibrin65–67, are confounded
with fibrin 21% of the time. Given the high top-2 accuracy, model
misclassifications likely correspond to noise inherent in the biological
domain. Many tissue microstructure types are not discrete categories
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Fig. 1 | HAPPYworkflow.Ahematoxylin and eosin (H&E) stainedwhole slide image
(WSI) is first sectioned into overlapping 1600× 1200 (177.44 × 133.08 μm) pixel
images and passed to an object detection RetinaNet model which identifies the
nuclei in these images. 200 × 200 (22.18 × 22.18 μm) pixel images centred on each
nucleus are classified into one of 11 cell types by a ResNet-50 model. The 64-
dimension embeddings from the cell classifier and their nucleus coordinates are

used tobuild a cell graph across thewhole slide image. The cell graph is input into a
ClusterGCN graph neural network which classifies the tissue microstructure to
which each cell belongs. Images a-d show characteristic tissue regions of the WSI:
a chorionic plate, b stem and distal villi, c distal villi, d basal plate and
anchoring villi.
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Fig. 2 | Schematic diagram of a healthy term placenta with a histology image
and model whole slide cell and tissue predictions. a Healthy term placenta
schematic showing macrostructures including the basal plate, chorionic plate and
branching chorionic villi (not drawn to-scale). The fetal vasculature extends from
the umbilical cord, through the chorionic plate and into the chorionic villi for

maternal/fetal diffusive exchange. The intervillous space is supplied with maternal
blood by the maternal spiral arteries and deoxygenated blood and waste is
removed by thematernal veins. An example parenchyma slide sample site is shown
by the semi-transparent box. b Resulting histology section presented on a glass
slide. c Whole slide cell and tissue microstructure predictions from HAPPY.
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but rather sit on a biological continuum (see Fig. 2 and further details
below). A cell which appears at the blurred boundary of two villus
types will have been manually labelled into one category, but the
model is not necessarily incorrect to classify it as the other. Despite
these challenges, the signal identified from the noise is useful for
biological and clinical characterisation (see sections ‘Quantitative
metrics for placental health’ and ‘ACase Study of Placental Infarction’).
Supplementary Fig. 3 contains visualisations of predictions across
WSIs of healthy-term placentas.

Comparison to perinatal pathologists
To better understand the relative difficulty of reliably identifying dif-
ferent placental tissue microstructures and to further validate our
approach, we compare the agreement of four expert perinatal
pathologists, K.M, S.S, W.T.P, L.M.E, in 180 images. Across all tissue
microstructure types, pathologists have a moderate agreement score
of 0.55 kappa, with low-moderate kappa values for mature

intermediate villi (0.468), villus sprouts (0.371), avascular villi (0.154),
and anchoring villi (0.051). Pathologists disagree with their majority-
voted label (Fig. 4a) at least 50% of the time for anchoring villi and
avascular villi, highlighting thedifficulty of identifying these structures.

Taking the pathologists’majority label as the gold standard, for all
180 images we compare against the manual annotations created by
C.V. (used as ground truth for training the tissuemodel). The resulting
kappa value of 0.61 indicates a slightly better agreement than inter-
pathologists agreement. For 7/9 tissue microstructures, the patholo-
gists’ labelsmatch the annotations >50%of the time (Fig. 4b). There is a
strong match for terminal villi (78%), avascular villi (80%), chorionic
plate tissue (90%) and basal plate tissue (99%). Of the two structures
with <50% label match, mature intermediate villi (41%) and anchoring
villi (27%), these were among the structures with the lowest inter-
pathologist agreement as described above.

We contrast model PR-AUC (Precision Recall Area Under Curve)
values against pathologist agreement scores for each tissue micro-
structure type (Fig. 4c). The PR-AUC values have a strong positive
correlation (R2 = 0.821) with the Cohen’s kappa between the patholo-
gists, suggesting the model’s predictions are on par with perinatal
pathologists for this task. Additionally, the pathologists’ label dis-
agreement (Fig. 4a) shows similar patterns to model confu-
sion (Fig. 3b).

Pathologist disagreement in this task is not unexpected as spe-
cific, structure-by-structure tissue classification is not part of pathol-
ogy investigations, partly because this is not humanly feasible at scale.
Nonetheless, the gestalt or organised whole, i.e. tissue type and

Trophoblasts Mesenchymal-derived Extravillus

a
Chorionic

Villi
Maternal/Fetal

Surfaces
Pathologic
Indicators

b

Fig. 3 | Cell and tissue classifier performance on unseen test data. a Confusion
matrix and precision and recall values of cell classifier predictions. Cell types are
clustered into categories (trophoblast, mesenchymal-derived, extravillus) and
ordered by their counts. Categories are highlighted by the topmost brackets and
squares within the confusion matrix. b Confusion matrix and precision and recall
values of tissue classifier predictions. Confusionmatrix values are represented as a

proportion of predictions relative to the number of samples per tissue type. Tissue
types are clustered into categories (chorionic villi, maternal/fetal surfaces, patho-
logic indicators) and ordered by their counts. Categories are highlighted by the
topmost brackets and squares within the confusion matrix. Source data are pro-
vided as a Source Data file.

Table 1 | Summary of performance on unseen test data for
each deep learning stage

F1

Nuclei Detection 0.884

Accuracy Top-2 Accuracy ROC AUC

Cell Classification 84.29% 94.90% 0.977

Tissue Classification 68.34% 91.42% 0.888
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morphology assessment in aggregate, is a key part of pathology
reporting and disease prediction38. Specific tissue classification per-
formance comparable to human experts showsmodels can accurately
quantify placenta biology in a way that is likely relevant to pathology
detection. These results highlight the potential of large-scale deep-
learning methods to identify abnormalities in placental micro-
structures which are too subtle to be recognised by routine light
microscopy examination.

Quantitative metrics for placental health
We show how HAPPY can provide new cellular and tissue micro-
structure quantitativemetrics for assessing placental health, andwe

compare these outputs to expectations from our current under-
standing of placental biology. In Fig. 5a, we present the distribution
and variability of predicted cells as a proportion of all cells within a
WSI, from 30 parenchyma WSIs of healthy term placentas. We
describe how these predictions reflect the expected internal anat-
omy of a healthy term placenta. The high proportion of syncytio-
trophoblasts (>40%) relative to villus stromal cells matches the
expected large surface area to volume ratio of an effective villus tree
system optimised for diffusive exchange21. The <1% proportion of
undifferentiated mesenchymal cells and low proportion of cyto-
trophoblasts (4%–13%) are characteristic of the late maturation
stage of the placenta samples20,21,38. The low proportion of

c

a b

Fig. 4 | Agreement andmodel confusion across tissue types. a Inter-pathologist
confusionmatrix showing for each image with a majority pathologist label (y-axis)
how much variance there was against that majority (x-axis). Lines indicate the
additional options for pathologists to say the tissue was unclear or not listed.
b Confusion matrix which shows the proportion of matching pathologists’ labels

with ground truth annotations. cModel performance Precision Recall Area Under
Curve (PR-AUC) scores plotted against pathologist Kappa values by tissue type
showing a strong positive correlation (R2 = 0.821). Source data are provided as a
Source Data file.
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leucocytes (2%–4%) are below clinical thresholds for pathological
relevance68.

Next, we analyse the distribution and variability of predicted tis-
suemicrostructures as a proportion of all tissues within aWSI, from30
parenchyma WSIs of healthy term placentas. We observe that the
proportion of villus microstructures predominantly fall within the
ranges reported in the literature for healthy-term placentas
(Fig. 5b)2,13,21,66,69,70. In the majority of slides, terminal villi are the most
common villus type comprising an expected 30–60% of the slide’s
tissue structures. Likewise, mature intermediate villi and stem villi are
the 2nd and 3rd most common tissue structures, predominantly falling
within the expected ranges of 17–32% and 9–25%, respectively.
Excessive regions of fibrin or avascular villi are indicators of pathologic
processes65,71 and the proportions of fibrin and avascular villi are <10%
and <2.5%, respectively, which are below the clinical thresholds for
pathological relevance13,65,71,72.

We predict the mean cellular compositions for the five chorionic
villus tissue types21 across 30 WSIs (Fig. 6a). The predicted cellular
proportions match current descriptions and schematics reported in
placenta literature20,21 (SupplementaryTable 1). Thehierarchical nature
of the pipeline reflects the inherent hierarchical relationship between
cells and tissues and provides a biologically meaningful way to inter-
pret model predictions. As villus types develop from one another in a
tree-like structure (Fig. 6b), their cellular proportions shift along the
tree in a continuum and model predictions recapitulate this con-
tinuum. For example, the terminal villi, which form the tips of the villus
tree and are the primary sites formaternal/fetal diffusive exchange, are
characterised by their >50% capillary stromal volume20,21. As such, their
cellular composition contains the largest proportion of vascular
endothelial cells. Conversely, the stemvilli, which form the trunkof the
villus tree and support the villus structure20,21, contain a large pro-
portion of structural fibroblasts and vascular myocytes.

A case study of placental infarction
Placental infarction is a lesion of the placental parenchyma whereby a
region or regions of villi undergo ischaemic coagulative necrosis73.

Caused by a disruption of thematernal circulationwithin the placental
space, it is a key reported finding in pathological investigation as a
marker of maternal vascular malperfusion71,73,74. At term, when clini-
cally significant71, it is associated with maternal hypertensive disease,
abruption, and fetal growth restriction75,76.

We compare cell and tissue microstructure predictions between
30 WSIs of healthy term placentas against 12 WSIs of term placentas
with clinically significant placental infarction. See Supplementary
Figs. 4 and 5 for visualisations of cell and tissue microstructure pre-
dictions across these slides. Given the biological changes caused by
placental infarction73, at the cellular level wewould expect to see fewer
cells found in healthy distal villi such as syncytiotrophoblast, cyto-
trophoblast, fibroblast and vascular endothelial cells and more extra-
villus trophoblasts and leucocytes. In terms of tissue microstructures,
we would expect there to be fewer distal villi such as the terminal and
mature intermediate villi and, in their place, there should be a larger
proportion of fibrin and villi without vasculature (avascular villi). As we
do not adjust for the age of the infarction and as younger infarctions
will exhibit less nuclear degeneration, we expect these changes to sit
along a continuum. We test the significance of these cell and tissue
microstructure differences independently between our two groups
using two-sided Welch’s t-test.

Contrasting the proportion of cells across our samples (Fig. 7),
we see that syncytiotrophoblast (p = 0.001), fibroblast (p = 0.002),
and vascular endothelial cells (p < 0.001) are nominally significantly
fewer in placentas with infarction and extravillus trophoblast cells
(p = 0.001) and leucocytes (p = 0.002) are significantly higher. In
terms of the tissue microstructures, there are fewer terminal villi
(p < 0.001) and mature intermediate villi (p = 0.03) and more fibrin
(p = 0.002) and avascular villi (p = 0.001). Additionally, these pro-
portions of fibrin and avascular villi surpass the healthy expected
ranges reported in the literature for 10/12 and 8/12 WSIs with pla-
cental infarction, respectively. Similarly, 9/12 and 4/12 WSIs with
placental infarction have proportions of terminal villi and mature
intermediate villi below expected ranges for healthy term
placentas.

a b

Fig. 5 | Predicted cell and tissue type proportions across 30 whole slide images
(WSI) from healthy term placentas. a Cell proportions across WSIs. b Tissue
proportions acrossWSIswith vertical braces showing the expected ranges reported
in the literature for healthy term placentas13,21,38,66,69–71. Box centre line represents

themedian andwhiskers are drawnup to 1.5 times the interquartile range. EachWSI
datapoint is shown by a cross marker. Source data are provided as a Source
Data file.
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a

b

c

Fig. 6 | Proportions of predicted cell types within predicted term chorionic
villus tissue microstructures and their corresponding locations in a villus tree
schematic. a The mean proportion of predicted cell types within each predicted
termchorionic villus tissuemicrostructure for 30whole slide images.bA villus tree

schematic showing how each villus structure relates to and grows from other villus
structures. c Examples from histology for each villus structure with the top row
containing the raw histology and the bottom row containing cell predictions.
Source data are provided as a Source Data file.
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Given that placental infarction will result in fewer total nuclei
across a slide, we additionally compare the number of predicted cell
and tissuemicrostructure counts permm2 area of tissue on the slide
(Fig. 8). We estimate this area by splitting the slide into non-
overlapping patches and aggregating the area of patches containing
at least one nucleus prediction. There is significantly fewer total
nuclei density (p < 0.001) in the WSIs with placental infarction. We
observe similar nominally significant results for expected cell and

tissue type densities across the slides. After Bonferroni multiple
testing correction, syncytiotrophoblast (p = 0.002), extravillus
trophoblast (p = 0.01), vascular endothelial cells (p < 0.001), leuco-
cytes (p = 0.006) and total density (p = 0.003) remain significant.
Likewise, for the tissue microstructure types, terminal villi
(p = 0.002), mature intermediate villi (p = 0.009), anchoring villi
(p = 0.03), fibrin (p = 0.007) and avascular villi (p = 0.003) remain
significant.

p<0.001 p<0.01 p<0.05**** **

*** * * * * ** **

c

a p<0.001 p<0.01 p<0.05**** **

***** ** ** *** *

b

d

Fig. 7 | Predicted cell and tissue microstructure proportions across 30 whole
slide images (WSI) of healthy term placentas and 12 WSIs of placentas with
placental infarction. a Cell proportions across healthy term placentas, b cell
proportions across term placentas with placental infarction, c tissue proportions
across healthy term placentas, d tissue proportions across term placentas with
placental infarction. Box centre line represents themedian andwhiskers are drawn
up to 1.5 times the interquartile range. Each WSI datapoint is shown by a cross
marker. Expected healthy ranges for tissue microstructures, as reported in the
literature, are shown by black vertical bars. Nominal significant differences in cell
and tissue structures between the two groups are calculated using two-sided

Welch’s t-test and shown by red asterisks. Statistically significant cell proportion
differences are seen for syncytiotrophoblasts (p =0.001), fibroblasts (p =0.002),
vascular endothelial cells (p <0.001), extravillus trophoblasts (p =0.001), leuco-
cytes (p =0.002), mesenchymal cells (p =0.02) and maternal decidual cells
(p =0.04). Statistically significant tissue proportion differences are seen for
terminal villi (p <0.001), mature intermediate villi (p =0.03), villus sprouts
(p =0.01), anchoring villi (p =0.02), basal plate/septum (p =0.02), fibrin
(p =0.002) and avascular villi (p =0.001). Source data are provided as a Source
Data file.
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Generalisability and domain shift
H&E stain intensity can vary between institutes for several reasons
(stain concentrations and ratios, soak duration, slice thickness, dif-
ferent slide scanners) and can vary within an institute across days and
operators77,78. For models to robustly generalise to future data, they
must be invariant to these stain differences. We explore how data
augmentation, including our customH&E stain augmentation, impacts
the stain invariance of the nuclei detection and cell classification
models. For each institute, models are trained on data from one
institute (seen data), with and without data augmentation, and

evaluated on test data from the other two institutes (unseen data). The
nuclei model is largely unaffected by differences across institutes with
an average F1 score of 0.8746 on seen data and 0.8516 on unseen data
(Δ −0.0230) when trained with augmentations. In contrast, the nuclei
model does not generalise as well when trained without augmenta-
tions both within the same institute and on unseen institutes (F1 score
0.8593 vs 0.8242,Δ −0.0351). See Supplementary Table 2 for all results
per institute. The cell model, when trainedwith augmentations, results
in a ROC AUC value of 0.9693 on seen data and 0.8410 on unseen data
(Δ −0.1283). However, when trained without augmentations, the

p<0.001 p<0.01 p<0.05**** **

p<0.001 p<0.01 p<0.05**** **

** * ***
** **

** ** ** ***

a b

c d

Fig. 8 | Predicted cell and tissuemicrostructure density per areamm2 across 30
whole slide images (WSI) of healthy term placentas and 12 WSIs of placentas
with placental infarction. a Cell density across healthy term placentas including
total nuclei, b cell density across term placentas with placental infarction including
total nuclei, c tissue node density across healthy term placentas, d tissue node
density across term placentas with placental infarction. Box centre line represents
themedian andwhiskers are drawnup to 1.5 times the interquartile range. EachWSI
datapoint is shown by a crossmarker. Bonferroni adjusted significant differences in

cell and tissue structures between the two groups are calculated using two-sided
Welch’s t-test and shown by red asterisks. Adjusted statistically significant cell
density differences are seen for syncytiotrophoblasts (p =0.002), extravillus tro-
phoblasts (p =0.01), vascular endothelial cells (p <0.001), leucocytes (p =0.006)
and total density (p =0.003). Adjusted statistically significant tissue density dif-
ferences are seen for terminal villi (p =0.002),mature intermediate villi (p =0.009),
anchoring villi (p =0.03), fibrin (p =0.007) and avascular villi (p =0.003). Source
data are provided as a Source Data file.
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0.9722 AUC ROC value on seen data drops to 0.6903 on unseen data
(Δ −0.2819), suggesting poor generalisability without data augmenta-
tion. See Supplementary Table 3 for all results per institute.

We further investigate the impact of domain shift, where newdata
is substantially different from trained data, on the generalisability of
the cell model. We exclude data from one institute, using a cell model
trained on data from the other two, under the assumption that there
are no immediately available labelled data. This mimics the practical
application of deep learning digital pathologymethods where one has
access to trained models and new data but no manual labels. In cases
where a domain shift from the new data impacts cell classifications, a
shift in the cell distributions across one WSI becomes immediately
apparent (Supplementary Fig. 6). This is a benefit of assessing a slide
using a large number of independent cell classifications against a slide-
level biological expectation, which leads to a natively explainable AI
approach.

Once a domain shift has been identified, by incorporating a small
number of images (n = 1691) from the new institute into the training
data, the cell model performs equally well across all three institutes
(test accuracies of 0.8395, 0.8338, and 0.8757). In practice, as with any
application of AImodels to newdata, onewill always have to assess the
performance of existing models and the possibility of a domain shift.
We include in our released codebase utilities and a walkthrough for
generating new nucleus localisation and cell classification datasets for
adapting the models to WSIs from new institutes.

Discussion
We have presented HAPPY, a three-stage hierarchical deep learning
pipeline for quantifying cells and tissue microstructures in healthy
human placental histology images. Ourmethod localises and classifies
11 cell types and 9 tissue microstructures across a placenta WSI by
following an interpretable biological hierarchy and aggregating cel-
lular community information within tissues. The method’s cell and
tissue outputs match expectations from perinatal pathologists and
placental literature and identifies biologically relevant differences
between healthy placentas and those with placental infarction. By
making tissue predictions at the single-cell level, we can quantify
microstructures at a sub-patch resolution, without the need for pixel-
perfect manual annotations. We have shown that inductive, message-
passing graph neural networks can be applied to cell graphs for node
classification built across entire H&E WSIs. To facilitate further devel-
opment of graph neural network methodologies suitable for cell
graphs, we have released the cell graphs and ground truth tissue data
from WSIs of two healthy term placentas for the machine learning
research community79.

Additional improvements could bemade to ground truth training
annotation quality by using immunohistochemical staining of
sequential slides to label correspondingH&E cells. The cellular analysis
can be extended to include additional cell types such as amniocytes,
which are essential for extending this work to placenta membrane roll
slides, or to further subcategorise leucocytes and trophoblasts. While
applications of HAPPY to other organ histology will require manual
annotations of cells and tissue microstructures specific to that organ,
we suggest that the present placenta models could serve as domain-
relevant pretraining basis for transfer learning. Finally, the HAPPY
approach, as implemented here has been applied to H&E specifically
but could equally be extended to other high-content imagingdomains.

With HAPPY able to quantify cellular and tissue phenotypes in
healthy term placentaWSI samples, we present the foundation for this
approach to be developed for extracting quantitative metrics of pla-
cental health and pathological processes. Despite having been only
trained for inference across healthy samples, HAPPY’s outputs mean-
ingfully distinguish between healthy samples and those exhibiting a
pathology. Training with WSIs from additional data sources and using
tissue microstructures found in earlier gestational ages will improve

model generalisability, developmental staging, and provide a more
comprehensive view of placenta histology. This can become a valuable
digital histopathology tool for perinatal pathologists and placenta
research. The placenta is an understudied organ and some of the
reasons for this is the labour-intensive task of examining placentas, the
need for anexpertpathologist, and the lack of richquantitativemetrics
collected at scale for assessing placenta health.

Already, the HAPPY method can facilitate large-scale morpho-
metric studies of termplacenta histology, lending itself to accelerating
placenta research and increasing our understanding of the human
placenta and its mechanisms.

Methods
At a high level, HAPPY is structured as a supervised deep learning
pipeline of three stages: (i) nucleus localisation, (ii) cell classification
and (iii) tissue classification (Fig. 1). First, an image processing module
subsections and rescales the WSI into overlapping patches for the
nucleus localisation stage. The nucleus localisation stage uses an
object detection model to identify the nuclei within each patch. Using
these nuclei coordinates, the image processing module crops patches
around each nucleus and inputs them to the cell classification stage.
The cell classification stage uses an image classification model to
classify the nuclei as belonging to one of 11 placental cell types. These
cells are input into the tissue classification stage, becoming nodes
within a cell graph across the WSI, the edges of which are built to
represent probable cellular interactions within the same structure.
This cell graph is input into a node classification graph neural network
(GNN) which predicts one of 9 tissue microstructure types to which
each cell belongs.

Patient characteristics, slide datasets, histological preparation
and ethical approval
The slides used in this work are from a subset of placentas collected as
part of routine clinical pathology investigation from three institutes.
The first set, from the University of Tartu, Estonia, consists of 110
placentas and 547 slides, collected between 2016-2020 (hereafter
referred to as UoT). The second set, from Hadassah Medical Center,
Israel, consists of 200 placentas and 831 slides, collected between
2016-2017 (hereafter referred to as HMC). The third set, from North-
shore University HealthSystem, University of Chicago, consists of 25
term placentas and 25 slides collected between 2021-2022 (hereafter
referred to as NUH). The use of all pseudo-anonymised samples was
approved and the requirement for consent was waived by local ethics
committees at each institute (UoT approval 289/T-5 by the Research
Ethics Committee of the University of Tartu, HMC approval 0735-18-
HMOby the Helsinki Committee at the HadassahMedical Center, NUH
exemption of approval EH23-303 by the institutional review board at
theNorthshoreUniversityHealthSystemgiven that no clinical datawas
shared beyond selection for histologically normal term placentas). We
donot perform sex-based analysis as this informationwas not available
to us in the clinical data provided and sex does not currently inform
clinical placental histopathology.

Of the total samples, we used nine parenchyma slides from nine
singleton pregnancies from all three institutes of 2nd trimester, pre-
term and term samples with both healthy placentas and those exhi-
biting a pathology for training the nucleus localisation and cellular
phenotyping stages. For training the tissue classification stage, we
used two parenchyma slides from the placentas of two singleton
healthy term pregnancies from UoT and HMC (see Supplementary
Table 4 for further information on slides used for training). For infer-
ence and whole slide cell and tissue microstructure quantification, we
used 30 parenchyma slides from the placentas of 30 singleton healthy
term pregnancies from all three institutes and 12 parenchyma slides
from the placentas of eight singleton term pregnancies with placental
infarction from UoT and HMC (see Supplementary Table 5 for
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information on slides used for inference). All slides with placental
infarction were reported as clinically significant by perinatal patholo-
gists at respective institutes (K.M and L.S.) and slides were selected
such that they contained a region of the infarction on the slide. A
second assessment of the healthy slides as histologically normal and
those with placental infarction was provided by L.M.E.

Given the heterogeneity and resiliency of the placenta, we select
slides from and define ‘healthy’ as term placentas from pregnancies
with no adverse health outcomes during or after pregnancy andwhere
pathology reports and second assessment state that histological sec-
tions of the parenchyma were ‘normal’ and the ‘villi correspond to
gestational age’. As an example, a portion of these healthy placentas
from HMC were from pregnancies which had suspected placenta
accreta from a 1st-trimester ultrasound, thereby qualifying them for
submission to microscopic examination, but with no resulting
complications.

Histology slides were prepared using a standard formalin fixing,
paraffin-embedded, Hematoxylin and Eosin (H&E) staining procedure.
As per clinical guidelines, appropriate, full thickness sites including
both chorionic and basal plates were sampled and 5 μm thickness
slices were generated. Slides were scanned and digitised using a
Hamamatsu XR, a 3D HISTECH PANNORAMIC 250 Flash III or a Aperio
GT 450 scanner at x40 magnification.

Image processing
The image processingmodule first selects an appropriate slide reading
library, one of libvips58, openslide59, or bioformats60 depending on the
slide file format. The slide is partitioned into 1600× 1200 pixel
(177.44 × 133.08μm)patches, with an overlapof 200 (22.18μm) for the
nuclei localisation stage. Patches with mean channel values > 245 or
<10 are removed to exclude patches containing no tissue. For the cell
classification stage, patches of 200 × 200 pixels (22.18 × 22.18 μm) are
extracted centred on each nucleus. All patches are extracted and loa-
ded onto devices (CPU or GPU) in memory, without the need for
additional on-disk storage to store extracted images. Given that slide
scanners output different pixel sizes per micrometre, all patches are
rescaled to 0.1109 micrometres per pixel. Metadata and results are
stored efficiently in an SQLite database and streamed to hdf5 files with
the ability to pause and continue partial inference across a WSI.

Nucleus localisation
The nucleus localisation stage takes 1600× 1200 (177.44 × 133.08 μm)
pixel images extracted from the WSI with a 200 (22.18 μm) pixel
overlap to ensure all nuclei are shownwhole to themodel at least once.
Locations with duplicate nuclei predictions within a small radius (4
pixels) generated as a result of this overlap are removed with post-
processing. We train a RetinaNet80 with ResNet-10181 backbone to
predict bounding boxes around nuclei in the image, for which centroid
coordinates are saved as the final prediction. The model is first fine-
tuned from Coco82 weights for 40 epochs, with an Adam83 optimiser,
focal loss, and a 0.0001 learning rate with a 0.5 decay every 20 epochs.
The model with the highest validation F1 score is then fully trained for
60 epochs with a 0.001 learning rate with the same hyperparameters
and the model with the highest validation F1 score is saved. Input
images are subject to heavy image augmentation, including various
H&E-specific stain augmentations (details of augmentation parameters
are described in Supplementary Table 6 and Supplementary Fig. 7).

On the validation and test datasets, model performance is eval-
uated using the F1 score of identified centroids within a certain dis-
tance (<3.3 μm) to the manually labelled ground truth points. This
distance is smaller than typical nuclei radii and accounts for minor
discrepancies from true centroids in the annotated data. At inference
across aWSI using an NVIDIA A100 GPU, the nucleus localisation stage
detects ~1000 nuclei per second.

Cell classification
The cell classification stage takes 200× 200 (22.18 × 22.18 μm) pixel
images with each prior predicted nucleus at its centre and classifies
these images into one of 11 placental cell types. These include four
trophoblast cells: syncytiotrophoblast, cytotrophoblast, syncytial
knot, and extravillus trophoblast; five villus mesenchymal-derived
cells: fibroblast, Hofbauer cell, vascular endothelial cell, vascular
myocyte, and undifferentiated mesenchymal cell; and two non-villus
cells: the maternal decidual cell, and leucocyte. The 22.18 μm radius
around each nucleus is large enough to capture the entirety of most
cell types in addition to contextual information surrounding the cell
which may be relevant for prediction (i.e. red blood cells that are near
vascular endothelial cells).

We first fine-tune a ResNet-5081 model from ImageNet84 weights
for 60 epochs, with an Adam83 optimiser, cross entropy-loss, and a
0.0001 learning rate with a 0.5 decay every 20 epochs. Themodel with
the highest validation accuracy is fully trained for 100 epochs with the
same hyperparameters and the model with the highest validation
accuracy is saved. Due to class imbalance, minority classes are over-
sampled during training to balance the distribution. Images input to
the classificationmodel are subject to the same image augmentationas
the images used for nuclei detection (Supplementary Table 5). As a
final post-processing step, a k-d tree is constructed across all syncytial
knot predictions to convert isolated knots into syncytiotrophoblasts
and to group clusters of syncytial knot nuclei into a single point.
Syncytial knot nuclei which have fewer than 4 neighbours within a 50-
pixel radius are relabelled as syncytiotrophoblasts and groups with 4
or more neighbours85 have their neighbours removed. At inference
across a WSI using an NVIDIA A100 GPU, the cell classification stage
classifies ~230 cells per second.

Tissue classification
The tissue classification stage comprises cell graph construction and
supervised graph neural network node classification to classify each
cell into one of nine placental tissue types. These include the term
chorionic villus types: stem villi, anchoring villi, mature intermediate
villi, terminal villi, and villus sprouts, the maternal/fetal surfaces: the
chorionic plate and basal plate/septum, and areas which in large
quantities would indicate pathology13,65,66,72: fibrin and avascular villi.

For the cell graph, we define nodes from the outputs of the cel-
lular phenotyping stage, with node features comprising the 64-
dimension embedding vectors from the penultimate layer of the cell
classifier. The undirected edges connecting the cell nodes are con-
structed from the intersection of two other edge-building algorithms,
k-nearest neighbours (k = 5)86 and Delaunay Triangulation87, with the
addition of self-loops. This intersection benefits from the more spar-
sely connected Delaunay Triangulation graph but limits the number of
edges which could cross from one tissue boundary to another. This
graph construction allows a message-passing model to aggregate
cellular information within distinct tissue microstructures while
accounting for differences in tissue size and internal cell distances.

We train a randomly initialised, inductive, ClusterGCN88 model
with 16 GraphSAGEConv89 layers each with 256 hidden units for 2000
epochswith anAdam83 optimiser, customweighted cross entropy-loss,
a 0.001 learning rate, a batch size of 200with batchnormalisation, and
a subgraph sampling size of 400 neighbours. The model with the
highest validation accuracy, calculated without neighbourhood sam-
pling and for an intersection graph with k = 8, is saved as the final
model. For each node the message-passing algorithm samples and
aggregates the node features of nearby nodes up to 16 edge connec-
tions away. These aggregated node features are used by the model to
predict the tissue type of that node. In this way, the model is aggre-
gating the cellular community which comprises each tissue micro-
structure to make its prediction. At inference across a WSI using a
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laptop CPU, the tissue classification stage classifies ~4500 nodes
per second.

A key benefit of the node classification approach is the freedom
for the model to assign different tissue types to different sections of
the same continuous structure. Placental tissues grow from one
another in a tree-like morphology so any cross-sectional cut of what
appears to be a single structure may contain multiple valid classifica-
tions. For example, a cross section of a mature intermediate villus is
likely to have terminal villi branching from it but may also contain
fibrin, resulting in three different classes. Additionally, the distinctions
between villus types are not necessarily discrete; a terminal villus is
distinguished from a mature intermediate villus by having >50% of its
stroma taken up by capillaries and by having vasculosyncitial
membranes20,21,38. However, a section of a mature intermediate villus
with unusually many capillaries but no vasculosyncitial membranes,
for example, might have nodes that are (mis)classified by themodel as
a terminal villus section but are not necessarily incorrect.

Datasets and data annotation
Manual ground truth training, validation and test dataset annotation
were performed by C.V. using QuPath90. To efficiently train models
with a relatively small number of data points (<17k), datasets for the
nuclei localisation and cell classification stages were created iteratively
by bootstrapping and correcting prior models’ predictions in patches
of new, unseen slides. Training, validation, and test splits (see Sup-
plementary Table 7) were randomly generated at around a 70/15/15%
ratio for each dataset and model performance was evaluated both
individually for datasets and in combination.

For the tissue classification stage, ground truth annotations were
created by drawing rough boundaries around tissue microstructures,
the class of which was assigned to nuclei nodes within the boundary.
Validation and test regions of the slidewere explicitly chosen such that
they were larger than the 16-hop neighbourhood aggregation and
contained a similar distribution of tissue microstructures to the
training set (See Supplementary Fig. 8). Splitting datasets by region
was found to limit information leakage when different cells of same
tissues were shared across random dataset splits. This is in contrast to
many graph learning datasets which generate dataset splits randomly
across nodes.

Comparison to perinatal pathologists
To assess the accuracy of ground truth training annotations made by
C.V. and to judge the relative difficulty of identifying placental tissue
types, four practising expert perinatal pathologists, K.M, S.S, W.T.P,
L.M.E, performed a similar labelling task across tissuemicrostructures.
Each pathologist was shown a series of images containing a centred
tissue microstructure out of 180 total images with the task of labelling
the tissue type of that centred structure. Imagesweregenerated froma
random, class-balanced subset of the ground truth annotations and
pathologists were blind to the original annotation and each other’s
labels. Images were cropped to display some contextual background,
similar to the context a 16-layer message-passing GNN may see; how-
ever, it was expected that tissue types were identifiable from their
cellular composition alone.

Participants were first presented with a Standard Operating Pro-
cedure (SOP) and a tutorial (Supplementary Methods 1 and 2). These
documents detailed the labelling setup, what data would be collected,
how it would be used, and included links to current literature relevant
to placental tissue microstructures. Participants were invited to a
project in the browser-based software LabelBox91 where they were
sequentially presented with images and could choose one of 12 tissue
types for that image. Alternatively, they could state that the type was
unclear or not listed and they could leave a comment. Participants
were informed that all images came fromahealthy termplacenta. After
completion, their tissue type labels were compared for Cohen’s

kappa92 agreement scores against each other, the original annotations,
and the model.

Hardware, software and libraries
All training and inference were performed on a single NVIDIA A100
GPU. Whole slide image processing C libraries were libvips (v8.9.2)58

using OpenSlide (v3.4.1)59 or bioformats (v6.11)60 with libvips taking
priority. These were called via their python-bindings pyvips (v2.1.14),
openslide-python (v1.2.0) and python-bioformats (v4.0.7). Code was
written in Python (v3.10.13) with the PyTorch (v2.0.1)93 and torchvision
(v0.15.2) deep learning framework for the nucleus localisation and
cellular phenotyping pipelines and the PyTorch Geometric extension
(v2.3.1)94 for the tissue phenotyping pipeline. Results were recorded in
an SQLite database (v3.2.7) and hdf5 files (v3.8.0). WSI visualisation
and cell and tissue annotations were done in QuPath (v0.3.1)90. Other
Python libraries used in analysis and model training included albu-
mentations (v1.3.0), peewee (v3.16.2), pytest (v7.3.1), typer (v0.9.0),
visdom (v0.2.4), matplotlib (v3.7.1), pandas (v2.0.1), numpy (v1.24.1),
scikit-image (v0.22.0), scikit-learn (v1.3.1), umap-learn (v0.5.3) and
seaborn (v0.12.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated for training and validating each deep learning
model along with trained model weights are available for download at
the Google Drive link: https://tinyurl.com/happyplacenta or from
Zenodo95: 10.5281/zenodo.10535021 with no restrictions. Instructions
can be found in the GitHub readme at: https://github.com/Nellaker-
group/happy. The two histology slides used for graph model training
are available for download under CCBY4.0 from the BioImageArchive
at 10.6019/S-BIAD1045. The remaining in-house placenta histology
slides and clinical data are not made available in accordance with
existing research ethics committee approvals and data transfer
agreements. Pretrained ImageNet weights for the RetinaNet and
ResNet-50models were downloaded in code via PyTorch from https://
download.pytorch.org/models/resnet101-5d3b4d8f.pth and https://
download.pytorch.org/models/resnet50-0676ba61.pth and will be
downloaded programmatically on first model use. Source data are
provided with this paper.

Code availability
Code is available at the following GitHub repository https://github.
com/Nellaker-group/happy and at https://doi.org/10.5281/zenodo.
1052923996.
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