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Abstract: Male infertility has affected an increasingly large population over the past few decades,
affecting over 186 million people globally. The advent of assisted reproductive technologies (ARTs)
and artificial intelligence (AI) has changed the landscape of diagnosis and treatment of male infertility.
Through an extensive literature review encompassing the PubMed, Google Scholar, and Scopus
databases, various AI techniques such as machine learning (ML), artificial neural networks (ANNs),
deep learning (DL), and natural language processing (NLP) were examined in the context of evaluat-
ing seminal quality, predicting fertility potential, and improving semen analysis. Research indicates
that AI models can accurately estimate the quality of semen, diagnose problems with sperm, and
provide guidance on reproductive health decisions. In addition, developments in smartphone-based
semen analyzers and computer-assisted semen analysis (CASA) are indicative of initiatives to im-
prove the price, portability, and accuracy of results. Future directions point to possible uses for AI in
ultrasonography assessment, microsurgical testicular sperm extraction (microTESE), and home-based
semen analysis. Overall, AI holds significant promise in revolutionizing the diagnosis and treatment
of male infertility, offering standardized, objective, and efficient approaches to addressing this global
health challenge.

Keywords: male infertility; assisted reproductive technologies; artificial neural networks; artificial
intelligence; sperm morphology; seminal quality; microsurgical testicular sperm extraction; deep
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1. Introduction

Infertility is the inability of a couple to conceive after 12 months of unprotected inter-
course [1]. Over 186 million people worldwide suffer from infertility, making it a serious
global problem [2–4]. Up to 50% of these cases are thought to be caused by male factors,
and this number has been rising over previous years [5]. With regard to male infertility,
the exact prevalence is unknown since male infertility is severely underreported [3]. The
general trend over the last few decades that has been widely seen and reported worldwide
is of greater concern. It shows a continual decline in average sperm counts, which were
113 million/mL in 1940, dropped to 66 million/mL in the 1990s, and then fell by 51.6%
between 1973 and 2018 [6,7]. Moreover, the rising use of assisted reproductive technologies
(ARTs) is another sign of this expanding pandemic of infertility [4].

Infertility is generally worse in developing areas due to limited resources, as well as
cultural norms [3]. Moreover, many infertile men are at greater risk (5–8%) of developing
testicular cancer [8]. Concerning the COVID-19 pandemic, studies have found reduced
fertility as a result of cellular infection and potential side effects from immunological
therapies [9]. Male infertility can result from various factors, including endocrinological
issues like congenital GnRH deficiency, genetic causes such as mutations in specific genes,
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congenital and acquired urogenital abnormalities, immunological factors, anatomical defi-
ciencies such as varicoceles, infections, sexual dysfunction, malignancies, medication use,
and exposure to environmental toxins. Additionally, a significant portion of male infertil-
ity is categorized as idiopathic, with normal semen parameters but persistent infertility,
highlighting the complexity and diverse origins of this condition [1,3].

In the current period, artificial intelligence (AI) is being used more and more in clinical
fields, and reproductive health is no exception [10]. Many studies have considered machine
learning (ML)-based solutions for detecting male fertility. Finding the male’s contributing
factors, treating the reversible ones, determining whether he is a candidate for ARTs, and
providing counseling for irreversible and incurable diseases are the main goals of screening
a man for infertility. The advent of artificial intelligence has allowed providers to treat
patients comprehensively and innovatively.

Modalities such as ARTs, image recognition, genetic testing, and predictive algorithms
have provided clinicians with many options to assist patients in their reproductive health.
The purpose of this review was to review the current landscape of the various technologies
in how artificial intelligence is used to evaluate and treat male infertility.

2. Methods

Our narrative review collected sources through a general PubMed Database, Google
Scholar, and Scopus Medline search. The discovered papers were then cross-referenced
with citations. All references cited in the articles that were chosen were also reviewed
and analyzed. The authors decided to present the review’s findings narratively in light of
the volume of material that has been published on the topic as a whole and each of the
active ingredients in particular. This paper does not provide a systematic or meta-analytical
comparison of varied outcomes in measures, population, and methods.

The research strategy included the following keywords: “artificial intelligence”, “as-
sisted reproductive technologies”, “infertility and AI”, “machine-learning algorithms”,
“deep learning”, “artificial neural networks”, “natural language processing”, “big data”,
“legal and ethical consequences”, “future directions” accompanied by “male infertility”,
“sperm morphology”, “seminal quality”, “azoospermia”, and “inability to conceive.”
Only papers in the English language were included. Randomized-control trials and non-
randomized trials were included in the literature review due to the paucity of information
available. Moreover, retrospective cohort studies, case–control studies, cross-sectional
studies, and prospective cohort studies were also included. We excluded the use of case
reports and case series.

3. Artificial Intelligence in Reproductive Medicine: Transformative Applications and
Potential Impact

According to ISO/IEC TR 24028:2020, AI is described as the “capability of an en-
gineered system to acquire, process, and apply knowledge and skills.” Coined by John
McCarthy during the Dartmouth Summer Research Project on Artificial Intelligence in
1955, the term AI officially appeared at the Dartmouth conference in 1956 [11]. Since then,
it has become a central reference in the ongoing exploration of artificial intelligence, en-
compassing the use of computers to replicate various human mental processes, including
cognition, learning, decision-making, judgment, and language [12].

AI has revolutionized society over the past decade, with its limitless applications span-
ning all industries. Its applications are endless, including its use in the automotive industry,
financial industry, transport mapping, military applications, and many others [5,13–15].
Leveraging AI branches such as machine learning (ML), artificial neural networks (ANNs),
deep learning (DL), robotics, and natural language processing (NLP) for big data analy-
sis holds valuable applications in reproductive domains. These applications span sperm
classification, oocyte and embryo selection, outcome prediction, robotic surgery, clinical
decision systems, cost-effectiveness, and sperm selection [16,17]. Envisioned as pivotal
tools, AI-based prediction models and automated semen analysis stand to revolutionize
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the diagnosis and treatment of male infertility, elevating the precision of patient care. The
automated predictions facilitated by AI promise a paradigm shift, ensuring consistency
and efficiency while simultaneously optimizing time and cost aspects in both infertility
research and clinical management [18]. AI has the capacity to identify individuals who
are at risk for chronic illness; additionally, AI could speed up and improve the efficiency
of cost–benefit ratio computations in the healthcare system and support decision-making.
Today, radiology, pathology, ophthalmology, and dermatology are among the sectors that
are very interested in artificial intelligence due to its widespread use in image-processing
analysis and pattern recognition [19].

Machine learning (ML) can be categorized into three primary groups: unsupervised
ML, adept at recognizing patterns; supervised ML, equipped with algorithms for classifica-
tion and prediction based on past examples; and reinforcement learning, which employs
a system featuring reward and punishment methods to devise a solution strategy for ad-
dressing specific problems [10]. Machine learning has assisted medicine in a variety of
ways, including reconstructing diseases, hypothesis testing, recruiting patients, big data,
developing diagnostics, improving prognostics, and patient monitoring [20]. With the
plethora of information available in big data through electronic medical records (EMRs)
and hospital data, using ML to analyze this large amount of information is crucial.

Deep learning (DL) is part of ML and is inspired by neurons in the human brain,
and the specific method is called an artificial neural network [21]. An artificial neural
network (ANN) can have one or more layers, and it is made up of processing units (nodes
or neurons) coupled by a set of weights that can be adjusted to allow signals to pass through
the network both sequentially and in parallel [22]. ANNs can be categorized into three
distinct layers of neurons: the input layer, which receives information; the hidden layer,
tasked with extracting patterns and carrying out the majority of internal processing; and
the output layer, responsible for generating and presenting the final network outputs [22].
Moreover, natural language processing (NLP) is a broader machine learning algorithm that
allows for the analysis of free text [23]. In medicine specifically, NLP has been implemented
to aid in predicting and forecasting patient outcomes, improving hospital triage systems,
and creating diagnostic models that identify chronic diseases in their early stages when
combined with medical notes [23]. These programs might be especially helpful in critical
care, where analyzing patient data is more common and patient death prediction is a
regular practice [23].

4. Use of Prediction Models for Risk Factors in Infertility Using AI
4.1. Sperm Morphology Assessment

Spermatogenesis entails morphological transformations from round to elongated
shapes, and the transition from spermatid to spermatozoa, crucial to normal sperm mor-
phology, serves as a primary selection metric in ART due to its association with successful
fertilization and favorable pregnancy outcomes [24]. Sperm morphology, evaluated ac-
cording to WHO criteria, considers samples with ≥4% morphologically normal sperm
normal; however, variability in labeled normal samples poses challenges in cases like
Intracytoplasmic Sperm Injection (ICSI), lacking natural egg–sperm selection, and stricter
criteria emerge due to poor initial associations with clinical outcomes. Desirable sperm
morphology characteristics, involving head shape, acrosome coverage, vacuole absence,
midpiece parameters, and cytoplasmic residue, are defined. Still, the inherently subjective
nature of embryologists in assessing and interpreting these criteria leads to interobserver
and interlaboratory variability and inconsistency in sperm selection [25,26].

The morphological assessment of sperm, performed with various staining methods
on fixed samples, aims to enhance visualization but leads to differences in measured di-
mensions and impacts vitality. Noninvasive methods exist, but evidence on the clinical
outcomes of morphologically selected sperm for ICSI is conflicting. Manual selection based
on morphology is subjective, inconsistent, and time-consuming, highlighting the need for
standardization to minimize subjectivity and assessment time, especially considering the
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common use of Polyvinylpyrrolidone in ICSI, which may increase sperm DNA fragmenta-
tion with prolonged exposure [27–30]. Thus, a better way to assess and standardize this
approach needs to be assessed.

In recent years, the development of a partially spatially coherent digital holographic
microscope (PSC-DHM) for quantitative phase imaging (QPI) and deep neural networks
(DNNs) has provided a more comprehensive sperm morphology assessment [31]. Phase
maps of over total of 10,163 sperm cells were reconstructed using a PSC-DHM, which were
then classified by DDNs. When validated against a test dataset, the DNNs demonstrated
an average sensitivity of 85.5%, a specificity of 94.7%, and an accuracy of 85.6% [31]. The
PSC-DHM technique provides a label-free platform with nanometric sensitivity to identify
even the smallest subcellular alterations in the sperm cell’s head, midpiece, and tail [31].

The artificial intelligence optical microscopic (AIOM)-based technology LensHooke™
X1 PRO (X1 PRO, Bonraybio, Taichung, Taiwan) has also been employed in sperm analysis.
It demonstrated a strong correlation with manual methods in measuring sperm concentra-
tion, progressive motility, and progressively motile sperm concentration across 135 clinical
samples. Additionally, the X1 PRO yielded comparable seminal pH results to the manual
method, establishing its reliability as a diagnostic tool and aligning with World Health
Organization guidelines [32].

In the context of reproductive technology, the evaluation of sperm morphology, a
critical factor in successful ARTs, encounters challenges related to subjectivity and vari-
ability. Recent advancements in AI tools, represented by PSC-DHM and the AIOM-based
LensHooke™ X1 PRO, offer standardized and reliable approaches to assess sperm mor-
phology, thus addressing these challenges and aligning with global guidelines. These
technologies, utilizing DNNs and AI algorithms, demonstrate promising accuracy in char-
acterizing sperm characteristics, marking a significant step toward more objective and
consistent assessments in the field of reproductive health. A summary of studies evaluating
sperm morphology characteristics can be located in Table 1.

Table 1. Overview of studies evaluating sperm morphology using artificial intelligence techniques.

Author Year Country Sample Size Study Design Artificial Intelligence
Technique Results/Main Conclusion

Bartoov
et al. [24] 2001 France 100 participants Prospective

cohort

Motile Sperm Organelle
Morphology Examination

(MSOME)

Positively associated with
ICSI fertilization rate

(AUC—88%)

Bijar et al.
[27] 2012 Iran N/A

Laboratory-
based

experimental
study

Algorithm involved acquiring
stained sperm smear images,

applying Bayesian
classification for segmentation,

and utilizing an iterative
method based on structural
similarity index and local

entropy estimation to identify
points on sperm’s tail.

Accuracy of sperm’s head,
acrosome, nucleus, and
midpiece computed at

94.3%, 92.4%, 95.1%, and
90.2%, respectively.

Butola
et al. [31] 2020 India

Phase maps of
10,163 sperm

cells

Laboratory-
based

experimental
study

Partially spatial coherent
digital holographic method for
quantitively phase imaging to
study sperm cells under stress
conditions. Phase maps were

reconstructed and then fed
into seven feedforward DNNs.

When validated against a
test dataset, DNN

provided an average
sensitivity, specificity, and
accuracy of 85.5%, 94.8%,
and 85.6%, respectively.

Useful for improving ICSI
procedure in ARTs
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Table 1. Cont.

Author Year Country Sample Size Study Design Artificial Intelligence
Technique Results/Main Conclusion

Agarwal
et al. [32] 2019 USA 131 clinical

semen samples

Laboratory-
based

experimental
study

Development of LensHooke
X1 pro—an artificial
intelligence optical

microscopic-based technology
meant to quantitively assess

sperm concentration, motility,
and seminal pH

High degree of correlation
in concentration and

motility between
LensHook X1 Pro and

manual methods.

Abbreviations: ARTs—assisted reproductive technologies; AUC—area under the curve; DNNs—deep neural
networks; ICSI—Intracytoplasmic Sperm Injection.

4.2. Using ANN and DL to Predict Seminal Quality

An analysis of a dataset containing environmental and lifestyle parameters using a
datamining method utilizing five different artificial intelligence techniques—multilayer
perception, decision tree, naïve Bayes, support vector machine, and support vector machine
+ particle swarm optimization—showed that semen quality could be predicted with a high
degree of accuracy [33]. These AI techniques have been widely used in various fields
and have recently been implemented in the field of reproduction. ANNs in particular are
machine learning algorithms that can be used to determine the quality of semen because
of their high and consistent accuracy, as well as their capacity to show the nonlinear re-
lationship between input and output parameters. Moreover, AI tools such as multilayer
perceptrons (MLPs) can be used. Briefly, MLPs are a type of ANN that consists of multiple
layers of nodes (neurons), and each node is connected. MLPs are capable of learning in
a nonlinear fashion. Naïve Bayes is a probabilistic classification based on Bayes’ Theo-
rem, with a “naïve” assumption of independence between features. Decision trees are
non-parametric learning methods for classification tasks, and SVMs are another type of
learning model that is effective in high-dimensional spaces for performing classification
and regression tasks [34,35].

Gil et al. were the first to examine the prediction accuracy of three distinct AI tech-
niques: decision trees (DTs); support vector machines (SVMs); and MLPs used to identify
which decision support systems (DSSs) are most effective in assisting with the assessment
of male fertility potential [34]. They found that the accuracies of SVMs and MLPs in de-
tecting sperm concentration and morphology were 86% and 69%, respectively. Bidgaoli
et al. chose four AI tools for their study, namely, an optimized multilayer perceptron (MLP),
naïve Bayes (NB), a decision tree (DT), and a support vector machine (SVMs) [35]. Among
these, the optimized MLP demonstrated the highest performance, achieving an impressive
outcome of 93.3% [35].

Girela et al. looked at the semen samples of 123 volunteers and found that, by us-
ing MLP, 90% and 82% accuracies could be achieved for sperm concentration and sperm
motility, respectively [36]. The researchers used two ANNs for the analysis of seminal
parameters, focusing on sperm concentration and motility [36]. In the study conducted
by Soltanzadeh et al., the researchers evaluated various models including NB, neural net-
works, logistic regression (LR), and fuzzy C-means [37]. Among these, the most promising
results were obtained with NB, which demonstrated the highest performance, yielding an
impressive AUC of 0.779 [37]. Studies have also used methods such as fuzzy radial basis
functional neural networks (FRBFNNs), which have an accuracy of 90% when compared
with other processes, such as MLPs, SVPs, and DTs [38].

Studies have also used the naïve Bayes and artificial neural network classifiers for
the characterization of seminal quality to characterize seminal quality, with a reported
accuracy of over 97% in the training phase [39]. Engy et al. introduced a novel method of
predicting reproductive health, combining the Sperm Whale Optimization algorithm (SWA)
with artificial neural networks (ANN-SWA) [40]. This approach, consisting of four phases,
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effectively addresses optimization challenges in fertility data, achieving an accuracy of over
99.96%, surpassing existing algorithms in convergence rate and classification accuracy [40].

Other techniques, such as the evolutionary safe-level synthetic minority over-sampling
technique (ESLSMOTE) are used to improve the accuracy of back-propagation neural
networks, adaptive boosting, and support vector machines [41]. Using the ESLSMOTE
model, researchers found an over 97.2% ROC rating for predicting seminal quality [41].
Ghsohroy et al. used the extreme gradient boost (XGB) AI tool with ESLSMOTE modeling
to obtain a 93.22% mean accuracy and a 0.98 AUC [42]. Models such as the feed-forward
neural network (FFNN) have been compared with common machine learning algorithms
such as MLPs and SVMs and have a high predictive accuracy [43]. Various studies have
explored the use of artificial intelligence in assessing male fertility, showing promising
accuracies in detecting sperm issues and predicting reproductive health.

ANNs can also be used to predict seminal quality through the composition of semen.
The discharge known as seminal fluid from many glands is made up of both organic and
inorganic substances, such as proteins; fructose; glucosidase; zinc; and other scavenging
elements, including Mg(2+), Ca(2+), K(+), and Na(+) [38–40]. Using a back-propagation
neural network, biological factors are needed in ART centers to correctly diagnose male
infertility [44].

Lastly, in nonobstructive azoospermia patients (a condition that affects 15% of infertile
men), the use of microsurgical testicular sperm extraction (microTESE) has been largely
used to detect scarce human sperm [45]. However, there can be significant inaccuracy with
this technique due to an inability to find scarce sperm among millions of cells analyzed [46].
A technique that uses a convolutional neural network to accomplish pixel-based sperm cell
recognition and counting in bright-field images was recently reported by researchers [6].
Using fluorescently marked donor cells from testicular biopsy samples from individuals
with non-obstructive azoospermia (NOA), the algorithm was trained to provide a proba-
bility map of possible sperm cell-containing pixels. The system’s 86.1% sensitivity rate in
identifying uncommon sperm from bright-field pictures was demonstrated by the data that
were provided [46].

In conclusion, the application of AI techniques, including multilayer perception, de-
cision trees, naïve Bayes, support vector machines, and others, has demonstrated high
accuracy in predicting semen quality. These techniques, ranging from decision support
systems to novel methods like the Sperm Whale Optimization algorithm, have shown im-
pressive results in assessing male fertility potential, detecting sperm issues, and predicting
reproductive health. The versatility of AI, particularly artificial neural networks (ANNs),
in capturing complex relationships between input and output parameters suggests their
valuable role in enhancing the evaluation of seminal parameters and diagnosing male
infertility. However, several investigations have found only a poor association between
manual semen analysis and AI analysis performed by similar instruments [47]. In addition,
the use of tiny datasets and imprecise evaluation processes are further constraints on the
field of assisted reproduction and sperm motility prediction [48]. A summary of studies
evaluating seminal quality can be located in Table 2.

Table 2. Overview of studies using artificial neural networks and deep learning for assessing
seminal quality.

Author Year Country Sample Size Study Design
Artificial Neural

Networks/Deep Learning
Modalities

Accuracy/Results in
Comparison to

Published Methods

Gil et al.
[34] 2012 USA 100 volunteers Cross-sectional

study

DT, MLP, and SVMs to
evaluate performance in the
prediction of seminal quality

Prediction accuracy
values of 86% for seminal
quality parameters, useful

in predicting seminal
profile of an individual
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Table 2. Cont.

Author Year Country Sample Size Study Design
Artificial Neural

Networks/Deep Learning
Modalities

Accuracy/Results in
Comparison to

Published Methods

Bidgaoli
et al. [35] 2015 USA n/a Laboratory

experiment MLP, SVM, NB, and DT 93.86% accuracy

Girela
et al. [36] 2013 Spain 123 volunteers Prospective

study MLP

90% and 82% accuracies
were achieved for sperm
concentration and sperm

motility, respectively

Soltanzadeh
et al. [37] 2016 Tehran n/a Laboratory

experiment
NB, logistic regression, and

fuzzy C-means AUC of 0.779

Candemir
[38] 2018 USA n/a Laboratory

experiment MLP, SVP, and DT 90% accuracy

Simfukwe
et al. [39] 2015 Zambia 100 volunteers Laboratory

experiment NB 97% accuracy

El-Shafeiy
et al. [40] 2018 Egypt n/a Laboratory

experiment
Sperm Whale Optimization

Algorithm 99.6% accuracy

Ma et al.
[41] 2021 China n/a Laboratory

experiment

Evolutionary safe-level
synthetic minority

over-sampling technique
97.2% accuracy

GhoshRoy
et al. [42] 2022 India n/a Laboratory

experiment

SVM, adaptive boosting,
conventional extreme gradient

boost, and random forest
AUC of 0.98

Abbreviations: DTs—decision trees; MLP—multilayer perceptron; NB—naïve Bayes; SVMs—support vector machines.

4.3. Computer- and AI-Based Algorithms for Semen Analysis

Over the last 25 years, computer-assisted semen analysis (CASA) has emerged as a
viable alternative to traditional semen analysis, offering more dependable and objective
outcomes [49,50]. However, the limitations of CASA include requiring manual input and
large amounts of oversight to be accurate. CASA systems are automated devices that
assess data from microscopic evaluations using cameras and software to produce results
for semen parameters [51].

In response to the aforementioned problem, the development of SpermQ (National
Institutes of Health, Bethesda, MN, USA) has addressed this need. SpermQ is a novel
program designed to analyze flagellar beats in detail, compatible with simple imaging
techniques like dark-field and epifluorescence microscopy [52,53]. Notably, it can also
handle DIC and phase-contrast images with additional pre-processing. Adhering to the
Nyquist–Shannon sampling theorem during image recording ensures an accurate deter-
mination of flagellar beat frequency [52,53]. SpermQ reveals various head and flagellar
parameters, including frequency analysis, and its automated features facilitate large dataset
analysis, reducing user-dependent bias [53]. Suited for labs lacking technical expertise, this
program is applicable to tracking both tethered and freely swimming sperm. Beyond its
practical applications, SpermQ is expected to advance the study of molecular mechanisms
by guiding sperm navigation, encompassing chemotaxis, haptotaxis, thermotaxis, and
rheotaxis [53]. By providing default settings, SpermQ aims to enhance analysis ease, com-
parability, and accessibility, contributing to a deeper understanding of sperm navigation
mechanisms [53].

Other methodologies include the research by Kanakasabapathy et al., who validated
a smartphone-based semen analyzer with automation features to quantitatively assess
sperm concentration and motility for on-the-spot screening of male infertility [54]. Through
the examination of 350 clinical semen samples obtained from a fertility clinic, the study
demonstrated that this system is capable of analyzing an unprocessed, liquefied semen
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sample in less than 5 s on average. Furthermore, it offers users a semen quality assessment
in alignment with World Health Organization (WHO) guidelines, achieving an accuracy
rate of approximately 98% [54]. One significant limitation of this technology lies in its
inability to precisely assess samples characterized by the elevated presence of non-sperm
cells [54]. Other forms of DL technology include Mojo AISA, an AI microscopy system that
ensures accurate and reliable semen analysis results, enhancing objectivity and reducing
human error. In a study involving 64 men over the last nine months, Mojo AISA’s per-
formance was compared with the manual microscopy method. The results demonstrated
comparable semen parameters, with no significant differences in concentration and motility
measurements. Mojo AISA delivered results in just 4 min per sample, saving 50% of the
time per procedure compared with manual methods [55].

4.4. Anatomical Variations and AI: Implications for Male Infertility and Testosterone
Deficiency Syndrome

Anatomical variations such as varicocele, an enlargement of the testicular veins, have
long been known to cause infertility issues in males in the long term [56]. The etiology of
these defects has yet to be fully elucidated; however, they can have a variety of adverse
effects on spermatogenesis due to elevated testicular temperature, heightened pressure
within the testes, reduced oxygen levels resulting from decreased blood circulation, the
backflow of harmful metabolites from the adrenal glands, and irregularities in hormonal
levels [57,58]. Moreover, the toxic accumulation of metabolites due to the chronic reflux of
the venous plexus has been shown to disrupt spermatic equilibrium, further contributing
to the development of infertility [59]. Although treatments include surgical modalities,
there has recently been development in the use of AI for the prevention and treatment of
varicoceles. Bernabó et al. identified a significant downregulation of vanilloid expression
in varicocele-affected testes, correlating with fertility, and developed an artificial neural
network model predicting varicocele’s impact on fertility with high accuracy, offering po-
tential diagnostic insights [60]. Moreover, machine learning models utilizing pre-operative
hormonal, clinical, and semen laboratory data have been used to forecast clinically signif-
icant post-varicocelectomy sperm characteristics [18]. However, the need for AI models
to predict the development of varicoceles and use machine learning algorithms to affect
patient care is increasingly necessary.

Another important problem in development that affects 15% of subfertile men is
low testosterone [61]. Studies have found that low-testosterone males have lower semen
volume and sperm cell counts in comparison with patients with normal levels of testos-
terone [61]. Moreover, many patients are diagnosed with testosterone deficiency syndrome
(TDS) and can experience primary and secondary hypogonadism [62]. Studies have used
ensemble-based classifiers within the domain of machine learning to predict TDS at an
earlier stage [62]. Ensemble classifiers, particularly the Weighted Average Ensemble Clas-
sifier (wAvg), have outperformed single classifiers, with XGBoost being the best among
them [62]. Moreover, calibration techniques improve predictions and feature importance
analysis highlighting the significance of abdominal circumference, triglycerides, diabetes,
and high-density lipoprotein in TDS prediction [62].

5. Future Directions

In terms of CASA, the potential for advancements in result accuracy and improved
portability is an avenue for AI to be involved in, which will hopefully decrease inter- and
intra-operative errors [32]. The financial aspect of CASA also becomes a barrier of entry for
many patients looking for solutions for their male infertility, so further efforts to reduce
costs and increase affordability are warranted [63]. Another avenue for semen analysis
that needs to be further explored is performing semen analyses in the comfort of the home.
Frequently, patients express dissatisfaction with the necessity of providing ejaculated
samples in clinical or laboratory settings. These public semen collection environments
can be notably uncomfortable, potentially leading to delayed care. Studies have found
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that the sperm concentration, total sperm count, rapid progressive motility, and total
count of progressive motility are all statistically substantially higher in home-collected
samples in comparison with clinic-collected samples [64]. Thus, it is important to develop
a way to analyze sperm from the comfort of consumers’ homes. The first video-based
smartphone platform for home sperm testing to receive FDA clearance (K161493) was the
YO Home Sperm Test (Medical Electronics Systems, Los Angeles, California, USA), which
recently made its debut on the consumer market [65]. When compared with SQA-vision, a
laboratory semen analysis system, the YO Home Sperm Test smartphone device has a high
level of accuracy and precision [65]. However, the limitations of these systems include only
being able to assess sperm concentration or motility parameters [65].

Moreover, future applications in Micro-TESE have the potential to be automated and
thus maximize the identification of scarce sperm from TESE samples [66]. Potential avenues
include using a patient’s follicle-stimulating hormone (FSH) and testes to predict sperm
extraction successfully [67]. In addition, in sperm selection, AI may be used to advance
algorithms capable of simultaneously analyzing various sperm traits at the individual
cell level in real time [66]. There is ongoing research on single-cell resolution through
individual sperm trapping, which may assess the single-cell selection of fertilization [68].

The creation of AI models for the diagnosis of male accessory gland infection (MAGI)
and the ultrasonography evaluation of the male genital tract (testes, epididymis, vas
deferens, prostate, ejaculatory ducts, and seminal vesicles) present a future challenge [69,70].
Ultrasound evaluation in over 500 MAGI patients revealed specific criteria associated with
severe urinary symptoms, spontaneous or post-ejaculate pain, and sexual dysfunction. The
study suggests the potential for personalized therapeutic choices based on a correlation
between symptoms and specific ultrasound signs in MAGI patients [69,70]. In terms of
anatomical deficits, the use of AI in certain pathologies, such as cryptorchidism, Kinfelter’s
syndrome, and others, is a potential avenue of exploration for combatting the development
of male infertility.

Patients with low testosterone may benefit from treatments using AI-driven algorithms
to consider other comorbidities such as age, race, socioeconomic status, diet, lifestyle factors,
and genetic predisposition, among other things, to individually tailor a regimented plan.

To sum up, the application of AI has enormous potential to transform the diagnosis
and treatment of male infertility. Technological developments in CASA present prospects
for enhanced precision and mobility in results, mitigating cost obstacles and potentially
facilitating on-site semen analysis. Future efforts involve developing AI models for iden-
tifying MAGI and ultrasonography evaluation, improving sperm selection algorithms,
and automating micro-TESE operations. While AI offers great opportunities for more
individualized treatment and better results, ethical issues and further study are necessary
to guarantee its appropriate and successful application in reproductive medicine.

6. Legal and Ethical Concerns

The advent of AI in medicine has long been a topic of controversy due to ethical and
legal concerns. Innovative techniques in AI are frequently met with backlash, as their major
potential to profoundly change the lives of many outpace the traditional core ethical and
legal standards of society. Specifically, in reproductive medicine, the backlash has already
been met with many practices such as heterologous fertilization [71].

In research ethics, the potential risks of the application of AI in reproductive medicine
include navigating challenges in adequately informing patients/study participants, manag-
ing long-term monitoring feasibility, addressing unrealistic hopes, and grappling with the
moral status of the human embryo [72]. Another potential avenue of discussion is the au-
tonomy of the offspring that is affected—as these patients can be inevitably affected by the
risks of experiments/treatments without having consented to the procedure. In a similar
vein, it might take several years before the long-term impacts of an experimental technique
utilized during assisted reproduction become completely clear to the offspring [72]. Re-
productive autonomy, the freedom of individuals to make informed decisions about their
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reproduction, underscores the importance of ensuring access to advanced reproductive
technologies like AI for those desiring children. However, careful consideration of the risks
and ethical concerns is essential to safeguard patients’ autonomy in this evolving field.

7. Conclusions

Male infertility is a growing global health concern and has significant financial and
emotional implications for those who are affected. The advent of AI in reproductive
medicine is revolutionizing the treatment and evaluation of male infertility by enhanc-
ing diagnostic accuracy and personalizing treatment strategies. Artificial intelligence
approaches, including machine learning, artificial neural networks, and deep learning,
show remarkable accuracy and promise in improving patient outcomes, from predicting
seminal quality to guiding decisions on reproductive health.

The increasingly technological advancements in computer-assisted semen analysis
systems provide future avenues to enhance accuracy, portability, and affordability in semen
analysis. Moreover, microsurgical testicular sperm extractions provide opportunities for
efficient and personalized healthcare delivery. Clinicians can improve outcomes for indi-
viduals and couples experiencing infertility by optimizing treatment regimens, improving
diagnostic accuracy, and leveraging AI technologies.
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