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Abstract

Microbes contribute biologically available nitrogen to the ocean by fixing nitrogen gas from

the atmosphere and by mineralizing organic nitrogen into bioavailable dissolved inorganic

nitrogen (DIN). Although the large concentration of plants and algae in marine coastal envi-

ronments provides ample habitat and reliable resources for microbial communities, the role

of the microbiome in host-microbe nitrogen cycling remains poorly understood. We tested

whether ammonification by epiphytic microbes increased water column ammonium and

improved host access to nitrogen resources by converting organic nitrogen into inorganic

nitrogen that is available for assimilation by hosts. When bull kelp (Nereocystis luetkeana) in

the northeast Pacific was incubated with 15N labelled amino acid tracers, there was accumu-

lation of 15N in kelp tissue, as well as accumulation of 15NH4 in seawater, all consistent with

the conversion of dissolved organic nitrogen to ammonium. Metagenomic analysis of sur-

face microbes from two populations of Nereocystis indicated relative similarity in the per-

centage of genes related to ammonification between the two locations, though the stressed

kelp population that had lower tissue nitrogen and a sparser microbiome had greater ammo-

nification rates. Microbial communities on coastal macrophytes may contribute to the nitro-

gen requirements of their hosts through metabolisms that make ammonium available.

Introduction

Nutrients, including nitrogen, can limit plant productivity across diverse ecosystems [1],

including the coastal ocean [2]. Where nitrogen is limiting in the coastal ocean, there may be

selection for macrophytes to have microbial associations that assist in acquiring nitrogen, such

as the association of nitrogen-fixing bacteria [3–6]. In addition, microbial associations may

also increase access to nitrogen through increased microbial transformation of organic nitro-

gen. Ammonification, the metabolism of amino acids into ammonium, is a ubiquitous micro-

bial metabolism [7]. Enzymes such as hydrolases and lyases cleave the amide group of some

amino acids to release dissolved inorganic nitrogen (DIN) in the form of ammonium [8].

Amino acids and other forms of dissolved organic nitrogen (DON), including urea, nucleic

acids, proteins, and peptides, can be important sources of organic nitrogen. These DON
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components can have rapid turnover [9,10], and their concentrations are greatly affected by

the metabolic activities of animals and macrophytes [11,12]. Nitrogen in the form of DON

may be largely inaccessible to macrophytes until it is converted to DIN by microbial metabo-

lisms. While phytoplankton have been shown to have extracellular enzymes that cleave amino

acids [11,13], there is not yet a corresponding demonstration in algae or seagrass. Though pre-

vious studies suggest that macrophytes may be able to directly take up urea as a source of

organic nitrogen [14,15], most of these studies do not control for or investigate the presence of

host-associated bacteria that may facilitate that uptake. In fact, it was demonstrated that micro-

bial amino acid ammonification provisioned a seagrass species with released ammonium

when the bacterial community was investigated through imaging and stable isotope enrich-

ments [16] and through in situ isotope incubations [17]. This suggests that epiphytic microbial

communities may play a vital role in making DON available to the host.

Sources of DON can be abundant and reach concentrations that rival the total amount of

DIN [18]. Though amino acid concentrations in the coastal oceans are not well studied, some

estimates put them as high as 2 μmol/L in coastal areas, much greater than the 0.2 μmol/L con-

centrations estimated to exist in the open ocean [19]. This indicates that DON could represent

a significant potential source of nitrogen for microbes in coastal environments and could select

for specific host-microbe interactions. Macrophytes host diverse microbial taxa that can use

dissolved organic matter [6,20,21], though little is known about any benefits those microbes

provide. While amplicon-based and metagenomic studies increasingly capture the microbial

diversity of marine macrophytes [22–24], we know comparatively little about the functions of

microbial diversity and how they relate to the condition of the host.

We quantified ammonification by microbes on host seaweeds and tested whether this ammo-

nification increased nitrogen availability to their hosts. Nereocystis luetkeana (henceforth Nereo-
cystis) blades have been shown to host microbes on their surfaces with enzymes for

ammonification [6]. We quantified microbial transformation and host nitrogen uptake using sta-

ble isotope enrichments in the bull kelp Nereocystis across three locales in the northeast Pacific.

We quantified ammonification in Nereocystis samples collected from two disparate geo-

graphic areas that differ in microbial diversity, microbial abundance, and kelp bed growth and

density. Microbial communities on Nereocystis exhibit strong geographic differences that cor-

relate with the health of the host kelp population. CLASI-FISH imaging [25], and 16S gene

sequencing [20] were used to quantify microbial diversity and abundance on Nereocystis in

South Puget Sound and the outer coast of Washington State. Kelp-associated microbes in

South Puget Sound, where kelp populations have been in decline [26], show decreased diver-

sity and abundance compared to communities on the outer coast of Washington, where kelp

flourish [27]. Further analysis of bacterial metagenome-assembled genomes (MAGS) from the

persistent versus declining population of Nereocystis [21] allowed us to determine if ammonifi-

cation genes were present in the microbiome of these hosts and whether the incidence and

prevalence of these genes differed among the sites. Our results provide evidence that ammoni-

fying microbes are present in association with hosts and in surrounding seawater; their activi-

ties may contribute to the nitrogen requirements for Nereocystis across several different

geographic locations, broadening our understanding of the sources of nitrogen available to

foundational coastal organisms.

Methods

Study sites

We studied Nereocystis across a large geographic gradient that encompassed a healthy and per-

sistent population at Tatoosh Island (48.393689, -124.733820) [27] on the outer coast of
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Washington State, a declining population at Squaxin Island in Puget Sound (47.167282,

-122.895984) [26], and a newly restored community in Puget Sound at Jefferson Head

(47.742128, -122.488112) which was historically a kelp bed; now, Nereocystis are outplanted on

line substrates. All sampling locations are shown in Fig 1.

Chambers and incubation

We quantified ammonification and ammonium uptake using short term (three hour) chamber

incubations with 15N-enriched amino acids. Experimental incubation time was informed by

Weigel and Pfister [28], such that the 15N signal had enough time to move through the system,

but not long enough for nutrient depletion to occur. In total, there were three sets of incuba-

tions from July 2021 to August 2021. Kelp blade samples were placed in custom-made cham-

bers as described in Weigel & Pfister [28]. Kelp chambers were 2.6L polycarbonate tubes

capped at each end with a wing-nut expansion plug and a rubber seal, which ensured the tubes

were watertight and easy to open for sampling.

Entire non-reproductive bull kelp blades were collected by boat or from the surface at low

tide. Wet mass of macrophytes was measured with a PesolaTM (Forestry-Suppliers Inc.,

Fig 1. Sampling locations. Locations of bull kelp incubations in Washington State. Tatoosh Island is in the western Strait of Juan de Fuca, while Jefferson Head

and Squaxin Island are in Puget Sound. Each set of incubations included n = 2 seawater-only chambers as a control, and n = 4 chambers containing kelp and

seawater. Map made using data from Natural Earth.

https://doi.org/10.1371/journal.pone.0296622.g001
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Jackson Mississippi, USA) spring scale; dry mass was measured after samples were dried for

48h at 50˚C. Bull kelp blade dry mass averaged 3.12 ± 0.4g.

Kelp tissue was placed individually in each of 4 chambers and filled entirely with fresh sea-

water collected from the same location and depth as the samples; bottles or chambers filled

with only seawater (n = 2) for each experiment served as a control for microbial activity in the

water column. At time T0, we added 200μL of 0.025M 15N-labeled amino acid solution (Cam-

bridge Isotope Labs, product# NLM-2161, Lot# PR-24163) to the kelp chambers. The enriched

amino acid mix was composed of 16 amino acids, with leucine, glutamic acid, and alanine

making up 37% of the total. The amino acids valine, phenylalanine, isoleucine, aspartic acid,

glycine, threonine, proline, tyrosine, arginine, lysine, serine, methionine, and histadine all

composed between 2% and 9% of the mix. Amino acid concentrations are rarely estimated in

coastal areas, and we do not have measurements in the locales where our experiments were

performed. Instead, we assumed a concentration of 1 μM amino acids in seawater, based on

previous ocean studies [29–31]. Our enrichment achieved 525,430‰ 15N, compared to the

natural amount of 15N that we are assuming is present in seawater with a concentration of

1 μM amino acids. This high enrichment ensured the concentration of 15N that was added to

the seawater served as an effective tracer, while only elevating amino acid concentrations to

approximately 1.92 μM. The chambers were sealed and agitated by hand to mix the tracer

evenly with the seawater. We suspended kelp chambers horizontally in a recreational float that

kept them immersed in the water. This allowed temperatures in the chambers and bottles to

remain close to ambient seawater temperature and permitted gentle water movement. Sam-

pling occurred only at the beginning and end of the experiment to avoid contamination

among chambers. The theorized movement of enriched 15N through the closed system is illus-

trated in S1 Fig.

Measuring nutrients and the fate of tracer 15N

We measured seawater nutrient concentrations and δ15NH4 at the beginning and end of the

experiment by collecting two water samples from the source water we used before the addition

of the tracer (T0), and then again from each individual container (Tf). We measured concen-

trations of ammonia, nitrate, nitrite, phosphorous, silica, and δ15NH4. For both samples we fil-

tered 25mL and 50mL of seawater, respectively, through a syringe filter (Whatman GF/F,

0.7 μm) into acid-washed HDPE (high density polyethylene) bottles. All seawater samples

were frozen for later analysis. All nutrient concentrations were analyzed at the University of

Washington Marine Chemistry Laboratory (methods from UNESCO [32]), while seawater iso-

tope determinations were done at the University of California, Davis. To quantify the isotopes

of nitrogen in ammonium, we needed higher concentrations of 15NH4 in seawater than were

typical at the sites. We added 77.6μL of 0.05 M NH4Cl, effectively adding 1.4 mg/L of NH4 to

all samples prior to analysis. The δ15NH4 value of the NH4Cl was known (-2.11‰) and was a

consistent addition to all samples.

Tissue was sampled from paired bull kelp blades to quantify percent carbon and nitrogen

analysis, as well as the δ15N of incubated tissues at T0 and at Tf. We collected the rapidly grow-

ing tissue at the basal meristem. Samples were weighed and analyzed on an elemental-ana-

lyzer–isotope-ratio mass spectrometer at Northwestern University Stable Isotope

Biogeochemistry Laboratory (NUSIBL).

Quantifying microbial transformations and macrophyte uptake

We used stable isotope tracers to quantify the mineralization of amino acids into 15NH4 by fol-

lowing the transfer of the tracer from its source (the labeled amino acids) to its sink (the
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seawater), modeling the process according to Lipschultz [33]. This model estimates a single

rate parameter from T0 to Tf using the following difference equation:

Ammonification Rate ¼
RðtÞsink � Rð0Þsink
ðRsource � Rð0ÞsinkÞ∗Dt

∗ NH4

� �
ð1Þ

where R denotes the isotopic ratio of the sink or source in atom%, Δt represents the length of

the incubation, and ½NH4 � represents the average concentration of ammonium over the course

of the experiment. This equation quantifies the transfer of 15N from amino acids to ammo-

nium in the water column. This version of the model approximates the rate of 15N transfer as

the difference between the isotopic ratio at the beginning of the incubation and the isotopic

ratio at the end of the incubation, when our two samples were collected. Multiplying by the

average ammonium concentration yields the uptake rate of ammonium by seawater and

accounts for the rapid flux of inorganic nitrogen [34]. We assumed that sources of 15N in the

chambers were negligible compared to the tracer (10-6M vs. 0.025M) and anticipated that iso-

tope dilution due to mineralization of unlabeled DON would not be an important factor with

an incubation of this duration.

We estimated ammonium uptake rates in kelp from the 15N concentrations within the tis-

sue, using the method for estimating nitrogen uptake from isotope enrichment described in

Pather et al [35]. This method uses the following equation:

NH4
þuptake rate ¼

tissue 15N atom% excess
ðR∗tÞ

∗TN ð2Þ

where tissue 15N atom% excess is the final 15N atom% minus the initial 15N atom%, R is the

mean 15N atom% enrichment in the NH4
+ pool, t is the duration of the incubation, and TN is

the amount of nitrogen in the bull kelp tissues in μmoles.

All statistical tests, including ANOVA, ANCOVA, Tukey’s Honestly Significant Difference,

and t-tests, were performed in R (version 4.2.0), and figures were created in R and Microsoft

Paint 3D.

Ammonification inferred from metagenomes

Published metagenomes from the microbial community on Tatoosh and Squaxin bull kelp

blades [21] allowed us to compare the potential for ammonification among the microbes on

bull kelp at each locale by quantifying enzymes that hydrolyze carbon-nitrogen bonds within

metagenome assembled genomes (MAGs). We used the International Union of Biochemistry

and Molecular Biology designation (https://iubmb.qmul.ac.uk/enzyme/), and searched for

enzymes with the nomenclature ‘EC 1.4’, which act on the CH-NH2 group of donors, ‘EC 3.5’,

which act on carbon-nitrogen bonds other than peptide bonds, and ‘EC 4.3’, carbon-nitrogen

lyases within all 51 MAGs determined from Nereocystis blade surface samples collected at

Squaxin (n = 13 MAGs) and Tatoosh (n = 38 MAGs) Nereocystis surfaces in July 2019 [20].

We only analyzed 2019 swab samples where host tissue contamination was minimized. We

used the MAG database reported in Weigel et al. [21], which is available on the Figshare repos-

itory (https://figshare.com/s/84c036dc253a5dd1b1b9) and also archived at NCBI

(PRJNA783443).

Ethics statement

Samples used in this study were collected with the permission of the Makah Tribal Nation and

the Washington Department of Natural Resources.
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Results

The carbon and nitrogen content of hosts varied by site

Tissue carbon and nitrogen content differed among locales (Fig 2). Tissue nitrogen in Nereo-
cystis was greatest in areas with the highest nitrogen concentration in the seawater. The seawa-

ter DIN concentration (sum of NO3, NO2, and NH4 concentrations) was greatest at Tatoosh

(Table 1), which had a mean concentration of 26.8 μM. Consequently, Tatoosh Nereocystis had

the highest nitrogen tissue content, and the lowest C:N ratio. The seawater DIN concentration

Fig 2. Percent carbon vs. percent nitrogen. The % carbon to % nitrogen content for Nereocystis blade tissue from three locales

(n = 12). Bands represent 95% confidence intervals. The relationship between carbon and nitrogen differed significantly among

sites for Nereocystis (ANCOVA, p = 0.011, F2,21 = 5.616).

https://doi.org/10.1371/journal.pone.0296622.g002

Table 1. Nereocystis incubations.

Location Average PAR

(μmol*m-2*s-1)

Seawater

Temperature (˚C)

Tissue C:

N

Nutrient Concentration (μM) Ammonification (nmol N L-

1 hr-1)

Kelp N uptake (μmol

N hr-1 g DW-1)

PO4
3- SI

(OH)4

NO3
- NO2

- NH4
+ Seawater Seawater w/

Kelp

Jefferson

Head

946.3 ± 98.9 18.6 18.8 ± 1.0 0.47 3.75 0.74 0.00 0.57 0.02 ± 1x10-

3
0.07 ± 0.01 3.0 ± 0.52

Tatoosh 1186 ± 190 11.7 9.34 ± 0.2 2.24 28.29 23.39 1.11 2.31 0.41 ± 2x10-

3
0.41 ± 0.02 4.3 ± 0.27

Squaxin 959.4 ± 128 17.5 12.1 ± 0.3 1.60 39.56 3.13 0.15 2.08 0.19 ± 0.07 0.73 ± 0.07 5.2 ± 0.43

Incubations of Nereocystis from the coast of Washington State. Location names represent distinct bull kelp beds. We present data collected on tissue C:N ratio, seawater

nutrient concentrations, ammonification rates, macrophyte N uptake rates, and conditions during the incubation. S1 Fig provides an illustration of the experimental

chambers.

https://doi.org/10.1371/journal.pone.0296622.t001
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was lower at the Puget Sound sites, with 5.21 μM at Squaxin, and 1.31 μM at Jefferson Head on

the days of the incubations, correlating with higher C:N ratios. The slope of carbon to nitrogen

differed among the three locales (Fig 2A, ANCOVA, p = 0.011, F2,21 = 5.616), and nitrogen is

greatest per unit carbon in Tatoosh kelp blades.

The nutrient concentrations of the seawater in incubation chambers with macrophytes

decreased over the three-hour period while tissues increased in δ15N (Fig 3). PO4
3- decreased

by 0.17 ± 0.06 μM/hr on average, Si(OH)4 decreased by 2.60 ± 0.88 μM/hr, NO3
- decreased by

2.52 ± 0.78 μM/hr, NO2
- decreased by 0.11 ± 0.04 μM/hr, and NH4

+ decreased by

0.13 ± 0.06 μM/hr. Prior to enrichment, the natural abundance of δ15N in sample tissue aver-

aged 7.6‰ ± 0.2 in kelp. Following incubation, δ15N signatures increased significantly to

18.6‰ ± 1.0 (Fig 3).

Ammonification and host nitrogen uptake

We used δ15NH4 values in chamber seawater to calculate ammonification using Eq (1). Initial

δ15NH4 values of seawater in incubation chambers averaged -3.39‰ ± 0.32 before incubation.

Following the incubations, δ15NH4 values were enriched to 85.6‰ ± 21 in seawater only

chambers and 129‰ ± 19 in kelp chambers, indicating that ammonification occurred. Ammo-

nification associated with bull kelp differed significantly between each locale; despite lower tis-

sue nitrogen, Squaxin bull kelp had the highest ammonification rate (Fig 4A). Nitrogen uptake

by bull kelp, quantified with Eq (2), was lowest at Jefferson Head (Fig 4B). One sample from

Squaxin appeared to have been contaminated based on greatly elevated nutrient measurements

compared to other samples and was removed, resulting in n = 5 chambers for Squaxin.

Ammonification rates in control chambers with only seawater varied among sites and

dates, with Tatoosh showing the greatest ammonification rates (Table 1). Macrophyte cham-

bers displayed increased enrichment relative to control chambers for all bull kelp (Fig 5). The

relationship between ammonium uptake and ammonification was positive for Nereocystis
(S2 Fig).

Fig 3. Tissue 15N enrichment. Pre-incubation and post-incubation δ15N enrichment levels in Nereocystis tissue. Pre- and post- incubation means were

compared with t-tests, which are shown at the top of each panel (n = 4 for each).

https://doi.org/10.1371/journal.pone.0296622.g003
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Fig 4. Ammonification and nitrogen uptake. Ammonification and nitrogen uptake rates for Nereocystis. Differences between locations for levels of

Nereocystis ammonification were significant (p < 0.001), and nitrogen uptake was also significant (p = 0.020). There are n = 4 samples for most categories,

though Squaxin Island Nereocystis had n = 3 samples because one was determined to be an outlier.

https://doi.org/10.1371/journal.pone.0296622.g004

Fig 5. Seawater 15N enrichment. δ15NH4 enrichment of the seawater in incubation chambers following the experiment. Open circles denote seawater-only

control chambers (n = 2 per incubation) while filled circles indicate chambers with macrophytes (n = 4 per incubation).

https://doi.org/10.1371/journal.pone.0296622.g005
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Metabolic function inferred from metagenomes

The number of genes detected in the Tatoosh bull kelp microbiome was higher than Squaxin

by a factor of 2.6, with 80,633 genes at Tatoosh compared with 30,822 genes at Squaxin

(Table 2). The overall number of ammonification genes, those with enzyme prefixes of EC1.4,

EC3.5 and EC4.3, was lower at Squaxin, though it was proportional to the total functional gene

discovery at 1.16% (Table 2). Every MAG at both Tatoosh and Squaxin contained ammonifica-

tion genes in one of the 3 categories (Table 2), further indicating the likely high prevalence of

this function.

Microbial gene detection in both Squaxin Island and Tatoosh Island metagenome assem-

bled genomes (MAGs) reported in Weigel et al. [19]. Counts of KOfam genes and their overall

percent representation are given. KOfam genes were counted as present at a cutoff of E-100.

Discussion

Bacterial contribution of DIN to seagrass and bull kelp hosts

Enrichment of δ15NH4 occurred both in chambers with macrophytes and chambers without,

indicating microbial transformation of DON into DIN by both water column microbes and

macrophyte-associated microbes. We observed δ15N uptake from our amino acid additions in

all kelp samples (Fig 3), suggesting that ammonifying microbes contributed nitrogen to mac-

rophytes through remineralization of DON. We further observed increased enrichment com-

pared to control chambers in all chambers (Fig 5), suggesting that epiphytic microbes may also

remineralize DON and further increase nitrogen availability for their hosts. This interpretation

is supported by previous imaging of the microscale transfer of ammonium by nanoscale sec-

ondary ion mass spectrometry (NanoSIMS), which showed nitrogen isotopes passing from

seawater into microbes, and from microbes into the surface layers of seagrass blades [16]. This

phenomenon may be widespread in macrophyte-microbiome systems. For instance, the func-

tional capacity for ammonification was enriched in the giant kelp Macrocystis compared with

surrounding seawater [36], as well as in cultures with the green alga Ulva [37], and ammonifi-

cation was enhanced over tropical seagrass systems [12].We note that in our study, and in

many other host-microbe systems, elemental imaging would facilitate efforts to definitively

trace nutrient exchanges between hosts and their microbiome.

Macrophyte nitrogen uptake was consistently 4–5 orders of magnitude greater than ammo-

nification in the incubation chambers, ranging from 3.0–5.2 μmol N g DW-1 hr-1 (Table 1).

Ammonium uptake rates by macrophytes were also large compared to ammonium pools in

the seawater. However, despite the relatively low ammonification rates relative to nitrogen

uptake, complete depletion of inorganic nitrogen did not occur in the chambers. One explana-

tion is that algal uptake estimates were based on the enrichment in ammonium (Eq (2) above),

while ammonification rates relied on our estimates of enrichment of amino acids. Amino acid

concentrations are poorly estimated in these locales, and we assumed 1 μM based on previ-

ously published studies [29,30]. We note that if amino acid concentrations were greater than

Table 2. Microbial gene detection.

Genes Squaxin Island Tatoosh Island

EC1.4 90 (0.29%) 265 (0.33%)

EC3.5 184 (0.60%) 461 (0.57%)

EC4.3 82 (0.27%) 210 (0.26%)

All ammonification genes 356 (1.16%) 936 (1.16%)

Total gene tally 30,822 80,663

https://doi.org/10.1371/journal.pone.0296622.t002
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1 μM, we would have overestimated enrichment (Rsource) and underestimated ammonification

in Eq (1). DON estimates in the coastal northeast Pacific and at these sites can exceed 10 μM

[38]. If we assume amino acid concentrations as high as 10 μM, then our estimates of ammoni-

fication would increase by an order of magnitude. Secondly, if spatially localized processes

were important, such as immediate microbial production followed by host use of ammonium

at the macrophyte surface biofilm, we would also underestimate ammonification in the water

column. A third explanation may be the rapid uptake and production of inorganic nitrogen by

the multitude of metabolisms in intertidal systems, which lead to quick turnover in nitrogen

pools in seawater [10,20,34,39]. Because we only took measurements of seawater nutrients at

the initiation and end of the incubations, the processing and recycling of nitrogen may have

been underestimated.

One important alternative to consider is that kelp may directly take up DON, with enriched

amino acids entering the host without microbial intermediaries. Phytoplankton have been

shown to have amino acid oxidases on the cell surface that produce ammonium from amino

acids [9]. Previous studies have also observed amino acid oxidases and amino acid uptake in sea-

weeds. For instance, amino acid uptake was demonstrated during rhizoid development in Fucus
with enriched carbon in amino acids and enriched sulfur in methionine [40]. Other observations

of amino acid oxidases have been attributed to the host seaweed [41–45]. Further, there are sev-

eral studies that also suggest uptake of DON by other seaweeds and seagrasses [14,46–49]. In all

of these studies, however, the role of bacterial metabolisms in nitrogen acquisition remains

unclear because it is not reported whether axenic conditions were strictly maintained during

incubations. Regardless, some studies do provide strong inference for direct uptake of amino

acids. For instance, studies of Fucus embryos have shown evidence of normal development of

Fucus embryos or zygotes when the amino acid methionine is the only source of sulfur [40–42],

and images show that embryos seem to be bacteria-free [42]. Furthermore, the use of stable iso-

tope tracing indicated that urea can be taken up by the giant kelp Macrocystis [15], though not

by the kelp Ecklonia [50]. Still, Tarquinio et al.’s [16] work with the seagrass Posidonia, where ele-

mental imaging of isotopes of nitrogen was used in the presence and absence of bacteria, pro-

vides strong inference that microbial ammonification produced ammonium and that it was
15NH4 that was taken up by the host. Furthermore, metagenomic sampling demonstrated that

genes with the capacity to cleave C-N bonds in amino acids were common in bacteria residing

on Nereocystis. The lack of clear axenic conditions in previous studies and evidence from ele-

mental imaging support the importance of microbial metabolisms in nitrogen uptake by Nereo-
cystis. However, the possible diversity of amino acid metabolism routes suggested in the above

referenced studies cannot be discounted, and needs further research efforts with imaging and

isotope incubation, in combination with analysis of bacterial and seaweed genomes.

Comparing bull kelp from different locales

If microbes play an important role in nitrogen acquisition for macrophytes, then the presence

or absence of these microbes may have implications for the fitness of the host. Bull kelp sam-

ples collected from Tatoosh, Jefferson Head, and Squaxin differed in fitness and microbial

abundance. Tatoosh Island bull kelp are exposed to the open ocean and exhibit the greatest tis-

sue nitrogen content and more diverse microbial communities [22,51]. Squaxin Island kelp

represent the southernmost population in Puget Sound. They have been in sharp decline [26],

have reduced microbial diversity [22], sparse microbial communities on their surfaces [25],

and lower nitrogen content (Fig 2). The Jefferson Head kelp bed is a restored feature where

kelp grows on line substrates, and we have no information on microbial abundances there,

though we note that nitrogen content in Jefferson Head kelp is extremely low.
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The greater health and nitrogen content of the Tatoosh Island kelp led us to hypothesize

that their microbiome would have greater ammonification rates and increased access to dis-

solved organic nitrogen. Our results show otherwise, and indicate that the microbiome on the

smaller, more poorly growing Squaxin Nereocystis had the greatest ability to ammonify and

process amino acids. Notably, Tatoosh Island had high ammonification rates in the water col-

umn, which may indicate that ammonification is not as restricted to host-association as it is at

the other sites. Thus, Tatoosh Island, with the highest concentration of dissolved inorganic

nitrogen in the surrounding waters (Table 1), and the greatest tissue nitrogen levels (Fig 2),

had the lowest rates of ammonification by Nereocystis-associated microbes. Our results suggest

that the relatively nitrogen-poor Squaxin kelp samples opportunistically took up nitrogen

when it became available, a result consistent with Weigel and Pfister [28].

Differences in seawater between sites

The composition of epiphytic communities on macrophytes may vary depending on the nutri-

ent resources available to them [52]. Seawater nutrient conditions differed significantly

between the three sampling locations. Tatoosh Island, which lies on the outer coast of Wash-

ington State, is supplied from deep areas offshore by upwelling, which occurs along much of

the Pacific Northwestern coast [53]. Water from deep areas is cold and nutrient rich [54], likely

supporting the robust local bull kelp and seagrass populations. Furthermore, inorganic sources

of nitrogen, especially nitrate, are much higher in concentration at Tatoosh Island than locales

in Puget Sound (Table 1) [55]. However, we currently know little about the concentration of

DON components across these locales, the microbial taxa that can ammonify, and the ability

of nitrogen-poor host species to select for different microbiomes. Our use of unfiltered seawa-

ter in our assays suggested that water column microbes in addition to host-associated microbes

are quantitatively important here and may influence selection at the host-microbe interface.

The noticeable increase in δ15NH4 enrichment observed even in chambers that did not contain

macrophytes (Fig 5) indicates that some ammonifying microbes may not always be in intimate

association with the host. Because this metabolism could also benefit microbes, ammonifying

microbes might be both free-living and host-associated.

Metabolic patterns indicated by metagenomes

Metabolic information from genomics indicated the presence of approximately equivalent

functional capacity across metagenomes from Squaxin and Tatoosh. Even though microbe

density and diversity were much greater at Tatoosh [21,23], the proportional capacity for

ammonification based on the presence of genes was equivalent and may account for the unex-

pectedly high rates of ammonification in Nereocystis from Squaxin. Although we do not have

metagenomic samples in July 2021, when we did the experiments, repeated metagenomic sam-

pling at Tatoosh, Weigel et al. 2022, [21] suggests similar metagenomes across years. There

was no metagenomic information to test this for the Nereocystis from Jefferson Head.

Ammonification genes, those that cleave C-N bonds in amino acids and produce ammo-

nium, were common in Nereocystis metagenomes analyzed here [6]. The giant kelp Macrocys-
tis in the southern region of the California Current system also showed genes capable of

ammonification in the surface microbiome [36].

Tatoosh Island bull kelp, which have been persistent and non-declining compared with the

diminishing Squaxin Island population [26,27], exhibited microbial genes that were enriched

with modules that might increase ammonification, including histidine regulation and proline

metabolism. There is lower abundance and diversity of host-associated microbes at Squaxin

Island [21,22,25], and ammonification genes are fewer. Yet, there was no indication from
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amino acid incubations that the functional capacity of Squaxin to use DON was compromised

compared to ammonification measures for healthy Tatoosh populations. In sum, our study

suggests that DON, a significant component of the free nitrogen in coastal seawater, may be

accessible to seaweed via the activities of associated microbes and points to a need to better

understand how the microbiome of primary producers contribute to their fitness.

Supporting information

S1 Fig. Experimental chamber schematic. A schematic of the hypothesized movement of

enriched 15N in experimental chambers containing Nereocystis when added as 15N amino

acids. Red arrows denote those we have quantified, including the microbially-mediated trans-

fer of 15N from amino acids to ammonium via ammonification, a process that could have been

done by host-associated or free-living microbes. Chambers without host kelp quantified water

column ammonification only. The 15N measured in hosts was assumed to come from this

ammonification. The dashed line shows bacterial uptake of ammonium that might have

occurred but was not quantified.

(TIF)

S2 Fig. Nitrogen uptake vs. ammonification. Nitrogen uptake rate (in μmol) vs. ammonifica-

tion rate (in nmol) for Nereocystis sampling locations. Linear regressions indicated a signifi-

cant positive association between ammonification and nitrogen Uptake in bull kelp (p = 0.024,

r2 = 0.389). The bands around the regression line represents the 95% confidence interval.

(TIF)
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