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Finding the Last Bits of Positional Information
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In a developing embryo, information about the position of cells is encoded in the concentrations of morphogen
molecules. In the fruit fly, the local concentrations of just a handful of proteins encoded by the gap genes are
sufficient to specify position with a precision comparable to the spacing between cells along the anterior-posterior
axis. This matches the precision of downstream events such as the striped patterns of expression in the pair-rule
genes, but is not quite sufficient to define unique identities for individual cells. We demonstrate theoretically
that this information gap can be bridged if positional errors are spatially correlated, with correlation lengths
approximately 20% of the embryo length. We then show experimentally that these correlations are present, with
the required strength, in the fluctuating positions of the pair-rule stripes, and this can be traced back to the gap
genes. Taking account of these correlations, the available information matches the information needed for unique
cellular specification, within error bars of approximately 2%. These observation support a precisionist view of
information flow through the underlying genetic networks, in which accurate signals are available from the start
and preserved as they are transformed into the final spatial patterns.
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I. INTRODUCTION

During the development of an embryo, cell fates are de-
termined in part by the concentrations of specific morphogen
molecules that carry information about position [1–3]. For the
early stages of fruit fly development, all of these molecules
have been identified [4–6]. For patterning along the main body
axis, spanning from anterior to posterior (AP), information
flows from primary maternal morphogens to an interacting
network of gap genes to the pair-rule genes [7,8], whose
striped patterns of expression provide a precursor of the seg-
mented body plan in the fully developed organism, visible
within three hours after the egg is laid (Fig. 1). It has been
known for some time that, at this stage in development, es-
sentially every cell “knows” its fate [11], so it is natural to
ask how this information is encoded, quantitatively, in the
concentrations of the relevant morphogens.

Expression levels of the gap genes provide enough in-
formation to specify the positions of individual cells with
an accuracy approximately 1% of the embryo’s length [12].
This matches the precision with which the stripes of pair-rule
expression are positioned and the precision of macroscopic
developmental events such as the formation of the cephalic
furrow [13]. Further, the algorithm that extracts optimal
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estimates of position from the expression levels of the gap
genes also predicts, quantitatively, distortions of the striped
pattern in mutant flies with deletions of the maternal inputs
[10]. At the moment when pair-rule stripes are fully formed,
just before gastrulation, there are fewer than 100 rows of cells
along the length of the embryo, so it is tempting to think that
positional signals with 1% accuracy define unique cellular
identities. In fact, this is not quite correct [12]: If each cell
makes independent positional errors drawn from a Gaussian
distribution, then there is a small but significant probability
that neighboring cells will get “crossed signals,” driving errors
in cell fate determination.

The small difference between 1% positional errors and
unique cellular identities provides a test case in the search
for a more quantitative understanding of living systems. In
physics, we are used to the idea that small quantitative
discrepancies can be signs of qualitatively new ideas or mech-
anisms. In complex biological systems, however, one might
worry that small discrepancies reflect experimental errors or
oversimplifications in interpretation. If correct, these con-
cerns would limit our ambitions for quantitative theory in the
physics tradition.

Here we revisit the small quantitative discrepancy in po-
sitional information in light of dramatic improvements in
experimental precision [14–16]. On the theoretical side, we
clarify the problem, defining an information gap, and show
that this gap can be closed if errors in the positional signals are
spatially correlated over relatively long distances. Early work
by Lott et al. [17] detected such correlations in mRNA levels
of gap and pair-rule genes; subsequent work found that noise

2835-8279/2024/2(1)/013016(12) 013016-1 Published by the American Physical Society

https://orcid.org/0000-0001-7598-4225
https://orcid.org/0000-0003-4644-2536
https://orcid.org/0000-0002-1206-1797
https://orcid.org/0000-0001-9460-139X
https://orcid.org/0000-0002-7823-3862
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXLife.2.013016&domain=pdf&date_stamp=2024-03-26
https://doi.org/10.1103/PRXLife.2.013016
https://creativecommons.org/licenses/by/4.0/


LAUREN MCGOUGH et al. PRX LIFE 2, 013016 (2024)

FIG. 1. Segmented Drosophila body plan. (a) Bright-field color
image of a 5-mm-long third instar larva of the fruit fly Drosophila
melanogaster [9] with clearly visible segments. (b) Optical sec-
tion through an embryo stained for three of the pair-rule proteins,
50 min into nuclear cycle 14 (approximately 3 h after oviposition),
showing striped patterns that align with the body segments (data from
Ref. [10]). (c) Same as in (b), from multiple embryos, illustrating the
pattern reproducibility. Time in nuclear cycle 14 is indicated at the
bottom right of each profile. The asterisk marks the image in (b).

in different combinations of protein levels in the gap-gene
network are correlated significantly over the entire length of
the embryo [18]. On the experimental side, we reexamine
these correlations, measuring the positions of stripes in the
concentrations of pair-rule proteins. We find that the extent of
these correlations is what is needed to close the information
gap between positional errors and unique cellular identities,
quantitatively.

II. DEFINING THE PROBLEM

In the early fly embryo, cells have access to the con-
centrations of morphogens, and these concentrations are
continuously graded. From these concentrations, it is possible
to decode an estimate of position, which we label as x̂n in cell
n [10]. We expect that these estimates are correct on average,
so 〈x̂n〉 = nL/N , where there are N cells along the length L
of the embryo.1 However the signals are noisy, so decoding in

1For simplicity, we imagine that the problem is one dimensional so
that cells need to know their position along only one axis. In the early
fly embryo, patterning signals along the two major axes are largely
independent [19,20], justifying this simplification.

one cell will have errors,

x̂n = nL/N + δxn, (1)

〈(δxn)2〉 = σ 2
x . (2)

For simplicity, but guided by the experimental observations
[10,12,21], we assume that σx is the same for all cells and
that the distribution of δxn is Gaussian (Appendix A). Here we
are interested in the question of whether cells get signals that
define the correct ordering along the axis so that x̂n+1 > x̂n

for all cells or whether they can get crossed signals such that
x̂n+1 < x̂n.

If we look at two neighboring cells, then the probability of
incorrect ordering is

Pcross ≡ Pr(x̂n+1 < x̂n). (3)

To find the probability of a wrong ordering we can take a
look at the distribution of the distance to the next cell y =
x̂n+1 − x̂n. However, since both x̂n+1 and x̂n are Gaussian, their
difference y is also Gaussian, with mean equal to 〈y〉 = L/N .
If the noise is independent in each cell, then the variance of
this difference signal will be 〈(δy)2〉 = 2σ 2

x . Incorrect order-
ing happens when y < 0, which then has probability

Pcross =
∫ 0

−∞

dy√
4πσ 2

x

e−(y−L/N )2/4σ 2
x (4)

= 1√
4π

∫ ∞

1/z
dx e−x2/4, (5)

with z = σx(N/L), as shown in Fig. 2. If positional errors
are comparable to the spacing between cells, σx ∼ L/N , the
probability of an error is nearly 24%.

To make more quantitative statements we need a precise
estimate of the number of cells N . Observations on the spacing
between nuclei, or their areal density, reach back 40 years
[22]. Recent measurements are broadly consistent, but with
substantial variations [23,24]; it is not clear whether variations
in density are correlated with variations in embryo length
to result in more reproducible values of N . As explained in
Appendix B, we have used images such as those in Fig. 1(b)
to count the number of nuclei in the central 80% of the
embryo, along the relatively straight dorsal side; the standard
deviation across embryos is less than 5%. Assuming that the
same density continues to the ends of the embryo, we have
N = 90 ± 4, which means that positional error is slightly
less than the spacing between cells σx ∼ 0.9(L/N ). Figure 2
then predicts that neighboring cells will cross signals with
approximately 20% chance, and if the signals are indepen-
dent the probability that all N come in the right order is
vanishingly small.

This failure to specify unique cellular identities can be
given a simple information-theoretic interpretation. To spec-
ify one cell uniquely out of N requires Iunique = log2 N bits
of information [25,26]. On the other hand, if we have sig-
nals that represent a continuous position x drawn uniformly
from the range 0 < x � L and these signals have Gaussian
noise with (small) standard deviation σx, as described above,
then the amount of information the signal conveys about
position is

Iposition = log2 L − log2(
√

2πeσx ), (6)
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FIG. 2. Probability of crossed signals between two neighboring
cells as a function of the positional error, assuming that noise is
independent in each cell, from Eq. (5). Dashed vertical line marks
the experimental value of positional noise σx ∼ 0.01L, which corre-
sponds to less than the mean distance between neighboring cells L/N
[12].

where the first term is the entropy of the uniform distribution
of positions and the second term is the entropy of the Gaussian
noise distribution [26]. Combining these, we can define an
information gap

Igap ≡ Iunique − Iposition = log2

(
Nσx

L

√
2πe

)
. (7)

As discussed below, we obtain a more accurate estimate of
the information gap by averaging over measurements of σx

at multiple points along the embryo, defined by the pair-rule
stripes, and we find Igap = 1.68 ± 0.07 bits (Appendix A).
Importantly, this gap is measured per cell: It is not that the
embryo is missing approximately 1.7 bits of information, but
rather that every cell is missing this information.

III. EXTRA INFORMATION FROM CORRELATIONS

A. Theory

To address the information gap directly, we leverage the
concept that correlated noise can facilitate enhanced infor-
mation transmission. Correlated noise typically is viewed as
challenging because it resists being averaged away. However,
in the context of neighboring cells making errors in posi-
tion, correlations mitigate the probability of receiving crossed
signals as previously defined. Here we develop these consid-
erations more formally.

Information is roughly the difference in entropy between
the signal and the noise, where entropy measures the (loga-
rithmic) volume in phase space that is occupied by a set of
points. When random variables become correlated, the vol-
ume and hence the entropy is reduced, even if the variances of
the individual variables are unchanged. In our example, with
correlations, the full pattern of points {x̂1, x̂2, . . . , x̂N } fills a
smaller volume in the space [0, L]N of possible positions for
all the cells, and thus the embryo as a whole has access to
more positional information.

(a)

(b)

FIG. 3. Extra information from correlations, as a function of the
correlation length. (a) Numerical results for N = 50 and 100 from
Eq. (9) with the correlation matrix in Eq. (10); analytic results for
N → ∞ are from Eq. (15). Compare with the information gap from
Appendix A (black solid line bracketed by dashed error bars). The
intersection at ξ = (19.5 ± 1.9)(L/N ) is marked by a vertical line
and arrow. (b) Probability Perror of at least two signals being crossed,
x̂n+1 < x̂n, in a line of N = 90 cells, with σx/L = 0.01.

More formally, we can define the correlation matrix C,

〈δxnδxm〉 = σ 2
x Cnm, (8)

with diagonal elements Cnn = 1. Assuming again that the
noise δxn is Gaussian, the reduction in noise entropy for the
entire set of variables {δxn} is given by the determinant of this
matrix [26],

�S = − 1
2 log2 det C bits, (9)

and this reduction in entropy is the gain in information.
Entropy is an extensive quantity, so when N is large the
information gain per cell �S/N is finite. Can this be large
enough to compensate for the information gap Igap?

We expect that the correlation between fluctuations of
positional signals in different cells depends on their spatial
separation. Then Cnm is a function of the distance between
cells n and m, dnm = |n − m|L/N . A natural functional form
is an exponential decay of correlations,

Cnm = e−dnm/ξ , (10)

with correlation length ξ . This is what we would see if signals
were encoded in the gradient of a single molecular species
that has a lifetime τ and diffusion constant D, with ξ = √

Dτ .
Although this is oversimplified, it is useful for building in-
tuition about how the range of correlations determines the
additional information. Within this model it is straightforward
to evaluate �S numerically, with results shown in Fig. 3(a).

We can also give an analytic theory for �S in the large-N
limit, leading to Eq. (15), below. If we define eigenvalues and
eigenvectors of the matrix Cnm,

∑
m

Cnmφμ
m = λμφμ

n , (11)
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then we have

�S = −1

2

∑
μ

log2 λμ bits. (12)

In the limit of large N at fixed N/L, the ends of the embryo
are far away and there is an effective translation invariance.
This means that the eigenvectors φμ

n are complex exponen-
tials, φμ

n ∝ exp(iqμn), or equivalently that the matrix Cnm is
diagonalized by a discrete Fourier transform;2 allowed values
of qμ are in the interval −π � q < π . Then as N → ∞ we
find the eigenvalues

λ(q) →
∞∑

n=−∞
e−|n|L/Nξ eiqn = sinh(L/Nξ )

cosh(L/Nξ ) − cos(q)
(13)

and the change in entropy

�S/N → −1

2

∫ π

−π

dq

2π
log2 λ(q) (14)

= −1

2
log2(1 − e−2L/Nξ ). (15)

In Fig. 3(a) we see that this analytic result agrees with nu-
merical results at N = 50 and 100, which agree with one
another, confirming that the fly embryo is large enough for the
entropy to be extensive. We conclude that an information gap
of approximately 1.7 bits can be closed if correlations extend
over distances ξ = (19.5 ± 1.9)(L/N ) ∼ 0.2L. Lott et al. saw
significant correlations across this range of distances for all
the genes that they probed [17], and combinations of gap-gene
protein levels have even longer correlation lengths [18].

Beyond the perhaps abstract information-theoretic mea-
sures, we can evaluate the probability that all cells receive
signals that are in the correct order, that is, x̂n+1 > x̂n for
all n = 1, 2, . . . , N . If correlations extend over a distance
ξ ∼ 19.5(L/N ), then all signals will have the correct ordering
in approximately 98% of embryos, as illustrated in Fig. 3(b).

We emphasize that correlations extending over ξ ∼ 0.2L
do not require special mechanisms to connect these long dis-
tances. As noted above, if the relevant signals are carried by a
single molecule with diffusion constant D and lifetime τ , we
expect that fluctuations in concentration will have a correla-
tion length ξ ∼ √

Dτ . In a network of interacting molecules,
as with the gap genes in the fly embryo, the role of τ is played
by relaxation times for the network as a whole, and these
emergent timescales can be much longer than the lifetime of
the individual species because of feedback [18,27].

B. Experiment

To close the positional information gap, we predict that
the noise in positional signals should be correlated over dis-
tances ξ ∼ 0.2L. These distances are long compared to the
separation between neighboring cells. The first indication that
such correlations exist came from experiments marking the

2The discreteness is important. If we take a continuum limit so
that the sum in Eq. (13) becomes an integral, the calculation is a bit
simpler but leads to a significant overestimate of �S, even at large
values of ξN/L.

boundaries of gene-expression domains as seen through mea-
surements of mRNA for selected gap genes and the pair-rule
gene eve [17]. At the same time, it was reported that fluctua-
tions in the concentration of a single-gap-gene product protein
are correlated only over short distances [28]. Analyzing simul-
taneous measurements on protein concentrations of four gap
genes demonstrated that different combinations or modes of
the network have different correlation lengths [18]; the longest
correlation lengths are a significant fraction of the length of
the embryo. Finally, errors in the position inferred from gap-
gene-expression levels are reduced if we allow for alignment
by translation along the x/L axis, indicating that errors in
relative position are smaller than errors in absolute position
[21]. All of this suggests that the noise in positional signals is
spatially correlated. Can we make this more quantitative?

We analyze the experiments in Ref. [10], which used
immunofluorescence stainings to measure spatial profiles of
protein concentration for three of the pair-rule genes eve, prd,
and rnt (Fig. 1). The data include Nem = 109 embryos, fixed
and stained in the time window from 35 to 60 min after the
start of nuclear cycle 14. This is the period of cellularization,
and as in previous work the progress of the cellularization
membrane provides a time marker with an accuracy of 1 min
[16]. For each of the three genes, the seven peaks in the striped
concentration profile can be found automatically, and their
locations vary linearly with time throughout this period [29].
If we do not correct for this systematic dynamical behavior,
the variance of stripe positions will be large and their fluctu-
ations will be correlated, artificially. We consider the noise in
position to be the deviation from the best-fit linear relation for
each individual stripe marker. The standard deviations then are
consistently slightly below σx ∼ 0.01L and the distribution of
fluctuations is well approximated by a Gaussian. These results
agree with previous work [10,12,29] and are summarized in
Appendix A.

Before analyzing correlations, we can use these data to
make a more precise estimate of the information gap. If each
cell has access to a positional signal with errors σx(n), which
might vary with n, the average positional information avail-
able to a single cell is

Iposition = log2 L − 〈 log2[
√

2πeσx(n)]
〉
n
, (16)

where 〈· · · 〉n denotes an average over cells, generalizing
Eq. (6). Rather than making inferences about single cells,
we have direct access to the signals that mark the locations
of the stripes in the expression of three pair-rule genes, for
a total of 21 features spread across half the AP axis. The
mean separation between the nearest stripes is �x̄ = 0.023L,
just a few times larger than the spacing between cells. Rather
than introducing a model that would interpolate, we take the
stripe positions themselves as the signals xn, now with n =
1, 2, . . . , 21, and the average in Eq. (16) becomes an average
over stripes.

The challenge in evaluating the positional information is
that random errors in our estimates of the errors σx(n) become
systematic errors in estimates of information. This problem
of systematic errors was appreciated in the very first efforts
to use information-theoretic concepts to analyze biological
experiments [30]. The analysis of neural codes has been an
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FIG. 4. Correlations between noise in peak positions of the eve,
run, and prd stripe patterns, from Eq. (17), as a function of the mean
separation between stripes. Error bars are estimated from the stan-
dard deviation across random halves of the data. With three genes,
each having seven stripes, we observe (21×20)/2 = 210 distinct
elements of the correlation matrix Cnm. The red solid line is a smooth
curve to guide the eye.

important testing ground for methods to address these errors
[31–33]; for a review see Appendix A.8 of Ref. [26]. The ap-
proach we take here uses the fact that naive entropy estimates
depend systematically on the size of the sample; if we can
detect this systematic dependence then we can extrapolate to
infinite data, as described in Appendix A. The result is that
Igap = 1.68 ± 0.07 bits/cell.

The idea of positional information is that cells have ac-
cess to a signal that represents position along the axis of the
embryo [2,21]. In the discussion above we have taken this
idea at face value, identifying the signal in each cell as x̂n.
However, the signals we observe are the positions of stripes
in three different pair-rule genes, and the different stripes for
each gene are controlled by different enhancers responding
to distinct combinations of transcription factors. We need
to test the hypothesis that these multidimensional molecular
concentrations encode a single positional variable.

We are looking at fluctuations in the positions of the
stripes, δxn. Figure 4 shows the elements of the correlation
matrix

Cnm ≡ 〈δxnδxm〉
[〈(δxn)2〉〈(δxm)2〉]1/2

(17)

as a function of the mean separation �x̄nm between stripes n
and m measured along the dorsal side of the embryo, starting
with images as in Fig. 1. We see that, within experimen-
tal error, the correlations really are a function of distance.
There is no obvious pattern linked to the identity of the en-
hancers that control these different features or to the identity
of the transcription factors to which the enhancers respond:
Nearby stripes are highly correlated, the decay of correla-
tions with distance is the same whether we are looking at
correlations between the same or different genes, and different
pairs of stripes with the same mean separation have the same

correlation.3 This suggests that, as in the theoretical discus-
sion above, we can think about an abstract positional signal
that is transmitted to each cell and controls the placement of
the pair-rule stripes. Correspondingly, there are strong indica-
tions that the correlations are inherited from the structure of
the noise in gap-gene expression (Appendix D). We see the
same results along the ventral side of the embryo, though with
larger errors because of difficulties associated with curvature
of the contour.

Qualitatively, the correlations that we see in Fig. 4 decay
over distances ξ ∼ 0.2L, consistent with the scale needed to
close the information gap and with early measurements [17].
Quantitatively, the decay of correlations is not well described
by a single exponential function of distance, so we cannot sim-
ply transcribe the predictions of the theory. Instead, we would
like to make a direct estimate of the positional information
from the data. Conceptually this is simple: We estimate the
correlation matrix from the data and then compute the (log-
arithm of the) determinant of this matrix following Eq. (9).
As with the information gap itself (above), the problem is
that random errors in our estimates of individual matrix el-
ements become systematic errors in the entropy. We follow
the same strategy of identifying the dependence of this error
on the number of embryos that we include in our analysis and
extrapolating to large data sets (Appendix C).

We emphasize that our estimates of �S/N are based on
the joint distribution of the stripe positions, ultimately includ-
ing all 21 measured stripes. We are able to make progress
because the distribution of positional noise is well approx-
imated as Gaussian (Appendix A), so the 21-dimensional
distribution is summarized by the 21×21 matrix Cnm and we
can thus estimate the information per stripe contained in the
entire pattern. These information measures are independent
of the molecular mechanisms that give rise to the underlying
correlations.

By definition, to see the extra information hidden in corre-
lations we have to look at the positions of multiple stripes.
We start with two neighboring stripes and gradually work
toward all N = 21 stripes; results are shown in Fig. 5. Note
that at each N we are measuring an information gain per stripe,
and small differences among the stripes are included in our
error bars. The added information grows to �S/N = 1.65 ±
0.08 bits/stripe, and we see that this is relatively constant for
N � 19 stripes. This suggests that our analysis includes dis-
tances long enough to capture all of the relevant correlations,
so �S becomes truly proportional to N , as in the discussion of
Fig. 3(a). Strikingly, this plateau matches the information gap
Igap = 1.68 ± 0.07 bits/cell within errors.

3We see hints of weak negative correlations at long distances also in
our analysis of the gap genes (Appendix D), although the error bars
make these measurements consistent with zero. Negative correlations
between individual gene-expression levels emerge naturally in net-
works with mutually repressive interactions, as with the gap genes,
but it is unclear how these would project into errors in position.
Small negative correlations at long distances could also be spuri-
ous, resulting from imperfect azimuthal alignment of the embryos
(Appendix A).

013016-5



LAUREN MCGOUGH et al. PRX LIFE 2, 013016 (2024)

FIG. 5. Extra information from correlations, �S/N , computed
from the observed correlations in pair-rule stripe fluctuations Cnm

through Eq. (9), including different numbers of contiguous stripes.
Circles and error bars (blue) are the extrapolated estimates from
Appendix C. Red dashed lines are plus or minus one standard er-
ror of the mean around the best estimate of the information gap
Igap = 1.68 ± 0.07 bits/cell from Appendix A.

IV. DISCUSSION

There is strong evidence that, early in embryonic devel-
opment, each cell acquires a distinct identity [11]; it is less
clear how this information is encoded. In the fruit fly em-
bryo, positional information along the anterior-posterior axis
is orchestrated through a sequential cascade involving three
primary maternal inputs, a select number of gap genes, and the
pair-rule genes. The conventional perspective suggests that the
information flow through this cascade entails a gradual refine-
ment, with noisy inputs ultimately generating a precise and
reproducible pattern [34,35], in the spirit of the Waddington
landscape [36].

In contrast to the picture of noisy inputs and precise out-
puts, at least one maternal input itself exhibits a high level of
precision, consistently reproducible across embryos [28,37].
Moreover, the expression levels of gap genes within a sin-
gle cell prove sufficient to determine positions with an error
smaller than the distance between neighboring cells [10,12].
Notably, this precision agrees with that observed in down-
stream events such as the pair-rule stripes. In parallel, crucial
developmental events exhibit highly reproducible temporal
trajectories [38]. These quantitative observations challenge
the conventional view of refinement and error correction,
supporting instead a precisionist perspective in which locally
available information is processed and preserved with near op-
timal efficiency. Given that all relevant molecules are present
at low copy numbers, this places significant constraints on the
architecture of the underlying networks [38–41].

Despite their precision, local signals in the fly embryo
do not quite provide enough information to uniquely spec-
ify all N = 90 ± 4 cellular identities along the AP axis,
Iunique = log2 N : Errors in the position that a cell can in-
fer from molecular concentrations come from a distribution
and distributions have tails [12]. The result is that there is

a substantial (approximately 25%) gap between the infor-
mation provided by the gap genes, or the pair-rule stripes,
and Iunique.

Previous measurements have characterized the noise in
local estimates of position for each cell individually; however,
there are many hints from previous work that this noise is
correlated [12,17,18]. Extra information can be hiding in these
correlations, and we have seen in Sec. III A that if corre-
lations extend over distances ξ ∼ 0.2L then this would be
enough to close the information gap. This prompts a more
detailed examination of the noise correlations, which really
do seem to be a function of distance independent of gene
identity (Fig. 4).

The perhaps surprising conclusion of Sec. III B is that
the extra information contained in the correlations, �S/N ,
matches the information gap Igap almost perfectly, with an
error bar of less than 2%:

Igap − �S/N = (0.0048 ± 0.0162)Iunique. (18)

This agreement strongly supports the precisionist view of
information flow in this system.

Historically, the lack of precise data on gene-expression
levels, with uncertainties extending to factors of 2, led to skep-
ticism regarding the relevance of more refined measurements
to general mechanisms of genetic control. These expecta-
tions stood in contrast, for example, to our understanding of
signaling in rod photoreceptors, where the quantitative repro-
ducibility of responses to single molecular events provides
important constraints on the underlying biochemical mecha-
nisms [42].

The fly embryo has provided a laboratory within which
to explore precision vs noisiness in the function of an
intact living system. We have seen reproducible protein and
mRNA concentrations across embryos with an accuracy of
10% [16,28,37], and these concentrations encode position
with an accuracy of approximately 1% of the embryo’s
length [10,12,21]. The present study adds a layer to this
understanding, demonstrating that the available positional
information, including the subtle effects of correlated noise,
matches the threshold for specifying unique cellular identities,
and this match itself has an accuracy of better than 2%.
Beyond the fly embryo, these results suggest a more general
conclusion: Quantitative measurements in living systems
merit serious consideration, even at high precision, as in other
areas of physics.
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APPENDIX A: STATISTICS OF INDIVIDUAL STRIPES

The raw data for our analyses are the profiles of fluores-
cence intensity vs position along the length of the embryo,
as in Fig. 1. These embryos have been fixed and stained with
antibodies against the proteins encoded by the pair-rule genes
eve, prd, and rnt and fluorescently tagged antibodies against
those antibodies [10]. Independent experiments demonstrate
that these classical staining methods, used carefully, yield flu-
orescence intensities that are linear in protein concentrations
[16]. The data set used here, which contains a large number of
wild-type embryos, comes from Ref. [10].

We briefly summarize the imaging protocol and describe
the procedure for localizing the stripe positions. Images are
taken in the midsagittal plane showing a row of nuclei along
the dorsal and ventral side of the embryo. For consistency
and to avoid geometric distortion, we focus on the dorsal
profiles, as was done previously (but see Fig. 11 below).
In order to include the entire embryos in a single image,
large field-of-view images, with a pixel size of 445 nm, are
acquired with a 20×0.7 numerical aperture (NA) objective
on a Leica SP5 confocal microscope. Fluorescence intensity
is averaged inside a sliding window of the size of a nucleus
and the position of the window center is recorded. In a given
embryo, positions of the seven stripes are first roughly iden-
tified by finding local maxima in the profile of an individual
embryo. To make this quantitative, we tried several methods.
First, we used an iterative procedure in which the mean peak
shape is used as a template [29]. Second, we fitted a model
of seven Gaussians with variable amplitudes and widths to
the entire profile. Finally, we fitted individual Gaussians to
each stripe, using a window centered on the local maximum
with a width of 5% the embryo length. These methods give
consistent results, and importantly global fits do not generate
larger correlations than local fits. In the end, we use the local
Gaussian fits, as in Fig. 6(a).

The age of embryos is estimated to 1-min precision in
nuclear cycle 14 by measuring the length of the cellularization
membrane [12]. At 30 min into this cycle, the stripes of prd
first start to become visible and the other two genes have
well-defined stripes by that time, so we confine our attention
to t > 30 min.

Stripe patterns are dynamic, with positions that depend on
time. If we do not take account of this systematic variation,
then across an ensemble of embryos with different ages we
would see artificial correlations among fluctuations in stripe
position. For example, we would see an artificial negative cor-
relation between the first and the last stripe position because
they move in the opposite direction (towards the middle of
the embryo) during the course of the nuclear cycle 14. Stripe
movement is small, however, and we can use a linear fit to
remove the effect of the temporal shifts, separately for each of
the 21 stripes, across the population of embryos:

xn(t ) = xn(t0) + sn(t − t0). (A1)

Results are shown in Figs. 6(b) and 6(c). For each embryo we
find an equivalent position of all the stripes at a reference time
t0 = 45 min [29]. Attempts to fit the shifts with more complex
functions of time do not reduce the variance σ 2

x (n) nor do they
change the correlations Cnm.

(a
.u
.)

FIG. 6. Pair-rule stripe positions. (a) Concentration of Eve pro-
tein in a single embryo. Colored circles indicate regions which were
fitted with a Gaussian function to calculate the stripe position. Each
stripe is fitted individually, with fits shown in red. Red triangles indi-
cate the centers of each fitted peak. (b) Stripe positions as a function
of time in the nuclear cycle 14. Linear fits from Eq. (A1) are shown
as black lines. (c) Peak positions xn(t0) corrected to t0 = 45 min.
(d) Positional error of the pair-rule stripes. The magnitude of the
error σx (n) is plotted against the mean position x̄n for each of the
eve, prd, and rnt stripes. Errors in x̄n are standard errors of the mean;
errors in σx are standard deviations across random halves of the data.
Dashed line marks the rough estimate σx/L ∼ 0.01.

Another possible experimental source of artificial corre-
lations is the azimuthal orientation of the embryo. Pair-rule
stripes splay outward from the dorsal to the ventral side,
and errors in azimuthal orientation would generate correlated
errors in position. The errors are small for nearby stripes
and negative for the most separated stripes. If we make az-
imuthal errors of approximately 10◦, then for the first and
seventh stripes there would be positional errors approximately
±0.003L, which would generate a correlation coefficient ap-
proximately equal to −(0.003/0.01)2 ∼ −0.09; importantly
this is much smaller for stripes that are closer together. Even
though long-distance correlations in Figs. 4 and 10(c) are
both zero within the error bar, the experimental uncertainty in
azimuthal orientation might explain why the mean correlation
coefficient dips below zero when �x/L > 0.35.
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With xn the position of each pair-rule stripe, we have the
mean and variance

x̄n = 〈xn〉, (A2)

σ 2
x (n) = 〈(xn − x̄n)2〉, (A3)

where 〈· · · 〉 denotes an average over our complete experimen-
tal ensemble of Nem = 109 embryos. Results are shown in
Fig. 6(d), where we confirm that positional errors are almost
all smaller than 1% of the embryo length.

Beyond measuring the variance, we can estimate the dis-
tribution of positional errors. Since the different stripes have
slightly different σx, we normalize the positional errors for
each stripe individually,

zn = (xn − x̄n)/σx(n). (A4)

With this normalization we can pool across all 21 stripes, and
we estimate the distribution of z as usual by making bins and
counting the number of examples in each bin, with results
shown in Fig. 7(a). Qualitatively, the distribution is close
to being Gaussian, but what matters for our analysis is the
entropy of this distribution.

When we estimate a probability distribution and use this
estimate to compute the entropy, the random errors in the
distribution that arise from the finiteness of our sample be-
come systematic errors in the entropy. The general version
of this problem goes back to the very first efforts to use
information-theoretic concepts to analyze biological exper-
iments [30]; for a review see Appendix A.8 of Ref. [26].
Briefly, naive entropy estimates depend systematically on the
size of the sample, and if we can detect this systematic de-
pendence we can extrapolate to infinite data, thus providing
an unbiased estimate of the entropy. In Fig. 7(b) we show the
difference between the entropy of the estimated distribution
P(z) and the entropy of a Gaussian. We see that when we base
our estimates on Nem embryos there is a (small) term approxi-
mately equal to 1/Nem, as expected. Extrapolating Nem → ∞,
we see that the entropy difference goes to zero within the
small (less than 0.01 bit) error bars. We conclude, for the
purposes of our discussion, that it is safe to approximate the
positional errors as being Gaussian.

Finally, we can use the same extrapolation methods to
provide a better estimate of the information gap defined in
the main text. Equation (16) defines the positional information
contained in the local signals, Iposition, and the information gap
is the difference between this and Iunique = log2 N . Figure 7(c)
shows the values of

Igap = Iunique − Iposition =
〈

log2

(√
2πe

Nσx(n)

L

)〉
n

(A5)

estimated from fractions of our data set and then extrapolated.
The result is Igap = 1.68 ± 0.07 bits/cell.

APPENDIX B: COUNTING NUCLEI

We quantify the number of nuclei in a single row (one
dimension) along the AP axis using living Drosophila em-
bryos that express a transgene with fluorescently labeled
histone on the second chromosome (his-RFP/CyO). Embryos
are imaged in a Zeiss LSM880 confocal microscope with a

FIG. 7. (a) Estimate of the distribution of normalized errors (A4).
Positional errors are well approximated as Gaussian. Open circles
are means pooled across all stripes and embryos, error bars are
standard deviations across random halves of the embryos, and the
line is the Gaussian with zero mean and unit variance. (b) Entropy
difference between this estimated distribution and the Gaussian, as
a function of the (inverse) number of embryos we include in our
analysis. Cyan points are examples from random choices out of the
full ensemble of embryos, open circles with error bars are the mean
and standard deviations of these points, and the line is a linear extrap-
olation [26,30–33]. (c) Estimates of the information gap (A5). Cyan
points are examples from random choices out of the full ensemble of
embryos, blue open circles with error bars are the mean and standard
deviations of these points, and the line is a linear extrapolation to
Igap = 1.68 ± 0.07 bits/cell.

20×0.8 NA objective and pinhole equivalent to 1 Airy unit.
Pixel size is 0.35 µm, corresponding to about 7% of the size of
the nucleus. We acquire a z-stack that includes the midsagittal
plane during the middle of nuclear cycle 14. Both fluorescent
and bright-field image stacks are collected using a z-step of
1 µm. From this stack, the midsagittal plane is identified by
inspection of the largest extent of the embryo, where the
embryo edge is in focus.

A mask of the embryo is created from the bright-field
image using edge detection to separate the embryo from the
uniform background (custom code in PYTHON). The embryo
length L is measured as the length of the straight line from the
most anterior to the most posterior points of the mask. This
line defines the AP axis, from which we determine the central
80% [Fig. 8(a)]. We manually count the number of nuclei
along the middle 80% (from 10% to 90% of L) of the dorsal
side [Fig. 8(b)]. We count 72 ± 3 nuclei (n = 26 embryos)
in the middle 80% [Fig. 8(c)], which corresponds to 90 ± 4
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FIG. 8. Counting nuclei in nuclear cycle 14. (a) Fluorescence
image of an embryo with labeled histones highlighting the nuclei
underlaid with a bright-field image of the same embryo. Focus is
on the midsagittal plane. (b) Close-up of the central 80% on the
dorsal side, showing that we can count nuclei by hand. (c) Results
from n = 26 embryos. Histogram has a mean plus or minus standard
deviation of 72 ± 3.

nuclei for the entire length of the AP axis assuming uniform
nuclear density along the one-dimensional line. The error bar
of the nuclear count includes both embryo-to-embryo variabil-
ity and ambiguities in nuclear identification during counting.

APPENDIX C: ENTROPY ESTIMATES

Figure 9 shows estimates of the extra information �S/N
[Eq. (9)] based on measurements in different numbers of
embryos, for N = 10 and 20 contiguous pair-rule stripes. We
see the expected dependence on 1/Nem, and the steepness of
this dependence is twice as large at N = 20 than at N = 10,

FIG. 9. Entropy reduction by correlations among the pair-rule
stripe fluctuations, estimated from different numbers of embryos
Nem, for (a) N = 10 stripes and (b) N = 20 stripes. Cyan points are
examples from random choices out of the full ensemble of embryos,
open blue circles with error bars are the mean and standard deviations
of these points, and the line is a linear extrapolation to the square.

as expected [26]. This gives us confidence in the extrapolation
Nem → ∞ [26,30–33].

APPENDIX D: ORIGIN OF THE CORRELATIONS

The precision of pair-rule stripe placement matches, quan-
titatively, the noise in optimal estimates of position based on
the local expression levels of the gap genes [10,12]. To be
consistent with this result, the correlations should also be
visible in the gap genes. As noted above, Lott et al. saw
correlations in expression boundaries for selected gap genes
[17], and later measurements showed that combinations of
gap-gene-expression levels have correlations extending over
a significant fraction of the embryo [18]. Here we revisit these
measurements and connect fluctuations in gap-gene expres-
sion to positional noise. Note that for the pair-rule genes we
can work directly with the positions of the stripes, but for
the gap genes we have to think more carefully about how
positions are encoded in expression levels.

We start with a brief review of ideas about decoding
positional information [10]. Measurements of gap-gene ex-
pression in multiple embryos provide samples from the
conditional distribution P({gi}|x), at all values of the position
x along the anterior-posterior axis; we focus on the d = 4
gap genes expressed in the middle approximately 80% of the
embryo, hunchback, giant, krüppel, and knirps. To a good
approximation this distribution is Gaussian,

P({gi}|x) = 1

Z (x)
exp

(
−1

2
χ2({gi}; x)

)
, (D1)

Z (x) = [(2π )d det Ĉ(x)]1/2, (D2)

χ2({gi}; x) =
d∑

i, j=1

[gi − ḡi(x)][Ĉ−1(x)]i j[g j − ḡ j (x)],

(D3)

where ḡi(x) is the mean expression level of gene i at position
x and

[Ĉ(x)]i j = 〈δgiδg j〉x (D4)

is the covariance matrix of fluctuations around these means.
To decode the position of a cell from the local expression
levels we need to construct

P(x|{gi}) = P({gi}|x)P(x)

P({gi})
. (D5)

However, because nuclei are arrayed uniformly along the
length of the embryo, P(x) is uniform and hence the depen-
dence on x is captured in Eq. (D1).

A cell at the actual position xtrue has expression levels

gi = ḡi(xtrue ) + δgi, (D6)

and if the positional noise is small we can write

ḡi(x) = ḡi(xtrue ) + (x − xtrue )
dḡi(x)

dx

∣∣∣∣
x=xtrue

+ · · · , (D7)

which we substitute into P(x|{gi}). With uniform prior P(x) =
1/L, the best estimate of x maximizes P({gi}|x). In prin-
ciple, there is a contribution from the normalization Z (x),
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or more generally from derivatives of the covariance matrix
Ĉ(x). However, if the noise level is small these contributions
to maximizing P({gi}|x) are suppressed by a factor of the
noise variance itself. Unless Ĉ(x) varies very rapidly with
x—and we have checked that it does not—this is sufficient
to make minimizing χ2 a good approximation to maximizing
P({gi}|x). This estimate can be written as

x̂ = xtrue + δx, (D8)

δx(xtrue ) =
⎛
⎝σ 2

x (x)
d∑

i, j=1

δgi[Ĉ
−1(x)]i j

dḡ j (x)

dx

⎞
⎠

x=xtrue

, (D9)

FIG. 10. Decoding gap-gene-expression levels in a single em-
bryo and correlations in the resulting pattern of positional errors.
(a) Expression of Hb (blue), Kr (green), Gt (red), and Kni (cyan).
Thin solid lines are means across Nem = 38 embryos in a small win-
dow 40 � t � 44 min in nuclear cycle 14; dense points are data from
a single embryo [10]. (b) Positional errors computed from Eq. (D9).
(c) Correlations in the positional noise inferred from gap-gene ex-
pression. For each embryo α we compute the correlation function in
Eq. (D12) and then normalize to give C̃(�x) = C(�x)/C(0). Blue
circles with error bars are mean and standard error across Nem = 38
embryos; the red solid line is a smooth curve to guide the eye.

where the variance of positional noise is defined by

1

σ 2
x (x)

=
d∑

i, j=1

dḡi(x)

dx
[Ĉ−1(x)]i j

dḡ j (x)

dx
; (D10)

for consistency we have

〈[δx(x)]2〉 = σ 2
x (x). (D11)

Note the connection to Eqs. (1) and (2) in Sec. II.
Previous work has emphasized the scale of positional

errors σx [10,12,21]. However, the optimal decoding of gap-
gene-expression levels [10] maps the deviation of expression
levels from the mean into a decoding error for each em-
bryo individually, as in Eq. (D9). An example is in Fig. 10,
where the small fluctuations of expression levels around the
mean [Fig. 10(a)] translate into proportionally small errors δx
[Fig. 10(b)].

For each embryo α we can take the positional errors δxα (x)
and compute the correlation function

Cα (�x) = 1

L − �x

∫
dx δxα (x)δxα (x + �x). (D12)

Figure 10(c) shows the mean and standard error of the normal-
ized correlation function across all Nem = 38 embryos in our
experimental ensemble. Qualitatively, correlations in the po-
sitional noise encoded by the gap genes extend over distances
similar to the correlation in positional noise of the pair-rule
stripes (Fig. 4). Quantitatively, the gap-gene correlations in-
clude an additional component with a short correlation length.
One possibility is that this component is averaged away by
interactions among neighboring cells during expression of the
pair-rule stripes. Another possibility is that a modest fraction
of the noise in gap-gene expression reflects local noise in the
measurements, as discussed previously [16]; this measure-
ment noise has only a small impact on our estimates of the
effective noise σx but a larger impact on the shape of the cor-
relation function. It seems likely that both effects contribute.

FIG. 11. Correlations between noise in peak positions of the
eve, run, and prd stripe patterns, as in Fig. 4, but with stripe po-
sitions measured along the ventral side of the embryo. Error bars
are estimated from the standard deviation across random halves of
the data. With three genes, each having seven stripes, we observe
(21×20)/2 = 210 distinct elements of the correlation matrix Cnm.
The red solid line is a smooth curve to guide the eye.
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Nonetheless, it is clear that relatively long-range correlations,
which are crucial to closing the information gap, are present
already in the gap-gene-expression levels, as suggested in
earlier work [12,17,18].

While new experiments will be needed to estimate
the information that is encoded in the gap-gene correlations,
one can ask how the different gap genes are contributing
to these correlations. In particular, it is interesting that the
correlations at long distances depend on correlations among
different combinations of genes. As an example, near x/L =
0.4 only Hb and Gt have strongly nonzero expression, so it
is some combination of fluctuations in the expression lev-
els of these two genes that determines the local positional
error. Near x/L = 0.6, however, only Kr and Kni have sig-
nificant expression, and so positional errors are determined

by a combination of expression fluctuations in these two
genes. However, the data show that positional noises at points
separated by �x/L ∼ 0.2 are correlated. Thus, not only are
fluctuations in gene-expression levels correlated over long
distances, but the relevant correlations are among different
genes, as emphasized previously by Krotov et al. [18]. It is
plausible that these intergene correlations are a signature of
interactions in the gap-gene network, which can propagate
along the length of the embryo via diffusion.

Finally, as a check, we redo the analysis of Fig. 4 using
measurements of stripe positions along the ventral edge of
the embryo. We expect to see essentially the same pattern of
correlations, although with larger errors since measurements
along a curved contour are more challenging. This is what is
shown in Fig. 11.
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