
The Stata Journal (2024)
24, Number 1, pp. 3–45 DOI: 10.1177/1536867X241233641

ddml: Double/debiased machine learning in
Stata

Achim Ahrens
ETH Zürich

Zürich, Switzerland
achim.ahrens@gess.ethz.ch

Christian B. Hansen
University of Chicago

Chicago, IL
christian.hansen@chicagobooth.edu

Mark E. Schaffer
Heriot-Watt University

Edinburgh, U.K.
m.e.schaffer@hw.ac.uk

Thomas Wiemann
University of Chicago

Chicago, IL
wiemann@uchicago.edu

Abstract. In this article, we introduce a package, ddml, for double/debiased
machine learning in Stata. Estimators of causal parameters for five different
econometric models are supported, allowing for flexible estimation of causal ef-
fects of endogenous variables in settings with unknown functional forms or many
exogenous variables. ddml is compatible with many existing supervised machine
learning programs in Stata. We recommend using double/debiased machine learn-
ing in combination with stacking estimation, which combines multiple machine
learners into a final predictor. We provide Monte Carlo evidence to support our
recommendation.
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1 Introduction
Identification of causal effects frequently relies on an unconfoundedness assumption,
which is that treatment or instrument assignment is sufficiently random given observed
control covariates. Estimation of causal effects in these settings then involves condition-
ing on the controls. Unfortunately, estimators of causal effects that are insufficiently
flexible to capture the effect of confounds generally do not produce consistent estimates
of causal effects even when unconfoundedness holds. For example, Blandhol et al. (2022)
highlight that two-stage least-squares estimands obtained after controlling linearly for
confounds do not generally correspond to weakly causal effects even when instruments
are valid conditional on controls. Even in the ideal scenario, where theory provides few
relevant controls, theory rarely specifies the exact nature of confounding. Thus, applied
empirical researchers wishing to exploit unconfoundedness assumptions to learn causal
effects face a nonparametric estimation problem.
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Traditional nonparametric estimators suffer greatly under the curse of dimension-
ality and are quickly impractical in the frequently encountered setting with multiple
observed covariates.1 These difficulties leave traditional nonparametric estimators es-
sentially inapplicable in the presence of increasingly large and complex datasets, for
example, textual confounders as in Roberts, Stewart, and Nielsen (2020) or digital
trace data (Hangartner, Kopp, and Siegenthaler 2021). Tools from supervised machine
learning have been put forward as alternative estimators. These approaches are often
more robust to the curse of dimensionality via the exploitation of regularization assump-
tions. A prominent example of a machine learning-based causal-effects estimator is the
post double selection lasso (PDS-lasso) of Belloni, Chernozhukov, and Hansen (2014),
which fits auxiliary lasso regressions of the outcome and treatments against a menu of
transformed controls. Under an approximate sparsity assumption, which posits that
the data-generating process (DGP) can be approximated well by relatively few terms
included in the menu, this approach allows for precise treatment-effects estimation.
The lasso can also be used for approximating optimal instruments (Belloni et al. 2012).
Lasso-based approaches for estimation of causal effects have become a popular strategy
in applied econometrics (for example, Gilchrist and Sands [2016]; Dhar, Jain, and Jay-
achandran [2022]), partially facilitated by the availability of software programs in Stata
(pdslasso, Ahrens, Hansen, and Schaffer 2018) and R (hdm, Chernozhukov, Hansen,
and Spindler 2016).

Although approximate sparsity is a weaker regularization assumption than assuming
a linear functional form that depends on a known low-dimensional set of variables, it
may not be suitable in a wide range of applications. For example, Giannone, Lenza,
and Primiceri (2021) argue that approximate sparsity may provide a poor description
in several economic examples. Thus, there is a potential benefit to expanding the set
of regularization assumptions and correspondingly considering a larger set of machine
learners, including, for example, random forests, gradient boosting, and neural networks.
While the theoretical properties of these estimators are an active research topic (see, for
example, Athey, Tibshirani, and Wager [2019] and Farrell, Liang, and Misra [2021]), ma-
chine learning methods are widely adopted in industry and practice for their empirical
performance. To facilitate their application for causal inference in common econometric
models, Chernozhukov et al. (2018) propose double/debiased machine learning (DDML),
which exploits Neyman orthogonality of estimating equations and cross-fitting to for-
mally establish asymptotic normality of estimators of causal parameters under relatively
mild convergence rate conditions on nonparametric estimators.

DDML increases the set of machine learners that researchers can leverage for estima-
tion of causal effects. Deciding which learner is most suitable for a particular application
is difficult, however, because researchers are rarely certain about the structure of the
underlying DGP. A practical solution is to construct combinations of a diverse set of ma-
chine learners using stacking (Wolpert 1992; Breiman 1996). Stacking is a meta-learner
given by a weighted sum of individual machine learners (the “base learners”). When
the weights corresponding to the base learners are chosen to maximize out-of-sample

1. For example, the number of coefficients in polynomial series regression with interaction terms
increases exponentially in the number of covariates.
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predictive accuracy, this approach hedges against the risk of relying on any particular
poorly suited or ill-tuned machine learner.

In this article, we introduce the package ddml, which implements DDML for Stata.2
ddml adds to a few programs for causal machine learning in Stata (Ahrens, Hansen, and
Schaffer 2018). We briefly summarize the four main features of the program:

1. ddml supports flexible estimators of causal parameters in five econometric models:
a) the partially linear model, b) the interactive model (for binary treatment), c) the
partially linear instrumental-variables (IV) model, d) the flexible partially linear
IV model, and e) the interactive IV model (for binary treatment and instrument).

2. ddml supports data-driven combinations of multiple machine learners via stacking
by leveraging pystacked (Ahrens, Hansen, and Schaffer 2023), our complementary
Stata front-end relying on the Python library scikit-learn (Pedregosa et al.
2011; Buitinck et al. 2013). ddml also supports two novel approaches to pairing
DDML with stacking introduced in Ahrens et al. (2024): Short-stacking takes a
shortcut by leveraging the cross-fitted predicted values for estimating the stacking
weights, and pooled stacking enforces common weights across cross-fitting folds.

3. Aside from pystacked, ddml can be used in combination with many other existing
supervised machine learning programs available in or via Stata. ddml has been
tested with lassopack (Ahrens, Hansen, and Schaffer 2020), rforest (Schon-
lau and Zou 2020), svmachines (Guenther and Schonlau 2018), and parsnip
(Huntington-Klein 2021). Indeed, the requirements for compatibility with ddml
are minimal: any eclass program with the Stata-typical “regress y x” syntax,
support for if conditions, and a postestimation predict command is compatible
with ddml.

4. ddml provides flexible multiline syntax and short one-line syntax. The multiline
syntax offers a wide range of options, guides the user through the DDML algorithm
step by step, and includes auxiliary programs for storing, loading, and displaying
additional information. We also provide a complementary one-line version called
qddml (“quick” ddml), which uses a similar syntax to pdslasso and ivlasso
(Ahrens, Hansen, and Schaffer 2018).

The article proceeds as follows. Section 2 outlines DDML for the partially linear and
interactive models under conditional unconfoundedness assumptions. Section 3 outlines
DDML for IV models. Section 4 discusses how stacking can be combined with DDML and
provides evidence from Monte Carlo simulations illustrating the advantages of DDML
with stacking. Section 5 explains the features, syntax, and options of the command.
Section 6 demonstrates the command’s usage with two applications.

2. This article refers to version 1.4.2 of ddml.
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2 DDML with conditional unconfoundedness
This section discusses DDML for the partially linear model and the interactive model in
turn. The exposition follows Chernozhukov et al. (2018). Both models are special cases
of the general causal model

Y = f0(D,X, U) (1)

where f0 is a structural function, Y is the outcome, D is the variable of interest, X
are observed covariates, and U are all unobserved determinants of Y (that is, other
than D and X).3 The key difference between the partially linear model and the inter-
active model is their positions in the tradeoff between functional form restrictions on
f0 and restrictions on the joint distribution of observables (D,X) and unobservables
U . For both models, we highlight key parameters of interest, state sufficient identi-
fying assumptions, and outline the corresponding DDML estimator. A random sample
{(Yi, Di,Xi)}ni=1 from (Y,D,X) is considered throughout.

2.1 The partially linear model (partial)

The partially linear model imposes the estimation model

Y = θ0D + g0(X) + U (2)

where θ0 is a fixed unknown parameter. The key feature of the model is that the controls
X enter through the unknown and potentially nonlinear function g0. Note that D is
not restricted to be binary and may be discrete, continuous, or mixed. For simplicity,
we assume that D is a scalar, although ddml allows for multiple treatment variables in
the partially linear model.

The parameter of interest is θ0, the causal effect of D on Y .4 The key identifying
assumption is given in assumption 1.5

Assumption 1 (Conditional orthogonality). E{Cov(U,D|X)} = 0.

To show identification of θ0, consider the score

ψ(W ; θ,m, `) = [Y − `(X)− θ {D −m(X)}] {D −m(X)} (3)

3. Because (D,X, U) jointly determine Y in (1), the model is also dubbed the “all causes model”
(see, for example, Heckman and Vytlacil [2007]). Note that the model can equivalently be put into
potential-outcome notation with potential outcomes defined as Y (d) ≡ f0(d,X, U).

4. The interpretation of θ0 can be generalized. For example, the results of Angrist and Krueger (1999)
imply that in the general causal model (1), θ0 is a positively weighted average of causal effects
(for example, conditional average treatment effects) under stronger identifying assumptions. The
basic structure can also be used to obtain valid inference on objects of interest, such as projection
coefficients, in the presence of high-dimensional data or nonparametric estimation without requiring
a causal interpretation.

5. Discussions of partially linear models typically show identification under the stronger assumption
that E(U |D,X) = 0. We differentiate here to highlight differences between the partially linear
model and interactive model.
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where W ≡ (Y,D,X) and ` and m are nuisance functions. Letting m0(X) ≡ E(D|X)
and `0(X) ≡ E(Y |X), note that

E {ψ(W ; θ0,m0, `0)} = 0

by assumption 1. When, in addition, E[Var(D|X)] 6= 0, we get

θ0 =
E [{Y − `0(X)} {D −m0(X)}]

E
[
{D −m0(X)}2

] (4)

Equation (4) is constructive in that it motivates estimation of θ0 via a simple two-
step procedure: First, estimate the conditional expectation of Y given X (that is,
`0) and of D given X (that is, m0) using appropriate nonparametric estimators (for
example, machine learners). Second, residualize Y andD by subtracting their respective
conditional expectation function (CEF) estimates, and regress the resulting CEF residuals
of Y on the CEF residuals of D. This approach is fruitful when the estimation error of
the first step does not propagate excessively to the second step. DDML leverages two key
ingredients to control the impact of the first-step estimation error on the second-step
estimate: 1) second-step estimation based on Neyman orthogonal scores and 2) cross-
fitting. As shown in Chernozhukov et al. (2018), this combination facilitates the use
of any nonparametric estimator that converges sufficiently quickly in the first step and
potentially opens the door for the use of many machine learners.

Neyman orthogonality refers to a property of score functions ψ that ensures local
robustness to estimation errors in the first step. Formally, it requires that the Gateaux
derivative with respect to the nuisance functions evaluated at the true values is mean-
zero. In the context of the partially linear model, this condition is satisfied for the
moment condition (3),

∂r (E [ψ {W ; θ0,m0 + r(m−m0), `0 + r(`− `0)}]) |r=0 = 0

where the derivative is with respect to the scalar r and evaluated at r = 0. Heuristically,
we can see that this condition alleviates the impact of noisy estimation of nuisance
functions as local deviations of the nuisance functions away from their true values leave
the moment condition unchanged. We refer to Chernozhukov et al. (2018) for a detailed
discussion but highlight that all score functions discussed in this article are Neyman
orthogonal.

Cross-fitting ensures independence between the estimation error from the first step
and the regression residual in the second step. To implement cross-fitting, we randomly
split the sample into K evenly sized folds, denoted as I1, . . . , IK . For each fold k, the
conditional expectations `0 and m0 are estimated using only observations not in the kth
fold—that is, in Ick ≡ I \ Ik—resulting in ̂̀Ic

k
and m̂Ic

k
, respectively, where the subscript

Ick indicates the subsample used for estimation. The out-of-sample predictions for an
observation i in the kth fold are then computed via ̂̀Ic

k
(Xi) and m̂Ic

k
(Xi). Repeating

this procedure for all K folds then allows for computation of the DDML estimator for
θ0:
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θ̂n =

1
n

∑n
i=1

{
Yi − ̂̀Ic

ki
(Xi)

}{
Di − m̂Ic

ki
(Xi)

}
1
n

∑n
i=i

{
Di − m̂Ic

ki
(Xi)

}2 (5)

where ki denotes the fold of the ith observation.6

We summarize the DDML algorithm for the partially linear model in algorithm 1:7

Algorithm 1: DDML for the partially linear model
Split the sample {(Yi, Di,Xi)}ni=1 randomly in K folds of approximately equal size.
Denote Ik the set of observations included in fold k and Ick its complement.

1. For each k ∈ {1, . . . ,K}:
a. Fit a CEF estimator to the subsample Ick using Yi as the outcome and Xi as

predictors. Obtain the out-of-sample predicted values ̂̀Ic
k
(Xi) for i ∈ Ik.

b. Fit a CEF estimator to the subsample Ick using Di as the outcome and Xi as
predictors. Obtain the out-of-sample predicted values m̂Ic

k
(Xi) for i ∈ Ik.

2. Compute (5).

Chernozhukov et al. (2018) give conditions on the joint distribution of the data,
particularly on g0 and m0, and properties of the nonparametric estimators used for
CEF estimation, such that θ̂n is consistent and asymptotically normal. Standard errors
are equivalent to the conventional linear regression standard errors of Yi − ̂̀

Ic
ki
(Xi)

on Di − m̂Ic
ki
(Xi). ddml computes the DDML estimator for the partially linear model

using Stata’s regress command. All standard errors available for linear regression in
Stata are also available in ddml, including different heteroskedasticity and cluster–robust
standard errors.8

Remark 1: Number of folds. The number of cross-fitting folds is a necessary tuning
choice. Theoretically, any finite value is admissible. Chernozhukov et al. (2018) report
in remark 3.1 that four or five folds perform better than only using K = 2. Based on
our simulation experience, we find that more folds tend to lead to better performance
because more data are used for estimation of CEFs, especially when the sample size is
small. We believe that more work on setting the number of folds would be useful but
believe that setting K = 5 is likely a good baseline in many settings.

6. We here omit the constant from the estimation stage. Because the residualized outcome and
treatment may not be exactly mean-zero in finite samples, ddml includes the constant by default in
the estimation stage of partially linear models.

7. Algorithm 1 corresponds to the “DML2” algorithm in Chernozhukov et al. (2018). Chernozhukov
et al. (2018) in remark 3.1 recommend “DML2” over the alternative “DML1” algorithm, which fits
the final estimator by fold.

8. See help regress##vcetype for available options.
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Remark 2: Cross-fitting repetitions. DDML relies on randomly splitting the sample
into K folds. We recommend running the cross-fitting procedure more than once using
different random folds to assess randomness introduced via the sample splitting. ddml
facilitates this using the rep() option, which automatically fits the same model multiple
times and combines the resulting estimates to obtain the final estimate. By default,
ddml reports the median over cross-fitting repetitions. ddml also supports the average
of estimates. Specifically, let θ̂(r)n denote the DDML estimate from the rth cross-fit
repetition, and let ŝ(r)n denote its associated standard-error estimate with r = 1, . . . , R.
The aggregate median point estimate and associated standard error are defined as

(

θ̂ n = median
{(

θ̂(r)n

)R
r=1

}
and

(

ŝ n =

√√√√√median

{(ŝ(r)n

)2
+

(
θ̂
(r)
n −

(

θ̂ n

)2
}R

r=1


The aggregate mean point estimate and associated standard error are calculated as

θ̂n =
1

R

R∑
r=1

θ̂(r)n and ŝn =

√√√√hmean

[{(
ŝ
(r)
n

)2
+
(
θ̂
(r)
n − θ̂n

)2}R

r=1

]

where hmean is the harmonic mean.9

Remark 3: Cluster-dependence and folds. Under cluster-dependence, we recommend
randomly assigning folds by cluster; see fcluster().

2.2 The interactive model (interactive)

The interactive model is given by

Y = g0(D,X) + U (6)

where D takes values in {0, 1}. The key deviations from the partially linear model are
that D must be a scalar binary variable and that D is not required to be additively
separable from the controls X. In this setting, the parameters of interest we consider
are

θATE
0 ≡ E{g0(1,X)− g0(0,X)}

θATET
0 ≡ E{g0(1,X)− g0(0,X)|D = 1}

which correspond to the average treatment effect (ATE) and average treatment effect on
the treated (ATET), respectively.

9. The harmonic mean of x1, . . . , xn is defined as hmean(x1, . . . , xn) = n{
∑n

i=1(1/xi)}−1. We use
the harmonic mean because it is less sensitive to outlier values.
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Assumptions 2 and 3 below are sufficient for identification of the ATE and ATET.
Note that the conditional mean independence condition stated here is stronger than the
conditional orthogonality assumption sufficient for identification of θ0 in the partially
linear model.

Assumption 2 (Conditional mean independence). E(U |D,X) = 0.

Assumption 3 (Overlap). Pr(D = 1|X) ∈ (0, 1) with probability 1.

Under assumptions 2 and 3, we have

E(Y |D,X) = E{g0(D,X)|D,X}+ E(U |D,X) = g0(D,X)

so that identification of the ATE and ATET immediately follows from their definitions.10

In contrast to section 2.1, second-step estimators are not directly based on the
moment conditions used for identification. Additional care is needed to ensure local ro-
bustness to first-stage estimation errors (that is, Neyman orthogonality). In particular,
the Neyman orthogonal score for the ATE that Chernozhukov et al. (2018) consider is
the efficient influence function of Hahn (1998),

ψATE(W ; θ, g,m) =
D{Y − g(1,X)}

m(X)
− (1−D){Y − g(0,X)}

1−m(X)
+g(1,X)−g(0,X)−θ

where W ≡ (Y,D,X). Similarly for the ATET,

ψATET(W ; θ, g,m, p) =
D{Y − g(0,X)}

p
− m(X)(1−D){Y − g(0,X)}

p{1−m(X)}
− Dθ

p

Importantly, for g0(D,X) ≡ E(Y |D,X), m0(X) ≡ E(D|X), and p0 ≡ E(D), assump-
tions 2 and 3 imply

E
{
ψATE (W ; θATE

0 , g0,m0

)}
= 0

E
{
ψATET (W ; θATET

0 , g0,m0, p0
)}

= 0

and we also have that the Gateaux derivative of each condition with respect to the
nuisance parameters (g0,m0, p0) is zero.

10. In the defined interactive model under assumption 2, the heterogeneity in treatment effects that the
ATE and ATET average over is fully observed because U is additively separable. Under stronger
identifying assumptions, the DDML ATE and ATET estimators outlined here also apply to the
ATE and ATET in the general causal model (1) that average over both observed and unobserved
heterogeneity. See, for example, Belloni et al. (2017).
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As before, the DDML estimators for the ATE and ATET leverage cross-fitting. The
DDML estimators of the ATE and ATET based on ψATE and ψATET are

θ̂ATE
n =

1

n

n∑
i=1

[
Di

{
Yi − ĝIc

ki
(1,Xi)

}
m̂Ic

ki
(Xi)

−
(1−Di)

{
Yi − ĝIc

ki
(0,Xi)

}
1− m̂Ic

ki
(Xi)

+ ĝIc
ki
(1,Xi)− ĝIc

ki
(0,Xi)

] (7)

θ̂ATET
n =

1

n

n∑
i=1

[
Di{Yi − ĝIc

ki
(0,Xi)}

p̂Ic
ki

−
m̂Ic

ki
(Xi)(1−Di){Yi − ĝIc

ki
(0,Xi)}

p̂Ic
ki
{1− m̂Ic

ki
(Xi)}

]
/

1

n

n∑
i=1

Di

p̂Ic
ki

(8)

where ĝIc
k
and m̂Ic

k
are cross-fitted estimators for g0 and m0 as defined in section 2.1.

Because D is binary, the cross-fitted values ĝIc
k
(1,X) and ĝIc

k
(0,X) are computed by us-

ing only treated and untreated observations, respectively. p̂Ic
k
is a cross-fitted estimator

of the unconditional treatment probability.

ddml supports heteroskedasticity and cluster–robust standard errors for θ̂ATE
n and

θ̂ATET
n . The algorithms for estimating the ATE and ATET are conceptually similar to
algorithm 1. We delegate the detailed outline to algorithm A.1 in the online appendix.
Mean and median aggregation over cross-fitting repetitions are implemented as outlined
in remark 2.

3 DDML with IV
This section outlines the partially linear IV model, the flexible partially linear IV model,
and the interactive IV model. The discussion is again based on Chernozhukov et al.
(2018). As in the previous section, each model is a special case of the general causal
model (1). The discussion in this section differs from the preceding section in that iden-
tifying assumptions leverage IVs Z. The two partially linear IV models assume strong
additive separability as in (2), while the interactive IV model allows for arbitrary inter-
actions between the treatment D and the controls X as in (6). The flexible partially
linear IV model allows for approximation of optimal instruments11 as in Belloni et al.
(2012) and Chernozhukov, Hansen, and Spindler (2015a) but relies on a stronger inde-
pendence assumption than the partially linear IV model. Throughout this discussion,
we consider a random sample {(Yi, Di,Xi,Zi)}ni=1 from (Y,D,X,Z).

11. Optimality requires the assumption of homoskedasticity. The instruments are valid more generally
but are not optimal under heteroskedasticity. Obtaining optimal instruments under heteroskedas-
ticity would require estimating conditional variance functions.
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3.1 Partially linear IV model (iv)

The partially linear IV model considers the same functional form restriction on the causal
model as the partially linear model in section 2.1. Specifically, the partially linear IV
model maintains

Y = θ0D + g0(X) + U

where θ0 is the unknown parameter of interest.12

The key deviation from the partially linear model is that the identifying assumptions
leverage IVs Z instead of directly restricting the dependence of D and U . For ease of
exposition, we focus on scalar-valued instruments in this section, but we emphasize that
ddml for partially linear IV supports multiple IVs and multiple treatment variables.

Assumptions 4 and 5 below are sufficient orthogonality and relevance conditions,
respectively, for identification of θ0.

Assumption 4 (Conditional IV orthogonality). E{Cov(U,Z|X)} = 0.

Assumption 5 (Conditional linear IV relevance). E{Cov(D,Z|X)} 6= 0.

To show identification, consider the score function

ψ(W ; θ, `,m, r) = [Y − `(X)− θ{D −m(X)}] {Z − r(X)}

where W ≡ (Y,D,X, Z). Note that for `0(X) ≡ E(Y |X), m0(X) ≡ E(D|X), and
r0(X) ≡ E(Z|X), assumption 4 implies that E{ψ(W ; θ0, `0,m0, r0)} = 0. We will also
have that the Gateux derivative of E{ψ(W ; θ0, `0,m0, r0)} with respect to the nuisance
functions (`0,m0, r0) will be zero. Rewriting E{ψ(W ; θ0, `0,m0, r0)} = 0 then results
in a Wald expression given by

θ0 =
E [{Y − `0(X)} {Z − r0(X)}]
E [{D −m0(X)} {Z − r0(X)}]

(9)

where assumption 5 is used to ensure a nonzero denominator.

The DDML estimator based on (9) is given by

θ̂n =

1
n

∑n
i=1

{
Yi − ̂̀Ic

ki
(Xi)

}{
Zi − r̂Ic

ki
(Xi)

}
1
n

∑n
i=i

{
Di − m̂Ic

ki
(Xi)

}{
Zi − r̂Ic

ki
(Xi)

} (10)

where ̂̀Ic
k
, m̂Ic

k
, and r̂Ic

k
are appropriate cross-fitted CEF estimators.

Standard errors corresponding to θ̂n are equivalent to the IV standard errors where
Yi− ̂̀Ic

ki
(Xi) is the outcome, Di−m̂Ic

ki
(Xi) is the endogenous variable, and Zi−r̂Ic

ki
(Xi)

is the instrument. ddml supports conventional standard errors available for linear IV

12. As in section 2.1, the interpretation of θ0 can be generalized under stronger identifying assumptions.
See Angrist, Graddy, and Imbens (2000).
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regression in Stata, including heteroskedasticity and cluster–robust standard errors.
Mean and median aggregation over cross-fitting repetitions are implemented as outlined
in remark 2. When we have multiple instruments or endogenous regressors, we adjust
the algorithm by residualizing each instrument and endogenous variable as above and
applying two-stage least squares with the residualized outcome, endogenous variables,
and instruments.

3.2 Flexible partially linear IV model (fiv)

The flexible partially linear IV model considers the same parameter of interest as the
partially linear IV model. The key difference here is that identification is based on a
stronger independence assumption, which allows for approximating optimal instruments
using nonparametric estimation, including machine learning, akin to Belloni et al. (2012)
and Chernozhukov, Hansen, and Spindler (2015a). In particular, the flexible partially
linear IV model leverages a conditional mean independence assumption rather than an
orthogonality assumption as in section 3.1. As in section 3.1, we state everything in the
case of a scalar D.

Assumption 6 (Conditional IV mean independence). E(U |Z,X) = 0.

Assumption 6 implies that for any function p̃(Z,X), it holds that

E ([Y − `0(X)− θ {D −m0(X)}] [p̃(Z,X)− E {p̃(Z,X)|X}]) = 0 (11)

where `0(X) = E(Y |X) and m0(X) = E(D|X). Identification based on (11) requires
that there exists some function p̃ such that

E [Cov {D, p̃(Z,X)|X}] 6= 0 (12)

A sufficient assumption is that D and Z are not mean independent conditional on X.
This condition allows setting p̃(Z,X) = E(D|Z,X), which will then satisfy (12).13

Assumption 7 is a consequence of this nonmean independence.

Assumption 7 (Conditional IV relevance). E{Var(D|Z,X)|X} 6= 0.

Now consider the score function

ψ(W ; θ, `,m, p) = [Y − `(X)− θ {D −m(X)}] {p(Z,X)−m(X)}

where W ≡ (Y,D,X,Z). Note that for `0(X) ≡ E(Y |X), m0(X) ≡ E(D|X), and
p0(Z,X) ≡ E(D|Z,X), assumption 6 and the law of iterated expectations (LIE) imply
that E{ψ(W ; θ0, `0,m0, p0)} = 0 and the Gateaux differentiability condition holds.
Rewriting then results in a Wald expression given by

13. The choice p̃(Z,X) = E(D|Z,X) results in the optimal instrument, in the sense of semiparametric
efficiency, under homoskedasticity.
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θ0 =
E [{Y − `0(X)} {p0(Z,X)−m0(X)}]
E [{D −m0(X)} {p0(Z,X)−m0(X)}]

(13)

where assumption 7 ensures a nonzero denominator.

The DDML estimator based on the moment solution (13) is given by

θ̂n =

1
n

∑n
i=1

{
Yi − ̂̀Ic

ki
(Xi)

}{
p̂Ic

ki
(Zi,Xi)− m̂Ic

ki
(Xi)

}
1
n

∑n
i=i

{
Di − m̂Ic

ki
(Xi)

}{
p̂Ic

ki
(Zi,Xi)− m̂Ic

ki
(Xi)

} (14)

where ̂̀Ic
k
, m̂Ic

k
, and p̂Ic

k
are appropriate cross-fitted CEF estimators.

In simulations, we find that the finite-sample performance of the estimator in (14)
improves when the LIE applied to E{p0(Z,X)} = m0(X) is explicitly approximately
enforced in estimation. As a result, we propose an intermediate step to the previously
considered two-step DDML algorithm: Rather than estimating the conditional expec-
tation of D given X directly, we estimate it by projecting first-step estimates of the
conditional expectation of p0(Z,X) onto X instead. Algorithm 2 outlines the LIE-
compliant DDML algorithm for computation of (14).

Algorithm 2: LIE-compliant DDML for the flexible partially linear IV model
Split the sample {(Yi, Di,Xi,Zi)}ni=1 randomly in K folds of approximately equal size.
Denote Ik the set of observations included in fold k and Ick its complement.

1. For each k ∈ {1, . . . ,K}, do the following:
a. Fit a CEF estimator to the subsample Ick using Yi as the outcome and Xi as

predictors. Obtain the out-of-sample predicted values ̂̀Ic
k
(Xi) for i ∈ Ik.

b. Fit a CEF estimator to the subsample Ick usingDi as the outcome and (Zi,Xi)
as predictors. Obtain the out-of-sample predicted values p̂Ic

k
(Zi,Xi) for i ∈

Ik and in-sample predicted values p̂Ic
k
(Zi,Xi) for i ∈ Ick.

c. Fit a CEF estimator to the subsample Ick using the in-sample predicted values
p̂Ic

k
(Zi,Xi) as the outcome and Xi as predictors. Obtain the out-of-sample

predicted values m̂Ic
k
(Xi) for i ∈ Ik.

2. Compute (14).

Standard errors corresponding to θ̂n in (14) are the same as in section 3.1, where
the instrument is now given by p̂Ic

ki
(Zi,Xi)− m̂Ic

ki
(Xi). Mean and median aggregation

over cross-fitting repetitions are as outlined in remark 2.
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3.3 Interactive IV model (interactiveiv)

The interactive IV model considers the same causal model as in section 2.2; specifically,

Y = g0(D,X) + U

where D takes values in {0, 1}. The key difference from the interactive model is that
this section considers identification via a binary instrument Z representing assignment
to treatment.

The parameter of interest we target is

θ0 = E {g0(1,X)− g0(0,X)| p0(1,X) > p0(0,X)}

where p0(Z,X) ≡ Pr(D = 1|Z,X). Here θ0 is a local average treatment effect (LATE).
Note that in contrast to the LATE developed in Imbens and Angrist (1994), we follow
the exposition in Chernozhukov et al. (2018), where “local” does not strictly refer to
compliers but instead to observations with a higher propensity score—that is, a higher
probability of complying.14

Identification again leverages assumptions 6 and 7, made in the context of the flexible
partially linear IV model. In addition, we assume that the propensity score is weakly
monotone with probability 1 and that the support of the instrument is independent of
the controls.

Assumption 8 (Monotonicity). p0(1,X) ≥ p0(0,X) with probability 1.

Assumption 9 (IV overlap). Pr(Z = 1|X) ∈ (0, 1) with probability 1.

Assumptions 6–9 imply that

θ0 =
E {`0(1,X)− `0(0,X)}
E {p0(1,X)− p0(0,X)}

(15)

where `0(Z,X) ≡ E(Y |Z,X), verifying identification of the LATE θ0. Akin to section 6,
however, estimators of θ0 should not directly be based on (15) because the estimating
equations implicit in obtaining (15) do not satisfy Neyman orthogonality. Hence, a
direct estimator of θ0 obtained by plugging nonparametric estimators in for nuisance
functions in (15) will potentially be highly sensitive to the first-step nonparametric
estimation error. Rather, we base estimation on the Neyman orthogonal score function

ψ(W ; θ, `, p, r) =
Z{Y − `(1,X)}

r(X)
− (1− Z){Y − `(0,X)}

1− r(X)
+ `(1,X)− `(0,X)

+

[
Z{D − p(1,X)}

r(X)
− (1− Z){D − p(0,X)}

1− r(X)
+ p(1,X)− p(0,X)

]
× θ

14. Identification of the conventional complier-focused LATE is achieved under stronger conditional
independence and monotonicity assumptions not introduced in this article. Under these stronger
assumptions, the DDML LATE estimator outlined here targets the conventionally considered LATE
parameter.
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where W ≡ (Y,D,X, Z). Note under assumptions 6–9 and for `0(Z,X) ≡ E(Y |Z,X),
p0(Z,X) ≡ E(D|Z,X), and r0(X) ≡ E(Z|X), we have E{ψ(W ; θ0, `0, p0, r0)} = 0
and can verify that its Gateaux derivative with respect to the nuisance functions local
to their true values is also zero.

The DDML estimator based on the orthogonal score ψ is then

θ̂n =

1
n

∑
i

[
Zi{Yi−̂̀Ic

ki
(1,Xi)}

r̂Ic
ki

(Xi)
−

(1−Zi){Yi−̂̀Ic
ki

(0,Xi)}

1−r̂Ic
ki

(Xi)
+ ̂̀Ic

ki
(1,Xi)− ̂̀Ic

ki
(0,Xi)

]
1
n

∑
i

[
Zi{Di−p̂Ic

ki
(1,Xi)}

r̂Ic
ki

(Xi)
−

(1−Zi){Di−p̂Ic
ki

(0,Xi)}

1−r̂Ic
ki

(Xi)
+ p̂Ic

ki
(1,Xi)− p̂Ic

ki
(0,Xi)

] (16)

where ̂̀Ic
k
, p̂Ic

k
, and r̂Ic

k
are appropriate cross-fitted CEF estimators. Because Z is binary,

the cross-fitted values ̂̀Ic
k
(1,X) and p̂Ic

k
(1,X), as well as ̂̀Ic

k
(0,X) and p̂Ic

k
(0,X), are

computed by using only assigned and unassigned observations, respectively.

ddml supports heteroskedasticity and cluster–robust standard errors for θ̂n. Mean
and median aggregation over cross-fitting repetitions are implemented as outlined in
remark 2.

4 The choice of machine learner
Chernozhukov et al. (2018) show that DDML estimators are asymptotically normal when
used in combination with a general class of machine learners satisfying a relatively weak
convergence-rate requirement for estimating the CEFs. While asymptotic properties of
common machine learners remain a highly active research area, recent advances provide
convergence rates for special instances of many machine learners, including lasso (Bickel,
Ritov, and Tsybakov 2009; Belloni et al. 2012), random forests (Wager and Walther
2015; Wager and Athey 2018; Athey, Tibshirani, and Wager 2019), neural networks
(Schmidt-Hieber 2020; Farrell, Liang, and Misra 2021), and boosting (Luo, Spindler,
and Kück 2016). It seems likely that many popular learners will fall under the umbrella
of suitable learners as theoretical results are further developed. However, we note that
currently known asymptotic properties do not cover a wide range of learners, such as
very deep and wide neural networks and deep random forests, as they are currently
implemented in practice.

The relative robustness of DDML to the first-step learners leads to the question
of which machine learner is the most appropriate for a given application. It is ex
ante rarely obvious which learner will perform best. Further, rather than restricting
ourselves to one learner, we might want to combine several learners into one final learner.
This is the idea behind stacking generalization, or simply “stacking”, due to Wolpert
(1992) and Breiman (1996). Stacking allows one to accommodate a diverse set of base
learners with varying tuning and hypertuning parameters. It thus provides a convenient
framework for combining and identifying suitable learners, thereby reducing the risk
of misspecification. Ahrens et al. (2024) introduce short-stacking, which reduces the
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computational cost of pairing DDML and stacking drastically, and pooled stacking, which
enforces common weights across cross-fitting folds.

We discuss stacking approaches to DDML estimation in section 4.1. Section 4.2
demonstrates the performance of DDML in combination with stacking approaches using
a simulation.

4.1 DDML and stacking

Our discussion of stacking in the context of DDML focuses on the partially linear model
in (2), but we highlight that DDML and stacking can be combined in the same way for
all other models supported in ddml. Suppose we consider J machine learners, referred
to as base learners, to estimate the CEFs `0(X) ≡ E(Y |X) and m0(X) ≡ E(D|X).
The set of base learners could, for example, include cross-validated lasso and ridge with
alternative sets of predictors, gradient-boosted (GB) trees with varying tree depths, and
feed-forward neural nets with varying numbers of hidden layers and neurons. Gener-
ally, we recommend considering a relatively large and diverse set of base learners and
including some learners with alternative tuning parameters.

We randomly split the sample into K cross-fitting folds, denoted as I1, . . . , IK . In
each cross-fitting step k, we define the training sample as Ick ≡ Tk, comprising all
observations excluding the cross-fitting holdout fold k. This training sample is further
divided into V cross-validation folds, denoted as Tk,1, . . . , Tk,V . The stacking regressor
fits a final learner to the training sample Tk using the cross-validated predicted values
of each base learner as inputs. A typical choice for the final learner is constrained least
squares (CLS), which restricts the weights to be positive and sum to 1. The stacking
objective function for estimating `0(X) using the training sample Tk is then defined as

min
wk,1,...,wk,J

∑
i∈Tk

Yi −
J∑

j=1

wk,j
̂̀(j)
T c
k,v(i)

(Xi)


2

, s.t. wk,j ≥ 0,
J∑

j=1

|wk,j | = 1 (17)

where wk,j are referred to as stacking weights. We use ̂̀(j)T c
k,v(i)

(Xi) to denote the cross-
validated predicted value for observation i, which is obtained from fitting learner j on
the subsample T c

k,v(i) ≡ Tk \ Tk,v(i), that is, the subsample excluding the fold v(i) into
which observation i falls. The stacking predicted values are obtained as

∑
j ŵk,j

̂̀(j)
k (Xi),

where each learner j is fit on the step-k training sample Tk. The objective function for
estimating m0(X) is defined accordingly.
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CLS frequently performs well in practice and facilitates the interpretation of stacking
as a weighted average of base learners (Hastie, Tibshirani, and Friedman 2009). How-
ever, it is not the only sensible choice of combining base learners. For example, stacking
could instead select the single learner with the lowest quadratic loss by imposing the
constraint wk,j ∈ {0, 1} and

∑
k,j wk,j = 1. We refer to this choice as “single best”

and include it in our simulation experiments. We implement stacking for DDML using
pystacked (Ahrens, Hansen, and Schaffer 2023).

Pooled stacking. A variant of stacking specific to DDML is pooled stacking. Standard
stacking fits the final learner K separate times, once in each cross-fitting step, yielding
K separate sets of stacking weights ŵk,j for the J learners. With DDML pooled stacking,
we can impose the additional constraint in (17) that the weights are the same across
all cross-fitting folds, ŵk,j = ŵj ,∀ k. By returning one set of stacking weights, pooled
stacking imposes an additional degree of regularization and facilitates interpretation but
suffers from the same high computational cost as pairing DDML with (regular) stacking.

Short-stacking. Stacking and pooled stacking rely on cross-validation. In the context of
DDML, we can also exploit the cross-fitted predicted values directly for stacking. That
is, we can directly apply CLS to the cross-fitted predicted values for estimating `0(X)
[and similarly, m0(X)]:

min
w1,...,wJ

n∑
i=1

Yi −
J∑

j=1

wj
̂̀(j)
Ic
k(i)

(Xi)


2

, s.t. wj ≥ 0,

J∑
j=1

|wj | = 1

We refer to this form of stacking that uses the cross-fitted predicted values as short-
stacking because it takes a shortcut. This is to contrast it to regular stacking, which
estimates the stacking weights for each cross-fitting fold k. The main advantage of
short-stacking relative to standard stacking is the lower computational cost because
short-stacking does not require the fitting of the j learners on subsamples to obtain the
cross-validated predicted values ̂̀(j)T c

k,v(i)
(Xi) needed for standard stacking. Furthermore,

short-stacking (like pooled stacking) also produces one set of weights for the entire
sample, which facilitates interpretation and implies a higher degree of regularization.
A potential disadvantage of short-stacking is that it is more susceptible to overfitting
issues because stacking weights and structural parameters are estimated using the same
cross-fitted predicted values. We thus recommend only considering short-stacking in
regular settings where the number of candidate learners is small relative to N (see also
the discussion in Ahrens et al. [2024]). Algorithm A.4 in the online appendix summarizes
the short-stacking algorithm for the partially linear model.15

15. While short-stacking can be applied similarly to other conditional expectations, a complication
arises in the flexible partially linear IV model where the cross-fitted predicted values of E(D|X)
depend on E(D|X,Z). We describe the algorithm that accounts for this in the online appendix;
see algorithm A.5.



A. Ahrens, C. B. Hansen, M. E. Schaffer, and T. Wiemann 19

4.2 Monte Carlo simulation

To illustrate the advantages of DDML with stacking, we generate artificial data based
on the partially linear model

Yi = θ0Di + cY g(Xi) + σY (Di,Xi)εi (18)
Di = cDg(Xi) + σD(Xi)ui (19)

where both εi and ui are independently drawn from the standard normal distribution.
We set the target parameter to θ0 = 0.5 and the sample size to either n = 100 or
n = 1000. The controls Xi are drawn from the multivariate normal distribution with
N(0,Σ), where Σij = (0.5)|i−j|. The number of controls is set to p = dim(Xi) = 50
except in DGP 5, where p = 7. The constants cY and cD are chosen such that the R2 in
(18) and (19) are approximately equal to 0.5. To induce heteroskedasticity, we set

σD (Xi) =

√√√√ {1 + g(Xi)}2
1
n

∑
i {1 + g(Xi)}2

and σY (Di,Xi) =

√√√√ {1 + θ0Di + g(Xi)}2
1
n

∑
i {1 + θ0Di + g(Xi)}2

The nuisance function g(Xi) is generated using five exemplary DGPs, which cover lin-
ear and nonlinear processes with varying degrees of sparsity and varying numbers of
observed covariates:

DGP 1: g(Xi) =
∑

j
0.9jXij

DGP 2: g(Xi) = Xi1Xi2+X
2
i3+Xi4Xi5+Xi6Xi7+Xi8Xi9+Xi10+X

2
i11+Xi12Xi13

DGP 3: g(Xi) = 1{Xi1 > 0.3}1{Xi2 > 0}1{Xi3 > −1}
DGP 4: g(Xi) = Xi1 +

√
|Xi2|+ sin(Xi3) + 0.3Xi4Xi5 +Xi6 + 0.3X2

i7

DGP 5: g(Xi) = same as DGP 4 with p = 7

DGP 1 is a linear design involving many negligibly small parameters. While not exactly
sparse, the design can be approximated well through a sparse representation. DGP 2
is linear in the parameters and exactly sparse but includes interactions and second-
order polynomials. DGPs 3–5 are also exactly sparse but involve complex nonlinear and
interaction effects. DGPs 4 and 5 are identical, except that DGP 5 does not add nuisance
covariates that are unrelated to Y and D.

We consider DDML with the following supervised machine learners for cross-fitting
the CEFs:16

1.–2. Cross-validated lasso and ridge with untransformed base controls.
3.–4. Cross-validated lasso and ridge with fifth-order polynomials of base controls but

no interactions (referred to as “Poly 5”).
5.–6. Cross-validated lasso and ridge with second-order polynomials and all first-order

interaction terms (referred to as “Poly 2+ Inter.”).

16. All base learners have been implemented using pystacked. We use the defaults of pystacked for
parameter values and settings not mentioned here.
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7. Random forests with low regularization: base controls, maximum tree depth of
10, 500 trees, and approximately √

p features considered at each split.
8. Random forests with medium regularization: same as 7 but with maximum tree

depth of 6.
9. Random forests with high regularization: same as 7 but with maximum tree depth

of 2.
10. GB trees with low regularization: base controls, 1,000 trees, and a learning rate

of 0.3. We enable early stopping, which uses a 20% validation sample to decide
whether to stop the learning algorithm. Learning is terminated after five itera-
tions with no meaningful improvement in the mean squared loss of the validation
sample.17

11. GB with medium regularization: same as 10 but with learning rate of 0.1.
12. GB with high regularization: same as 10 but with learning rate of 0.01.
13. Feed-forward neural net with base controls and 2 layers of size 20.

We use the above set of learners as base learners for DDML with stacking approaches.
Specifically, we estimate DDML using stacking, short-stacking, and pooled stacking,
which we combine with CLS and the single-best learner. We set the number of folds to
K = 20 if n = 100 and to K = 5 if n = 1000. That is, we adapt the number of folds K
to the total sample size n to ensure that the CEF estimators are trained on sufficiently
large training samples.

For comparison, we report results for ordinary least squares (OLS) and PDS-lasso
with base controls, PDS-lasso with Poly 5, PDS-lasso with Poly 2 + interactions, and an
oracle estimator using the full sample.18 The oracle estimator presumes knowledge of
the function g(X) and obtains estimates by regressing Y on the two variables D and
g(X).

We report simulation median absolute bias (MAB) and coverage rates (CR) of 95%
confidence intervals for DGPs 1–3 in table 1. We delegate results for DGPs 4 and 5,
including a brief discussion, to online appendix B. DDML estimators leveraging stacking
approaches perform favorably compared with individual base learners in terms of bias
and coverage. The relative performance of stacking approaches seems to improve as
the sample size increases, likely reflecting that the stacking weights are more precisely
estimated in larger small samples. For n = 1000, the bias of stacking with CLS is at
least as low as the bias of the best-performing individual learner under DGP 1–2, while
only gradient boosting and neural net yield a lower bias than stacking under DGP 3.

17. We use a tolerance level of 0.01 to measure improvements.
18. The PDS-lasso estimators set tuning parameters using the default in pdslasso.
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Results for coverage are similar with stacking-based estimates being comparable with
the best-performing feasible estimates and the oracle when n = 1000. With n = 100,
coverage of confidence intervals for stacking-based estimators are inferior to coverages for
a few of the individual learners but are still competitive and superior to most learners.
Looking across all results, we see that stacking provides robustness to potentially very
bad performance that could be obtained from using one poorly performing learner.

There are overall small performance differences among the six stacking estimators
considered, suggesting that short-stacking has a substantial practical advantage because
of its lower computational cost. Ahrens et al. (2024) report that short-stacking reduces
the compute time by a factor of 1/V , where V is the number of cross-validation folds.
There is some evidence that the single-best selector outperforms CLS in very small
sample sizes in DGPs 2–3 but not in DGP 1 (and also not in DGPs 4–5; see table B.1).
We suspect that the single-best selector works better in scenarios where there is one
base learner that clearly dominates.

The mean squared prediction errors (MSPE) and the average stacking weights, which
we report in tables B.2 and B.3 in the online appendix, provide further insights into
how stacking functions with CLS. CLS assigns large stacking weights to base learners
with low MSPEs, which in turn are associated with low biases. Importantly, stacking
assigns zero or close-to-zero weights to poorly specified base learners such as the highly
regularized random forest, which in all three DGPs ranks among the individual learners
with the highest MSPE and the highest bias. The robustness to misspecified and ill-
chosen machine learners, which could lead to misleading inference, is indeed one of our
main motivations for advocating stacking approaches to DDML.

DDML with stacking approaches also compares favorably with conventional full-
sample estimators. In the relatively simple linear DGP 1, DDML with stacking per-
forms similarly to OLS and the infeasible oracle estimator—both in terms of bias and
coverage—for n = 100 and n = 1000. In the more challenging DGPs 2 and 3, the bias
of DDML with stacking is substantially lower than the biases of OLS and the PDS-lasso
estimators. While the bias and size distortions of DDML with stacking are still consider-
able in comparison with the infeasible oracle for n = 100, they are close to the oracle for
n = 1000. The results overall highlight the flexibility of DDML with stacking to flexibly
approximate a wide range of DGPs, provided a diverse set of base learners is chosen.

5 The program
In this section, we provide an overview of the ddml package. We introduce the syn-
tax and workflow for the main programs in section 5.1. Section 5.2 lists the options.
Section 5.3 covers the simplified one-line program qddml. We provide an overview of
supported machine learning programs in section 5.4. Finally, section 5.5 adds a note on
how to ensure replication with ddml. See the help files for all available commands and
options.
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5.1 Syntax: ddml

The ddml estimation proceeds in four steps.

Step 1: Initialize ddml and select model.

ddml init model
[

if
] [

in
] [

, mname(name) kfolds(integer)
fcluster(varname) foldvar(varlist) reps(integer) tabfold

]
where model selects between the partially linear model (partial), the interactive model
(interactive), the partially linear IV model (iv), the flexible partially linear IV model
(fiv), and the interactive IV model (interactiveiv). This step creates a persistent
Mata object with the name provided by mname(), in which model specifications and
estimation results will be stored. The default is mname(m0).

At this stage, the user-specified folds for cross-fitting can be set via integer-valued
Stata variables (see foldvar()). By default, observations are randomly assigned to folds
and kfolds() determines the number of folds (the default is 5). Cluster-randomized
fold splitting is supported (see fcluster()). The user can also select the number of
times to fully repeat the cross-fitting procedure (see reps()).

Step 2: Add supervised machine learners for estimating conditional expectations.

In step 2, we select the machine learning programs for estimating CEFs.

ddml cond_exp
[
, mname(name) vname(varname) learner(name) vtype(string)

predopt(string)
]
: command depvar vars

[
, cmdopt

]
where cond_exp selects the conditional expectation to be estimated by the machine
learning program command. At least one learner is required for each conditional expec-
tation. Table 2 provides an overview of which conditional expectations are required by
each model. The program command is a supervised machine learning program such as
cvlasso or pystacked (see compatible programs in section 5.4). The options cmdopt
are specific to that program.
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Table 2. Conditional expectations that must be specified for each model

cond_exp partial interactive iv fiv interactiveiv

E[Y|X] X X X
E[Y|X,D] X
E[Y|X,Z] X

E[D|X] X X X X
E[D|Z,X] X X

E[Z|X] X X

Step 3: Perform cross-fitting.

This step implements the cross-fitting algorithm. Each learner is fit iteratively on train-
ing folds, and out-of-sample predicted values are obtained. Cross-fitting is the most
time-consuming step because it involves fitting the selected machine learners repeat-
edly.

ddml crossfit
[
, mname(name) shortstack poolstack nostdstack

finalest(name)
]

Step 4: Estimate causal effects.

Finally, we estimate the parameter of interest for all combinations of learners added in
step 2.

ddml estimate
[
, mname(name) robust cluster(varname) vce(vcetype)

noconstant showconstant atet ateu trim(real) shortstack poolstack

finalest(name)
]

To report and post selected results, we can use ddml estimate with the replay option:

ddml estimate
[
, mname(name) spec(string) rep(string) allcombos notable

replay
]

Utilities

ddml describe provides information about the model setup or results:

ddml describe
[
, mname(name) sample learners crossfit estimates all

]
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ddml stores many internal results on associate arrays, notably the various stacking
weights. These can be retrieved using ddml extract:

ddml extract
[

object_name, mname(name) vname(varname) ename(name) stata

show(display_item) keys key1(string) key2(string) key3(string)
subkey1(string) subkey2(string)

]
ddml export saves the estimated conditional expectations and other variables to a CSV
file:

ddml export filename
[
, mname(name) addvars(varlist)

]
5.2 Options

5.2.1 Step 1 options: Initialization.

mname(name) is the name of the DDML model. This option allows running of multiple
DDML models simultaneously. The default is mname(m0).

kfolds(integer) is the number of cross-fitting folds. The default is kfolds(5).

fcluster(varname) is the cluster identifier for cluster randomization of folds.

foldvar(varlist) is the integer variable to specify custom folds (one per cross-fitting
repetition).

reps(integer) is the number of cross-fitting repetitions, that is, how often the cross-
fitting procedure is repeated on randomly generated folds.

tabfold prints a table with frequency of observations by fold.

5.2.2 Step 2 options: Adding learners.

vname(varname) is the name of the dependent variable in the reduced-form estimation.
This is usually inferred from the command line but is mandatory for the fiv model.

learner(name) is the optional name of the variable to be created.

vtype(string) is the optional variable type of the variable to be created. The de-
fault is vtype(double). none can be used to leave the type field blank. (Setting
vtype(none) is required when using ddml with rforest.)

predopt(varname) is the predict option to be used to get predicted values. Typical
values could be xb or pr. The default is blank.
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5.2.3 Step 3 options: Cross-fitting.

shortstack asks for short-stacking to be used. Short-stacking uses the cross-fitted
predicted values to obtain a weighted average of several base learners.

poolstack asks for pooled stacking to be used. This is available only if pystacked has
been used for standard stacking in all equations.

nostdstack is used with pystacked and short-stacking; it tells pystacked to generate
the base learner predictions without the computationally expensive additional step
of obtaining the stacking weights.

finalest(name) sets the final estimator for all stacking methods; the default estima-
tor, finalest(nnls1), is least squares without a constant and with the constraints
that weights are nonnegative and sum to 1. Alternative final estimators include
singlebest (use the minimum mean squared error [MSE] base learner), ols (ordi-
nary least squares), and avg (unweighted average of all base learners).

5.2.4 Step 4 options: Estimation.

spec(string) selects the specification. This can be either the specification number, mse
for minimum-MSE specification (the default), or ss for short-stacking.

rep(string) selects the cross-fitting repetitions. This can be the cross-fitting repetition
number, mn for mean aggregation, or md for median aggregation (the default). See
remark 2 for more information.

allcombos estimates all possible specifications. By default, only the minimum mean
squared error, short-stacking, or pooled stacking specification is estimated and dis-
played.

notable suppresses the summary table.

replay is used in combination with spec() and rep() to display and return estimation
results.

robust reports standard errors that are robust to the presence of arbitrary heteroskedas-
ticity.

cluster(varname) selects the cluster–robust variance–covariance estimator.

vce(vcetype) selects the variance–covariance estimator, for example, vce(hc3) or
vce(cluster id). See help regress##vcetype for available options.

noconstant suppresses the constant term in the estimation stage (only relevant for
partially linear models).

showconstant displays the constant term in the summary estimation output table
(partial, iv, and fiv models only).

atet reports the average treatment effect on the treated (the default is ATE).
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ateu reports the average treatment effect on the untreated (the default is ATE).

trim(real) trims propensity scores for the interactive and interactive IV models. The
default is trim(0.01) (that is, values below 0.01 and above 0.99 are set to 0.01 and
0.99, respectively).

shortstack, poolstack, finalest(name): see above under ddml crossfit.

Refitting the final learner using ddml estimate with stacking options is generally
very fast because it does not require cross-fitting again.

For descriptions of the utility commands ddml describe, ddml extract, and ddml
export and of their options, see their corresponding help files.

5.3 Short syntax: qddml

The ddml package includes the wrapper program qddml, which provides a one-line syntax
for fitting a ddml model. The one-line syntax follows the syntax of pdslasso and
ivlasso (Ahrens, Hansen, and Schaffer 2018). The main restriction of qddml compared
with the more flexible multiline syntax is that qddml allows for only one user-specified
machine learner.

qddml has integrated support for pystacked, which is the default learner in all
equations. The syntax for qddml options differs depending on whether pystacked is
used as the learner in each equation.

Syntax when used with pystacked

qddml depvar treatment_vars
[
(controls)

]
(treatment_vars=excluded_instruments), model(name)

[
shortstack stdstack

poolstack finalest(name) pystacked(string) pystacked_y(string)
pystacked_d(string) pystacked_z(string) options

]
The pystacked() option sets the options for all the conditional expectations estimated
by pystacked; the _y, _d, and _z variants control the options sent to the corresponding
conditional expectation estimations. Other options are as in ddml.

Syntax when used with other learners

qddml depvar treatment_vars
[
(controls)

]
(treatment_vars=excluded_instruments), model(name)

[
cmd(string)

ycmd(string) dcmd(string) zcmd(string) *cmdopt(string) *vtype(name)
*predopt(name) options

]
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The cmd() option sets the options for all the conditional expectations estimated by
pystacked; the ycmd(), dcmd(), and zcmd() variants control the options sent to the
corresponding conditional expectation estimations. The cmdopt() option can be used
to either set the options for all equations or, if the asterisk is replaced with y, d, or z,
set the options for the corresponding conditional expectation estimation. Other options
are as in ddml.

5.4 Supported machine learning programs

ddml is compatible with any supervised machine learning program in Stata that supports
the typical “regress y x” syntax, comes with a postestimation predict command, and
supports if statements. We have tested ddml with the following programs:

• pystacked facilitates the stacking of a wide range of machine learners, includ-
ing regularized regression, random forests, support vector machines, GB trees,
and feed-forward neural nets using Python’s scikit-learn (Ahrens, Hansen, and
Schaffer 2023; Pedregosa et al. 2011; Buitinck et al. 2013). In addition, pystacked
can also be used as a front-end to fit individual machine learners. ddml has inte-
grated support for pystacked and is the recommended default learner.

• lassopack implements regularized regression, for example, lasso, ridge, and elastic
net (Ahrens, Hansen, and Schaffer 2020).

• rforest is a random forest wrapper for Weka (Schonlau and Zou 2020; Frank
et al. 2009).

• svmachines allows for the estimation of support vector machines using libsvm
(Chang and Lin 2011; Guenther and Schonlau 2018).

• The program parsnip of the package mlrtime provides access to R’s parsnip
machine learning library through rcall (Huntington-Klein 2021; Haghish 2019).
Using parsnip requires the installation of the supplementary wrapper program
parsnip2.19

Stata programs that are currently not supported can be added relatively easily using
wrapper programs (see parsnip2 for an example).

5.5 Inspecting results and replication

In this section, we discuss how to ensure replicability when using ddml. We also discuss
some tools available for tracing replication failures. First, however, we briefly describe
how ddml stores results.

ddml stores estimated conditional expectations in Stata’s memory as Stata variables.
These variables can be inspected, graphed, and summarized as usual. Fold ID variables
are also stored as Stata variables (named m0_fid_r by default, where m0 is the default
model name and r is the cross-fitting repetition). ddml models are stored on Mata
structs and using Mata’s associative arrays. Specifically, the ddml model created by

19. Available from https://github.com/aahrens1/parsnip2.

https://github.com/aahrens1/parsnip2
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ddml init is an mStruct, and information relating to the estimation of conditional
expectations is stored in eStructs. Results relating to the overall model estimation
are stored in associative arrays that live in the mStruct, and results relating to the
estimation of conditional expectations are stored in associative arrays that live in the
corresponding eStructs.

Replication tips:

• Set the Stata seed before ddml init. This ensures that the same random fold
variable is used for a given dataset.

• Using the same fold variable alone is usually not sufficient to ensure replication,
because many machine learning algorithms involve randomization. That said,
note that the fold variable is stored in memory and can be reused for subsequent
estimations via the foldvar() option.

• Replication of ddml results may require additional steps with some programs that
rely on randomization in other software environments, for example, R or Python.
pystacked uses a Python seed generated in Stata. Thus, when ddml is used
with pystacked, setting the seed before ddml init also guarantees that the same
Python seed underlies the stacking estimation. Other programs relying on ran-
domization outside of Stata might not behave in the same way. Thus, when using
other programs, check the help files for options to set external random seeds. Try
estimating each individual learner on the entire sample to see what settings need
to be passed to them for their results to replicate.

• Beware of changing samples. Fold splits or learner idiosyncrasies may mean that
sample sizes vary slightly across learners, estimation samples, or cross-fitting repe-
titions. ddml extract with the show(n) option will report sample sizes by learner
and fold. See the ddml extract help file for more information.

• The ddml export utility can be used to export the estimated conditional expec-
tations, fold variables, and sample indicators to a CSV format file for examination
and comparison in other software environments.

6 Applications
We demonstrate the ddml workflow using two applications. In section 6.1, we apply the
DDML estimator to estimate the effect of 401(k) eligibility on financial wealth following
Poterba, Venti, and Wise (1995). We focus on the partially linear model for the sake
of brevity but provide code that demonstrates the use of ddml with the interactive
model, partially linear IV model, and interactive IV model using the same application
in online appendix C. Additional examples can also be found in the help file. Based
on Berry, Levinsohn, and Pakes (1995), we show in section 6.2 how to use ddml for
the estimation of the flexible partially linear IV model, which allows both for flexibly
controlling for confounding factors using high-dimensional function approximation of
confounding factors and for estimation of optimal IVs.
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6.1 401(k) and financial wealth

The data consist of n = 9915 households from the 1991 Survey of Income and Program
Participation. The application is originally due to Poterba, Venti, and Wise (1995) but
has been revisited by Belloni et al. (2017), Chernozhukov et al. (2018), andWüthrich and
Zhu (2023), among others. Following previous studies, we include the control variables
age, income, years of education, and family size, as well as indicators for marital status,
two-earner status, benefit pension status, individual retirement account participation,
and home ownership. The outcome is net financial assets, and the treatment is eligibility
to enroll for the 401(k) pension plan.

We load the data and define three globals for outcome, treatment, and control vari-
ables. We then proceed in the four steps outlined in section 5.1.

. use sipp1991

. global Y net_tfa

. global X age inc educ fsize marr twoearn db pira hown

. global D e401

Step 1: Initialize ddml model

We initialize the ddml model and select the partially linear model in (2). Before initial-
ization, we set the seed to ensure replication. This should always be done before ddml
init, which executes the random fold assignment. In this example, we opt for four folds
to ensure the readability of some of the output shown below, although we recommend
considering more folds in practice.

. set seed 123

. ddml init partial, kfolds(4)

Step 2: Add supervised machine learners for estimating conditional expectations

In this step, we specify which machine learning programs should be used for the estima-
tion of the conditional expectations E(Y |X) and E(D|X). For each conditional expec-
tation, at least one learner is required. For illustrative purposes, we consider regress
for linear regression, pystacked with the m(lassocv) option for cross-validated lasso
(as an example of how to use pystacked to estimate one learner), and rforest for
random forests. When using rforest, we need to add the option vtype(none) because
the postestimation predict command of rforest does not support variable types.

. *** add learners for E[Y|X]

. ddml E[Y|X]: regress $Y $X
Learner Y1_regress added successfully.
. ddml E[Y|X]: pystacked $Y c.($X)##c.($X), type(reg) method(lassocv)
Learner Y2_pystacked added successfully.
. ddml E[Y|X], vtype(none): rforest $Y $X, type(reg)
Learner Y3_rforest added successfully.
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. *** add learners for E[D|X]

. ddml E[D|X]: regress $D $X
Learner D1_regress added successfully.
. ddml E[D|X]: pystacked $D c.($X)##c.($X), type(reg) method(lassocv)
Learner D2_pystacked added successfully.
. ddml E[D|X], vtype(none): rforest $D $X, type(reg)
Learner D3_rforest added successfully.

The flexible ddml syntax allows specification of different sets of covariates for different
learners. This flexibility can be useful because, for example, linear learners such as the
lasso might perform better if interactions are provided as inputs, whereas tree-based
methods such as random forests may detect certain interactions in a data-driven way.
Here we use interactions and second-order polynomials for the cross-validated lasso but
not for the other learners.

This application has only one treatment variable, but ddml does support multiple
treatment variables. To add a second treatment variable, we would simply add a state-
ment such as ddml E[D|X]: reg D2 $X, where D2 would be the name of the second
treatment variable. An example with two treatments is provided in the help file.

The auxiliary ddml subcommand describe allows us to verify that the learners were
correctly registered:

. ddml describe
Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_regress Y2_pystacked Y3_rforest
D equations (1): e401
e401 learners: D1_regress D2_pystacked D3_rforest

Step 3: Perform cross-fitting

The third step performs cross-fitting, which is the most time-intensive process. The
shortstack option enables the short-stacking algorithm of section 4.1.

. ddml crossfit, shortstack
Cross-fitting E[y|X] equation: net_tfa
Cross-fitting fold 1 2 3 4 ...completed cross-fitting...completed short-stacking
Cross-fitting E[D|X] equation: e401
Cross-fitting fold 1 2 3 4 ...completed cross-fitting...completed short-stacking

Six variables are created and stored in memory that correspond to the six learners
specified in the previous step. These variables are called Y1_reg_1, Y2_pystacked_1_1,
Y3_rforest_1, D1_reg_1, D2_pystacked_1_1, and D3_rforest_1. Y and D indicate
the outcome and the treatment variable. Indexes 1 to 3 are learner counters. regress,
pystacked, and rforest correspond to the names of the commands used. The _1 suffix
indicates the cross-fitting repetition. The additional _1 in the case of D2_pystacked_1_1
indicates the learner number (there is only one pystacked learner).
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After cross-fitting, we can inspect the mean squared prediction errors by fold and
learner:

. ddml describe, crossfit
Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_regress Y2_pystacked Y3_rforest
D equations (1): e401
e401 learners: D1_regress D2_pystacked D3_rforest
Crossfit results (detail):

All By fold:
Cond. exp. Learner rep MSE 1 2 3 4
net_tfa shortstack 1 1.5e+09 1.8e+09 1.4e+09 1.4e+09 1.5e+09
e401 shortstack 1 0.18 0.17 0.17 0.18 0.17

Step 4: Estimate causal effects.

In this final step, we obtain the causal effect estimates. Because we requested short-
stacking in step 3, ddml shows the short-stacking result, which relies on the cross-
fitted values of each base learner. In addition, the specification that corresponds to the
minimum-MSE learners is listed at the beginning of the output.

. ddml estimate, robust

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_regress Y2_pystacked Y3_rforest
D equations (1): e401
e401 learners: D1_regress D2_pystacked D3_rforest
DDML estimation results:
spec r Y learner D learner b SE
mse 1 Y2_pystacked D2_pystacked 9788.291 (1339.797)
ss 1 [shortstack] [ss] 9713.861 (1334.252)

mse = minimum MSE specification for that resample.
Shortstack DDML model
y-E[y|X] = y-Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-D_e401_ss_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9713.861 1334.252 7.28 0.000 7098.774 12328.95
_cons 94.84956 534.8125 0.18 0.859 -953.3637 1143.063

Stacking final estimator: nnls1

Because we have specified three learners per conditional expectation, there are nine
specifications relying on the base learners in total (because we can combine Y1_reg_1,
Y2_pystacked_1, and Y3_rforest_1 with D1_reg_1, D2_pystacked_1, and
D3_rforest_1). To get all results, we add the allcombos option:
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. ddml estimate, robust allcombos

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_regress Y2_pystacked Y3_rforest
D equations (1): e401
e401 learners: D1_regress D2_pystacked D3_rforest
DDML estimation results:
spec r Y learner D learner b SE

1 1 Y1_regress D1_regress 5986.657 (1523.694)
2 1 Y1_regress D2_pystacked 9563.875 (1389.172)
3 1 Y1_regress D3_rforest 8138.218 (1278.134)
4 1 Y2_pystacked D1_regress 9175.519 (1371.065)

* 5 1 Y2_pystacked D2_pystacked 9788.291 (1339.797)
6 1 Y2_pystacked D3_rforest 8023.298 (1218.538)
7 1 Y3_rforest D1_regress 8166.968 (1488.753)
8 1 Y3_rforest D2_pystacked 9887.655 (1407.031)
9 1 Y3_rforest D3_rforest 8968.295 (1298.973)
ss 1 [shortstack] [ss] 9713.861 (1334.252)

* = minimum MSE specification for that resample.
Shortstack DDML model
y-E[y|X] = y-Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-D_e401_ss_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9713.861 1334.252 7.28 0.000 7098.774 12328.95
_cons 94.84956 534.8125 0.18 0.859 -953.3637 1143.063

Stacking final estimator: nnls1

We can use the spec(string) option to select among the listed specifications. string
is either the specification number—ss, st, or ps to get the short-stacking, standard
stacking, or pooled stacking specification, respectively—or mse for the specification
corresponding to the minimal MSPE. In the example above, spec(1) reports in full the
specification using regress for estimating both E(Y |X) and E(D|X). The spec()
option can be provided either in combination with allcombos or after estimation in
combination with the replay option, for example,
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. ddml estimate, spec(1) replay

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_regress Y2_pystacked Y3_rforest
D equations (1): e401
e401 learners: D1_regress D2_pystacked D3_rforest
DDML estimation results:
spec r Y learner D learner b SE

1 1 Y2_pystacked D2_pystacked 5986.657 (1523.694)
ss 1 [shortstack] [ss] 9713.861 (1334.252)

mse = minimum MSE specification for that resample.
DDML model, specification 1
y-E[y|X] = y-Y1_regress_1 Number of obs = 9915
D-E[D|X] = D-D1_regress_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 5986.657 1523.694 3.93 0.000 3000.271 8973.042
_cons 10.74705 561.2911 0.02 0.985 -1089.363 1110.857

Manual final estimation.

In the background, ddml estimate regresses Y1_reg_1 against D1_reg_1 with a con-
stant. We can verify this manually:

. generate double Y1_resid = $Y - Y1_reg

. generate double D1_resid = $D - D1_reg

. regress Y1_resid D1_resid, robust
Linear regression Number of obs = 9,915

F(1, 9913) = 15.44
Prob > F = 0.0001
R-squared = 0.0023
Root MSE = 55891

Robust
Y1_resid Coefficient std. err. t P>|t| [95% conf. interval]

D1_resid 5986.657 1523.694 3.93 0.000 2999.906 8973.407
_cons 10.74705 561.2911 0.02 0.985 -1089.498 1110.992

Manual estimation using regress allows the use of regress’s postestimation tools.

Stacking

We next demonstrate DDML with stacking. To this end, we exploit the stacking regressor
implemented in pystacked. pystacked allows combining multiple base learners with
learner-specific settings and covariates into a final meta-learner. The learners are sepa-
rated by ||. method() selects the learner, xvars() specifies learner-specific covariates
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(overwriting the default covariates $X), and opt() passes options to the learners. In
this example, we use OLS, cross-validated lasso and ridge, random forests, and gradient
boosting. We furthermore use parallelization with five cores. A detailed explanation of
the pystacked syntax can be found in Ahrens, Hansen, and Schaffer (2023).

. *** add learners for E[Y|X]

. ddml E[Y|X]: pystacked $Y $X ||
> method(ols) ||
> method(lassocv) xvars(c.($X)##c.($X)) ||
> method(ridgecv) xvars(c.($X)##c.($X)) ||
> method(rf) pipeline(sparse) opt(max_features(5)) ||
> method(gradboost) pipeline(sparse)
> opt(n_estimators(250) learning_rate(0.01)),
> njobs(5)
Learner Y1_pystacked added successfully.
. *** add learners for E[D|X]
. ddml E[D|X]: pystacked $D $X ||
> method(ols) ||
> method(lassocv) xvars(c.($X)##c.($X)) ||
> method(ridgecv) xvars(c.($X)##c.($X)) ||
> method(rf) pipeline(sparse) opt(max_features(5)) ||
> method(gradboost) pipeline(sparse)
> opt(n_estimators(250) learning_rate(0.01)),
> njobs(5)
Learner D1_pystacked added successfully.

After cross-fitting, we retrieve the cross-fitted MSPE using the ddml extract command
with show(mse) or examine the stacking weights using stweights:

. quietly ddml crossfit

. ddml extract, show(stweights)
mean stacking weights across folds/resamples for D1_pystacked (e401)
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .00915031 .00915031

lassocv 2 .19106656 .19106656
ridgecv 3 .34720737 .34720737

rf 4 .03258878 .03258878
gradboost 5 .41998697 .41998697
mean stacking weights across folds/resamples for Y1_pystacked (net_tfa)
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .03589102 .03589102

lassocv 2 .33837078 .33837078
ridgecv 3 .49997977 .49997977

rf 4 .04156376 .04156376
gradboost 5 .09033751 .09033751
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Finally, in the estimation stage, we retrieve the results of DDML with stacking:

. ddml estimate, robust

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_pystacked
D equations (1): e401
e401 learners: D1_pystacked
DDML estimation results:
spec r Y learner D learner b SE

st 1 Y1_pystacked D1_pystacked 9544.626 (1303.897)
Stacking DDML model
y-E[y|X] = y-Y1_pystacked_1 Number of obs = 9915
D-E[D|X] = D-D1_pystacked_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9544.626 1303.897 7.32 0.000 6989.035 12100.22
_cons -100.0744 535.5587 -0.19 0.852 -1149.75 949.6013

Stacking final estimator: nnls1

The DDML-specific stacking approaches of short-stacking and pooled stacking can be
requested at either the cross-fitting or the estimation step. Refitting the final learner
at the estimation step allows us to avoid repeating the computationally intensive cross-
fitting. Here we request short-stacking and pooled stacking but using the single-best
base learner.

. ddml estimate, robust shortstack poolstack finalest(singlebest)

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_pystacked
D equations (1): e401
e401 learners: D1_pystacked
DDML estimation results:
spec r Y learner D learner b SE

st 1 Y1_pystacked D1_pystacked 9544.626 (1303.897)
ss 1 [shortstack] [ss] 9812.624 (1336.534)
ps 1 [poolstack] [ps] 9766.171 (1335.864)

Shortstack DDML model
y-E[y|X] = y-Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-D_e401_ss_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9812.624 1336.534 7.34 0.000 7193.065 12432.18
_cons 75.17922 534.6284 0.14 0.888 -972.6732 1123.032

Stacking final estimator: singlebest
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Short-stacking is computationally much faster than regular stacking (or pooled stack-
ing) because it avoids the cross-validation within cross-fitting folds. Below, we disable
regular stacking with the nostdstack option in the cross-fitting stage. In this example,
where we use parallelization with 5 cores, the run time is only 50.7 seconds for DDML
with short-stacking compared with 93.0 seconds for DDML with regular stacking.

. quietly ddml crossfit, shortstack nostdstack

. ddml estimate, robust

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_pystacked
D equations (1): e401
e401 learners: D1_pystacked
DDML estimation results:
spec r Y learner D learner b SE

ss 1 [shortstack] [ss] 9601.109 (1302.116)
Shortstack DDML model
y-E[y|X] = y-Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-D_e401_ss_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9601.109 1302.116 7.37 0.000 7049.009 12153.21
_cons 83.47775 533.8799 0.16 0.876 -962.9075 1129.863

Stacking final estimator:

One-line syntax.

qddml provides a simplified and convenient one-line syntax. The main constraint of
qddml is that it allows only for one user-specified learner. The default learner is
pystacked, which by default uses OLS, cross-validated lasso, and gradient boosting
as default learners. The pystacked base learners and non-pystacked commands can
be modified via various options. Below, we use qddml with pystacked’s default base
learners. We omit the output for the sake of brevity.

. quietly qddml $Y $D (c.($X)##c.($X)), model(partial) kfolds(4) robust

6.2 The market for automobiles

For this demonstration, we follow Chernozhukov, Hansen, and Spindler (2015b), who
fit a stylized demand model using IVs based on the data from Berry, Levinsohn, and
Pakes (1995). The authors of the original study estimate the effect of prices on the
market share of automobile models in a given year (n = 2217). The controls are prod-
uct characteristics (a constant, air conditioning dummy, horsepower divided by weight,
miles per dollar, vehicle size). To account for endogenous prices, Berry, Levinsohn,
and Pakes (1995) suggest exploiting other products’ characteristics as instruments. Fol-
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lowing Chernozhukov, Hansen, and Spindler (2015b), we define the baseline set of in-
struments as the sum over all other products’ characteristics, calculated separately for
own-firm and other-firm products, which yields 10 baseline instruments. Chernozhukov,
Hansen, and Spindler (2015b) also construct an augmented set of instruments, includ-
ing first-order interactions, squared terms, and cubic terms. In the analysis below, we
extend Chernozhukov, Hansen, and Spindler (2015b) by applying DDML with stacking
and a diverse set of learners, including OLS, lasso, ridge, random forest, and GB trees.
We use the augmented set of controls for all base learners and OLS, which we include
for reference.

We load and prepare the data:

. use blp_chs, clear

. global Y y

. global D price

. global Xbase hpwt air mpd space

. global Xaug augX*

. global Zbase Zbase*

. global Zaug Zaug*

Step 1: Initialize ddml model.

. set seed 123

. ddml init fiv, kfolds(4) reps(5)

Note that in the ddml init step, we include the option reps(5), which will result
in running the full cross-fitting procedure five times, each with a different random split
of the data. Replicating the procedure multiple times allows us to gauge the impact of
randomness due to the random splitting of the data into subsamples.

Step 2: Add supervised machine learners for estimating conditional expectations.
Estimation of a fiv model requires us to add learners for E(Y |X), E(D|X,Z), and
E(D|X). Compared with the other models supported by ddml, there is one complication
that arises because, to estimate E(D|X), we exploit fitted values of E(D|X,Z) to
impose LIE compliance. Because these fitted values have not yet been generated, we
use the placeholder {D}, which in the cross-fitting stage will be internally replaced
with estimates of E(D|X,Z). We use the learner() option to match one learner for
E(D|X) with a learner for E(D|X,Z), and we use vname() to indicate the name of
the treatment variable.
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. *** add learners for E[Y|X]

. ddml E[Y|X], learner(Ypystacked): pystacked $Y $Xaug ||
> method(ols) xvars($Xbase) ||
> m(lassocv) ||
> m(ridgecv) ||
> m(rf) opt(n_estimators(200) max_features(None)) ||
> m(rf) opt(n_estimators(200) max_features(10)) ||
> m(rf) opt(n_estimators(200) max_features(5)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.01)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.1)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.3)),
> njobs(4)
Learner Ypystacked added successfully.
. *** add learners for E[D|X,Z]
. ddml E[D|X,Z], learner(Dpystacked): pystacked $D $Xaug $Zaug ||
> method(ols) xvars($Xbase $Zbase) ||
> m(lassocv) ||
> m(ridgecv) ||
> m(rf) opt(n_estimators(200) max_features(None)) ||
> m(rf) opt(n_estimators(200) max_features(10)) ||
> m(rf) opt(n_estimators(200) max_features(5)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.01)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.1)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.3)),
> njobs(4)
Learner Dpystacked added successfully.
. *** add learners for E[D|X]
. ddml E[D|X], mname(m0) learner(Dpystacked) vname($D):
> pystacked {D} $Xaug ||
> method(ols) xvars($Xaug) ||
> m(lassocv) ||
> m(ridgecv) ||
> m(rf) opt(n_estimators(200) max_features(None)) ||
> m(rf) opt(n_estimators(200) max_features(10)) ||
> m(rf) opt(n_estimators(200) max_features(5)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.01)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.1)) ||
> m(gradboost) opt(n_estimators(800) learning_rate(0.3)),
> njobs(4)
Learner Dpystacked_h added successfully.
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Steps 3–4: Perform cross-fitting (output omitted) and estimate causal effects.

. quietly ddml crossfit

. ddml estimate, robust

Model: fiv, crossfit folds k=4, resamples r=5
Mata global (mname): m0
Dependent variable (Y): y
y learners: Ypystacked
D equations (1): price
price learners: Dpystacked
DDML estimation results:
spec r Y learner D learner b SE DH learner

st 1 Ypystacked Dpystacked -0.112 (0.010) Dpystacked_h
st 2 Ypystacked Dpystacked -0.124 (0.010) Dpystacked_h
st 3 Ypystacked Dpystacked -0.110 (0.011) Dpystacked_h
st 4 Ypystacked Dpystacked -0.123 (0.011) Dpystacked_h
st 5 Ypystacked Dpystacked -0.130 (0.013) Dpystacked_h

Mean/med Y learner D learner b SE DH learner
st mn Ypystacked Dpystacked -0.120 (0.013) Dpystacked_h
st md Ypystacked Dpystacked -0.123 (0.014) Dpystacked_h

Median over 5 stacking resamples
y-E[y|X] = y-Ypystacked Number of obs = 2217
E[D|X,Z] = D-Dpystacked
E[D^|X] = Dpystacked_h
Orthogonalized D = D - E[D^|X]; optimal IV = E[D|X,Z] - E[D^|X].

Robust
y Coefficient std. err. z P>|z| [95% conf. interval]

price -.1234241 .0144181 -8.56 0.000 -.151683 -.0951652

Stacking final estimator: nnls1
Summary over 5 resamples:

D eqn mean min p25 p50 p75 max
price -0.1200 -0.1305 -0.1242 -0.1234 -0.1117 -0.1104

Manual final estimation. We can obtain the final estimate manually. To this end, we
construct the instrument as Ê(D|X,Z) − Ê(D|X) and the residualized endogenous
regressor as D − Ê(D|X). The residualized dependent variable is saved in memory.
Here we obtain the estimate from the first cross-fitting replication. We could obtain the
estimate for replication r by changing the “_1” to “_r”.
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. generate double Y1_resid = $Y - Ypystacked_1

. generate double dtilde = $D - Dpystacked_h_1

. generate double optiv = Dpystacked_1 - Dpystacked_h_1

. ivregress 2sls Y1_resid (dtilde=optiv), robust
Instrumental variables 2SLS regression Number of obs = 2,217

Wald chi2(1) = 129.46
Prob > chi2 = 0.0000
R-squared = 0.0939
Root MSE = .9654

Robust
Y1_resid Coefficient std. err. z P>|z| [95% conf. interval]

dtilde -.1117023 .0098173 -11.38 0.000 -.1309438 -.0924607
_cons .0040233 .0205103 0.20 0.844 -.0361762 .0442228

Endogenous: dtilde
Exogenous: optiv

7 Conclusion
This article introduced the command ddml, which implements double/debiased machine
learning. It allows for flexible estimation of structural parameters in five econometric
models, leveraging a wide range of supervised machine learners. While ddml is compati-
ble with many existing machine learning programs in Stata, it is specifically designed to
be used with pystacked, which allows combining several learners into a meta-learner via
stacking. We see several avenues for extensions: First, ddml primarily focuses on cross-
sectional models. Some panel models are readily implementable in ddml, but expanding
its capabilities for seamless use with a wide range of panel models would increase its
practical relevance. Second, researchers and policymakers are frequently interested in
learning treatment effects for specific subpopulations sharing observable characteristics.
The estimation of conditional average treatment effects would be a natural extension to
the existing ddml program. Third, ddml currently lacks underidentification diagnostics
and weak-identification robust inference for IV regressions, which we hope to add in
future releases.
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9 Programs and supplemental material
To install the software files as they existed at the time of publication of this article,
type

. net sj 24-1

. net install st0738 (to install program files, if available)

. net get st0738 (to install ancillary files, if available)

To get the latest stable versions of ddml and qddml from our website, check the
installation instructions at https://statalasso.github.io/docs/ddml/installation/. We
update the stable website version more frequently than the Statistical Software Com-
ponents version.

10 References
Ahrens, A., C. B. Hansen, and M. E. Schaffer. 2018. pdslasso: Stata module for
post-selection and post-regularization OLS or IV estimation and inference. Sta-
tistical Software Components S458459, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s458459.html.

. 2020. lassopack: Model selection and prediction with regularized regression in
Stata. Stata Journal 20: 176–235. https://doi.org/10.1177/1536867X20909697.

. 2023. pystacked: Stacking generalization and machine learning in Stata. Stata
Journal 23: 909–931. https://doi.org/10.1177/1536867X231212426.

Ahrens, A., C. B. Hansen, M. E. Schaffer, and T. Wiemann. 2024. Model averaging and
double machine learning. ArXiv:2401.01645 [econ.EM]. https: //doi.org / 10.48550 /
arXiv.2401.01645.

Angrist, J. D., K. Graddy, and G. W. Imbens. 2000. The interpretation of instrumental
variables estimators in simultaneous equations models with an application to the
demand for fish. Review of Economic Studies 67: 499–527. https://doi.org/10.1111/
1467-937X.00141.

Angrist, J. D., and A. B. Krueger. 1999. Empirical strategies in labor economics. In
Vol. 3A of Handbook of Labor Economics, ed. O. Ashenfelter and D. Card, 1277–1366.
Amsterdam: Elsevier. https://doi.org/10.1016/S1573-4463(99)03004-7.

Athey, S., J. Tibshirani, and S. Wager. 2019. Generalized random forests. Annals of
Statistics 47: 1148–1178. https://doi.org/10.1214/18-AOS1709.

Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen. 2012. Sparse models and meth-
ods for optimal instruments with an application to eminent domain. Econometrica
80: 2369–2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., V. Chernozhukov, I. Fernández-Val, and C. Hansen. 2017. Program eval-
uation and causal inference with high-dimensional data. Econometrica 85: 233–298.
https://doi.org/10.3982/ECTA12723.

https://statalasso.github.io/docs/ddml/installation/
https://ideas.repec.org/c/boc/bocode/s458459.html
https://doi.org/10.1177/1536867X20909697
https://doi.org/10.1177/1536867X231212426
https://doi.org/10.48550/arXiv.2401.01645
https://doi.org/10.48550/arXiv.2401.01645
https://doi.org/10.1111/1467-937X.00141
https://doi.org/10.1111/1467-937X.00141
https://doi.org/10.1016/S1573-4463(99)03004-7
https://doi.org/10.1214/18-AOS1709
https://doi.org/10.3982/ECTA9626
https://doi.org/10.3982/ECTA12723


A. Ahrens, C. B. Hansen, M. E. Schaffer, and T. Wiemann 43

Belloni, A., V. Chernozhukov, and C. Hansen. 2014. Inference on treatment effects after
selection among high-dimensional controls. Review of Economic Studies 81: 608–650.
https://doi.org/10.1093/restud/rdt044.

Berry, S., J. Levinsohn, and A. Pakes. 1995. Automobile prices in market equilibrium.
Econometrica 63: 841–890. https://doi.org/10.2307/2171802.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. Simultaneous analysis of Lasso and
Dantzig selector. Annals of Statistics 37: 1705–1732. https: //doi.org/10.1214/08-
AOS620.

Blandhol, C., J. Bonney, M. Mogstad, and A. Torgovitsky. 2022. When is TSLS actually
LATE? Working paper, University of Chicago, Becker Friedman Institute (BFI)Work-
ing Paper No. 2022-16. https://doi.org/10.2139/ssrn.4014707.

Breiman, L. 1996. Stacked regressions. Machine Learning 24: 49–64. https://doi.org/
10.1007/BF00117832.

Buitinck, L., G. Louppe, M. Blondel, F. Pedregosa, A. Müller, O. Grisel, V. Niculae,
et al. 2013. API design for machine learning software: Experiences from the scikit-
learn project. European Conference on Machine Learning and Principles and Practices
of Knowledge Discovery in Databases Workshop: Languages for Data Mining and
Machine Learning.

Chang, C.-C., and C.-J. Lin. 2011. libsvm: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST) 2: 1–27. https:
//doi.org/10.1145/1961189.1961199.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and
J. Robins. 2018. Double/debiased machine learning for treatment and structural
parameters. Econometrics Journal 21: C1–C68. https://doi.org/10.1111/ectj.12097.

Chernozhukov, V., C. Hansen, and M. Spindler. 2015a. Post-selection and post-
regularization inference in linear models with many controls and instruments. Amer-
ican Economic Review 105: 486–490. https://doi.org/10.1257/aer.p20151022.

. 2015b. Valid post-selection and post-regularization inference: An elementary,
general approach. Annual Review of Economics 7: 649–688. https: // doi.org / 10.
1146/annurev-economics-012315-015826.

. 2016. High-dimensional metrics in R. arXiv:1603.01700 [stat.ML]. https://doi.
org/10.48550/arXiv.1603.01700.

Dhar, D., T. Jain, and S. Jayachandran. 2022. Reshaping adolescents’ gender attitudes:
Evidence from a school-based experiment in India. American Economic Review 112:
899–927. https://doi.org/10.1257/aer.20201112.

Farrell, M. H., T. Liang, and S. Misra. 2021. Deep neural networks for estimation and
inference. Econometrica 89: 181–213. https://doi.org/10.3982/ECTA16901.

https://doi.org/10.1093/restud/rdt044
https://doi.org/10.2307/2171802
https://doi.org/10.1214/08-AOS620
https://doi.org/10.1214/08-AOS620
https://doi.org/10.2139/ssrn.4014707
https://doi.org/10.1007/BF00117832
https://doi.org/10.1007/BF00117832
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1257/aer.p20151022
https://doi.org/10.1146/annurev-economics-012315-015826
https://doi.org/10.1146/annurev-economics-012315-015826
https://doi.org/10.48550/arXiv.1603.01700
https://doi.org/10.48550/arXiv.1603.01700
https://doi.org/10.1257/aer.20201112
https://doi.org/10.3982/ECTA16901


44 ddml

Frank, E., M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten, and L. Trigg.
2009. Weka-a machine learning workbench for data mining. In Data Mining and
Knowledge Discovery Handbook, ed. O. Maimon and L. Rokach, 1269–1277. Boston,
MA: Springer. https://doi.org/10.1007/978-0-387-09823-4_66.

Giannone, D., M. Lenza, and G. E. Primiceri. 2021. Economic predictions with big
data: The illusion of sparsity. Econometrica 89: 2409–2437. https: // doi.org / 10.
3982/ECTA17842.

Gilchrist, D. S., and E. G. Sands. 2016. Something to talk about: Social spillovers in
movie consumption. Journal of Political Economy 124: 1339–1382. https://doi.org/
10.1086/688177.

Guenther, N., and M. Schonlau. 2018. svmachines: Stata module providing support
vector machines for both classification and regression. Statistical Software Compo-
nents S458564, Department of Economics, Boston College. https:// ideas.repec.org/
c/boc/bocode/s458564.html.

Haghish, E. F. 2019. Seamless interactive language interfacing between R and Stata.
Stata Journal 19: 61–82. https://doi.org/10.1177/1536867X19830891.

Hahn, J. 1998. On the role of the propensity score in efficient semiparametric estimation
of average treatment effects. Econometrica 66: 315–331. https: //doi.org/10.2307/
2998560.

Hangartner, D., D. Kopp, and M. Siegenthaler. 2021. Monitoring hiring discrimination
through online recruitment platforms. Nature 589: 572–576. https: // doi.org / 10.
1038/s41586-020-03136-0.

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. 2nd ed. New York: Springer. https: //doi.
org/10.1007/978-0-387-84858-7.

Heckman, J. J., and E. J. Vytlacil. 2007. Econometric evaluation of social pro-
grams. Part 1, Causal models, structural models and econometric policy evaluation.
In Vol. 6B of Handbook of Econometrics, ed. J. J. Heckman and E. E. Leamer,
4779–4874. Amsterdam: Elsevier. https://doi.org/10.1016/S1573-4412(07)06070-9.

Huntington-Klein, N. C. 2021. mlrtime. GitHub. https: // github.com /NickCH-K /
MLRtime/.

Imbens, G. W., and J. D. Angrist. 1994. Identification and estimation of local average
treatment effects. Econometrica 62: 467–475. https://doi.org/10.2307/2951620.

Luo, Y., M. Spindler, and J. Kück. 2016. High-dimensional L_2 boosting: Rate of con-
vergence. arXiv:1602.08927 [stat.ML]. https://doi.org/10.48550/arXiv.1602.08927.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12: 2825–2830. https://doi.org/10.48550/arXiv.1201.0490.

https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.3982/ECTA17842
https://doi.org/10.3982/ECTA17842
https://doi.org/10.1086/688177
https://doi.org/10.1086/688177
https://ideas.repec.org/c/boc/bocode/s458564.html
https://ideas.repec.org/c/boc/bocode/s458564.html
https://doi.org/10.1177/1536867X19830891
https://doi.org/10.2307/2998560
https://doi.org/10.2307/2998560
https://doi.org/10.1038/s41586-020-03136-0
https://doi.org/10.1038/s41586-020-03136-0
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1016/S1573-4412(07)06070-9
https://github.com/NickCH-K/MLRtime/
https://github.com/NickCH-K/MLRtime/
https://doi.org/10.2307/2951620
https://doi.org/10.48550/arXiv.1602.08927
https://doi.org/10.48550/arXiv.1201.0490


A. Ahrens, C. B. Hansen, M. E. Schaffer, and T. Wiemann 45

Poterba, J. M., S. F. Venti, and D. A. Wise. 1995. Do 401(k) contributions crowd out
other personal saving? Journal of Public Economics 58: 1–32. https: //doi.org/10.
1016/0047-2727(94)01462-W.

Roberts, M. E., B. M. Stewart, and R. A. Nielsen. 2020. Adjusting for confounding
with text matching. American Journal of Political Science 64: 887–903. https://doi.
org/10.1111/ajps.12526.

Schmidt-Hieber, J. 2020. Nonparametric regression using deep neural networks with
ReLU activation function. Annals of Statistics 48: 1875–1897. https: // doi.org / 10.
1214/19-AOS1875.

Schonlau, M., and R. Y. Zou. 2020. The random forest algorithm for statistical learning.
Stata Journal 20: 3–29. https://doi.org/10.1177/1536867X20909688.

Wager, S., and S. Athey. 2018. Estimation and inference of heterogeneous treatment
effects using random forests. Journal of the American Statistical Association 113:
1228–1242. https://doi.org/10.1080/01621459.2017.1319839.

Wager, S., and G. Walther. 2015. Adaptive concentration of regression trees, with
application to random forests. arXiv:1503.06388 [math.ST]. https: // doi.org / 10.
48550/arXiv.1503.06388.

Wolpert, D. H. 1992. Stacked generalization. Neural Networks 5: 241–259. https:
//doi.org/10.1016/S0893-6080(05)80023-1.

Wüthrich, K., and Y. Zhu. 2023. Omitted variable bias of Lasso-based inference meth-
ods: A finite sample analysis. Review of Economics and Statistics 105: 982–997.
https://doi.org/10.1162/rest_a_01128.

About the authors

Achim Ahrens is a postdoctoral researcher and senior data scientist at the Public Policy Group
and Immigration Policy Lab, ETH Zürich.

Christian B. Hansen is the Wallace W. Booth Professor of Econometrics and Statistics at the
University of Chicago Booth School of Business.

Mark E. Schaffer is a professor of economics in Edinburgh Business School at Heriot-Watt
University, Edinburgh, U.K., and a research fellow at the Institute for the Study of Labour
(IZA), Bonn.

Thomas Wiemann is an economics PhD student at the University of Chicago.

https://doi.org/10.1016/0047-2727(94)01462-W
https://doi.org/10.1016/0047-2727(94)01462-W
https://doi.org/10.1111/ajps.12526
https://doi.org/10.1111/ajps.12526
https://doi.org/10.1214/19-AOS1875
https://doi.org/10.1214/19-AOS1875
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.1080/01621459.2017.1319839
https://doi.org/10.48550/arXiv.1503.06388
https://doi.org/10.48550/arXiv.1503.06388
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1162/rest_a_01128



