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A B S T R A C T   

Brain networks are continuously modified throughout development, yet this plasticity can also make functional 
networks vulnerable to early life stress. Little is currently known about the effect of early life stress on the 
functional organization of the brain. The current study investigated the association between environmental 
stressors and network topology using data from the Adolescent Brain Cognitive DevelopmentSM (ABCD®) Study. 
Hierarchical modeling identified a general factor of environmental stress, representing the common variance 
across multiple stressors, as well as four subfactors including familial dynamics, interpersonal support, neigh-
borhood SES deprivation, and urbanicity. Functional network topology metrics were obtained using graph theory 
at rest and during tasks of reward processing, inhibition, and affective working memory. The general factor of 
environmental stress was associated with less specialization of networks, represented by lower modularity at rest. 
Local metrics indicated that general environmental stress was also associated with less efficiency in the 
subcortical-cerebellar and visual networks while showing greater efficiency in the default mode network at rest. 
Subfactors of environmental stress were associated with differences in specialization and efficiency in select 
networks. The current study illustrates that a wide range of stressors in a child’s environment are associated with 
differences in brain network topology.   

1. Introduction 

Early life stress encompasses a wide variety of attributes in the 
environment that may impact the developing child, including socio-
economic status (SES; e.g., poverty), characteristics of the neighborhood 
(e.g., crime), interpersonal relationships (e.g., abuse, lack of support), 
and attributes of the physical environment (e.g., pollution levels). Early 
life stress has a substantial influence on shaping the developing brain, as 
brain structure and function are continuously modified based on inputs 
that enter the system and corresponding neural feedback in response to 
those inputs (Batista-García-Ramó and Fernández-Verdecia, 2018). 
Through this ongoing interaction with the environment, the brain goes 
through substantial remodeling. This plasticity allows the brain to ac-
quire new functional properties and adapt to external demands (von 

Bernhardi et al., 2017). While structural networks are primarily estab-
lished in the early phases of development, functional networks undergo 
heavy refinement and reorganization throughout development (Grayson 
and Fair, 2017; Ho et al., 2018). Therefore, functional networks can 
serve as a useful source of information regarding the brain’s response to 
environmental influences. 

Prior research on the influence of early life stress on functional 
networks has primarily focused on specific stressors and examined 
functional connectivity. For example, using the Adolescent Brain 
Cognitive DevelopmentSM (ABCD®) Study, lower family income was 
associated with decreased functional connectivity in the default-mode 
network, inferior and superior parietal cortices, and posterior cere-
bellum as well as increased functional connectivity in motor, auditory, 
visual, and subcortical regions (Tomasi and Volkow, 2023). Using 
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different levels of SES indices (neighborhood disadvantage, household 
income-to-needs, and parental education), others have found that SES 
measures were associated with differences in subcortical, somatosen-
sory, and frontoparietal networks (Rakesh et al., 2021; Sripada et al., 
2022). DeJoseph and colleagues examined three latent variables 
reflecting material/economic deprivation, caregiver social support, and 
psychosocial threat and found that deprivation and threat differed in 
associated functional connectivity differences in frontolimbic networks 
and threat moderated the relationship between income and dorsal and 
ventral attention network connectivity (DeJoseph et al., 2022). Addi-
tionally, Ellwood-Lowe et al. (2021) found that children living in 
poverty show different network connectivity while still achieving 
comparable cognitive performance compared to their peers with 
higher-income backgrounds, suggesting that differences in functional 
connectivity may represent an adaptative response to the environment. 
While this functional connectivity work has led to important insights, 
there is an increasing recognition that the functional organization of the 
brain may provide important additional information for understanding 
the effect of early life stress on brain development. 

Network analysis using graph theory allows us to quantitatively 
characterize the functional organization of the brain. Using this 
approach, networks are composed of nodes (vertices) denoting brain 
regions that are linked by edges representing physical connections. 
Various metrics are used to describe characteristics of these networks, 
such as specialization (how modular or distinct the networks are) and 
efficiency (how many steps there are between regions). For a compre-
hensive introduction to network analysis using graph theory, see Bull-
more and Sporns (2009). There are a wide variety of measures that can 
be used to describe network topology (for the metrics used in the present 
study, see Table 1). Over the course of development, the functional or-
ganization of the brain is refined, wherein modules generally become 
more distinct/specialized and efficient with age (Baum et al., 2017; Fair 
et al., 2009; Gu et al., 2015; Hagmann et al., 2010; Váša et al., 2018). 
Studies relating early life stress to functional network topology have 
shown that lower SES is associated with lower within-network func-
tional segregation (less specialization and efficiency of functional 

networks) as early as 6 months of age (Gao et al., 2015), as well as in 
youth (Tooley et al., 2020) and adults (Chan et al., 2018). Thus, func-
tional network topography can provide a more nuanced understanding 
of the effect of early life stress on the functional organization of the 
brain. However, these studies focused only on SES and resting state data. 

While SES is an important early life stressor, it does not fully account 
for all the highly co-occurring stressors that a youth may experience in 
daily life (Smith and Pollak, 2021). Hierarchical modeling can be used to 
identify both common and distinct dimensions of early life stress. In our 
previous work, we used hierarchical modeling to identify a general 
factor of environmental stress, representing the shared variance across 
various environmental stressors, as well as specific factors that highlight 
distinct subgroups of stressors that cluster together (Jeong et al., 2023). 
Specifically, we found subfactors for family dynamics (the dynamics of a 
child’s family environment such as history of mental illness, financial 
difficulty, or conflict in the family), interpersonal support (the support a 
child receives at school and at home), neighborhood SES deprivation (the 
availability of resources in a child’s neighborhood), and urbanicity (the 
quality of a child’s physical environment such as pollution levels and 
lead exposure risk). Using this model, we showed that the general factor 
of environmental stress was associated with globally smaller brain vol-
umes as well as thinner cortices in several regions (Jeong et al., 2023). 
However, this study examined structure only and did not investigate 
network topology. Furthermore, prior studies examining the functional 
organization of the brain have focused on resting state data in the 
absence of active task demands, which is useful but misses the oppor-
tunity to examine functional organization in the context of cognitive, 
emotional, and reward processing (Stevens, 2016). Examining network 
topology during task performance in addition to the resting state can be 
informative for identifying network engagement across different 
contexts. 

The purpose of the current study was to investigate the association 
between hierarchically defined environmental stressors and brain 
network topology at rest and during task-based functioning. To capture 
the functional organization of the brain, we used graph theory metrics to 
quantify the metrics of modularity, average shortest path length, local 
efficiency, diameter, and small-world omega (see Table 1 for definitions 
of these metrics; Rubinov and Sporns, 2010). These metrics were ob-
tained in the context of resting state, reward processing (a monetary 
incentive delay task), affective working memory (an emotional n-back 
task), and inhibition (a stop signal task). We hypothesized that a broad 
range of environmental stressors represented by the general factor 
would be associated with less specialization (lower modularity) of 
functional networks. Based on previous research on SES, we predicted 
that greater neighborhood SES deprivation would be associated with 
less efficiency within functional networks, especially in subcortical, 
somatosensory, and frontoparietal networks. Examining the relation-
ships between functional network topology and the dimensions of family 
dynamics, interpersonal support, and urbanicity was exploratory. 

2. Methods 

2.1. Participants 

We used baseline data from release 4.0 of the Adolescent Brain 
Cognitive Development (ABCD) Study with a total of 11,876 9- to 10- 
year-old children who were recruited at 21 sites across the United 
States (see supplement for additional details on the representativeness of 
the sample). The ABCD Study researchers obtained parental consent and 
child assent from all participants. Vanderbilt University’s Institutional 
Review Board approved the use of this deidentified dataset. The 
following final sample sizes were included for each condition: rest (N =
3998), monetary incentive delay (N = 1872), emotional n-back (N =
1836), and stop signal task (N = 1864). See Table 1 for the demographics 
of the sample. 

Table 1 
Graph theory terminology.  

Term Description 

Nodes Brain regions are represented by nodes (vertices). Nodes 
combine together to create modules. 

Edges Steps or connections between nodes. 
Modularity Degree to which a system subdivides into distinct 

communities or modules. Greater modularity indicates 
greater segregation (specialization) of modules and lower 
modularity indicates sparser segregation of modules. 

Average shortest path 
length 

Average number of edges along the shortest path for all 
possible node pairs. Lower average shortest path lengths 
indicate that neural signals travel a shorter distance (more 
efficient) and greater average shortest path lengths indicate 
neural signals travel a longer distance (less efficient). 

Small-worldness The degree to which a network exhibits both high local 
clustering and short average path lengths suggesting that 
most nodes can be reached from every other by a small 
number of steps or connections. Lower small-worldness 
indicates that the network is randomly connected. Greater 
small-worldness indicates that the network is highly 
interconnected (more lattice-like). 

Diameter Maximum distance between node pairs. Smaller diameter 
indicates the greatest length of any of the paths is shorter 
(more efficient). Larger diameter indicates that the greatest 
length of any of the paths is longer (less efficient). 

Local efficiency Characterizes how well information is exchanged by a 
node’s neighbors when the node is theoretically removed. 
Less local efficiency indicates that the network does not 
recover and exchange information as well if a node is 
removed. Greater local efficiency indicates that the network 
can recover and still efficiently exchange information if a 
node is removed.  
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2.2. Measures 

We performed a comprehensive review of the data available in the 
ABCD Study to identify items covering aspects of the child’s environ-
ment including neglect, abuse, resource availability, attributes of the 
physical environment such as population density and pollution, and 
interpersonal factors such as the availability of supportive relationships. 
Additional details on item selection can be found in our prior work 
(Jeong et al., 2023). Our previous work also showed that psychopa-
thology is related to these network metrics (Reimann et al., 2022). To 
determine what environmental stress contributes above and beyond its 
associations with psychopathology, we used the Child Behavior Check-
list (CBCL) to create psychopathology factors (Fig. 1a) which were 
added as covariates in all analyses (see the supplement for details). 
Descriptions of all measures included in our analyses can be found in the 
supplement. 

2.3. Deriving factors reflecting environmental stress 

The hierarchical model of environmental stress used in this study is 
based on our previously published work (Jeong et al., 2023). Explor-
atory structural equation modeling with over 100 environmental 
stressors revealed four factors. The “family dynamics” factor consisted of 
items related to the dynamics of a child’s family environment such as a 
history of mental illness in the family, traumatic events experienced by 
the child, the presence of conflict within the family, and financial dif-
ficulty experienced by the immediate family. The “interpersonal sup-
port” factor consisted of items reflecting the support a child receives at 
home and school, such as the child’s perception of his or her connect-
edness to school and teachers, the primary caregiver’s warmth, and 
parental involvement in monitoring the child. The “neighborhood SES 
deprivation” factor was made up of items reflecting the availability of 
resources in a child’s neighborhood such as median rent and home 
value, the percentage of families living below or close to the poverty 
level, income disparity, median family income, and the percentage of 
the population with at least a high school diploma. Finally, the 
“urbanicity” factor was made up of variables related to the quality of a 
child’s physical environment which closely mapped onto urban living. 
Items included population density, perceptions of neighborhood safety, 
pollution levels, lead exposure risk, and walkability. 

We used two different hierarchical models to identify a general factor 
of environmental stress: a bifactor model and a higher-order (second- 
order) model. In a bifactor model, the total variance in each item is 
partitioned between the general and specific factors so that they are 
orthogonal or uncorrelated with one another (Lahey et al., 2021). In a 

higher-order model, each item loads onto one of several correlated 
lower-order factors, which then load onto a second-order general factor 
(Lahey et al., 2021). As shown in our previous work, the general and 
specific or lower-order factors in these models exhibited adequate 
construct reliability and estimated replicability (Jeong et al., 2023). 
These models are shown in Figs. 1b and 1c. Further details on the 
modeling of the environmental factors can be found in our previous 
work (Jeong et al., 2023) and in the supplement. 

2.4. Functional magnetic resonance imaging tasks 

We examined functional network topology during a resting state 
condition in addition to three functional tasks (Casey et al., 2018). The 
monetary incentive delay task examines brain function during reward 
processing, motivation, and anticipation of rewards. Behavioral per-
formance is quantified by total monetary earnings. The emotional 
n-back task examines working memory and emotion regulation pro-
cesses. Performance is measured by the rate of accuracy for 2-back trials. 
The stop-signal task examines functional activity during inhibition 
conditions. Performance is quantified as the proportion correct on “Go” 
trials and the mean stop-signal delay subtracted from the mean reaction 
time on correct “Go” trials. Stop signal reaction times were reverse 
scored so that higher scores reflect better performance. 

2.5. Image acquisition, processing, and quality assurance 

Details on the image acquisition, processing, and quality assurance 
procedures have been previously published (Casey et al., 2018; Hagler 
et al., 2019; Stier et al., 2023) and are described in the supplement. Due 
to the need to ensure adequately clean data to derive the graph theory 
network metrics, stringent quality assurance and motion parameters 
were applied (see supplement). Data exclusion criteria included missing 
data, failed quality assurance measures, and individual runs with greater 
than .2 mm mean and 2 mm max framewise displacement to ensure 
suitable data for graph theory calculations. 

2.6. Graph theory metrics 

Atlas. We derived networks using the Shen-268 atlas. Partitions are 
grouped into eight established networks: subcortical-cerebellar, motor, 
medial frontal, frontoparietal, default mode, visual 1, visual 2, and vi-
sual association networks (Finn et al., 2015; Shen et al., 2013). 

Connectivity Matrix Thresholding. We derived functional networks 
based on the correlation matrices between brain region signals. As done 
previously (Reimann et al., 2022; Stier et al., 2023), we retained the 

Fig. 1. Schematics of the Bifactor and Higher-Order Models Used to Delineate Psychopathology and Environmental Stress Factors. A) A confirmatory bifactor model 
of the Child Behavioral Checklist (CBCL) data yielded four orthogonal factors of psychopathology: general psychopathology, which represents symptoms across all 
domains, as well as specific factors for internalizing symptoms, attention-deficit/hyperactivity disorder (ADHD) symptoms, and conduct problems. B) A confirmatory 
bifactor model identified a general environmental stress factor, representing commonalities across all stressors, as well as four specific factors: family dynamics, 
interpersonal support, neighborhood socioeconomic status (SES) deprivation, and urbanicity. All factors in a bifactor model are uncorrelated with each other. C) A 
confirmatory higher-order model identifies the same four lower-order factors and then derives a general factor from the lower-order factors resulting in factors that 
are allowed to correlate with one another. 
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strongest 10%, 16.67%, 23%, and 30% of positive and negative con-
nections within each network and within each task. This approach 
sought to remove noisy edges and allow for sparse networks that are still 
largely connected. To combat potential bias stemming from this 
approach, results are reported as significant only if significance is 
retained across at least three consecutive thresholds. This approach is 
similar to those used in prior literature (Fornito et al., 2010). Connec-
tions were binarized prior to graph theory calculations. 

Measures of Network Efficiency. We used the python package networkX 
to compute graph theory metrics of modularity, average shortest path 
length, local efficiency, diameter, and small world omega (Hagberg 
et al., 2008). Calculations and descriptions of these metrics have been 
well-documented and are well-suited to characterize network-wide at-
tributes (Rubinov and Sporns, 2010; Sporns, 2018). See Table 1 for 
definitions of the network metrics used and the supplement for the 
metric calculations. 

2.7. Statistical analysis 

Analyses were performed in Mplus version 8.4 using structural 
equation modeling to test associations between network topology met-
rics and environmental stress factors while controlling for covariates in 
the model (described below). Data were stratified based on site to con-
trol for site differences and clustered based on family membership to 
account for siblings and multiple births (twins and triplets). See the 
supplement for additional details on accounting for dependencies in the 
sample. Data were weighted by post-stratification weights to make the 
sample more representative of the U.S. population, per ABCD Study 
recommendations (Heeringa and Berglund, 2020). 

For each of the eight networks, four tasks, and four thresholds, we 
investigated the associations between our environmental stress factors 
and the graph theory metrics. Due to the orthogonality of factors derived 
from the bifactor model, the general environmental stress factor and 
four specific dimensions can be included in the same model without 
multicollinearity issues. Since the general environmental stress factor in 
a higher-order model is defined by loadings on the lower-order factors, 
the general and lower-order factors must be tested in separate models 
due to their being a perfectly collinear system. Equations for each model 

can be found in the supplement. We tested all eight networks in one 
structural equation model simultaneously. The false discovery rate was 
controlled (q < 0.05) using the stats package in R version 3.6.1 (http:// 
www.r-project.org/). Specifically, the false discovery rate was used to 
control for multiple comparisons for each stressor across the eight net-
works, resulting in eight tests for each false discovery rate correction. 
Results were considered reliable if we obtained significant p-values 
across at least three consecutive thresholds. We performed a follow-up 
analysis examining associations between behavioral performance on 
the task and the environmental dimensions while covarying for sex, 
race/ethnicity, and psychopathology factors. Lastly, we conducted 
sensitivity analyses with current medication use added as an additional 
covariate. 

2.8. Data and code availability 

ABCD Study data are available through the National Institute of 
Mental Health Data Archive (https://nda.nih.gov/abcd). The code and a 
corresponding wiki for the analytic procedures can be found at https 
://github.com/VU-BRAINS-lab/ABCD_Stressor_Network. 

3. Results 

Results reported are from the bifactor model. Consistencies with and 
differences from the results obtained from the higher-order model are 
noted for each stressor. Refer to Table 1 for definitions of each network 
metric and Fig. 2 for the summary of results across bifactor and higher- 
order models. 

3.1. Sample comparison 

See supplemental Tables 1a-1d for comparisons between the 
included and excluded samples. The included sample was slightly older 
than the excluded sample and had a higher proportion of females and 
individuals identifying as non-Hispanic White, whereas the excluded 
sample had more males and more individuals identifying as Black, 
Hispanic, or other race/ethnicity. The included sample also had a 
slightly higher average household income and more years of parental 

Fig. 2. Summary of the Results for the Association Between Environmental Stressors and Graph Theory Metrics by Network. This figure shows the metrics that were 
significantly associated with stressor factors obtained from bifactor modeling and higher-order modeling across three-consecutive thresholds. The results are 
aggregated across resting state and three task conditions. 
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education. Finally, the included sample showed lower general envi-
ronmental stress and psychopathology scores than the excluded sample. 

3.2. General environmental stress 

Modularity. The general environmental stress factor was associated 
with lower whole-brain modularity during rest (Fig. 3; supplemental 
Table 2a), which indicates denser connections between modules and 
sparser connections within modules. Such a pattern may suggest less 
specialization of modules (Vogel et al., 2010). 

Average Shortest Path. The general environmental stress factor was 
associated with greater average shortest path values (in other words, 
longer paths suggesting less efficiency) in the subcortical cerebellar and 
visual 2 networks during rest (Fig. 3; supplemental Table 3a). 

Small-Worldness. The general environmental stress factor was also 
associated with lower small-worldness in the subcortical cerebellar 
network during rest (Fig. 3; supplemental Table 4a). Small-worldness 
reflects “wiring costs” and is important for efficient segregation and 
integration of information (Liao et al., 2017). Lower small-worldness 
may suggest less efficient wiring or composition in this network. In 
contrast, greater scores on the general environmental stress factor were 
associated with higher small-worldness values in the default-mode 
network at rest (Fig. 3; supplemental Table 4a), which suggests more 
efficient wiring of this network. 

Other Network Metrics. No results between general environmental 
stress and the diameter or local efficiency metrics met our criteria for 
significance during rest (supplemental Tables 5a and 6a). No associa-
tions between general environmental stress and average shortest path, 
small world omega, diameter, or local efficiency met our criteria for 
significance during the emotional n-back, monetary incentive delay, or 

stop-signal tasks (supplement Tables 7a-18a). 
Higher-Order Modeling. The results from the higher-order model were 

the same as the bifactor model in terms of associations with network 
properties (supplemental Tables 2b-18b), except for the loss of the small- 
worldness finding in the default mode network at rest (supplemental 
Table 4b). Additionally, the general environmental stress factor defined 
by higher-order modeling was associated with lower whole brain 
modularity during the emotional n-back task in addition to rest 
(Table 2b). 

Behavioral Performance. Analyses of behavioral measures indicated 
that the general environmental stress factor was associated with poorer 
performance during the emotional n-back task (lower proportion and 
lower rates of correct responses to 2-back stimuli) and the stop signal 
task (lower rates of correct go trials; supplemental Table 19a). The re-
sults from the higher-order model were mostly consistent with the 
bifactor model with an additional finding of poorer performance during 
the monetary incentive delay task (lower total earnings; supplemental 
Table 19b). 

3.3. Neighborhood SES deprivation 

Average Shortest Path. Greater neighborhood SES deprivation scores 
were associated with lower average shortest path length values (i.e., 
shorter, more efficient paths) in motor areas during rest (supplemental 
Table 3a). 

Local Efficiency. Greater neighborhood SES deprivation scores from 
the bifactor model were associated with less local efficiency in the 
frontoparietal network during the emotional n-back task (supplemental 
Table 10a). 

Other Network Metrics. No other associations with neighborhood SES 

Fig. 3. Correlations Between the General Environmental Stress Factor and Network Connectivity during Rest. General environmental stress was associated with a) 
lower whole-brain modularity, b) greater average shortest path in the subcortical-cerebellar network, c) greater average shortest path in the visual 2 network, d) 
lower small-worldness in the subcortical-cerebellar network, and e) greater small-worldness in the default mode network. Dotted lines indicate 95% confi-
dence intervals. 
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deprivation were significant (supplemental Tables 2a-18a). 
Higher-Order Modeling. The results from the higher-order model 

showed that, in contrast to the bifactor model, there were no significant 
associations obtained with neighborhood deprivation from the higher- 
order model and average shortest path length at rest or local effi-
ciency during the emotional n-back task (supplemental Tables 3b, 10b). 
All other associations remained the same as the bifactor model (sup-
plemental Tables 2b-18b). 

Behavioral Performance. Neighborhood SES deprivation was associ-
ated with poorer performance during the monetary incentive delay task 
(less total earnings), the emotional n-back task (lower proportion of 
correct responses and lower rates of correct responses to 2-back stimuli), 
and the stop signal task (lower rates of correct go trials; supplemental 
Tables 19a and 19b). 

3.4. Urbanicity 

Modularity. Greater urbanicity scores from the bifactor model were 
associated with lower whole-brain modularity during rest (supplemental 
Table 2a). 

Average Shortest Path. Greater urbanicity was associated with greater 
average shortest path length values (longer, less efficient paths) in the 
motor network during rest (supplemental Table 3a). 

Local Efficiency. Greater urbanicity was associated with lower local 
efficiency in the motor network during rest (supplemental Table 6a) and 
during the emotional n-back task (supplemental Table 10a). 

Diameter. Greater urbanicity was associated with smaller diameter 
(smaller distance between nodes suggesting more efficiency) in the 
frontoparietal network during the stop-signal task (supplemental 

Table 17a). 
Other Network Metrics. No other associations were significant for 

urbanicity (supplemental Tables 2a-18a). 
Higher-order Modeling. The associations obtained with urbanicity 

were consistent with those obtained from bifactor modeling (supple-
mental Tables 2b-18b); however, associations found with diameter 
during the stop-signal task were no longer significant (supplemental 
Table 17b). 

Behavioral Performance. Greater scores on urbanicity were associated 
with enhanced performance during the monetary incentive delay task (i. 
e., greater total earnings), the emotional n-back task (higher rates of 
correct responses to 2-back stimuli), and the stop signal task (faster 
response times; supplemental Table 19a). Higher order modeling 
revealed additionally that greater urbanicity was associated with a 
greater proportion of correct responses on the emotional n-back task and 
a higher rate of correct go trials on the stop-signal task (supplemental 
Table 19b). 

3.5. Interpersonal support 

Modularity. Greater scores on interpersonal support were associated 
with lower whole-brain modularity during the stop-signal task (sup-
plemental Table 2a). 

Diameter. Greater interpersonal support was associated with greater 
diameter (greater distance between nodes suggesting less efficiency) in 
the visual 2 network during the stop-signal task (supplemental 
Table 17a). 

Small-Worldness. Greater interpersonal support was associated with 
lower small-worldness (less efficient wiring) in the visual 2 network 

Table 2 
Demographics of the Sample.   

Rest EN-Back MID SST  

(N = 3998) (N = 1836) (N = 1872) (N = 1864)  

Mean SD Mean SD Mean SD Mean SD 

Age (years) 9.96 0.64 10.03 0.63 10.02 0.63 10.01 0.63  

N % N % N % N % 

Sex         
Female 2061 51.55 1013 55.17 1061 56.68 1034 55.47 
Male 1937 48.44 823 44.83 811 43.32 830 44.53 

Race-Ethnicity         
White 2301 57.55 1157 63.02 1145 61.16 1139 61.11 
Hispanic 790 19.76 323 17.59 327 17.47 330 17.70 
Black 411 10.28 146 7.95 163 8.71 163 8.74 
Other 496 12.41 210 11.44 237 12.66 232 12.45 

Household Annual Income         
< $5,000 94 2.35 26 1.42 31 1.66 34 1.82 
$5,000-$11,999 96 2.40 28 1.53 29 1.55 29 1.56 
$12,000-$15,999 83 2.08 25 1.36 27 1.44 35 1.88 
$16,000-$24,999 149 3.73 57 3.10 61 3.26 59 3.17 
$25,000-$34,999 201 5.03 83 4.52 83 4.43 85 4.56 
$35000-$49,999 320 8.00 134 7.30 133 7.10 138 7.40 
$50,000-$74,999 518 12.96 248 13.51 248 13.25 232 12.45 
$75,000-$99,999 605 15.13 305 16.61 289 15.44 278 14.91 
$100,000-$199,999 1239 30.99 594 32.35 636 33.97 614 32.94 
> $200,000 441 11.03 217 11.82 226 12.07 243 13.04 
Missing 252 6.30 119 6.48 109 5.82 117 6.28 

Parental Education         
No degree 153 3.83 43 2.34 60 3.21 54 2.90 
High school degree/GED 405 10.13 160 8.71 144 7.69 165 8.85 
Some college 630 15.76 257 14.00 270 14.42 277 14.86 
Associate’s degree 515 12.88 234 12.75 229 12.23 214 11.48 
Bachelor’s degree 1257 31.44 652 35.51 675 36.06 622 33.37 
Master’s degree 779 19.48 365 19.88 369 19.71 398 21.35 
Professional/ 

Doctoral degree 
259 6.48 125 6.81 125 6.68 134 7.19 

Note. EN-Back = emotional n-back; MID = monetary incentive delay; SST = stop signal task; the “Other” Race/Ethnicity category includes those who were identified by 
their parent as American Indian/Native American, Alaska Native, Native Hawaiian, Guamanian, Samoan, Other Pacific Islander, Asian Indian, Chinese, Filipino, 
Japanese, Korean, Vietnamese, Other Asian, or Other Race 
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during the stop-signal task (supplemental Table 16a). 
Other Network Metrics. No results between interpersonal support and 

any of the other network metrics were significant (supplemental 
Tables 2a-18a). 

Higher-Order Modeling. The associations obtained with interpersonal 
support were consistent with those from bifactor modeling (supple-
mental Tables 2b-18b). 

Behavioral Performance. There were no associations between inter-
personal support and the behavioral indices (supplemental Tables 19a 
and 19b). 

3.6. Family dynamics 

Bifactor Modeling. There were no consistent significant associations 
between family dynamics obtained from bifactor modeling and any of 
the network metrics (supplemental Tables 2a-18a). 

Higher-Order Modeling. The higher-order model showed that greater 
scores on family dynamics were associated with lower average shortest 
path length values (shorter, more efficient paths) in the visual associa-
tion network during rest (supplemental Table 3b). All other associations 
remained non-significant (supplemental Tables 2b-18b). 

Behavioral Performance. No associations between family dynamics 
and behavioral indices were observed (Table 19a and 19b). 

3.7. Sensitivity analyses 

Medication. The results after controlling for medication use were 
highly similar (supplemental Tables 20a-26b). The general environ-
mental stress factor continued to be associated with lower whole-brain 
modularity during rest and the emotional n-back task, greater average 
shortest path lengths in the subcortical-cerebellar and visual 2 networks 
at rest, lower small-worldness in the subcortical-cerebellar network at 
rest, and greater small-worldness in the default mode network at rest. A 
new association between general environmental stress and lower 
average shortest path lengths in the default mode network was found 
during rest but only for the bifactor model and not the higher-order 
model. Neighborhood SES deprivation continued to be associated with 
lower average shortest path lengths in the motor network at rest for the 
bifactor but not the higher-order model. Urbanicity continued to be 
associated with lower whole-brain modularity during rest, greater 
average shortest path lengths in the motor network at rest, and less local 
efficiency in the motor network at rest and during the emotional n-back 
task. Urbanicity was also associated with smaller diameter in the fron-
toparietal network during the stop-signal task but only for the bifactor 
model and not the higher-order model. Interpersonal support continued 
to be associated with lower whole-brain modularity during the stop- 
signal task, lower small-worldness in the visual 2 network during the 
stop-signal task, and greater diameter in the visual 2 network during the 
stop-signal task. A new association between family dynamics and lower 
average shortest path lengths in the visual association network was 
uncovered during rest. 

3.8. Individual items from neighborhood SES deprivation and urbanicity 

The neighborhood SES deprivation and urbanicity factors are 
comprised of heterogeneous variables and while these variables were 
shown to “hang together” using data-driven approaches, it is also useful 
to see how these factors compare to select individual items. We selected 
a variable representative of each of the neighborhood SES deprivation 
and urbanicity factors (i.e., neighborhood median income and pollution 
measure (NO2 level)) and performed analyses with the network metrics. 

Income. Neighborhood median income (supplemental Tables 27a- 
27q) was related to lower average shortest path lengths and greater 
small-worldness in the subcortical-cerebellar network during rest. In 
contrast to the neighborhood SES deprivation factor, neighborhood 
median income was not associated with lower average shortest path 

lengths in the motor network during rest or less local efficiency in 
frontoparietal network during the emotional n-back task. 

Pollution. Consistent with findings with urbanicity, pollution levels 
(supplemental Tables 29a-28q) were associated with lower modularity 
as well as greater average path lengths and less local efficiency in the 
motor network during rest, with the addition of lower modularity during 
the stop-signal task as well. Pollution levels were also associated with 
greater average shortest path lengths in the motor network during the 
emotional n-back task and less local efficiency in the motor network 
during both the emotional n-back task and the monetary incentive delay 
task. 

4. Discussion 

The current study leveraged a large sample of youth to examine the 
associations between multiple environmental stressors and the func-
tional topology of brain networks. The results demonstrated that various 
environmental stressors, represented by general and specific factors of 
environmental stress, were related to divergent patterns of functional 
network topology. At the broadest level, a wide variety of stressors 
represented by the general environmental stress factor were associated 
with less specialization of networks globally as well as divergent pat-
terns in specific networks (subcortical-cerebellar, visual, and default 
mode network). At a more refined level, the specific subfactors of 
neighborhood SES deprivation and urbanicity were associated with 
distinct variations in the specialization and efficiency of networks, while 
interpersonal support and family dynamics showed few differences in 
network topology. Overall, the present findings illustrate that various 
forms of environmental stress are associated with divergent patterns in 
the functional organization of the developing brain. 

4.1. Synthesis of the current results with prior work in human and animal 
studies 

The results of the current study are consistent with previous research 
showing that individuals exposed to early life stress have distinguishable 
neural activation in similar brain regions (Cohodes et al., 2021; Dann-
lowski et al., 2012, 2013; Pechtel and Pizzagalli, 2011; Rosen et al., 
2018). This is in line with animal studies showing that early life stress (e. 
g., maternal deprivation in rodent models) is associated with changes in 
brain areas related to emotion and cognitive functioning (for an over-
view, see Marco et al., 2015). Additionally, prior work using the ABCD 
Study sample has shown that facets of early life stress, such as low SES, 
are associated with differences in functional connectivity in the same 
networks as found in the current study: the subcortical cerebellar, 
motor, frontoparietal, default mode, and visual networks (DeJoseph 
et al., 2022; Ellwood-Lowe et al., 2021; Rakesh et al., 2021; Sripada 
et al., 2022; Tomasi and Volkow, 2023). However, studies using the 
ABCD Study sample examined functional connectivity and did not 
examine the functional organization of the brain through network to-
pology defined with graph theory. The present study expands on prior 
work by using network topology metrics to describe characteristics of 
brain networks, such as specialization and efficiency. Our findings that 
environmental stress dimensions are associated with differences in 
modularity (specialization) and various metrics that index efficiency are 
in line with prior network topology work in non-ABCD Study samples 
showing that lower SES is associated with less specialization and effi-
ciency in functional networks from infancy through adulthood (Chan 
et al., 2018; Gao et al., 2015; Tooley et al., 2020). The present study 
replicates and builds upon this prior work by extending these findings 
beyond the resting state and showing similar associations during three 
tasks in the ABCD Study data. 

4.2. The positive and negative influences associated with urbanicity 

Interestingly, the urbanicity factor showed divergent results. 
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Urbanicity was associated with less specialization of networks at the 
whole-brain level and less efficiency in the motor network while at the 
same time showing evidence of greater efficiency in the frontoparietal 
network and enhanced performance during the reward processing, af-
fective working memory, and inhibition tasks. In our previous work 
using this factor, we also found that urbanicity showed unexpected re-
sults. We showed that urbanicity was associated with larger brain vol-
umes in a number of regions, in contrast to the globally smaller volumes 
associated with the general environmental stress factor (Jeong et al., 
2023). Urban living has both positive and negative influences. Negative 
aspects of urban living (such as safety concerns, toxin exposure, and 
crowding) could make urban living detrimental to the developing brain. 
In support of this, prior work has suggested that urban living may be 
associated with differences in neural activation within brain regions 
implicated in affective and stress processes (Lederbogen et al., 2011), as 
well as with differences in brain structure and inflammation 
(Calderón-Garcidueñas et al., 2008). Likewise, the results of the current 
study found that urban living is related to less specialization and effi-
ciency in some brain networks. However, urban living has positive as-
pects as well including greater social support, more opportunities, and 
easier access to resources. The positive influences of urban living may be 
reflected by the finding of greater efficiency in the frontoparietal 
network and better task performance in our results. However, the ben-
efits of urban living are disproportionate based on income (Dye, 2008), 
which suggests that taking into account other factors like SES may help 
explain the apparently divergent findings for urbanicity. Taken together, 
the results of the current study suggest that urban living likely involves a 
complicated interaction of influences, which can impact children in both 
positive and negative ways. 

4.3. Adaptation and resilience 

Over the course of development in childhood, it is thought that the 
brain will become more specialized at the local level as shown by an 
increase in modularity, which allows for more efficient processing and 
specialization of networks (Gu et al., 2015). However, the children 
included in these “normative” samples are not necessarily representative 
of the general population. Therefore, care must be taken when inter-
preting the associations between environmental stress and network to-
pology. While the results of the current study showed that 
environmental stress was associated with less specialization at the whole 
brain level, these differences may reflect context-appropriate adapta-
tion, rather than deficits (Ellis et al., 2017; Nketia et al., 2021; Noble 
et al., 2021; Taylor et al., 2023). Lower modularity associated with 
greater environmental stress may indicate greater utilization of the 
whole brain rather than relying on specific networks, which could allow 
individuals to be more flexible in the highly unpredictable environments 
associated with early life stress (Ellis et al., 2009). Similarly, higher 
efficiency in the default mode network may suggest that children in 
adverse environments rely on self-referential thoughts and 
future-oriented thinking associated with this network (Raichle, 2015), 
which is an adaptive strategy to deal with stressful environments that 
could indicate resilience (Ellwood-Lowe et al., 2021, 2022). Although 
we did not examine how these network characteristics associated with 
environmental stress relate to real-life outcomes, future work would 
benefit from considering the adaptive perspective when interpreting the 
characteristics of neural networks in the context of early life stress. 

4.4. Considerations when using latent factors 

The present study used hierarchical modeling to derive latent factors 
to capture the shared and unique variance across various environmental 
stressors. While this approach is akin to the hierarchical models used to 
define the general psychopathology factor (p factor) and subfactors 
widely used in the literature, the practice of deriving latent variables 
requires careful consideration (McLaughlin et al., 2023; VanderWeele, 

2022). Reflective and formative measurement models are two ap-
proaches that are commonly used in measurement and scale develop-
ment. The common distinction between the two models relates to the 
assumptions they hold regarding the relationship between constructs 
and measurement items; in the reflective model, the indicator of cau-
sality is from constructs to measurement items while in the formative 
model, causality is from measurement items to constructs (Coltman 
et al., 2008; Hanafiah, 2020). McLaughlin and colleagues suggest that 
formative models are more appropriate for understanding early life 
stress because they derive underlying dimensions of adversity from the 
tendency for adversities to cumulatively predict certain outcomes 
(McLaughlin et al., 2023). However, the authors also note that reflective 
models could have some utility for identifying the underlying structural 
sources of co-occurring adversities (McLaughlin et al., 2023). 

The use of one measurement model over the other depends on 
whether the goal is to estimate adversity co-occurrence (if so, then 
reflective models are appropriate) or to operationalize dimensions of 
adversity (in which case formative models are optimal). In the present 
study, our goal was the former – to identify environmental stressors that 
co-occur – not to claim that the factors we found are the definitive 
representation of how early life stressors should be operationalized. A 
strength of reflective measurement models is that they are typically 
simpler in structure making them easier to interpret. In the context of 
these considerations, our reflective approach is appropriate for our goal: 
to simplify a large number of variables into co-occurring adversities to 
create a more manageable and interpretable framework. However, we 
acknowledge that to achieve the ultimate goal of operationalizing di-
mensions of adversity, formative measurement models will remain the 
ideal approach in future work. 

4.5. Strengths and limitations 

While this study has a number of strengths, including using a large, 
well-characterized sample of youth with extensive assessment of envi-
ronmental stressors, modeling environmental stress hierarchically, and 
generating network metrics not currently available in the ABCD Study 
data release, there are also a number of limitations to consider. First, 
because graph theory metrics require stringent handling of motion ar-
tifacts, this inevitably results in a sample with less variation in envi-
ronmental stress and psychopathology symptoms, which is not as 
representative of the population and may mask the true strength of these 
effects. However, the ability of the current study to find significant re-
sults in a sample with less variance in the environmental stress pre-
dictors suggests that additional work on the effects of environmental 
stress on brain development is warranted. 

Second, while our approach for modeling factors of environmental 
stress has the strength of revealing which constructs “hang together,” 
such an approach can also make it difficult to interpret the contribution 
of individual constructs. At the same time, the clustering of items 
together may suggest that variables share commonalities which could 
suggest a meaningful pattern in the data. For example, the urbanicity 
factor is comprised of heterogeneous items (such as lead pollution and 
walkability) and although it is unlikely these items influence the brain 
through similar mechanisms, the clustering of these items together 
suggests that there exists a broader construct of urban living that 
collectively has important influences on brain development. In this way, 
latent constructs provide insight into the interrelationships between 
seemingly unrelated items which helps us understand complex re-
lationships among individual observed variables. Thus, there is merit to 
using both factor analytic approaches and research on specific con-
structs going forward. Third, the current study included psychopathol-
ogy as a covariate based on our prior work showing an association 
between psychopathology and these network metrics (Reimann et al., 
2022). While useful for revealing the unique contribution environmental 
stress has on network topology, this approach will also inevitably result 
in the loss of some relevant information as psychopathology and 

H.J. Jeong et al.                                                                                                                                                                                                                                 



Developmental Cognitive Neuroscience 66 (2024) 101367

9

environmental stress are intertwined. Fourth, while we included 
race/ethnicity as a covariate in the statistical analyses to capture so-
ciopolitical influences not fully represented by income and parental 
education, there are important implications to consider when race/-
ethnicity is used in neuroimaging research, most importantly that 
race/ethnicity is socially constructed, not biologically innate (for an 
in-depth discussion, see Cardenas-Iniguez and Gonzalez, 2023). 

Fifth, the neural metrics used in the current analyses are averaged 
across each fMRI task. Thus, although the metrics are measured in the 
context of inhibition, affective working memory, and reward processing, 
they are not able to differentiate between dynamic cognitive states 
within each task. For example, during the stop-signal task, participants 
either successfully engage in inhibition or fail to inhibit a response and 
our metrics are not able to differentiate between those different out-
comes within the same task. To address this, functional network metrics 
can be analyzed at the event-related level. Sixth, the present analyses 
employ a cross-sectional design and, therefore, only capture one 
moment in time. Finally, the emotional n-back task in the ABCD Study 
combines affective processing (emotional faces) with working memory 
(n-back task), making it difficult to parse apart the relative contribution 
of each to the results found in the current study. 

5. Conclusions and future directions 

Future work on the effects of early life stress on brain development 
would benefit from a number of refinements. First, there is merit in 
continuing to use both latent factors and individual items going forward. 
Data-driven approaches that uncover the underlying structure of envi-
ronmental stressors are important for understanding how these con-
structs relate to one another, which may provide insight into classes of 
stressors that group together in important ways. At the same time, we 
still need research on individual environmental stressors in isolation (e. 
g., income) to reveal the mechanisms underlying specific constructs. 
Second, future work that examines more focal measures of brain func-
tion using functional connectivity and task-based fMRI will help us to 
develop of fuller understanding of the influence of environmental 
stressors on brain development. Third, longitudinal research is needed 
to delineate the relationships between environmental stress and func-
tional network topology over time and throughout different stages of 
brain development. Finally, we need to consider the translational im-
pacts of this work. Our understanding of the association between envi-
ronmental stress and network topology is still in its infancy; therefore, it 
may be premature to consider potential biomarkers of risk or using these 
metrics to track symptom progression. However, the results of the cur-
rent study found promising signal that needs to be 1) replicated in 
additional samples, 2) examined in a variety of age ranges, and 3) 
compared across groups (e.g., across mental health disorders). 
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Shinn, M., Alexander-Bloch, A., Fonagy, P., Dolan, R.J., Jones, P.B., Goodyer, I.M., 
Sporns, O., Bullmore, E.T., 2018. Adolescent tuning of association cortex in human 
structural brain networks. Cereb. Cortex 28 (1), 281–294. https://doi.org/10.1093/ 
cercor/bhx249. 

Vogel, A.C., Power, J.D., Petersen, S.E., Schlaggar, B.L., 2010. Development of the 
brain’s functional network architecture. Neuropsychol. Rev. 20 (4), 362–375. 
https://doi.org/10.1007/s11065-010-9145-7. 

H.J. Jeong et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.neubiorev.2016.07.027
https://doi.org/10.1016/j.neubiorev.2016.07.027
https://doi.org/10.1162/netn_a_00322
https://doi.org/10.1162/netn_a_00322
https://doi.org/10.1111/mbe.12351
https://doi.org/10.1038/s41380-023-02222-9
https://doi.org/10.1093/cercor/bhz066
https://doi.org/10.1093/cercor/bhz066
https://doi.org/10.1097/EDE.0000000000001434
https://doi.org/10.1093/cercor/bhx249
https://doi.org/10.1093/cercor/bhx249
https://doi.org/10.1007/s11065-010-9145-7

	Early life stress and functional network topology in children
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Measures
	2.3 Deriving factors reflecting environmental stress
	2.4 Functional magnetic resonance imaging tasks
	2.5 Image acquisition, processing, and quality assurance
	2.6 Graph theory metrics
	2.7 Statistical analysis
	2.8 Data and code availability

	3 Results
	3.1 Sample comparison
	3.2 General environmental stress
	3.3 Neighborhood SES deprivation
	3.4 Urbanicity
	3.5 Interpersonal support
	3.6 Family dynamics
	3.7 Sensitivity analyses
	3.8 Individual items from neighborhood SES deprivation and urbanicity

	4 Discussion
	4.1 Synthesis of the current results with prior work in human and animal studies
	4.2 The positive and negative influences associated with urbanicity
	4.3 Adaptation and resilience
	4.4 Considerations when using latent factors
	4.5 Strengths and limitations

	5 Conclusions and future directions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	Appendix A Supporting information
	References


