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From studies of exotic quantum many-body phenomena to applications in spintronics and quantum
information processing, topological materials are poised to revolutionize the condensed-matter frontier and
the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically
nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this
work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-
invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control
band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing
robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a
modified Hofstadter spectrum at a flux per plaquette of ϕ ¼ π=2. In situ probes of the band gaps reveal
spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical
separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm
is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology
inaccessible in conventional systems. This room-temperature experiment illuminates the origins of
topology in band structure, and when combined with circuit quantum electrodynamics techniques, it
provides a direct path to topologically ordered quantum matter.
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Metamaterials, Photonics

Global topological features arise in a variety of
contexts from knotted vortices in classical fluids [1] and
superfluids [2] to anyons [3–5] in quantum wires [6],
topological insulators [7], and 2DEGs [8,9]. In a con-
densed-matter context, such “topologically protected”
properties include single-particle features of the band
structure and many-particle ground-state degeneracies,
with the latter typically emerging from the former in
conjunction with strong interactions. To explore the nature
of topologically derived material properties, it is desirable
to develop materials that not only support conserved
topological quantities but that may be precisely produced,
manipulated, and probed. The aim, then, is to realize
material test beds that marry favorable coherence
properties, strong interactions, and topologically nontrivial
single-particle dynamics.
Metamaterials, where interaction strengths and length

scales can be engineered, are a promising avenue for
studying topological physics. Efforts are ongoing to pro-
duce the requisite topological single-particle dynamics in

ultracold atomic gases [10–16], gyrotropic metamaterials
[17,18], and photonic systems [17,19–26].
In cold atomic gases, gauge fields are generated either

through spatially dependent Raman coupling of internal
atomic states [10,14], or time- and space-periodic modu-
lation of lattice tunneling rates [15,27,28]. In the optical
domain, synthetic magnetic fields were realized via strain
of a honeycomb lattice [29]. A Floquet topological insu-
lator [30,31] was realized under a space-to-time mapping of
an array of tunnel-coupled waveguides modulated along
their propagation direction [21]. A photonic topological
circuit was realized through an array of off-resonantly
coupled silicon optical ring resonators [22,23,26], similar
to a proposal to couple Bragg stacks [19]. Time-reversal
broken topological metamaterials have been realized in
the microwave domain via a lattice of chiral magnetic
(gyrotropic) resonators [17,18]. Recently, topological
invariants have been measured for an individual [32,33]
and pair of [33] superconducting qubits, as well as a two-
site radio-frequency (RF) network with periodic boundary
conditions [34].
In this work, we present and experimentally characterize

the first RF circuit exhibiting a time-reversal symmetric
topologically nontrivial band structure. Our approach
shares features with a number of the aforementioned
proposals and experiments. Uniquely, the gauge field is
realized through permuted couplings rather than phase
shifts. Furthermore, we are able to temporally and spatially
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resolve the spin-filtered dynamics at the single-lattice-site
level and employ nonlocal couplings to realize a Möbius
topology.
Our lattice may be viewed as a spin-dependent gauge

field for RF photons in a network of capacitively coupled
inductors, where the spin state is encoded in two equivalent
inductors on each lattice site. The simplicity of the
approach paves the way for straightforward implementa-
tions of spin-orbit coupled quantum wires, fractional
quantum hall systems, and proximity-coupled TI super-
conductors, all within the circuit QED framework [35].

I. ENGINEERING TOPOLOGICAL CIRCUITRY

Topological insulators (TI) insulate in their bulk and
conduct on their surfaces; their unique behaviors were first
observed in high-purity two-dimensional electron gases
(2DEGs) [36]. As in a conventional band insulator, a full
valence band in a topological insulator leads to zero
conductance in the bulk. The surface of such a system,
however, possesses spin-filtered edge modes [37] residing
in the energy-gap between valence and conduction bands.
These modes arise from a topological phase transition at the
boundary of the topological insulator. Within the TI, in the
absence of magnetic disorder, Sz is conserved and particles
within the resulting spin subbands acquire a finite Berry
phase when they circulate the Brillioun zone, which results
in a nonzero spin-Chern number (C↑↓) [38]. Wave-function
continuity quantizes the Berry phase to multiples of 2π,
precluding a smooth drop to zero across the boundary out
of the TI and leading (via the bulk-boundary correspon-
dence [39]) to a set of midgap topologically protected
edge modes.
There are a variety of ways to engineer topologically

nontrivial band structures in lattice models, which may be
classified either as time-reversal-symmetry conserving or
breaking. Among the time-reversal-breaking models,
the simplest arises when a constant magnetic field is
applied to a charged particle confined in a two-dimensional
periodic structure, as described by Hofstadter [40,41]. The
time-antisymmetric Lorentz force is equivalent to an
Aharanov-Bohm phase (flux) per plaquette ϕ ¼ 2πM=N
(for relatively prime integers M;N). This flux breaks the
intrinsic translational invariance of the lattice, resulting in
an effective unit cell of size N sites and N corresponding
subbands.
To realize magnetic-field-like physics in the absence of

magnetic fields, or (as in the present work) for charge-
neutral photons, one can introduce a pseudospin degree of
freedom in analogy to the spin-Hall effect. Opposing spin
states are made to experience opposing magnetic fields
through spin-orbit coupling. Such models, which “break”
time-reversal symmetry oppositely for up and down spins,
thus do not violate the symmetry at all. They produce two
copies of the Hofstadter model, exhibiting opposite effec-
tive magnetic fields everywhere in space for the two spin

states, without the need for an applied magnetic field. In the
solid state, such models rely on either Dresselhaus or
Rashba spin-orbit couplings [39], arising from atomic spin-
orbit interactions and relativistic coupling to static electric
fields, respectively.
In the present work, we generate spin-orbit coupling

through local circuit connections [Figs. 1(a) and 1(b)]: Two
arrays of inductors provide the up- and down-spin RF
photons, while the kinetic couplings are provided by
capacitors that induce a flux per plaquette of ϕ ¼ π=2 ¼
2π=4, e.g., M ¼ 1, N ¼ 4 in the corresponding Hofstadter
model. As such, this flux requires a lattice with a “mag-
netic” unit cell ofN ¼ 4 × 1 sites in order to ensure the flux
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FIG. 1. (a) Circuit topological insulator schematic. The periodic
structure is formed by on-site inductors and coupling capacitors
(black) that are connected via a latticework of wires (light and
dark blue lines). At each lattice site, the two inductors “A” and
“B” correspond to right and left circularly polarized spins. When
a photon traverses a single plaquette (indicated by orange), it
accumulates a Berry phase of π=2. The phase is induced by
braiding [indicated by the green boxes and specified in (b)] of the
capacitive couplings. (b) Structure of the coupling elements
between lattice sites. Each row shows one of the four rotation
angles implemented by the capacitive coupling in the circuit. The
rotation angle (left column) is induced by connecting inductors as
shown (middle column). The corresponding rotation matrices
(right column) indicate the inductors being coupled, as well as the
signs of the couplings. (c) Photograph of circuit topological
insulator. The inductors (black cylinders) are coupled via the
capacitors (blue); circuit topology is determined by the trace
layout on the printed circuit board (yellow). Inset: Zoom-in view
of a single plaquette consisting of four adjacent lattice sites.
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is the same on all plaquettes. This enlargement of the
physical unit cell is a generic feature of metamaterial
implementations of magnetic fields, pointed out by
Hofstadter in the context of his famous butterfly [40]—
once a gauge is chosen for the Aharanov Bohm phase, it is
apparent that the physical sites or couplings of the lattice
must be modified (the unit cell enlarged) to affect the
appropriate couplings. In our work, this arises from
spatially modulated permutation of capacitive couplers.
In the work of Hafezi and colleagues [23], this takes the
form of a spatial modulation of the location of the coupling
resonators.
To understand the origin of the flux in this system, we

track an excitation as it traverses a single plaquette. The
state of excitation on each lattice site is given by a complex
vector (VA, VB), with VA and VB the voltages across
inductors A and B, respectively, in the frequency domain.
For simplicity, we define an excitation localized on A and B
lattice sites as ðVA; VBÞ ¼ ð1; 0Þ≡A and ð0; 1Þ≡B,
respectively. Consider a photon that begins in the A
sublattice at site [0,0] and moves around a plaquette
following the coupling topology according to Figs. 1(a)
and 1(b): The capacitive couplings connect A → A →
−B → −B; the connection A → −B corresponds to a
rotation of −π=2 in the A, B space [as shown in the
second row of Fig. 1(b)].
Following the same path for a B excitation at site [0,0]

results in A after a full loop. A change of basis to ↑, ↓ ¼
ðA� iBÞ= ffiffiffi

2
p

reveals that after the same loop, ↑ becomes
i↑ and ↓ becomes −i↓, which is precisely the π=2 flux per
plaquette that was sought. The horizontal coupling changes
from row to row [Fig. 1(b)] with a four-row period (as in the
Hofstadter model with M ¼ 1, N ¼ 4), to ensure a flux of
π=2 in every plaquette.
Because each spin state propagates in a fixed direction

on the edge of a topological insulator, such states simply
navigate around any disorder that does not flip the spin;
backscattering requires a magnetic impurity that breaks
time-reversal symmetry [42]. In a photonic metamaterial,
impurities similarly take two forms: (1) “nonmagnetic”
disorder, which is common to components (inductors and
capacitors) in A and B sublattices, and (2) “magnetic”
disorder, which is differential for components in the
sublattices. Time-reversal symmetry need not be broken
to induce backscattering in a photonic topological insu-
lator, as photons are not protected by the Kramers
degeneracy [39]. Such time-symmetric magnetic disorder
is possible in all metamaterial topological insulators: In
the silicon ring-resonator experiments [23], resonator
imperfections induce backscattering, mixing right- and
left-handed modes and thereby flipping spins; in the
silicon waveguide Floquet topological-insulator experi-
ments [21], imperfections in the waveguides scatter
forward-propagating modes into their back-propagating
counterparts.

Figure 1(c) shows a photograph of the actual
12 × 12-site topological metamaterial; the black cylinders
are 3.3-mH wire-wound inductors, and the small blue
rectangles between them are 330-pF coupling capacitors.
The topside of the FR4 printed circuit board (PCB) contains
traces for the (spatially varying) horizontal couplings, while
the bottom side contains the homogeneous vertical cou-
plings. To characterize the RF components, the frequency
response of a single LC series resonator was measured,
driven by a 5Ω source to avoid shunting, indicating a Q ≈
88 for a second-order pole at 120 kHz. The component-
value disorder is found to be < 1%, and lower disorder can
be engineered in state-of-the-art superconducting systems
[43], where ≈0.01% has been demonstrated. The proper
figure of merit for topological protection is the ratio of the
mean tunneling rate to the rate of loss and backscatter: the
mean number of protected tunnel hops. In all current
topological metamaterials, loss dominates over backscatter.
We observe about 20 hops=3dB loss [see Fig. 3(a)]; silicon
ring-resonator implementations observe about 6 hops=3dB
[26]; Floquet waveguide implementations observe about
3 hops=3dB [21].
Typical (nontopological) microwave lattice experiments

employ a tight binding model in which a resonator
represents a site, and perturbative tunnel couplings are
realized through intersite inductors or capacitors [43],
enhancing sensitivity to on-site disorder by the ratio of
the tunnel coupling to the resonator frequency. A direct
application of this approach to the topological case would
employ an LC resonator at each of the A and B sublattice
sites, with a weak inductive or capacitive coupling (for
positive and negative couplings, respectively) between
sites. To minimize sensitivity to resonator disorder, it is
advantageous to have as large a tunnel coupling as possible.
Taking this idea to the extreme, we eliminate the resonators
entirely by making the coupling capacitance so large that
the on-site capacitor may be omitted; this corresponds to
moving beyond the tight-binding limit to a scale-invariant
regime where the particular values L and C impact only the
overall energy scale of the band structure (other fluxes per
plaquette may be accessed by including appropriately
engineered A-to-A, A-to-B, B-to-A, and B-to-B couplings
on every link). The sign of the tunnel coupling is then
controlled by which ends of the on-site inductors are
capacitively connected to one another. We calculate
numerically and show experimentally that all topological
properties are preserved even in this extreme case.
Figure 2(b) shows a numerical diagonalization

(described in Ref. [44]) of the circuit modes of an infinite
strip with 23 lattice sites in the transverse dimension, with
definite spin and longitudinal quasimomentum q. The
four broad bands [gray curves in Fig. 2(b)] correspond
to the bulk response of the system, their breadth owing
to the existence of multiple transverse modes in the bulk.
Spin-helicity-coupled edge channels, characteristic of a
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topological band structure, occupy the gaps between bulk
bands. In the top gap, ↑ excitations propagate leftward on
the top edge and rightward on the bottom edge, while ↓
excitations propagate rightward on the top edge and left-
ward on the bottom edge. The direction of propagation may
be ascertained from the slope of the energy-momentum

dispersion. The locking of spin to propagation direction on
each edge prevents backscattering in the absence of spin-
flip disorder. As discussed in Ref. [44], the topological
character of each isolated spin band may be formally
characterized in terms of a spin-Chern number, which,
for ↑ð↓Þ bands, is þ1ð−1Þ for the top and bottom bands
and −2ðþ2Þ for the sum of the middle two bands, which
touch at Dirac points and thus may not be characterized
independently.

II. CHARACTERIZING THE METAMATERIAL

The smoking gun of a topological band structure is a gap
in the bulk density of states within which spin-filtered edge
states reside [37,39]. To probe this physics directly, we
excite the bulk of our metamaterial (by driving an on-site
inductor with a near-field coupled coil), and observe the
response at other sites within the bulk (using a pickup coil).
The resulting spectrum probes the RF density of states plus
overlap factors reflecting the spatial mode profile at the
drive and measurement locations. Figure 2(a) shows a
typical measurement, with the predicted locations of the
bands overlaid in orange; a gap is clearly apparent in the
data. In Fig. 2(d), we excite a central site at an energy
between the bands and perform site-resolved microscopy.
The insulating nature of the bulk is revealed by the
exponential localization of the response.
In Fig. 2(c), we excite and probe the system on its edge.

We observe a response within the energetic band gap,
experimentally confirming the existence of midgap edge
modes and strongly suggesting their topological nature,
which we confirm below. It bears mentioning that in spite
of the absence of a Fermi sea (our excitations are photons,
which are bosons), we still observe a RF-insulating bulk
and a conducting edge; this occurs because we are directly
probing the density of states of the system at the RF-drive
frequency. Furthermore, the appearance of clear Fabry-
Pérot resonances on the edge, rather than a continuous
density of states, is indicative of the periodic boundary
conditions imposed by the closed edge. Figure 2(e) shows a
site-resolved image of the edge mode at 160 kHz,
demonstrating the persistence of the edge transport.

III. TIME-RESOLVED DYNAMICS

To demonstrate that the edge states are spin-orbit locked,
we rapidly excite the A inductor on a single edge site at
an energy within the highest energy gap and perform a
spin-resolved time-domain measurement of the propagat-
ing excitation. Because A ¼ ð↑þ ↓Þ= ffiffiffi

2
p

, the excitation
splits, with the ↑ (↓) component propagating left (right).
Figure 3(a) shows the intensity at each lattice site around

the system perimeter (yellow inset), as a function of time
(increasing downwards), with the red (blue) color channel
indicating up (down) spin states. The splitting of the
excitation, with the red (blue) component moving left
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FIG. 2. Site-resolved measurement of band structure and
density of states (DOS). (a) The experimentally observed
coupling (linear scale) between two points in the bulk of the
circuit TI (blue line) with the bulk states indicated (orange bands).
(b) Band structure of a circuit TI. A strip of circuit TI with fixed
boundary conditions in the transverse direction is numerically
diagonalized at finite longitudinal quasimomentum q, yielding
four massive bulk bands (gray), and spin-orbit-locked edge states
(red ¼ ↑, blue ¼ ↓) that reside in the bulk gap. The labels “top”
and “bottom” denote the boundary that each edge mode prop-
agates along (with opposing group velocities dω=dk). The spin-
Chern numbers (C↑) of the spin-up bands are indicated next to
each band (C↓ ¼ −C↑). The additional edge modes (indicated in
purple) are not topologically protected. The higher-energy
protected edge channel is localized to a single site along one
direction, while the lower energy protected edge-channel is
localized to two sites, respectively. (c) Experimentally observed
coupling between two sites on the edge of the circuit, showing
transmission through edge modes even within the bulk gaps. The
structure within the gaps is to be expected, as the system is finite
so the edge exhibits Fabry-Pérot resonances. (d) Experimental
site-resolved response to excitation at a central lattice site, within
the band gap at 160 kHz, showing bulk localization. (e) Exper-
imentally observed, site-resolved edge-mode structure at
160 kHz. The arrows in (a) and (c) reflect the frequency of
excitation in (b) and (d).
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(right), demonstrates the spin-orbit locking of the edge
states. The measured propagation velocity of 4.3(3)
sites=10 μs is consistent with the predicted group velocity
of 4.2(2) sites=10 μs arising from the numerical band-
structure calculation (see Ref. [44]).
In contrast to the topologically protected edge modes

between the third and fourth bands, the unprotected modes
above the top band exhibit left- and right-propagating
components for each of the top and bottom edges, for
each spin state. Figure 3(b) shows the same dynamics
experiment as in Fig. 3(a) but this time exciting the
unprotected edge modes. Not only do both up and
down excitations propagate both leftwards and right-
wards, but both are rapidly backscattered and localized
by disorder. These unprotected, termination-dependent
edge channels are similar to zigzag edges of a graphene
nanoribbon [45].

IV. REALIZING A SPIN-ORBIT-COUPLED
MÖBIUS STRIP

Because our topological metamaterial is composed of
lumped elements much smaller than a wavelength, it is
possible to achieve exotic global topologies via zero-phase
edge-to-edge connections that are difficult or impossible to
realize with conventional materials. These new topologies
have edges whose properties may be probed through time-
resolved dynamics in our circuit. To achieve these new
global topologies, we add carefully designed capacitive
couplings between the edges of the metamaterial (see
methods).
The Möbius topology is realized by connecting the left

and right edges of the system with a half twist and a spin

flip [Fig. 4(a)]. More precisely, the A inductor j sites from
the top of the left edge is connected to the B inductor at the
j sites from the bottom of the right edge. The spin flip is
necessary, as “up” spins propagate rightwards on the top
edge but leftwards on the bottom edge [46]. Figure 4(b)
shows the temporal dynamics of a spin-up excitation in the
system; it propagates rightward along the system edge,
until it reaches the other edge, is converted into a down
spin, and continues its progression around the system
perimeter; this cycle is repeated until the excitation is
damped out by the finite system Q.

V. CONCLUSION

In this work, we have realized a topologically nontrivial
band structure in a radio-frequency circuit. Using
site-resolved spectroscopy, we demonstrated the presence
of bulk band gaps containing localized edge modes. Spin-
resolved measurements in the time domain confirmed the
spin-orbit-locked character of the topologically protected
edge modes and enabled us to distinguish between pro-
tected edge modes within the gap and unprotected edge
modes above the top bulk band. This approach opens a
broad array of directions in the design and benchmarking of
novel material structures, including long-range hopping to
engineer truly flat bands [47,48] and multiorbital Chern
insulators [49]. Extensions of the Möbius topology will
enable studies of topological defects in layered spin-Hall
systems [50]. In conjunction with superconducting quan-
tum circuitry techniques [35], the approach demonstrated in
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connections generating the topology indicating spin on traversing
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through time. (b) Spin-resolved detection of edge transport after
excitation of ↑; ↑ and ↓ intensities are plotted in the red and blue
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are visible.
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this work enables access to topological many-body phe-
nomena [51] in the nearly flat bands of the circuit, from
anyons to fractional Chern insulators and beyond.
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APPENDIX: METHODS

The topological metamaterials are composed of a room-
temperature FR4 PCB, populated with 330-pF capacitors
with component-to-component scatter of �1%, and 3.3-
mH wire-wound inductors with scatter of �10%; this
amounts to both spin-dependent and spin-independent
disorder, with the former arising primarily from differential
variation between the two inductors at a lattice site, and the
spin-independent disorder from common-mode variation
between lattice sites. All disorder may be decreased by
employing stripline inductors and capacitors, and micro-
fabrication technology. In this case, inductors and capac-
itors may be swapped, to move from left- to right-handed
transmission lines. Because of the reduced bandwidth in
the massive model (see Ref. [44]), the sensitivity of the
metamaterial to component scatter would be worse for a
model with resonators on each site rather than just
inductors—this corresponds to the difference between
massive and lightlike lattice photons.
To inject photons into a site, we inductively couple to a

single inductor by placing a 5-turn, 8-mm-diameter drive
coil over the on-site inductor that we wish to excite. This
method inserts photons in the A or B sites. To inject spin-
polarized ↑ or ↓ photons for Fig. 4, the two inductors on a
site are simultaneously excited 90° out of phase by driving
them with phase-locked synthesizers. Differential inductive
in-coupling is compensated for by adjusting drive voltages
on the two inductors. Spin-resolved detection is achieved
by separate time-resolved detection of A and B sites, and by
transforming to the ↑ and ↓ states.
The Möbius topology is generated by employing a

second PCB that provides the appropriate connections
between the edges of the primary circuit TI PCB.
Numerical prediction of the steady-state frequency

response is achieved by generating the admittance matrix
of the circuit network and inverting it to compute the
response to a drive. To calculate the band structure, a
coupled first-order system of differential equations repre-
senting the inductor-capacitor network was generated for a
one-dimensional strip 23 sites wide with fixed boundaries
in the transverse direction and periodic boundary condi-
tions in the longitudinal direction, whose phase is set by the
quasimomentum q under consideration. The system of

equations was numerically diagonalized with eigenvalues
corresponding to the system energies at the given quasi-
momentum (see Ref. [44] for details).
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