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Abstract

Raman spectroscopy is a popular tool for characterizing complex biological

materials and their geological remains. Ordination methods, such as principal

component analysis (PCA), use spectral variance to create a compositional

space, the ChemoSpace, grouping samples based on spectroscopic manifesta-

tions reflecting different biological properties or geological processes. PCA

allows to reduce the dimensionality of complex spectroscopic data and facili-

tates the extraction of informative features into formats suitable for down-

stream statistical analyses, thus representing a first step in the development of

diagnostic biosignatures from complex modern and fossil tissues. For such

samples, however, there is presently no systematic and accessible survey of the

impact of sample, instrument, and spectral processing on the occupation of the

ChemoSpace. Here, the influence of sample count, unwanted signals and dif-

ferent signal-to-noise ratios, spectrometer decalibration, baseline subtraction,

and spectral normalization on ChemoSpace grouping is investigated and exem-

plified using synthetic spectra. Increase in sample size improves the dissocia-

tion of groups in the ChemoSpace, and our sample yields a representative and

mostly stable pattern in occupation with less than 10 samples per group. The

impact of systemic interference of different amplitude and frequency, periodi-

cal or random features that can be introduced by instrument or sample, on

compositional biological signatures is reduced by PCA and allows to extract

biological information even when spectra of differing signal-to-noise ratios are

compared. Routine offsets (�1 cm�1) in spectrometer calibration contribute in

our sample to less than 0.1% of the total spectral variance captured in the Che-

moSpace and do not obscure biological information. Standard adaptive base-

lining, together with normalization, increases spectral comparability and

facilitates the extraction of informative features. The ChemoSpace approach to

biosignatures represents a powerful tool for exploring, denoising, and integrat-

ing molecular information from modern and ancient organismal samples.
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1 | INTRODUCTION

Raman spectroscopy allows non-destructive compositional
fingerprinting of complex biological and geological
materials.1–10 Rapidly generated in situ spectra yield infor-
mation on covalent, ionic, and non-covalent chemical
interactions enabling a comparative search for informative
heterogeneities across a diversity of samples,1 such as
modern organismal tissues and their fossilization products.
Spectroscopic biosignatures, such as phylogenetic and met-
abolic signals, represent diagnostic tools in cancer
research,3–7 and a number of signatures present in fresh
tissues preserve, occasionally altered but not unrecogniz-
able, in fossilized carbonaceous tissues: in integrative
data sets, spectroscopic signatures reflecting the relative
abundance of different organic functional groups1 and
organo-mineral interactions2 encode molecular manifesta-
tions of phylogenetic affinity,2–7,11–13 physiology,2–7,11–17

and degree and mode of environmental or diagenetic
alteration.1,2,18 These signals are relative and can only be
analyzed in a comparative framework.1–7,11–18

Spectra collected across a diversity of tissue samples
may contain additional unwanted signals that reduce the
signal-to-noise ratio1,2 (“noise” representing here signal
that is not of direct chemical nature). Examples include a
nonlinear background based on sample fluorescence
induced by the excitation source,1,19 lower intensity
counts due to diffusive scattering at rough sample
surfaces,1,19 and (quasi-)sinusoidal signals resulting from
reflective scattering at layers with different optical prop-
erties within a tissue sample or introduced by certain
instrument components (laser filters in combination with
specific line gratings).19,20 Most of these unwanted signals
can be described as wave functions of different periodic-
ity, amplitude, and frequency: fluorescence often times
behaves like n = 1–1.5 sine wave half cycles, diffusive
scattering at tissue layers or filter materials is accurately
represented by low-frequency periodical sine waves, and
shot noise tends to behave like a random high-frequency,
low-amplitude interference.1,19,20 Noisy spectra contain-
ing a diversity of unwanted signals are a well-known
challenge in biological tissue spectroscopy,1,7 and proces-
sing routines beyond despiking and standard-based lumi-
nescence correction,21–23 including adaptive baselining
(background correction sensitive to the total spectral
curve) and normalization (intensity scaling based on
individual peaks or integrated spectral areas), are

employed to minimize the impact of unwanted signals on
data interpretation.1,2,7,19 Similarly, spectral phase shift
introduced by temperature-based instrument decalibra-
tion can be traced and corrected across a series
of analytical sessions,24 but nonlinear decalibration rates
render correction (up to �1 cm�1 wavenumber) during a
single analytical session challenging.

In the last 30 years, spectroscopy has shifted from the
exclusively qualitative interpretation of Raman spectra8–10

toward a comparative approach1,2,5–7 that relies, as an
essential first step in the data analysis, on ordination
methods (dimensionality reduction), such as principal com-
ponent analysis (PCA). PCA allows to explore, denoise
(Figure 1), identify, and extract informative heterogeneities
(effectively “latent variables”) from sets of inherently com-
plex spectra, each characterized by a very large number of
data points collected over the wavenumber range.1,2,7,11–18

PCA captures the covariance of spectral features in an
n-dimensional compositional space, the ChemoSpace,
where n equals the number of features considered.25,26 The
ChemoSpace is based on a variance–covariance matrix
([number of spectra] � [number of features]).25,26

The general order of magnitude of the minimum
number of spectra required to achieve a stable Raman
ChemoSpace occupation remains yet to be determined:
the data point distribution across the ChemoSpace
changes with the number and type of spectra or selected
peaks included in the analysis; increasing the number of
considered spectra increases the statistical power of sam-
ple group separation. Once the number of included
Raman spectra allows for an accurate representation of
the compositional diversity in a sample set, a stable pat-
tern in ChemoSpace occupation is reached.

The number of considered features and thus dimen-
sions of the ChemoSpace (n) can encompass all the data
points that contribute to a spectrum or, more commonly,
selected peaks of interest.1,2 PCA benefits from the sub-
sampling of peaks in spectra, an approach that prevents
overweighting broad signals and spectral regions uninfor-
mative for a given question.27 Because the normalized
intensities of Raman peaks represent the relative abun-
dancies of molecular features in the sampled area, the
ChemoSpace can be thought of as a multivariate applica-
tion of Lambert–Beer's law, which defines that the spec-
troscopic signal of a compound is proportional to its
abundance in the sample. When spectra of different bio-
logical sample types are analyzed by means of PCA,
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variance corresponding to different biosignatures is com-
monly expressed by the first two or three principal com-
ponents (PCs)—the axes of the ChemoSpace displaying
different aspects of variance in the data, sorted by des-
cending contributions to the total variance.1,2,26 Based on
the information represented along the PCs and the distri-
bution of eigenvectors that illustrate the impact of indi-
vidual peaks on the placing of a sample in the
ChemoSpace, PCA allows for the exploration and identi-
fication of features that are particularly informative for
sample grouping and thus represents an essential tool for
the subsampling of spectral data points required toward
downstream classification or cluster analyses. Co-
dependence of individual or overlapping Raman peaks
based on molecular connectivity, as well as (spatial)
covariance of certain compounds in biological systems,
has previously posed an additional challenge (also coined
the “cage of covariance”) to the stand-alone interpreta-
tion of modern biological ChemoSpaces28,29—however,
cross-interrogation of complementary spectroscopic data
(i.e., Raman and Fourier-Transform Infrared Spectros-
copy [FT-IR]) and experimental chemical alteration of
individual reference samples offer suitable controls when
interpreting compositional spaces.

The impact of analytical variables and different types
of unwanted spectral features on classification

approaches to spectroscopic biosignatures in modern and
fossil tissues, such as linear discriminant analysis
(LDA)30 and its corresponding machine-learning tools
(i.e., support vector machines, SVM),31,32 is known and
has led to a number of end user recommendations,30–32

but it is only incompletely characterized for the PCA
ChemoSpace. Given the potential of the ChemoSpace to
address questions in modern biology1,3,4 and clinical
diagnostics,5–7 and the recent peak in interest by the
paleontological,2,11–18 geological,33 and astrobiological33

research communities, a systematic survey of the impact
of sample size (Figure 2), spectral signal-to-noise ratios
(Figures 3, 4A,C, 5, and 6), spectrometer decalibration
(Figure 7), baseline subtraction routines (Figure 8), and
normalization procedures (Figure 4B,D) on informative
ChemoSpace grouping, accessible to non-specialists from
different disciplines, is overdue. In this study, we utilize
simplified models of representative tissue spectra to
quantify and explain trends in the impact of sample,
instrument, and data processing on ChemoSpace occupa-
tion and the detectability of compositional biosignatures.

2 | METHODS

In order to illustrate the effects of sample size, instru-
ment features, and spectral processing on ChemoSpace

FIGURE 1 Schematic drawing showcasing the denoising potential of principal component analysis (PCA). (A) n = 1 Raman spectrum

of the sample type 1 plotted over the organic fingerprint region. A set (n = 5) of synthetic technical replicates based on the spectrum plotted

in (A) were summed with a medium-frequency synthetic interference function, in order to generate the n = 5 spectra shown in (B). (B) The

artificially noised n = 5 varieties of the source spectrum shown in (A). The source spectrum in (A) is plotted under the summed spectral

curves and is shaded in gray. PCA is applied to the n = 5 summed spectra. (C) Resulting PC 1 axis loadings plotted over the organic

fingerprint region match the original source spectrum shown in (A). Detectable synthetic interference has been efficiently removed by PCA.

PCA allows for the robust denoising of spectroscopic data collected for biological or paleontological tissue samples. Source spectra and

interference functions can be found in Table S1.
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occupation, we have selected spectra of two different bio-
logical tissues with a simple composition (avian eggshell
membrane and avian eggshell [Gallus domesticus]),
labeled as sample types 1 and 2. For the purpose of exper-
imentation without major signal distortion, these spectra
were modified in a number of ways: (1) scaling whole-
spectra to generate varieties (5–30, depending on the
specific analysis) of the same source signal,

(2) superimposing synthetic sinusoidal wave functions
(as simplified representatives of effects related to reflec-
tive scattering at tissue layers and features introduced by
edge filters) with low and medium frequencies (the latter
equal the average Raman band width in the source spec-
tra), (3) superimposing measurements of high-frequency
random shot noise (which is common in spectra of bio-
logical materials), (4) shifting spectra along the x-axis

FIGURE 2 The impact of sample size on the ChemoSpace occupation. The selection of plots aims to showcase the initial ChemoSpace

occupation with only n = 3 samples per group (A), the key steps in cluster rotation resulting from an increase in sample number (B, C), the

stable ChemoSpace occupation based on n = 30 samples per group (D), and the relationship between the number of samples and the

amount of variance represented in the ChemoSpace for this example. Arrows and the shaded area in between them represent eigenvectors in

the biplot. (A) ChemoSpace plot resulting from n = 3 varieties (synthetic technical replicates) of two sample types (1: teal; 2: orange).

(B) ChemoSpace plot resulting from n = 5 varieties (synthetic technical replicates) of the two sample types (1: teal; 2: orange).

(C) ChemoSpace plot resulting from n = 6 varieties (synthetic technical replicates) of the two sample types (1: teal; 2: orange).

(D) ChemoSpace plot resulting from n = 30 varieties (synthetic technical replicates) of the two sample types (1: teal; 2: orange). All PC

loadings are listed in the ChemoSpace plots. All source data can be found in spreadsheet Table S2. (E) Graph showing the relationship

between the number of samples and the amount of variance explained on principal component axis (PC) 1 (teal), PC 2 (orange), and both

combined (gray). All source data can be found in Table S2.

4 WIEMANN and HECK
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FIGURE 3 Legend on next page.

WIEMANN and HECK 5
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(+1, +0.5, 0, �0.5, �1 cm�1 offsets), (5) baselining spec-
tra with linear and adaptive approaches (as performed
with the SpectraGryph freeware34: linear [no offset]; 50%,
30%, 20%, 10% baseline adaptivity options), and (6) nor-
malizing spectra relative to the highest peak. All source
data are available in Tables S1–S9.

2.1 | Impact of the sample: Sample size

Adding samples to a small initial data set is expected to
result in rotation of the axis separating the two sample
groups as the amount of variation within the groups
increases.25,26 Stable ChemoSpace occupation requires a
representative sample, the sample size varying depending
on the amount of spectral variance captured in the data
set. Various experimental and computational tools can be
employed to aid the determination of ideal sample sizes
and the critical evaluation of PCA model stability35–37;
however, here, we aim to showcase the impact of an
increasing number of spectra per sample group on Che-
moSpace occupation as it is representative for complex
biological tissues: 30 scaled varieties of the two source
spectra (sample types 1 and 2; Table S1), that is, a total of
60, were generated. The ChemoSpaces resulting from the
individual sets of 3, 5, and 6 samples per sample type
were plotted to showcase key steps in the axis rotation of
groups, as well as the terminal ChemoSpace occupation
(set of 30 samples). To do so, all spectra were plotted in
SpectraGryph.34 Relative intensities were extracted from
all spectra at 39 Raman band positions: 510, 536,
577, 644, 667, 698, 711, 725, 739, 753, 761, 778, 811, 839,
856, 880, 931, 959, 993, 1005, 1031, 1124, 1165, 1186,
1229, 1249, 1330, 1344, 1356, 1363, 1418, 1445, 1478,
1535, 1550, 1586, 1609, 1676, 1751 cm�1. These data

resulted in [3 to 30] � [39] variance–covariance matrices
(Table S2). 2D-ChemoSpaces (Figure 2A–D) and variance
captured along the PC axes (PC loadings, Figure 2E) were
graphed in PAST 3.038 and are shown in Figure 2.

2.2 | Impact of the sample and
instrument: Systemic unwanted signals

To determine the impact of simplified systemic unwanted
signals,19,20 such as sinusoidal features resulting from
reflective scattering at tissue layers or instrument optics
(laser-cancelling filters) on ChemoSpace occupation,
5 individual varieties of the two source spectra (sample
types 1 and 2) were scaled to 100%, �66%, 50%, 10%, 0.1%
of their normalized intensity (the highest peak scaled to
the value 1) and the results plotted in SpectraGryph
(Figure 3A,B). Two sinusoidal interference functions
(unwanted signals) were computed, one with a low fre-
quency (f xð Þ¼ 0:5þ 0:5� sin 0:015xð Þð Þ) (Table S3) and
the other one with a medium frequency
(f xð Þ¼ 0:5þ 0:5� sin 0:08xð Þð Þ) matching the average
Raman band width in the source spectra (Tables S4 and
S5). In addition, high-frequency random shots noise was
collected from spectroscopic measurements (40 random
noise signals collected over the organic fingerprint
region; Table S6). The sets of scaled spectra for sample
types 1 and 2 were added to these interference functions,
resulting in different signal-to-noise ratios: 1:1 (informa-
tive signal content: 50%), 1:1.5 (informative signal con-
tent: 40%), 1:2 (informative signal content: �33%), 1:10
(informative signal content: �9%), 1:100 (informative sig-
nal content: �1%; not included in the analysis of random
shot noise for visualization purposes). The resulting com-
bined signals for low (all spectral varieties in Figure 3C,

FIGURE 3 The impact of systemic low-frequency sinusoidal interference and different signal-to-noise ratios on ChemoSpace

occupation. (A) Plot of n = 5 varieties (synthetic technical replicates) of n = 5 differently scaled sets of spectra corresponding to the sample

type 1 over the organic fingerprint region. (B) Plot of n = 5 varieties (synthetic technical replicates) of n = 5 differently scaled sets of spectra

corresponding to the sample type 2 over the organic fingerprint region. (C) Plot of n = 5 varieties (synthetic technical replicates) of n = 5

differently scaled sets of spectra corresponding to the two sample types (1: teal hues; 2: orange hues) added to the normalized synthetic

interference function (for details, see figure or Section 2) over the organic fingerprint region; the interference function represents unwanted

spectral features introduced by edge filter ripples, refraction at optical layers within a stratified biological tissues sample, or Mie-ripples. Four

Raman band positions are indicated (x1 – x4), and the colored data points label the mean average intensity of the individual sets of spectra, in

order to visually explain how the variance–covariance matrix is built. Signal-to-noise ratios range from �1% to 50%. Sets of spectra matching

in their signal-to-noise ratio are extracted in (D)–(H). (D) Set of spectra extracted from (C) with a signal-to-noise ratio of 1:1. (E) Set of

spectra extracted from (C) with a signal-to-noise-ratio of 1:1.5. (F) Set of spectra extracted from (C) with a signal-to-noise ratio of 1:2. (G) Set

of spectra extracted from (C) with a signal-to-noise ratio of 1:10. (H) Set of spectra extracted from c with a signal-to-noise ratio of 1:100.

(I) ChemoSpace across principal components (PCs) 1 and 2 based on a variance–covariance matrix including select relative intensities (see

Section 2) extracted from the plot in (C). Data point fill colors correspond to the sample type (1: teal hues; 2: orange hues; compare C). The

different signal-to-noise ratios are shown for groups of data points, and the labeled arrows indicate trends in the data distribution across the

ChemoSpace. All source data can be found in Tables S1 and S3.
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FIGURE 4 The impact of medium-frequency sinusoidal interference and different signal-to-noise ratios on ChemoSpace occupation.

(A) Plot of n = 5 varieties (synthetic technical replicates) of n = 5 differently scaled sets of spectra corresponding to the two sample types (1:

teal hues; 2: orange hues), added to the normalized synthetic interference function (for details, see figure) over the organic fingerprint

region. (B) The same spectra as in (A), normalized (standard normalization) to the highest peak in each spectrum. (C) ChemoSpace plot

across principal components (PCs) 1 and 2 based on a variance–covariance matrix including select relative intensities (see Section 2)

extracted from the plot in (A). Data point fill colors correspond to the sample type (1: teal hues; 2: orange hues; compare A). The different

signal-to-noise ratios are shown for groups of data points, and the labeled arrows indicate general patterns in the data distribution across the

ChemoSpace. (D) ChemoSpace plot across PCs 1 and 2 based on a variance–covariance matrix including select relative intensities (see

Section 2) extracted from the plot in (B). Data point fill colors correspond to the sample type (1: teal hues; 2: orange hues; compare B). The

different signal-to-noise ratios are highlighted for groups of data points, and the labeled arrows indicate trends in the data distribution across

the ChemoSpace. All source data can be found in Tables S4 and S5. The spectral denoising process is showcased in Figure 1.

WIEMANN and HECK 7
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individually scaled subsamples in Figure 3D–H), medium
(Figure 4A), and high (Figure 5A) frequency interference
were plotted separately in SpectraGryph,34 and intensities
at the selected 39 band positions (listed above) were
extracted. The resulting variance–covariance matrices
containing low (Figure 3I), medium (Figure 4C), and
high (Figure 5B) frequency interference were subjected to
PCAs in PAST 3.0,38 and the resulting PC loadings and
2D-ChemoSpaces were graphed.

To contextualize and constrain the signal-to-noise
ratios in Raman spectra of modern and fossil biological
samples, between 3 and 5 (as available in the individual
studies) technical replicates of organic Raman spectra
published in the fields of medicine, biology, and
paleobiology were compiled from the literature
(Table S7). Technical replicates (Figure 1A) were plotted

in SpectraGryph34 and whole-spectral data were exported
(resolution varies across published data sets) to create
corresponding variance–covariance matrices. PC 1 axis
loading functions were extracted (Figure 1C), plotted,
and normalized together with one of the 3–5 source spec-
tra in SpectraGryph.34 Integrals of each spectrum and the
corresponding PC 1 axis loading function, which repre-
sents the true compositional signal, were calculated over
the whole spectral range (resolution differs across pub-
lished data sets). The area under the PC 1 axis loading
function was compared with that under the source spec-
trum containing potential unwanted signals and
expressed as the percentage of coverage (Figure 1B). Per-
centage ranges capturing the relationship between the
total spectral signal and the true compositional signal
were plotted in PAST 3.038 (Figure 5). Figure 1 illustrates
the process of denoising the biological tissue spectra
through PCA.

FIGURE 5 The impact of high-frequency random shot noise

and different signal-to-noise ratios on ChemoSpace occupation.

(A) Plot of n = 5 varieties (synthetic technical replicates) of n = 4

differently scaled sets of spectra corresponding to the two sample

types (1: teal hues; 2: orange hues), added to the measured high-

frequency random shot noise over the organic fingerprint region.

(B) ChemoSpace across principal components (PCs) 1 and 2 based

on a variance–covariance matrix including select relative intensities

(see Section 2) extracted from the plot in (A). Data point fill colors

correspond to the sample type (1;2), and the values in the

parentheses correspond to the signal-to-noise ratio (compare A).

Semi-transparent data points of spectra without added random shot

noise have been plotted in the background (and were projected

upwards or downwards to reveal the arrangement of data points in

the compositional space) for direct comparison with the opaque

data points (which are plotted in the foreground) containing

random shot noise. All source data can be found in Table S6.

FIGURE 6 Trends in the relative abundance of informative

versus unwanted signals (compare with the signal-to-noise ratio) in

spectroscopic data published in the molecular medical and

biological literature (n = 8 data sets, n = 3–5 replicates were
analyzed; see Table S7 and the molecular paleobiological literature

[n = 6 data sets, n = 3–5 replicates were analyzed; Table S6]:
categories are separated along the x-axis of the plot). The

percentage of true compositional signal relative to the total amount

of spectroscopic signal, which includes both compositional and

unwanted signals, in the published sets of spectra is shown on the

y-axis of the plot. The bars associated with the percentage of

informative signal in spectra from medical and biological

publications represent the standard deviation based on the

analyzed spectral sample (�1σ). For molecular paleobiological

studies with sufficient spectral data published alongside the

article,2,11,12,16,18 one outlier study was identified.20 Signal-to-noise

ratios (S/N) corresponding to the listed percentage of informative

spectral signals in Figure 3D–F are plotted in form of gray, dashed

lines (labeled in the figure). The color gradient in the data bars

corresponds to trends in the spectral quality.
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2.3 | Impact of the instrument:
Spectrometer decalibration

To characterize how ChemoSpace occupation is impacted
by minute spectrometer decalibration that occurs rou-
tinely during longer analytical sessions in response to
changes in room temperature,24 the 5 scaled varieties of
the two source spectra (sample types 1 and 2) were
shifted along the x-axis as follows: +1, +0.5, +0, �0.5,
�1 cm�1, resulting in a total of n¼ 5�5ð Þþ 5�5ð Þ¼ 50
spectral varieties. All resulting spectra were plotted in
SpectraGryph34 (Figure 6A). A variance–covariance
matrix (Table S8) was built based on the extracted inten-
sities of major peaks at the previously introduced 39 band
positions. The resulting variance–covariance matrix
(50 � 39) was subjected to PCA in PAST 3.038 and the
(1) variance explained by the calibration signal, (2) sam-
ple separation based on calibration differences captured
along PCs 3 and 4 in the Chemospace, and (3) corre-
sponding scree plot are illustrated in Figure 6B.

2.4 | Impact of spectral processing:
Spectral baselining

Baseline subtraction is an established approach1

employed to increase the comparability of spectra when
background signals differ across samples. Background
shapes differ substantially in sets of spectra collected
from, i.e., modern and fossil biological tissues. To capture
the influence of baselining on ChemoSpace occupation,
5 varieties of the two source spectra (sample types 1 and
2) were subjected to the linear option and the 50%, 30%,
20%, and 10% adaptive baselining options (no y-axis offset
in either case) in SpectraGryph. All n¼ 5�5ð Þþ
5�5ð Þ¼ 50 resulting spectra were plotted in Spectra-
Gryph (Figure 7A). Excessive (≤ 20% in SpectraGryph)
baseline adaptivity leads to partial subtraction of signal
associated with the highest peaks in the spectra and
alters the ratio of normalized signal intensities that
encode biosignatures. Relative intensities at the same

FIGURE 7 The impact of spectrometer decalibration on the

occupation of the ChemoSpace. (A) Plot of n = 5 varieties

(synthetic technical replicates) of n = 5 different x-axis offsets

applied to the two sample types (1: teal; 2: orange) over the organic

fingerprint region. (B) ChemoSpace across principal components

(PCs) 3 and 4 based on a variance–covariance matrix including

select relative intensities (see Section 2) extracted from the plot in

(A). Data point outline colors correspond to the sample type (1;2),

and fill colors correspond to the x-axis offset (compare A). The

scree plot of PC loadings indicates the placement of the

decalibration signal. All source data can be found in Table S8.

FIGURE 8 The impact of baseline subtraction on the

occupation of the ChemoSpace. (A) Plot of n = 5 varieties

(synthetic technical replicates) of n = 5 different baseline

subtraction approaches (in SpectraGryph26: linear, 50%, 30%, 20%,

10%) applied to the two sample types (1: teal hues; 2: orange hues)

over the organic fingerprint region. (B) ChemoSpace plot across

principal components (PCs) 1 and 2 based on variance–covariance
matrix including relative intensities (see Section 2) extracted from

the spectra in (A). Data point outline colors correspond to the

sample type (1: black; 2: red), and the fill colors correspond to the

different baseline subtraction routines (labeled in the figure). Red

arrows point toward increasingly adaptive baselines. All source

data can be found in Table S9.
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39 band positions (introduced above) were extracted from
all spectra and incorporated into a [50] x [39] variance–
covariance matrix (Table S9). PCA was performed in
PAST 3.038 to capture the impact of different baselines on
ChemoSpace occupation reflected in PC loadings and
sample position in the ChemoSpace plot based on PCs
1 and 2 (Figure 7B).

2.5 | Impact of spectral processing:
Spectral normalization

Normalization scales a spectrum based on the highest
peak, a particular selected peak, or the area under the
spectral curve.1,34 It is commonly applied prior to any
quantitative analysis1 to increase comparability across
spectra given the variability of absolute Raman intensities
among diverse samples. The combined set of 50 varieties
of spectra containing the synthetic, medium-frequency
interference (introduced above) was plotted (Figure 3A) to
capture the impact of normalization on ChemoSpace occu-
pation. The highest peak of each spectrum was scaled to a
value of 1 (a common approach) using the SpectraGryph34

normalization option (Figure 3B). Relative intensities were
extracted from all spectra at the 39 wavenumber positions
generating a [50] � [39] variance–covariance matrix.
Figure 3D shows the resulting PC loadings and
ChemoSpace plot based on PCs 1 and 2.

3 | RESULTS AND DISCUSSION

The effects of sample size, instrument decalibration, and
spectral processing on ChemoSpace occupation were sim-
ulated and showcased in six distinct experiments. Minute
changes in spectrometer calibration, the systemic pres-
ence of unwanted signal, differences in the spectral
signal-to-noise ratios, linear and standard adaptive
baseline subtraction, and spectral normalization do not
overprint the biologically informative grouping of tissue
samples in the ChemoSpace. Spectral processing, includ-
ing baseline correction and normalization prior to PCA,
improved data comparability and biosignature separa-
tion. A near-stable pattern in ChemoSpace occupation is,
in this example, reached with as few as 6 spectra per
sample type.

3.1 | Stable ChemoSpace occupation can
be reached with less than 10 samples

The number of samples required to achieve a stable
ChemoSpace occupation is as few as 6 per sample type in

this data set representing biological tissues (Figure 2E).
With 12 samples, the two clusters are separated across
PC 2 which accounts for 42.7% of the variance in the data
set, whereas intra-group variance accounts for 57.3% of
the total and is captured on PC 1. In contrast to PC load-
ings, eigenvectors in the ChemoSpace biplot (teal and
orange arrows in Figure 2A–D) allow the sources of
variance in the data, including biological signals within
and across tissues, to be differentiated even when cluster
separation occurs diagonally in the ChemoSpace. Such
eigenvector trajectories allowed us to infer that rotation
of the axis separating sample clusters in this ChemoSpace
results from an increase in the contribution of intra-
group variance to the total variance as spectra are added:
intra-group variance becomes the primary source of
variance and is displayed along PC 1. This experiment
suggests that the sampling strategy should reflect the
scientific question of interest: in integrative data sets
including modern and fossil tissues, ChemoSpace group-
ing will account more accurately for variation in different
modes of (diagenetic) alteration of a biological tissue, for
example, when an increasing number of fossil samples
from different depositional settings is considered. The
sample set analyzed here is not supposed to provide a
generalizable model that can be directly transferred to
other data sets, but rather aims to showcase and explain
trends in the relationship between sampling strategy and
ChemoSpace occupation.

3.2 | PCA allows biosignatures to be
detected in a ChemoSpace even if systemic
unwanted signals are present in spectra

PCA as employed here is based on a variance–covariance
matrix. The focus on variance rather than qualitative
comparisons of absolute spectral differences (Figure 3C)
facilitates the detection of biologically meaningful sample
grouping, even when prominent unwanted signals, such
as sample- or instrument-related spectral features,19,20

are present. In addition, the extraction of relative intensi-
ties at informative wavenumber positions allows features
relevant to a given question to be emphasized.27 A mostly
stable, omnipresent interference signal is unlikely to
become the primary source of variance in a diverse data
set, such as a sample of different tissues. PCA reliably
separates the two clusters corresponding to signals 1 and
2, regardless of the frequency of a periodic, systemically
present, unwanted signal, or the total spectral signal-
to-noise ratio (Figures 3I and 4C). An omnipresent and
invariant unwanted signal will not overprint composi-
tional biosignatures in a ChemoSpace PCA, even if it
includes more complex spectral features, such as,

10 WIEMANN and HECK
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i.e., signals associated with quartz glass slides. Random
high-frequency shot noise at realistic intensity, as mod-
eled in Figure 5A, is shown to lead to minor displace-
ments of individual data points in the compositional
space; however, it does not overprint compositional bio-
signatures separating the two sample groups (Figure 5B).

Although a decrease in the signal-to-noise ratio of
spectral data results in increased convergence of the two
sample clusters in the ChemoSpace (regardless of the
nature of unwanted signal present), clusters are separated
even for spectra with a signal-to-noise ratio of 1:100
(Figures 3H–I and 4C). The spectra modeled here in
Figures 4 and 5 (with signal-to-noise ratios ranging from
1:100 to 1:1) include a higher amount of unwanted signal
than most published Raman spectra. Informative spectral
content ranges from �42% to 90% (�1σ) in the biological
and medical literature (Figure 6, based on 8 spectral data
sets, 3–5 replicates were analyzed) and �69% to 98% in
the molecular paleobiological literature2,11–14,16–19

excluding one statistical outlier20 (Figure 6, based on
6 spectral data sets, 3–5 replicates were analyzed).
Field-specific ranges of compositional signal content in
published spectra mostly overlap. Comparatively high
signal-to-noise ratios in carbonaceous fossilization
products of biological tissues are the result of smoother
textures following dehydration and compaction, as well
as reduced fluorescence (Figure 6). Regardless of the type
of unwanted signal present in biological or geological
organic Raman spectra, PCA reliably extracts informative
features (see Figure 1 for denoising).

3.3 | Minor in-session spectrometer
decalibration does not overprint
ChemoSpace biosignatures

Spectrometer decalibration accounting for �1 cm�1

wavenumber is only evident across PCs 3 and 4 (Figure 7)
and explains less than 0.1% variance in this data set.
Thus, any type of biosignature accounting for more than
0.06% variance (loading PC 3) in the data set will out-
weigh the decalibration signal in the ChemoSpace. All
previously published spectroscopic biosignatures5–7,11–18

exceed the amount of variance resulting from decalibra-
tion by at least two orders of magnitude.

3.4 | Standard adaptive baselining
increases comparability and ChemoSpace
signal extraction

It is essential to subtract spectral backgrounds without
affecting informative bands, in order to prevent

differences in background shape from appearing as a
major source of variance which could potentially
overprint biosignatures.1 Linear baseline subtraction
(Figure 8A) does not completely remove nonlinear back-
ground signals, which are common in spectra of heterog-
enous and stratified biological tissues, and may introduce
or amplify spectral incomparability (see linear baseline
subtraction applied to sample spectrum 1 in Figure 8A).
Adaptive baselining, in contrast, eliminates all types of
background signal (Figure 8A) regardless of shape. Base-
lining may result in minor spatial convergence of infor-
mative clusters (sample types 1 and 2) in the
ChemoSpace (Figure 8B), if adaptivity exceeds the stan-
dard (less of the original spectral signal remains; treshold
determined here: < 30% in SpectraGryph34): as baseline
adaptivity increases beyond the standard, broad Raman
bands of high intensity lose comparatively more signal
than narrow bands with relatively low intensity
(Figure 8A). This loss of the biological signal encoded in
informative band ratios decreases the separation of
groups in the ChemoSpace (indicated by the red arrows
in Figure 8B). Standard adaptive baselines (treshold:
≥ 30% in SpectraGryph34) increase intra-group compara-
bility without cluster convergence, resulting in the
collapse of individual spectral data points within a
sample type in the ChemoSpace (Figure 7B).

3.5 | Normalization increases
comparability and improves signal

Spectral normalization emphasizes key differences within
a sample set by amplifying differences in relative spectral
intensities (Figure 4B). The ChemoSpace PCA shows
how normalization increases direct comparability (all
normalized spectra share a highest peak scaled to 1; they
do not range in intensity counts over orders of magnitude
like in the raw spectra) across synthetic replicates, as
demonstrated by the closer grouping of data points
within a subsample (Figure 4D). Normalization also
homogenizes the distribution of data within clusters asso-
ciated with signals 1 and 2—an inference based on the
resulting uniform data point spacing (Figure 4D) com-
pared to the non-uniform data point spacing observed
among non-normalized spectra (Figure 4C). Most
biosignatures are encoded in the relative abundance of
different functional groups,1,2 so spectral normalization
(based on the highest peak in the spectrum, a different
informative peak, or a spectral area) facilitates the extrac-
tion of meaningful signal. The suitability of different
modes of normalization for individual data sets depends
on the specific question and the nature and comparability
of spectral intensities in the sample set.

WIEMANN and HECK 11

 10974555, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/jrs.6669 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [21/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 | CONCLUSIONS

Quantification of the impact of sample size, instrument
features, and spectral processing on the occupation of the
ChemoSpace provides an analytical framework for
the extraction of molecular biosignatures from spectro-
scopic fingerprints of tissues from extant and extinct
organisms: Minor instrument decalibration during an
analytical session does not overprint major biological
signatures in a ChemoSpace PCA. Spectral processing
routines, such as standard adaptive baseline subtraction,
as well as normalization prior to statistical analysis of
spectra, increase data comparability and facilitate the
extraction of informative features. Stable ChemoSpace
occupation can be achieved with fewer than 10 spectra
per sample group when analyzing biosignatures.
PCA facilitates the distinction of informative
compositional and systemic unwanted signals, regardless
of the waveform, periodicity, frequency, and amplitude of
a spectral interference, even at relatively low signal-
to-noise ratios. The ChemoSpace approach to biosigna-
tures represents a powerful tool for exploring, denoising,
and integrating information from modern and ancient
organismal samples.
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