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We present a new approach for deriving exact closed-form solutions for the steady state of a wide class of
driven-dissipative nonlinear resonators that is distinct from more common complex-P-function methods.
Our method generalizes the coherent quantum-absorber approach of Stannigel et al. [New J. Phys. 14,
063014 (2012)] to include nonlinear driving and dissipation and relies crucially on exploiting the Segal-
Bargmann representation of Fock space. Our solutions and method reveal a wealth of previously
unexplored observable phenomena in these systems, including new generalized photon-blockade and
antiblockade effects and an infinite number of new parameter choices that yield quantum bistability.
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I. INTRODUCTION

Exact solutions of interacting, driven-dissipative quan-
tum problems are rare and thus occupy a special place in the
study of open quantum systems. A canonical example is the
solution of the driven-dissipative Kerr resonator. Here,
a bosonic mode with a Kerr nonlinearity (i.e., a Hubbard
U interaction) is subject to a coherent linear drive and
Markovian single-photon loss. As shown by Drummond
and Walls [2], one can exactly solve for the steady state of
this system using a complex-P phase-space representation.
Later work showed that models including two-photon
driving and loss are also solvable using this technique
[2–4]. These driven nonlinear cavity systems have renewed
relevance, as they can be directly implemented in super-
conducting circuit QED setups (see, e.g., Refs. [5–9]).
Their ability to exhibit multiple steady states has utility in
quantum-information processing [10–12].
While the existence of exact solutions here is remark-

able, they are somewhat physically opaque and unwieldy
(e.g., they are typically expressed as infinite sums of special
functions). Their derivation is also somewhat intricate,
requiring a nontrivial integration to relate the solution of an
effective classical problem to the underlying quantum
system. More direct methods for obtaining and possibly
extending these solutions are thus highly desirable. For the

simplest version of the Kerr-cavity problem (single-photon
drive and loss only), Stannigel et al. [1] were able to
reproduce the exact solution of Ref. [2] using a simple,
purely algebraic approach. While extremely elegant, it was
unclear whether this approach could be extended to more
complex problems.
In this paper, we show that such an extension is

indeed possible: The “coherent quantum-absorber”
(CQA) method of Ref. [1] can be extended to a wide
class of systems which include nonlinear coherent driving
as well as multiple dissipators (see Fig. 1). Our extension
employs a new ingredient: the Segal-Bargmann represen-
tation of a single-mode pure-state wave function [13–16].
This enables nontrivial transformations that are crucial for
finding exact solutions. Our approach yields several new
insights. We find and describe new parameter regimes
where the steady state exhibits a surprising generalized
photon-blockade phenomenon. In particular, we show
how the use of a nonlinear driving term allows for photon
blockade even for nonlinearities much weaker than dis-
sipation rates; unlike the so-called “unconventional pho-
ton blockade” [17–19], the effect we describe results in
non-Gaussian states and a complete suppression of
higher-n photon probabilities.
We also find an infinite number of points in parameter

space where our generalized driven-Kerr system exhibits
quantum bistability (i.e., a two-dimensional decoherence-
free subsystem), despite the lack of photon-number
parity conservation. The required parameters can be
achieved asymptotically in the limit of weak single-
photon loss. Our solution also provides a simple intuitive
picture when there is a unique steady state (see Fig. 2):
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The steady state is formed by mixing a pure state with
vacuum at a 50∶50 beam splitter and then discarding
one of the outputs. At a technical level, our work also
provides new, simple closed-form expressions for the
steady-state Wigner function and normally ordered
moments.
The remainder of this paper is organized as follows.

In Sec. II, we introduce the basic system. In Sec. III, we
review the CQA method, and in Sec. IV, we present our
extension to nonlinear driving and multiple dissipators.
Section V summarizes the new physical phenomena
uncovered by our exact solution, while Secs. VI and VII
discuss the regimes of classical and quantum bistability.
We conclude in Sec. VIII.

II. SYSTEM

We consider a driven-Kerr resonator whose coherent
dynamics is described by the Hamiltonian

Ĥa ¼
K
2
â†â†â â−Δâ†â

þ
��

Λ1â† þ
Λ2

2
â†â† þ Λ3â†â†â

�
þ H:c:

�
: ð1Þ

We work in a rotating frame, and we assume that all drives
have an equal detuning Δ from the cavity resonance
frequency (which allows us to have a time-independent
rotating-frame Hamiltonian). Here, K is the Kerr non-
linearity, and Λ1, Λ2 are the complex amplitudes of
standard coherent one- and two-photon driving terms.
Λ3 represents an unusual kind of nonlinear single-photon
driving term; as we see, it enables a striking new kind of
photon-blockade effect that does not require strong non-
linearity. We show in the Appendix A how this Λ3 drive
can be implemented using the superconducting circuit
architecture of Ref. [20].
The full dissipative dynamics includes one- and two-

photon loss processes and is described by the Lindblad
master equation

d
dt

ρ̂ ¼ −i½Ĥa; ρ̂� þ κ1D½â�ρ̂þ κ2D½â2�ρ̂≡ L0ρ̂; ð2Þ

where D½X̂�ρ̂≡ X̂ ρ̂ X̂† − ð1=2ÞfX̂†X̂; ρ̂g is the usual
Lindblad dissipative superoperator, and κ1 (κ2) are the
one- (two-) photon decay rates. Note that the dissipative
evolution corresponds to coupling the system to two
distinct zero-temperature baths.
We focus exclusively on finding the steady states of this

kind of system, i.e., density matrices ρ̂SS satisfying

L0ρ̂SS ¼ 0: ð3Þ

We briefly summarize prior work on this model. For
Λ3 ≡ 0, exact solutions for ρ̂SS have been found using
the complex-P-function approach [2–4,21]. The solutions
express matrix elements of ρ̂SS in the Fock basis as sums of
special functions. In the semiclassical limit, solutions for
the steady state can be found using an alternate approach
developed by Dykman and co-workers [22,23]; unlike the
complex-P approach, these solutions can also be used to
describe dissipation at a nonzero temperature. Systems with
higher-order coherent driving terms (like our Λ3) have been
studied previously (see, e.g., Refs. [24–26]) but were not
previously known to be solvable.
While the prior work on driven-Kerr resonators is a

remarkable achievement, it leaves several mysteries unan-
swered. First, in the presence of single-photon loss, the
unique steady state that one finds always yields a positive-
definite Wigner function. Given the nonlinearity in the

FIG. 2. Simple picture of the unique steady state of the
generalized driven-Kerr resonator with nonzero single-photon
loss. One starts with a pure-state, single-mode wave function
jψþi. This is mixed with vacuum noise at a 50∶50 beam splitter;
the output ports represent the final steady state of the physical a
cavity and the auxiliary b cavity. This operation implies that the
cavity-a steady state is jψþi convolved with vacuum noise. As a
result, cavity-a’s steady-state Wigner functionWaðzÞ is equal (up
to scaling) to the Q function QψþðzÞ of the pure state jψþi.

(a) (b)

FIG. 1. (a) Generalized driven-Kerr-cavity problem, where a
single interacting bosonic mode is subject to linear and nonlinear
coherent drives Λj, as well as independent one- and two-photon
loss (rates κ1, κ2). (b) The coherent quantum-absorber method
represents each dissipative bath as a chiral waveguide and
couples a second auxiliary b cavity downstream. By picking
its Hamiltonian judiciously, the entire composite system can relax
to a pure state, providing an efficient means for finding the steady
state of cavity a.
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system, it is not a priori obvious that Wigner function
negativity should be absent in this system. Second, in the
absence of single-photon processes (i.e., Λ1 ¼ κ1 ¼ 0), this
system exhibits multiple steady states [10,27–30]. We are
not aware of any discussion of this multistability using the
complex-P approach. For Δ ¼ 0, the system is simple
enough that the multiple steady states can be found via
elementary means in terms of superpositions of coherent
states [11,12]. The conditions needed for Wigner function
negativity were recently discussed in Ref. [31], though
these conditions are not directly applicable to our system.
In the sections that follow, we discuss an alternate,
physically transparent method for solving this class of
problems that addresses the open issues that we men-
tion above.

III. EXACT SOLUTIONS USING THE
QUANTUM-ABSORBER METHOD

Our approach to solving driven-dissipative Kerr prob-
lems is to adapt and extend the so-called CQA approach
first introduced by Stannigel et al. [1] to solve the simplest
driven-Kerr problem where there are no two-photon drive
or loss processes. We quickly recap the philosophy of this
approach and then show how it can be extended to deal with
more complex problems involving two- and even three-
photon processes.

A. Recap of the basic approach

Consider first the case where our system in Eq. (2) has no
two-photon loss (κ2 ¼ 0). The starting point of the CQA
method is to represent the one-photon loss as arising from
a coupling to a chiral (i.e., unidirectional) waveguide.
Further, one imagines coupling a second auxiliary bosonic
mode (annihilation operator b̂, system Hamiltonian Ĥb) to
the waveguide, downstream from the physical a cavity (see
Fig. 1). Given the chirality of the waveguide, the dynamics
of this auxiliary cavity can have no impact on the physical
cavity a. The entire composite system can be described
using standard cascaded quantum-systems theory [32–34].
The dynamics of the reduced density matrix ρ̂ab describing
both cavities is described by a Lindblad master equation of
the form

d
dt

ρ̂ab ¼ −i½Ĥab; ρ̂ab� þ κ1D½â − b̂�ρ̂ab; ð4Þ

Ĥab ¼ Ĥa þ Ĥb −
iκ1
2

ðâ†b̂ − H:c:Þ: ð5Þ

Note that one can rigorously trace out cavity b from this
equation, recovering Eq. (2) for cavity a alone.
While the introduction of the auxiliary cavity b has no

impact on cavity a, it provides a useful tool for finding its
steady state. As shown in Ref. [1], for a general cavity-a
Lindblad master equation having only single-photon loss

[i.e., Eq. (2) with κ2 ¼ 0 and arbitrary Ĥa], one can always
construct a Hamiltonian Ĥb for the auxiliary cavity b such
that the composite system has a pure steady state. This
steady state necessarily has vanishing emission to the
waveguide—it is a “dark” state. Letting ρ̂ab;SS denote the
steady-state density matrix of the two-cavity problem,
this means

ρ̂ab;SS ¼ jψihψ j; ðâ − b̂Þjψi ¼ 0: ð6Þ

Note that the dark-state condition implies that jψi is
essentially a single-mode state. Introducing new composite
mode operators

ĉ� ≡ â� b̂ffiffiffi
2

p ; ð7Þ

one notes that the dark-state condition forces the composite
mode ĉ− to be in vacuum. Hence, one just needs to solve for
the (pure) state of the composite ĉþ mode.
In physical terms, the CQA approach seeks to construct

Ĥb such that the auxiliary cavity b acts as a “perfect
absorber” for all photons emitted into the waveguide by
cavity a. By tracing out cavity b, one obtains the desired
steady state for the physical cavity-a problem. One generi-
cally obtains an impure state, as the two cavities will be
entangled in the state jψi.
While such a construction is always possible, in practice

it would seem to be of no utility, as one can construct
only the required Ĥb by first independently solving for the
cavity-a steady ρ̂a;SS. Despite this seeming obstacle,
Ref. [1] demonstrated that for a range of problems, one
could essentially guess the form of Ĥb without first
knowing ρ̂a;SS. This educated guess is extremely simple:
Ĥb is taken to be identical to Ĥa up to an overall minus
sign. Reference [1] applied this to the simplest driven-Kerr
problem [Λ2 ¼ Λ3 ¼ κ2 ¼ 0 in Eq. (E1)], in which case,

Ĥb ¼ −
K
2
b̂†b̂†b̂ b̂þΔb̂†b̂ − ½Λ1b̂

† þ H:c:�: ð8Þ

With this choice, Stannigel et al. were able to find a pure-
state solution of the cascaded master equation in Eq. (4)
by solving a simple one-term recursion relation. By then
tracing out cavity b, they recovered (in a much simpler
manner) the classic solution of Drummond and Walls [2]
for the linear-drive Kerr problem.

B. Extension to nonlinear driving
and two-photon loss

It is natural to ask whether the absorber method approach
can be extended to solve problems with nonlinear driving
and two-photon loss. An immediate issue is the presence of
two independent dissipators in the master equation, Eq. (2).
We find that the CQA approach is easily modified to deal
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with this situation. As shown in Fig. 1(b), one can represent
the two-photon loss process as a nonlinear coupling to a
second chiral waveguide.
One again needs to add something downstream along

this waveguide to absorb the emitted excitations. While
there are many possible options, we find the simplest
approach is sufficient: We assume that there is still a single
auxiliary cavity b that now couples to both these indepen-
dent chiral waveguides. The cascaded master equation now
takes the form

d
dt

ρ̂ab ¼ −i½Ĥab; ρ̂ab� þ κ1D½â − b̂�ρ̂ab þ κ2D½â2 − b̂2�ρ̂ab;
ð9Þ

with

Ĥab ≡ Ĥa − Ĥb −
iκ1
2

ðâ†b̂ − H:c:Þ − iκ2
2

ðâ†â†b̂2 − H:c:Þ:
ð10Þ

Again, tracing out cavity b from the above equation
recovers the cavity-a master equation given in Eq. (2),
independent of the choice of Ĥb.
The next step is the same as before: We want to pick Ĥb

so that cavity b absorbs all photons emitted by cavity a into
either of the two chiral waveguides. We thus want a pure
steady state jψi of the two-cavity system that is a dark state
of both collective loss operators appearing in Eq. (9).
Fortunately, these dark-state conditions are not indepen-
dent: Having ðâ − b̂Þjψi ¼ 0 as before ensures that the
state is dark with respect to emission to either waveguide.
Finally, there remains the question of how exactly to find

the desired Ĥb. As we show in Sec. IV, the simple educated
guess of taking Ĥb to be the negative of Ĥa still works in
the presence of two-photon driving and loss, and even for a
wider class of problems.

C. Connection to Segal-Bargmann representations

A second crucial element in our extension of the CQA
method is to combine it with the Segal-Bargmann (SB)
representation of single-mode pure-state wave functions in
terms of holomorphic functions [13–16]. This provides an
extremely efficient way of solving the complex recursion
relations that determine the desired dark-state wavefunction
jψi. More importantly, it is an extremely useful tool for
developing physical intuition. It renders the operation of
tracing out the auxiliary cavity b trivial and allows one
to directly obtain the Wigner function of the cavity-a
steady state.

1. Basics of the representation

Consider a single bosonic mode in a pure state jψi that is
written in terms of Fock states jmi as

jψi ¼
X∞
m¼0

αmjmi: ð11Þ

In the SB representation, this state is associated with a
holomorphic function ψSBðzÞ defined on the complex
plane:

ψSBðzÞ ¼
X∞
m¼0

αmffiffiffiffiffiffi
m!

p zm: ð12Þ

The space of these functions forms a Hilbert space that is
unitarily equivalent to the original Fock space, with an
induced inner product:

hψSB;ϕSBiSB ≡ 1

π

Z
C
d2zψ�

SBðzÞϕSBðzÞe−jzj2 : ð13Þ

The SB wave function has a direct physical interpretation:
Its modulus determines the Husimi Q function of the state
jψi. Letting jzi denote a coherent state with amplitude z,
we have

QðzÞ≡ 1

π
jhzjψij2 ¼ 1

π
jψSBðz�Þj2e−jzj2 : ð14Þ

Finally, the canonical ĉ and creation ĉ† operators become
linear differential operators in the Bargmann space:
ĉ ↦ ∂=∂z, ĉ† ↦ z.

2. Tracing out the auxiliary cavity

As we see, the CQA method reduces to finding a single-
mode, pure-state wave function jψþi for the collective
mode ĉþ ¼ ðâþ b̂Þ= ffiffiffi

2
p

; the orthogonal mode ĉ− must be
in vacuum to have a dark state. To find the corresponding
state of the physical cavity a, one transforms from the ĉ�
basis to the â=b̂ basis and then traces out the state of
the auxiliary cavity b. This operation has a very simple
physical interpretation (see Fig. 2): It corresponds to
mixing the state jψþi with vacuum noise at a 50∶50 beam
splitter and then discarding one of the output modes.
At a heuristic level, this operation implies that in phase

space, the cavity-a steady state will be equivalent to that of
the state jψþi convolved with an extra half-quantum of
vacuum noise. Recall that this transformation is the same
transformation that converts a Wigner function into a Q
function. As a result, we find a very simple expression for
the cavity-a steady-state Wigner function. Letting ψþ;SBðzÞ
denote the SB representation of the pure state jψþi, we
have

WaðzÞ ¼ 2Qþð
ffiffiffi
2

p
zÞ ¼ 2

π
jψþ;SBð

ffiffiffi
2

p
z�Þj2e−2jzj2 : ð15Þ

We see that the SB “wave function” ψþ;SBðzÞ has a direct
physical interpretation: Its modulus determines the cavity-a
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steady-state Wigner function. We also see that this Wigner
function must necessarily be positive (as it is equivalent to
the Q function of the state jψþi, and the Q function is
always positive). The above relation follows from the fact
that Wigner functions transform in the expected way (i.e.,
like classical probability distributions) under a beam-
splitter transformation.
A more direct relation results from examination of the

cavity-a steady-state P function: Since the P function is
insensitive to vacuum noise, the output of the beam splitter
in the P representation is simply equal to the P function
PþðzÞ of the state jψþi rescaled by a factor of

ffiffiffi
2

p
:

PaðzÞ ¼ 2Pþð
ffiffiffi
2

p
zÞ: ð16Þ

The above observation immediately implies that the cavity-
a P function is generically singular and thus nonpositive
[35]. Thus, in the pathological behavior of the cavity-a P
function, we have a telltale signature of nonclassicality.

IV. CQA SOLUTION OF THE GENERAL
DRIVEN-KERR CAVITY

We now use the results of Sec. III to solve Eq. (2) for a
driven-Kerr resonator subject to both one- and two-photon
driving, and one- and two-photon loss, thus allowing us to
reproduce results previously derived using complex-P
methods [3,4,21,36] but in a manner that allows greater
physical intuition. We are also able to solve an extended
model which includes a nonlinear single-photon driving
term; this model has not been previously solved. Our
approach yields several new physical insights: the pos-
sibility of photon-blockade and “antiblockade” phenomena
and the possibility of near-quantum bistability without
parity conservation. In this section, we focus on the case
where there is nonzero single-photon loss (κ1 ≠ 0) imply-
ing the existence of a unique steady state. In Sec. VII, we
turn to the case where there is no single-photon driving or
loss; we are able to use the CQAmethod to provide insights
into the bistability in this system and how this changes from
quantum to classical bistability with the addition of a drive
detuning.

A. Solution without nonlinear single-photon driving

We are interested in the driven-Kerr system described
by Eqs. (E1) and (2) with Λ3 ¼ 0 and κ1 > 0. The CQA
approach represents this system using the equivalent two-
cavity cascaded system in Eqs. (9) and (10). We seek a
pure-state steady state jψi that is necessarily dark with
respect to dissipation, meaning that Eq. (6) is satisfied:ffiffiffi
2

p
ĉ−jψi≡ ðâ − b̂Þjψi ¼ 0. Our steady state can thus be

written as a tensor product of a nontrivial state of the ĉþ
collective mode and a vacuum state for the ĉ− mode:

jψi ¼ jψþij0−i: ð17Þ

In order for jψi to be a steady state, it also needs to be an
eigenstate of the cascaded Hamiltonian Ĥab with energy E.
Writing Ĥab in terms of ĉ� and using the fact that ĉ−jψi
vanishes, the eigenvalue equation becomes

1

2
ĉ†−Ĥþjψi ¼ Ejψi; ð18Þ

with

Ĥþ ≡ ðK − iκ2Þĉ†þĉ2þ − ð2Δþ iκ1Þĉþ þ 2Λ2ĉ
†
þ þ 2

ffiffiffi
2

p
Λ1:

ð19Þ

Our choice of the auxiliary-cavity Hamiltonian Ĥb thus
leads to a cascaded Hamiltonian that necessarily creates
an excitation in the ĉ− mode. It follows that we must have
E ¼ 0. Having jψi be a stationary state then reduces to a
single-mode problem,

Ĥþjψþi ¼ 0; ð20Þ

i.e., we need to find a pure state jψþi that is annihilated by
the non-Hermitian operator Ĥþ.
The seemingly obvious next step is to follow the

approach used in Ref. [1]: express jψþi in the Fock-state
basis, and turn Eq. (20) into a recursion relation for the
expansion coefficients αj:

½ðK − iκ2Þm − ð2Δþ iκ1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
αmþ1

þ 2Λ2

ffiffiffiffi
m

p
αm−1 þ 2

ffiffiffi
2

p
Λ1αm ¼ 0: ð21Þ

In special cases, the above equation reduces to an easily
solvable single-term recursion relation: either the case of no
two-photon drivingΛ2 ¼ 0 [1] or the case of no one-photon
driving Λ1 ¼ 0 [37]. In the more general case, the resulting
two-term recursion relation is more unwieldy.
A more direct way of getting the desired solution is to

use the SB representation ψþ;SBðzÞ of the state jψþi.
Equation (20) is then transformed into a second-order
ordinary differential equation:

�
z
∂2

∂z2 −D
∂
∂zþ ðλ2zþ λ1Þ

�
ψþ;SBðzÞ ¼ 0; ð22Þ

where

D ¼ 2Δ̃
K̃

; λ2 ¼
2Λ2

K̃
; λ1 ¼

2
ffiffiffi
2

p
Λ1

K̃
: ð23Þ

Here, Δ̃≡ Δþ iκ1=2 and K̃ ≡ K − iκ2 are, respectively,
effective complex detuning and Kerr nonlinearity
parameters.
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Without two-photon driving (i.e., λ2 ¼ 0), Eq. (22) is a
standard hypergeometric equation. It has a unique analytic
solution:

ψþ;SBðzÞ ¼ NzðDþ1Þ=2J−ðDþ1Þð2
ffiffiffiffiffiffiffi
λ1z

p
Þ; ð24Þ

where JnðxÞ is a Bessel function, and N is a normalization
constant. Using the correspondence between the SB wave
function and Fock-state amplitudes [cf. Eq. (12)], we
recover the infinite series result given in Ref. [1], which,
in turn, corresponds to the classic solution of Ref. [2].
The closed form we have here has additional virtues. Via
Eq. (15), it directly yields a closed-form expression for the
steady-state Wigner function of the physical cavity a; this is
in contrast to expressions involving infinite sums that are
the usual result of complex-P solutions. Our expression for
this case agrees with that derived earlier (via an alternate
method) [38].
We turn now to the more interesting case where λ2 ≠ 0.

Equation (21) is now a more nontrivial second-order
recursion relation. The SB representation allows us, how-
ever, to simplify the system via nonstandard transforma-
tions. An example is a “nonunitary gauge transformation”

ψþ;SBðzÞ≡ e−θðzÞϕðzÞ; ð25Þ

where θðzÞ is the “gauge potential.” This transformation
shifts the differentiation operator by the gradient of θðzÞ,
∂z ↦ ∂z − ∂zθðzÞ. Here, we try the simplest potential
θðzÞ≡ ϵz, with ϵ some constant. Note that as θ is not
purely imaginary, the resulting transformation on the
Hilbert space is nonunitary. In the Fock representation, it
is equivalent to acting on the state by the exponential of a
raising operator:

jψþi ∝ e−ϵĉ
†
þjϕi: ð26Þ

After our transformation, the problematic two-photon
driving term is effectively shifted by an amount ϵ2:

�
z
∂2

∂z2 − ð2ϵzþDÞ ∂
∂z ðλ2 þ ϵ2Þzþ ðλ1 þ ϵDÞ

�
ϕðzÞ ¼ 0:

ð27Þ

It can thus be eliminated by choosing ϵ, such that

ϵ� ¼ �i
ffiffiffiffiffi
λ2

p
: ð28Þ

We call these nonunitary gauges the plus gauge and minus
gauge. Choosing, e.g., the plus gauge ϵ≡ ϵþ, we see that
the gauge-transformed state ϕðzÞ satisfies Kummer’s differ-
ential equation (see Ref. [39]), so that

ϕðzÞ ¼ N0

�
1F1

�
−
λ1 þ ϵD

2ϵ
;−D; 2ϵz

��
; ð29Þ

where N0 is a normalization factor, and 1F1ðr1; r2; zÞ is
Kummer’s hypergeometric function, the same special
function which appears in the hydrogen atom problem
(see, e.g., Ref. [40]). We stress that the special case where
D is a positive integer must be treated specially; this is
discussed in Sec. V. Note also that in the ϵ → 0 limit, the
solution above tends smoothly to the Bessel-function
solution in Eq. (24).
The above result combined with Eq. (15) immediately

yields a closed-form expression for the steady-state Wigner
function of the physical a cavity of interest:

Wa;SSðzÞ ¼ Njϕð
ffiffiffi
2

p
z�Þj2e−2jzþϵ=

ffiffi
2

p j2 ; ð30Þ

where N is a normalization constant. Note that if ϕðzÞ ¼ 1,
then Wa;SSðzÞ corresponds to a coherent state with ampli-
tude α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−λ2=2
p

. Thus, a nonunity ϕðzÞ describes cor-
rections to the dark state being just a simple coherent state.
Note also that if one chooses the minus gauge in Eq. (25),
one obtains an identical solution (see Appendix D).

B. Including nonlinear single-photon driving

We now allow Λ3 ≠ 0 in Eq. (E1). We are still able to
exactly solve for the steady state in this case; unless κ2 ¼ 0,
it has a qualitatively different form from the Λ3 ¼ 0 case.
The CQA method proceeds as in Sec. IVA. We again
write the two-mode dark state as jψi ¼ jψþij0−i, and the
eigenvalue equation again reduces to finding the kernel of a
non-Hermitian operator Ĥþ:

Ĥþ ¼ ðK̃ĉ†þ þ
ffiffiffi
2

p
Λ�
3Þĉ2þ þ ð2

ffiffiffi
2

p
Λ3ĉ

†
þ − 2Δ̃Þĉþ

þ ð2Λ2ĉ
†
þ þ 2

ffiffiffi
2

p
Λ1Þ: ð31Þ

Comparing against Eq. (19), we see that the presence of Λ3

creates a term proportional to ĉ2þ. Attempting to solve
directly for jψþi in the Fock basis leads a complicated
recursion relation, as now we have terms that add a photon
ð∝ ĉ†þÞ, as well as those that subtract two photons ð∝ ĉ2þÞ.
One obtains a third-order recursion in place of the second-
order recursion that we had before.
Nonetheless, one can still solve for the dark state in

closed form. We first perform a displacement,

jξþi ¼ D̂ðαþÞjψþi; ð32Þ

where αþ ¼ ffiffiffi
2

p
Λ3=K̃�, and D̂ðαÞ≡ eαĉ

†
þ−H:c: is the stan-

dard displacement operator. We can then remove the
two-photon drive by applying a nonunitary gauge trans-
formation (as before), yielding a differential equation
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which again has a simple solution in terms of Kummer’s
confluent hypergeometric function:

ϕðzÞ ¼ N0

�
1F1

�
−
λ1 þ ϵþD
ϵþ − ϵ−

;−D; ðϵþ − ϵ−Þz
��

: ð33Þ

Here, ϵ� correspond to the nonunitary gauge choices in
which the displaced two-photon drive vanishes [cf. Eq. (28)]:

λ2 − λ3ϵþ ϵ2 ¼ 0: ð34Þ

To be manifestly consistent with the solution of the driven-
Kerr cavity without nonlinear coherent driving, we again
write the solution in the plus gauge. Finally, λ3, λ2, λ1,D are
the following general complex constants:

D ¼ 2

K̃

�
Δ̃þ 2jΛ3j2

K̃

�
; ð35Þ

λ1 ¼
ffiffiffi
2

p
Λ3

jK̃j2
�
4jΛ3j2
K̃

þ 2Δ̃
�
þ 2

ffiffiffi
2

p

K̃

�
Λ1 −

Λ2Λ�
3

K̃

�
; ð36Þ

λ3 ¼
2

ffiffiffi
2

p
Λ3

K̃

�
1 −

K̃

K̃�

�
; λ2 ¼

2Λ2
3

jK̃j2
�
K̃

K̃� − 2

�
þ 2Λ2

K̃
:

ð37Þ

We again define Δ̃ ¼ Δþ iκ1=2, K̃ ¼ K − iκ2. For the case
where Λ3 → 0, these parameters revert to those given before
Eq. (23). Note that for vanishing two-photon loss, K̃ is real,
and hence, Eq. (37) implies that λ3 ¼ 0. In this case, the
cubic drive does not give us anything qualitatively new, as it
can be completely eliminated by our displacement trans-
formation. In contrast, for nonzero κ2, cubic driving gives
rise to genuinely new phenomena.
As before, the solution above directly determines the

steady-state Wigner function of the physical cavity:

Wa;SSðz − αÞ ¼ Njϕð
ffiffiffi
2

p
z�Þj2e−2jzþϵþ=

ffiffi
2

p j2 ; ð38Þ

where α≡ αþ=
ffiffiffi
2

p
, and N is a normalization constant.

Note that, if λ3 ≡ 0, then the nonunitary gauge choices in
Eq. (34) satisfy ϵþ ¼ −ϵ−, and so ϵþ − ϵ− → 2ϵþ, and we
recover the standard solution Eq. (30).

V. STEADY-STATE PHASE DIAGRAM OF THE
GENERALIZED DRIVEN-KERR RESONATOR

We now use our exact solutions in Eqs. (29) and (33) to
explore the parameter dependence of the steady state of
our generalized driven-dissipative Kerr resonator. The
steady state is largely controlled by just two dimensionless
parameters r1, r2. For the usual case Λ3 ¼ 0 (no three-
photon drive), these parameters are

r1 ≡ λ1 þ ϵD
2ϵ

¼ Δþ i κ1
2

K − iκ2
−

iΛ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2ðK − iκ2Þ

p ; ð39Þ

r2 ≡D ¼ 2Δþ iκ1
K − iκ2

: ð40Þ

The various drive amplitudes Λj enter only through r1; in
contrast, r2 is a generalized detuning parameter which is
independent of drive amplitudes. With a nonzero Λ3, one
has r1 ¼ ðλ1 þ ϵþDÞ=ðϵþ − ϵ−Þ, r2 ¼ D, where λ1, D, ϵ�
are defined in Eqs. (34)–(37).
As we now show, the steady state exhibits remarkable

properties whenever the system parameters are tuned to
make one or both of r1, r2 be non-negative integers (see
Fig. 3). At these points in parameter space, the solution can
exhibit generalized forms of photon blockade and anti-
blockade, as well as new kinds of bistability. This latter
result generalizes the previously studied cat-state bistability
that occurs when Λ1¼Δ¼ κ1¼0 (i.e., r1 ¼ r2 ¼ 0) [10].
We stress that all of these features have clear observable
signatures and are quantum in nature. In what follows,
we focus primarily on the standard case Λ3 ¼ 0. We also
highlight the fact that with the addition of a nonlinear
coherent drive, the observable consequences of the photon-
blockade and antiblockade phenomena can be made even
more dramatic.

FIG. 3. Steady-state phase diagram for the generalized
driven-dissipative Kerr resonator. r2 is a dimensionless detuning
parameter, whereas r1 is a drive-dependent dimensionless param-
eter; both are defined in Eqs. (39) and (40). The phase diagram
indicates parameter choices that lead to unusual steady states (as
we discuss in the main text).
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A. Basic intuition

Recall that the steady state is determined by a single-
mode pure state jψþi (cf. Fig. 2), and that further, this state
is related to a simpler state jϕi via a nonunitary gauge
transformation [cf. Eq. (26)]. We could always expand the
transformed state jϕi in the Fock basis as

jϕi ¼
X∞
m¼0

βmjmiþ: ð41Þ

Defining the scaled Fock-state amplitudes [cf. Eq. (41)]

cm ¼ βm

ffiffiffiffiffiffi
m!

p

ð2ϵÞm ; ð42Þ

the ODE defining the gauge-transformed state jϕ > in
Eq. (29) is equivalent to the simple recursion relation
(m ≥ 0),

ðm − r2Þcmþ1 ¼ ðm − r1Þcm; ð43Þ

with r1, r2 defined in Eqs. (39) and (40). The significance
of r1, r2 being positive integers is now clear: In this case,
there is the possibility of the recursion relation terminating
(i.e., vanishing for certain values of m). This termination
corresponds to a kind of quantum-interference effect and is
the heart of the new blockade, antiblockade, and bistability
phenomena we describe.
Note that we can directly go from the Fock-state

structure of jϕi to the SB wave function of the desired
untransformed state jψþi. For Λ3 ¼ 0, the SB wave
function of jψþi is

ψþ;SBðzÞ ∝ e−ϵz
X∞
m¼0

cm
ð2ϵzÞm
m!

; ð44Þ

with ϵ ¼ i
ffiffiffiffiffi
λ2

p
. For the more general case with nonzero Λ3,

up to a displacement, we have

ψþ;SBðzÞ ∝ e−ϵþz
X∞
m¼0

cm
fðϵþ − ϵ−Þzgm

m!
ð45Þ

where ϵ� are defined in Eq. (34). Recall that these SB wave
functions directly determine the steady-state Wigner func-
tion of the physical cavity via Eq. (15).

B. Pure unique steady states: r1 = r2
The first surprising phenomena we describe are the

emergence of unique pure steady states even with non-
linearity. In general, the combination of dissipation and
nonlinearity leads us to anticipate impure cavity-a steady
states. Surprisingly, there is a range of parameters where
the unique steady state of cavity a is a pure coherent state

(as would be expected from a damped, linearly driven,
linear cavity). This phenomenon occurs when parameters
are chosen such that r1 ¼ r2 (without either being a
positive integer). In terms of physical parameters, and
for Λ3 ¼ 0, this requires tuning the one- and two-photon
drives Λ1, Λ2 so that

−
Λ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Λ2ðK − iκ2Þ
p ¼ Δþ i κ1

2

K − iκ2
: ð46Þ

For this parameter tuning, Eq. (43) implies that all the
scaled Fock-state amplitudes cm are identical. This in turn
implies from Eqs. (44) and (12) that the state jψþi is a
coherent state with amplitude γ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ2=ðK − iκ2Þ

p ¼
i

ffiffiffiffiffi
λ2

p
. As sending coherent states through a beam splitter

also generates coherent states at the output, this also implies
that the cavity-a steady state is a simple, pure coherent state
of amplitude γ=

ffiffiffi
2

p
. This result follows directly from

Eq. (44) and the general expression in Eq. (15) for the
steady-state cavity-a Wigner function. Note that this
steady-state coherent-state amplitude is consistent with
the semiclassical cavity-a equations of motion.

C. Higher-order photon blockade: r1 = n0
Surprising effects also occur when drives and detuning

are chosen so that r1 ¼ n0, where n0 is a non-negative
integer. The recursion relation in Eq. (43) now terminates at
m¼n0: Fock-state amplitudes cm vanish for all m≥n0þ1.
This termination is an example of a generalized strong
photon-blockade phenomenon: The gauge-transformed
steady-state jϕi has strictly zero probability to have more
than n0 photons. Unlike standard photon blockade [41], the
mechanism here does not require infinitely strong non-
linearity. Also, unlike the so-called “unconventional”
photon blockade [17–19], the blockade here is complete:
There is strictly no probability to have more than n0
photons in the state.
While the “gauge-transformed” state jϕi exhibits block-

ade, physical phenomena are controlled by the untrans-
formed state jψþi. Equation (26) shows that this state is a
“smeared” version of the blockaded state. Despite this, the
physical cavity-a steady state still shows a pronounced
suppressed photon population whenever the parameter r1 is
tuned to an integer. This blockade-induced suppression can
be observed by considering how the steady state changes as
a function of the single-photon drive amplitude Λ1 (as this
drive amplitude tunes r1 but not r2). From Eq. (39), one
sees that blockade occurs periodically as a function of Λ1,
with the nth-order blockade occurring when

Λ1 ≡ Λð0Þ
1 − in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½K − iκ2�Λ2

p
; ð47Þ

where Λð0Þ
1 ¼ −iðΔþ iκ1=2Þ

ffiffiffiffiffiffi
Λ2

p ðK − iκ2Þ−3=2 is a con-
stant offset. Note that achieving a blockade requires tuning
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both the phase and magnitude of the single-photon drive
amplitude Λ1.
Figure 4 shows representative results for κ2 ¼ Λ3 ¼ 0:

The average cavity photon number shows a sharp sup-
pression wheneverΛ1 is tuned to make r1 a positive integer.
Note the remarkable fact that the widths of these blockade
suppressions (as a function ofΛ1) are much smaller than κ1.
We stress that in the main plot Fig. 4(a), it is only the single-
photon drive that is being tuned; all other parameters are
held fixed.

Figure 4(a) also plots the photon number associated with
each stable, stationary semiclassical amplitude (obtained by
solving the classical, noise-free equation of motion). These
semiclassical solutions do not exhibit any sharp behavior as
a function of Λ1. The sharp behavior of the quantum steady
state that occurs when r1 is tuned to a positive integer
corresponds to the quantum steady-state solution suddenly
switching (as a function of Λ1) from being localized near
the high-amplitude classical solution to being localized
near a low-amplitude classical solution [see Fig. 4(c)]. The
physics here is thus intimately related to the physics of
quantum activation and quantum tunneling [22,42], e.g.,
the dynamical switching between different semiclassical
solutions. For a more detailed discussion of semiclassical
switching behavior in steady states of Kerr resonators, see
Refs. [3,43]. We stress that the behavior here cannot be
understood in terms of the metapotentialMðx; yÞ often used
in studies of nonlinear cavities (see, e.g., Refs. [12,23]).
The metapotential is simply the classical Hamiltonian
viewed as a function of the canonical quadratures x, y.
It is a completely smooth function of parameters. For
Λ1 ¼ 0, it has two degenerate extrema corresponding to
the two stable classical steady states. Adding an approx-
imately purely imaginary Λ1 (as we do in Fig. 4) tilts this
metapotential but does not break the degeneracy between
the classical solutions. Hence, this does not provide any
insight into why the quantum steady state localizes around
one classical amplitude versus another.
Finally, we note that when r1 ¼ n0, the SB wave

function for the dark state jψþi (which directly determines
the cavity-a Wigner function) reduces to an associated

Laguerre polynomial LðαÞ
m ðzÞ:

ψþ;SBðzÞ ∝
r1→n0

e−ϵzLð1−DÞ
n0 ð2ϵzÞ; ð48Þ

where for Λ3 ¼ 0, we have ϵ ¼ i
ffiffiffiffiffi
λ2

p
.

D. Sharp photon blockade with weak nonlinearities

We now show that the generalized photon-blockade
phenomenon is most striking and intuitive in the case
where there is no two-photon driving but only linear and
nonlinear one-photon driving Λ1, Λ3 ≠ 0. Recall first our
most general solution which includes a nonzero Λ2. In
terms of the displacement parameter αþ ¼ ffiffiffi

2
p

Λ3=K̃�, the
desired steady-state pure state of the þ mode is given by

jψþi ¼ D̂ðαþÞe−ϵþĉ
†
þjϕi; ð49Þ

where jϕi is the core state defined in Eq. (41). The photon-
blockade phenomenon is best intuitively understood when
there is nonlinear one-photon driving but no two-photon
driving. In the limit that Λ2 vanishes, αþ → −ϵþ, meaning
that, after direct application of the Baker-Campbell

(a)

(b) (c)

FIG. 4. Generalized photon blockade. (a) Mean steady-state
cavity-a photon number as a function of the single-photon drive

δΛ1 ≡ Λ1 − Λð0Þ
1 , where the offset Λð0Þ

1 ¼ ð0.01 − 10iÞK is de-
termined from Eq. (47) and our choice of system parameters. The
periodic, sharp drop in photon number corresponds to a gener-
alized photon-blockade phenomenon, which occurs whenever the
parameter r1 [cf. Eq. (39)] is a non-negative integer. Solid lines:
analytic exact solution. Diamonds: master equation numerics.
Photon numbers associated with the semiclassical stationary
stable amplitudes are also plotted (dashed red lines). (b) Enlarge-
ment of one of the blockade antiresonances. Loss values are
κ1 ¼ K=100, K=20, and K=10, with more faded green corre-
sponding to greater loss. (c) Steady-state Wigner function for two
choices of δΛ1 corresponding to being either at (off) a blockaded
parameter value; black dots indicate the three semiclassical
amplitudes that exist for these parameters. For all results,
Δ ¼ 5K, Λ2 ¼ 4K, κ1 ¼ 10−2K, and Λ3 ¼ κ2 ¼ 0. By using
nonlinear coherent driving Λ3, this blockade phenomenon can be
made sharp (i.e., there is a sharp cutoff in the photon-number
distribution).
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Hausdorff identity, the displacement transformation parti-
ally cancels the exponential factor:

ψþ;SBðzÞ ∼
Λ2→0

ϕSBðzþ αþÞ; ð50Þ

where ϕSB is the Segal-Bargmann representation of the core
state defined in Eq. (41). Therefore, we see that the limit
Λ2 → 0 is physically important because it removes the
smearing factors that spoil the bare physics contained in the
state jϕi.
Further, in the limit of vanishing Λ2,

r1 ∼
Λ2→0

− Λ1=Λ3: ð51Þ

It thus follows that a sharp photon blockade occurs in the
cavity-a steady state each time the ratio of nonlinear-to-
linear one-photon driving is a negative integer (represen-
tative results are shown in Fig. 5).
In this limit, it is easy to understand the origin of the

photon-blockade phenomena as the result of destructive
interference between linear and nonlinear one-photon
driving. The Hamiltonian in this case is

Ĥ¼K
2
â†â†â â−Δâ†âþΛ3ðn̂−r1Þâ†þΛ�

3âðn̂−r�1Þ: ð52Þ

When r1 is tuned to a non-negative integer n0, the
Hamiltonian has strictly no matrix elements connecting
Fock states with photon number n0 or less to states with
photon number n0 þ 1 or greater. The result is that the
system becomes “trapped” in the subspace of states having
n0 or fewer photons.
As this mechanism for photon blockade depends on

matrix elements and not energy detunings, it is effective
even in regimes where dissipation is much stronger than
nonlinearity: While dissipation can smear out energies, it
does not smear out matrix elements, meaning that the
interference preventing excitation of the n0 þ 1 Fock state
is robust. To see this robustness explicitly, consider the
simplest case n0 ¼ 1, where the system gets stuck in a
subspace with at most one photon. We also consider for
simplicity a system where the only nonlinearity is the
nonlinear drive Λ3 (i.e., K ¼ κ2 ¼ 0) and where there is no
drive detuningΔ. In this case, the steady state depends only
on a single dimensionless parameter Λ≡ Λ3=κ1 and can be
found using elementary means. This state involves only the
vacuum state j0i and n ¼ 1 Fock state j1i and is given by

ρ̂SS ¼
ð4Λ2 þ 1Þj0ih0j þ 4Λ2j1ih1j þ 2iΛðj1ih0j − H:c:Þ

8Λ2 þ 1
:

ð53Þ

In the limit of weak nonlinearity Λ → 0, the blockade, of
course, still remains sharp: There is still zero probability for

the state to have two or more photons, even though the
one-photon probability is Λ2=2 ≪ 1. We stress that this
mechanism is completely distinct from the so-called
unconventional photon blockade [17,19], which also
requires only weak nonlinearities, but which is restricted
to Gaussian states, and which does not produce a sharp
blockade (e.g., there is nonzero probability of having more
than one photon).
While at first glance the nonlinear one-photon drive term

may seem quite exotic, it is within reach of experiment.
In Appendix A, we show how this driving term could be
realized in circuit QED using the recently developed
superconducting nonlinear asymmetric inductive element
(SNAIL) architecture [20]. Generalized photon blockade
may have applications in quantum-information science
settings where nonlinearity is a limited resource.

(a)

(b) (c)

FIG. 5. Exact photon blockade using a nonlinear single-photon
drive. (a) Mean steady-state cavity-a photon number as a function
of the single-photon drive Λ1. The periodic, sharp drop in photon
number corresponds to a generalized photon-blockade phenome-
non, which occurs whenever the parameter r1 [cf. Eq. (39)] is a
non-negative integer. Solid lines: analytic exact solution. Dia-
monds: master equation numerics. Photon numbers associated
with the semiclassical stable amplitudes are also plotted (red
lines). (b) Enlargements of one of the blockade antiresonances.
Loss values are κ1 ¼ K=100, K=20, and K=10, with more faded
green corresponding to greater loss. (c) Steady-state photon
statistics for two choices of Λ1 corresponding to being either
at (off) a blockaded parameter value. For all results, Δ ¼ K,
Λ2 ¼ 0, κ1 ¼ K=100, κ2 ¼ K=1000, and Λ3 ¼ K.
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E. Photon antiblockade: r2 =m0

Tuning the parameter r2 to be an integer m0 in the
recurrence relation Eq. (43) also results in unusual behavior
of our dark states. For zero dissipation, r2 ¼ m0 is simply
the condition for the Fock states n ¼ 0 and n ¼ m0 of our
physical a cavity to be degenerate in the absence of any
driving (i.e., the detuning and Kerr terms cancel out) [3].
Such resonances are analogous to multiphoton resonances
that are used to directly drive transmon qubits from the
ground state to the nth excited state (as a transmon can also
be approximately modeled as a Kerr resonator). Our exact
solution shows that this resonance condition has strong
consequences even with dissipation and drive. When
r2 ¼ m0, the only solution to the recurrence relation has
the coefficients c1 through cm0

be exactly zero. The
vanishing of these coefficients implies that the gauge-
transformed dark state in Eq. (41) will have strictly zero
probability to have a photon number equal to m0 or smaller
(while higher Fock states will be occupied). We call this
phenomenon a photon antiblockade. As with the photon-
blockade phenomena, this will also have implications for
our physical cavity via Eq. (26).
For any nonzero amount of dissipation, it is clear from

Eq. (40) that we can never have r2 exactly be a positive
integer (as κ1, κ2 ≥ 0). This fact remains true even in the
presence of a nonlinear coherent drive, where r2 ¼ D, with
D given by Eq. (35). Nonetheless, for weak dissipation
(namely, κ1 ≪ Δ, κ2 ≪ K), one can still tune r2 to be
extremely close to an integer. In this regime, one still has
strong signatures of the antiblockade behavior. For the
physical cavity a, this effect translates into a kind of
resonant enhancement of the photon-number and
skewed-photon-number statistics. Representative behavior

is shown in Fig. 6. Note that this resonance phenomenon
was observed in Ref. [3], though connections to photon
statistics and the properties of the analytic steady-state
solution were not discussed.

F. Generalized bistability: ðr1;r2Þ= ðn1;n2Þ
Having understood photon-blockade and antiblockade

phenomena, the natural remaining case is when both these
phenomena coexist. This occurs when parameters are
chosen so that ðr1; r2Þ ¼ ðn1; n2Þ, where n2 ≥ n1 are both
non-negative integers. Equation (43) then yields both a
photon-blockaded solution and a distinct antiblockaded
solution. These solutions correspond to two distinct dark
states of the þ mode described, respectively, by SB wave
functions:

ψ1;SBðzÞ ¼
e−ϵz

N1=2
1

Xr1
m¼0

cmð2ϵzÞm
m!

; ð54Þ

ψ2;SBðzÞ ¼
e−ϵz

N1=2
2

X∞
m¼r2þ1

cmð2ϵzÞm
m!

: ð55Þ

Any linear combination of these solutions is also a dark
steady state. We refer to this situation as “quantum
bistability”: The extended, two-cavity cascaded system
in Fig. 1(b) has an infinite number of steady states
corresponding to any superposition state of the form

jψ̃ ½a1; a2�i ¼ a1jψ1iþj0i− þ a2jψ2iþj0i−: ð56Þ
This steady-state structure is conventionally referred to
as a (two-dimensional) decoherence-free subspace. This
steady-state structure also implies multistability for the
physical a cavity, which exhibits a two-parameter continu-
ous family of steady states,

ρ̂a;SS ¼ trb½jψ̃ ½a1; a2�ihψ̃ ½a1; a2�j�: ð57Þ
The upshot is that the generalized driven-dissipative Kerr
cavity has a multitude of distinct parameter points that yield
multistability, despite any obvious symmetry.
Unfortunately, we have the same issue as with the

antiblockade phenomena: Nonzero dissipation makes it
impossible to exactly tune to bistable parameter values
except for the case n1 ¼ n2 ¼ 0. This is because the
constraint of having one or both of κ1, κ2 be positive
implies r2 cannot be exactly equal to a positive integer
[cf. Eq. (40)]. The only exactly achievable bistable point is
the case n1 ¼ n2 ¼ 0, which can be reached if κ1 ¼ 0,
κ2 > 0. This parameter point corresponds to the well-
studied cat-state bistability in a two-photon driven-Kerr
resonator [28].
Despite these caveats, the new bistable points are

physically relevant: For weak dissipation, one can come
arbitrarily close to them in parameter space, with striking

FIG. 6. Photon antiblockade. Average cavity-a steady-state
photon number as a function of the drive detuning Δ with drive
amplitudes fixed at Λ1 ¼ Λ2 ¼ K=2, Λ3 ¼ 0. Resonances here
correspond to having tuned the parameter r2 [cf. Eq. (40)] to be
near a non-negative integer. Other parameters are κ1 ¼ 0.01K,
κ2 ¼ 0.
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observable consequences for the steady state. We explore
this further in the next section. We also discuss in
Appendix B how one can exactly achieve the physics of
these new bistable points using a noncascaded version of
the two-cavity setup depicted in Fig. 1(b).

G. Simultaneous or coexisting blockade
and antiblockade

What if r1, r2 are both non-negative integers and
r2 < r1? In this case, neither the photon-blockaded nor
the photon-resonant solution are permitted. Instead, a
medium-photon-number solution exists, and serves as the
unique dark state. For Λ3 ¼ 0, we have

ψþ;SBðzÞ ¼
e−ϵz

N1=2

Xr1
r2þ1

cm
ð2ϵzÞm
m!

ð58Þ

with ϵ≡ i
ffiffiffiffiffi
λ2

p
. Without the exponential prefactor, this state

would exhibit both photon blockade and antiblockade (i.e.,
its photon-number distribution would be cut off at small
and large photon numbers).

VI. CONSEQUENCES OF NEW
QUANTUM-BISTABLE POINTS

As we discuss in the previous section, there are an
infinite number of points in parameter space where our
generalized driven-dissipative Kerr resonator is almost
quantum bistable (cf. Fig. 3). With nonzero one-photon
loss, one cannot exactly achieve the required parameter
tuning for bistability, but one can come arbitrarily close to a
given bistable parameter point. In this section, we explore
the physical consequences of this near bistability. We show
that there is an extremely strong sensitivity to small
parameter changes when one is in this near-bistable regime
and that the unique steady state can be understood as
“picking out” a unique state from the bistable manifold
in Eq. (57).
Suppose we chose parameters that result in ðr1; r2Þ being

close to integers ðn1; n2Þ:

r1 ¼ n1 þ δr1; r2 ¼ n2 þ δr2: ð59Þ

These small deviations kill the bistability. However, for
small δrj the resulting pure steady state of the þ mode is a
particular linear combination of the states ϕjðzÞ that span
the bistable manifold at δrj ¼ 0. Moreover, the precise
form of this combination is extremely sensitive to parameter
variations.
For example, consider the simple case where the unper-

turbed recursion parameters are ðr1; r2Þ ¼ ðn; nÞ. In this
case, the recursion relation Eq. (43) simplifies to

cmþ1 ¼
ðm − nÞ − δr1
ðm − nÞ − δr2

cm: ð60Þ

In the regime that δr1, δr2 ≪ 1, we can see that the
ratio cmþ1=cm is essentially 1, except for the ratio
cnþ1=cn ¼ δr1=δr2. Therefore, as δr1; δr2 → 0, the unique
steady-state solution (i.e., the solution to the recursion
relation) has the limiting form

ψþ;SBðzÞ ∼
δr1;δr2→0

ψ1;SBðzÞ þ
δr1
δr2

ψ2;SBðzÞ ð61Þ

as a superposition of the bistable solutions given in
Eqs. (54) and (55). Note that in writing this equation,
we must pick the overall phase of ψ2;SB such that the ratio
between cnþ1 (appearing in ψ2;SB) and cn (appearing in
ψ1;SB) is precisely δr1=δr2.
As a result, the unique steady-state Wigner function of

the physical a cavity will be

Wa;SSðzÞ ≃
e−2jzj2

N

����ψ1;SBð
ffiffiffi
2

p
z�Þ þ δr1

δr2
× ψ2;SBð

ffiffiffi
2

p
z�Þ

����2:
ð62Þ

This equation is the crucial result of this subsection: For
parameters that bring us close to a quantum-bistable point,
it provides a simple way to understand the system’s steady
state and its extreme sensitivity to small parameter changes.

A. Cat-state bistability: ðr1;r2Þ= ð0;0Þ
The simplest bistable point is where r1 ¼ r2 ¼ 0.

From Eqs. (39) and (40), we see that this regime requires
there to be no single-photon drive or loss nor any detuning:
Λ1 ¼ Δ ¼ κ1 ¼ 0. This regime corresponds to the well-
known quantum bistability that occurs in a two-photon
driven-Kerr resonator [9,11,12], a system where photon-
number parity is conserved. The two distinct solutions to
the recurrence relation in Eq. (43) are cj ¼ δj;0 and cj ¼
1 − δj;0 [cf. Eqs. (54) and (55)]. These solutions correspond
to two distinct dark states for the þ mode, with SB wave
functions

ψ1;SBðzÞ ¼ e−ϵz; ð63Þ
ψ2;SBðzÞ ¼ eϵz − e−ϵz: ð64Þ

ψ1;SBðzÞ corresponds to a coherent state with amplitude
ϵ≡ i

ffiffiffiffiffi
λ2

p
, whereas ψ2;SBðzÞ corresponds to an odd cat state

(odd superposition of coherent states with amplitude ϵ).
Note that we pick the global phase of ψ2;SB to be
compatible with Eq. (62).
We thus have a direct connection between this parity-

based bistability and the photon blockade and antiblockade
discussed above: Bistability corresponds to both these
phenomena occurring simultaneously. As always, any
amount of single-photon loss will kill the bistability and
yield a unique steady state (though relaxation to this state
could be extremely slow). Our approach gives a simple way
to understand the unique steady state when there is weak
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single-photon loss and possibly other weak perturbations
(such as single-photon driving and/or a detuning). These
imperfections cause a shift in the recursion parameters
away from δr1 ¼ δr2 ¼ 0:

δr2 ¼
2Δþ iκ1
K − iκ2

; ð65Þ

δr1 ¼
δr2
2

−
iΛ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2ðK − iκ2Þ
p : ð66Þ

For small imperfections, we can then use Eq. (62) to give us
the steady-state SB wave function:

ψþ;SBðzÞ ¼ N½ð1þQÞe−ϵz þ ð1 −QÞeϵz�; ð67Þ

where N is a normalization constant and

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − iκ2
Λ2=4

s
iΛ1

2Δþ iκ1
: ð68Þ

Equation (67) directly gives us the Wigner function of
the unique steady state via Eq. (15). Each term in
Eq. (67) on its own corresponds to a simple coherent
state (amplitudes �ϵ≡�i

ffiffiffiffiffi
λ2

p
). This equation also

reveals something surprising: The localization of the
steady state in phase space is a nonmonotonic function
of Λ1. The state is delocalized both for Λ1 ¼ 0, and for
Λ1 large enough to make Q ≫ 1. Representative results
are shown in Fig. 7. We plot the semiclassical meta-
potential in this figure for each parameter choice; it
shows almost no changes, indicating that it cannot be
used to understand the strong parameter sensitivity of
the quantum steady state.

(a) (b) (c) (d)

FIG. 7. Extreme parameter sensitivity near a quantum-bistable point. Bottom row: Wigner function for the purification ψþ;SB of the
Kerr-cavity steady state for various parameter choices that are close to the ðr1; r2Þ ¼ ð0; 0Þ quantum-bistable point. For all plots
Λ3 ¼ Δ ¼ κ2 ¼ 0, κ1 ¼ 10−2K, and Λ2 ¼ 4K, and Λ1 increases from left to right: (a) Λ1 ¼ 0 (Q ¼ 0), (b) Λ1 ¼ 0.01K (Q ¼ 1),
(c) Λ1 ¼ 0.02K (Q ¼ 2), and (d) Λ1 ¼ 0.1K (Q ¼ 10). The small value of κ1 and Λ1 implies that one is not exactly at the bistable point;
the Q parameter then controls the form of the unique steady state; cf. Eq. (68). By tuning the single-photon drive amplitude Λ1, one can
pick out a particular superposition in the “bistable” manifold by varying Q. Top row: Corresponding metapotential MðzÞ for the same
parameter choices. The metapotential is essentially unchanged for this range of Λ1, showing that it cannot be used to understand the
large changes in the quantum steady state.
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B. Quantum bistability with a single-photon drive:
ðr1;r2Þ= ðn;nÞ

A more surprising regime of near bistability is when the
recursion parameters are both tuned to be close to the same
positive integer, i.e., ðr1; r2Þ ≃ ðn; nÞ. As discussed, for an
exact tuning to this point, the expanded system exhibits
quantum bistability. There are two orthogonal solutions
to the recurrence relations given by cj ¼

P
n
k¼1 δj;k and

cj ¼
P

n
k¼1ð1 − δj;kÞ [cf. Eqs. (54) and (55)]. These in turn

correspond to two distinct þ-mode states

ψ1;SBðzÞ ¼ N1e−ϵzΓðnþ 1; 2ϵzÞ; ð69Þ

ψ2;SBðzÞ ¼ N2e−ϵz
�
1 −

Γðnþ 1; 2ϵzÞ
Γðnþ 1Þ

�
; ð70Þ

where Γðr; zÞ≡ R
∞
z tr−1e−tdt is the incomplete Gamma

function.
In the absence of any loss, tuning r1 ¼ r2 ¼ n requires a

detuning Δ ¼ n=2K and a single-photon drive Λ1 ¼
−iðn=2Þ ffiffiffiffiffiffiffiffiffi

Λ2K
p

. If we now include single-photon loss
(but keep κ2 ¼ 0) and also shift Λ1 slightly from the above
value, the recurrence parameters are slightly shifted as well:

r1 ¼ nþ iκ1
2K

≡ nþ δr1; ð71Þ

r2 ¼ nþ iκ1
4K

− i
δΛ1ffiffiffiffiffiffiffiffiffi
KΛ2

p ≡ nþ δr2: ð72Þ

Hence, via Eq. (62), by slightly varying the one-photon
drive amplitude, one can pick out completely different
linear combinations of the two different bistable states as
the single unique steady state. This parameter dependence
leads to an extreme sensitivity of the final state to small
changes in Λ1. Note that by picking parameters so that
δr1 ¼ δr2, the steady state becomes a coherent state with
amplitude γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Λ2=K
p

, whereas if δr1 ¼ 0, it has a
bimodal form.

C. Metastability due to proximal quantum bistability

Tuning parameters to be close to a quantum-bistable
point also has consequences for dynamics. The character-
istic decay rates of the system correspond to the nonzero
eigenvalues of the Liouvillian L0 [cf. Eq. (2)]. We find that
tuning to a regime of near bistability gives rise to an
extremely slow population-decay mode and also a clear
dissipative gap separating the rate of this slow mode from
other decay modes. Formally, if we let γj denote the decay
modes of the Liouvillian (i.e., negative real parts of the
eigenvalues of L0) and order rates such that γ1 ≤ γ2 ≤ …,
then in near-bistable regimes

γ1 ≪ κ1; γ2 ≫ γ1: ð73Þ

Note that this hierarchy of dissipative rates has already been
described for the more familiar ðr1; r2Þ ¼ ð0; 0Þ “cat-state”
bistable point [12]; we show that this is also true for our
new bistable points. An exact description of this dynamical
behavior is outside the scope of the CQA method. It can,
however, be studied numerically. Representative behavior
of a driven-Kerr cavity whose parameters are close to
either the ðr1; r2Þ ¼ ð2; 2Þ or (4,4) bistable points are
shown in Fig. 8(a).

(a)

(b)

FIG. 8. Slow dynamics near generalized bistable regimes.
(a) Solid line: Ratio of the two smallest relaxation rates (i.e.,
dissipative rates of the system Liouvillian L0) as a function of κ1.
Dashed line: κ1=γ1. κ1 → 0 corresponds to being at a bistable
parameter point ðr1; r2Þ ¼ ðn; nÞ, either n ¼ 2 (light green) or
n ¼ 4 (dark green). Parameters are Λ2 ¼ 6K, Λ3 ¼ κ2 ¼ 0,
Δ ¼ nK=2, and Λ1 ¼ −in

ffiffiffiffiffiffi
Λ2

p
=2. One sees that the slow rate

γ1 is much slower than κ1 and that there is a pronounced
dissipative gap. (b) Solid line: The measure 1 − P [cf. Eq. (76)]
of how closely the slowest system decay mode (with rate γ1)
corresponds to dynamics in the bistable manifold. Dashed lines:
Same, but measuring how closely this mode is described by
coherent states centered at the semiclassical stable amplitudes.
One clearly sees that the bistable manifold gives a far better
description. Same parameters as in (a).
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For near-bistable parameters, the CQA approach pro-
vides insight into the nature of the slow-decay mode of L0.
As one might expect, this mode corresponds to slow
relaxation within the bistable manifold of states. For more
general works on metastability in open quantum systems,
see Refs. [44,45]. To make this statement precise, recall that
if one tuned exactly to a bistable parameter point, cavity a
has a continuous three-parameter family of possible steady
states corresponding to Eq. (57) (and incoherent mixtures
of these states). Density matrices in this bistable manifold
lie in the span of the four operators (i, j ¼ 1, 2):

M̂ij ¼ trb½ðjψ iihψ jjÞþðj0ih0jÞ−�: ð74Þ

By Appendix C, these operators have Wigner transforms

WijðzÞ ¼ Nψ i;SBð
ffiffiffi
2

p
z�Þψ�

j;SBð
ffiffiffi
2

p
z�Þe−2jzj2 ð75Þ

with N a normalization constant.
The slow mode (rate γ1) has an associated right eigen-

vector M̂slow, i.e., L0M̂slow ¼ −γ1M̂slow. If the slow dynam-
ics is entirely in the bistable manifold, then M̂slow should lie
completely within the span of the M̂ij. To see whether this
is the case, we pick parameters for near bistability and
numerically calculate the Hilbert-Schmidt norm P of the
projection of the slow mode onto the bistable subspace:

P≡ X
i;j¼1;2

jTr½M̃†
ijM̂slow�j2: ð76Þ

Here, M̃ij is an orthonormal basis for the span of M̂ij

(obtained via the standard Gram-Schmidt process). As
0 ≤ P ≤ 1, the quantity 1 − P measures how much of
the slow mode’s dynamics lies outside the bistable
manifold.
Representative results for 1 − P are shown in Fig. 8(b).

One sees that for small κ1 (i.e., when one is close to the
bistable point), the slow mode is almost entirely described
by the bistable-state manifold. For comparison, we also try
to describe the slowmode in terms of simple coherent states
centered at the expected classical bistable steady-state
amplitudes. This involves taking

M̂ij
cat ¼ jαiihαjj ð77Þ

with αj the classical amplitudes determined by (with K ≡ 1)

Δðαj − i
ffiffiffiffiffiffi
Λ2

p
Þ − Λ2α

�
j − αjjαjj2 ≡ 0; j ¼ 1; 2: ð78Þ

One sees from Fig. 8(b) that this coherent-state description
does a far poorer job of describing the dynamical slow mode
compared to the states from the bistable manifold. While
metastability in two-photon driven-Kerr resonators was
discussed in Ref. [43], its connection to the existence of

nearby, novel quantum-bistable points (i.e., generalized cat-
state regimes) in the resonator’s phase diagram has not been
previously investigated.

VII. PARITY-CONSERVING DYNAMICS:
TRUE QUANTUM BISTABILITY

We now focus on a special case that has received
considerable recent attention [9–12]: A system where
κ1 ¼ Λ1 ¼ 0 in Eq. (2), implying that the full dynamics
conserves photon-number parity. This conservation law in
turn implies that there are at least two distinct steady states
and opens the possibility of true quantum bistability. Note
that a comprehensive discussion of generic Lindblad master
equations with multiple steady states is provided in
Ref. [46]. Our exact-solution CQAmethod provides several
insights into this regime. Among other things, it allows one
to understand why adding a drive detuning destroys
quantum bistability despite parity still being conserved,
something that is not possible with P-function methods,
which give a unique solution [29,30]. In addition, the CQA
method also gives a succinct analytical expression that
controls which unique steady state is selected from the
bistable manifold when quantum bistability is broken.
We start by revisiting the CQA method of Sec. III

for systems described by Eq. (2) with κ1 ¼ Λ1 ¼ 0. The
corresponding cascaded two-cavity system is described by
Eqs. (9) and (10). The first step as always is to insist that
we have a state that is dark with respect to the cascaded
dissipators. For κ1 ¼ 0, we have only the a two-photon loss
dissipator given by

D½â2 − b̂2� ¼ D½2ĉþĉ−�; ð79Þ

where again the collective ĉ� modes are defined in Eq. (7).
There are now two distinct possibilities for a nontrivial dark
state: Either the ĉ− mode is forced to be in vacuum (with
the þ mode occupied), or the ĉþ mode is forced to be in
vacuum (with the − mode occupied). The first option is the
same as what we did for κ1 ¼ 0; the second option is a new
possibility enabled by the lack of one-photon loss.
It follows that the most general two-cavity dark state has

the form

jψdki ¼ αþjψiþj0i− þ α−j0iþjθi−: ð80Þ

This structure is a direct consequence of parity conserva-
tion, which guarantees the existence of at least two
orthogonal steady states (one even parity, one odd parity).
This structure also implies that the general argument in
Sec. III ensuring a positive cavity-a steady-state Wigner
function no longer holds, as jψdki can have both þ and −
modes occupied.
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A. Zero detuning: Quantum bistability

Consider first the case Δ ¼ 0, meaning that we have a
resonantly driven-Kerr parametric oscillator subject to
two-photon loss. Without dissipation, this system has
degenerate coherent-state eigenstates [11,12]. Including
two-photon loss, the dissipative system exhibits true
quantum bistability: The steady-state manifold corresponds
to a two-dimensional decoherence-free subspace, in the
language of Ref. [47]. We show how this structure emerges
via the CQA method.
The first step of the CQA method is to identify possible

pure dark states of the collective cascaded-systems dis-
sipators; in our case, this is Eq. (80). To have this state be a
steady state, it must also be an eigenstate of the cascaded
Hamiltonian [cf. Eq. (10)]. For Δ ¼ 0, this eigenvalue
equation is

ĉ†−ĉ
†
þðαþ½ĉ2þ þ λ2�jψiþj0i− þ α−½ĉ2− þ λ2�j0iþjθi−Þ
¼ Ejψdki ð81Þ

with λ2 ¼ 2Λ2=ðK − iκ2Þ. Since Ĥcasc always adds an
excitation to both modes ĉ− and ĉþ, the only possible
energy eigenvalue is E ¼ 0. The equation then decouples
into separate equations for jψiþ, jθi−, which are easily
solved. Crucially, each of these equations admits two
possible solutions.
As a result, one finds that the most general dark-state

solution can be written in terms of coherent states as

jψdki ¼
X
�
ðμ�j � ϵiþj0i− þ ν�j0iþj � ϵi−Þ; ð82Þ

where the coherent-state amplitude ϵ ¼ i
ffiffiffiffiffi
λ2

p
, as in the

previous section. We see that the cascaded two-cavity
system has a four-dimensional subspace of possible
steady-state dark states.
The last step is to determine the corresponding steady-

state structure of the physical a cavity. As we discuss in
Sec. III, this effectively corresponds to taking a given two-
cavity state, sending it through a 50∶50 beam splitter, and
then discarding one of the outputs. This procedure is easy
to carry out on the general state in Eq. (82), as coherent
states transform in a simple manner under a beam-splitter
operation. In the basis of the physical a cavity and auxiliary
b cavity, our general dark state has the form

jψdki ¼
X
�
ðμ�j � ϵ̃iaj � ϵ̃ib þ ν�j � ϵ̃iaj ∓ ϵ̃ibÞ; ð83Þ

¼ðμþjϵ̃iaþν−jϵ̃iaÞjϵ̃ibþðμ−j− ϵ̃iaþνþjþ ϵ̃iaÞj−ϵ̃ib;
ð84Þ

with ϵ̃≡ ϵ=
ffiffiffi
2

p
. As there is in general entanglement

between the physical a cavity and the auxiliary b cavity,

one in general is left with an impure state for cavity a.
However, pure cavity-a steady states are indeed possible;
consider, for example, the case where μ− ¼ νþ ¼ 0.
The upshot is that we have a steady-state manifold for

cavity a that is two dimensional, and spanned by the states
j � ϵ̃ia (in agreement with previous work [10]). In simple
terms, the steady-state manifold corresponds to a quantum
bit, i.e., a full single-qubit Bloch sphere [46]. This is what
we mean by the system exhibiting quantum bistability.

B. Nonzero detuning: Classical bistability

1. Loss of quantum bistability

We next consider the case of adding a nonzero
detuning Δ. As has been discussed previously [10], this
causes the steady-state manifold to transition from being a
two-dimensional decoherence-free subspace (i.e., quantum
bistability) to having the structure of a simple classical bit.
Formally, it corresponds to an orthogonal direct sum of two
one-dimensional noiseless subsystems (one for each parity
sector). We will find that, in contrast to P-function methods
[36], CQA is able to analytically detect this transition,
and gives closed-form expressions for each of the direct
summands in the steady-state manifold. Solving the system
again using the CQA method, the requirement of having
our general dark state in Eq. (80) be a energy eigenstate of
the cascaded Hamiltonian leads to the equations

ĉ†−ðĉ†þĉ2þ −Dĉþ þ λ2ĉ
†
þÞjψiþ ¼ 0; ð85Þ

ĉ†þðĉ†−ĉ2− −Dĉ− þ λ2ĉ†−Þjθi− ¼ 0; ð86Þ

where D ¼ 2Δ=ðK − iκ2Þ. As before, the equations deter-
mining jψiþ and jθi− are identical (reflecting parity
conservation). The equation in each case can be solved
by using a SB representation for the state, and turning the
operator equations into differential equations. We get the
same ODE in each case:

�
z
∂2

∂z2 −D
∂
∂zþ λ2z

�
ψSBðzÞ ¼ 0 ð87Þ

with the same equation for θSB, and with λ2, D having the
same definitions as earlier in the main text.
At the qualitative level, one can see how true quantum

bistability is lost in the presence of detuning: For zero
detuning D≡ 0, the ODE above has no singular points,
and thus, the standard existence theorem (Sec. 12.22 in
Ref. [48]) guarantees two independent, analytic solutions.
As discussed earlier, this simple existence result leads to
quantum bistability for the physical mode a. However, the
term ∝ D∂z introduces a singular point into the ODE at
z ¼ 0, and the existence of two dark steady states is no
longer guaranteed. Indeed, the singular point at z ¼ 0
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produces a branch-cut discontinuity in one of the solutions.
Generically, only one analytic solution survives:

ψSBðzÞ ¼
1

N1=2 0F1ð1=2 −D=2;−λ2z2=4Þ; ð88Þ

where N is a normalization constant.
As we see, this twofold reduction in the number of dark

steady states has dramatic consequences for the bistability
of the physical mode a. As there is a unique choice for both
jψiþ and jθi−, the most general dark state has the form of
Eq. (80) and corresponds to a two-dimensional subspace.
In what follows, it will be useful to write this general dark
state as

jψdki ¼ μejΦei þ μojΦoi ð89Þ

with

jΦe=oi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2N−1
p ðjψiþj0i− � j0iþjψi−Þ: ð90Þ

We now trace out the auxiliary b cavity. Note that the
pure dark states above span a subspace of dimension two.
Incoherent mixtures in this subspace are also stationary
states; hence, the cascaded two-cavity problem has a steady-
state manifold corresponding to a Bloch sphere. We imagine
starting with an arbitrary mixed state in this subspace
(described by a two-cavity density matrix), and then tracing
out cavity a to determine the corresponding cavity-a state.
Understanding the full range of cavity-a states produced
here determines the steady-state manifold of cavity a.
This procedure leads us to consider four linearly inde-

pendent cavity-a operators (that determine the cavity-a
density matrix after tracing out cavity b):

M̂þþ
a;SS ≡ trb½jψiþj0i−hψ jþh0j−�;

M̂−−
a;SS ≡ trb½j0iþjψi−h0jþhψ j−�;

M̂þ−
a;SS ≡ trb½jψiþj0i−h0jþhψ j−�;

M̂−þ
a;SS ≡ ðM̂þ−

a;SSÞ†: ð91Þ

To understand the structure of these operators, we consider
their corresponding Q functions (easily obtainable using
the SB representation):

Q��
a;SSðzÞ ¼

Z
d2uψ�

SB

�
z� uffiffiffi

2
p

�
ψSB

�
z� uffiffiffi

2
p

�
; ð92Þ

Q�∓
a;SSðzÞ ¼

Z
d2uψ�

SB

�
z� uffiffiffi

2
p

�
ψSB

�
z ∓ uffiffiffi

2
p

�
: ð93Þ

We obtain an important result: These four operators are not
all independent. Because of the symmetry of each integral
under the mapping u → −u, we have

M̂þþ
a;SS ¼ M̂−−

a;SS; M̂þ−
a;SS ¼ M̂−þ

a;SS ¼ ðM̂þ−
a;SSÞ†: ð94Þ

These equalities imply a loss of information in tracing
out cavity b, and result in the cavity-a steady-state manifold
being simply two dimensional. It is spanned by the
quantities

ρ̂þa;SS ≡ M̂þþ
a;SS;

ρ̂−a;SS ≡ M̂þ−
a;SS; ð95Þ

with ρ̂�a;SS both Hermitian. We now have enough informa-
tion to calculate each steady state exactly: Since the steady-
state manifold is two dimensional, and since parity is a
conserved quantity, every density matrix in the manifold
must then be an impure mixture of the form

ρ̂a;SS ¼ pρ̂e þ ð1 − pÞρ̂o; ð96Þ

where the extremal states ρ̂e=o are uniquely characterized
by the property of having definite photon-number parity
(even and odd, respectively).
Thus, in summary, in this case there is a distinct steady

state in both the even and odd photon-number sectors;
any mixture of these states is also a possible steady state.
The steady-state manifold is indexed by just a single
number 0 ≤ p ≤ 1, which simply corresponds to the
dynamically conserved probability of having an even
photon-number parity. In simpler terms, the cavity-a
steady-state manifold corresponds to a classical bit [46].
To conclude our discussion of Δ ≠ 0, we use the CQA
method to compute exactly each steady state in the
bistable manifold. We begin by noting that the states
jΦe=oi in Eq. (90) have definite photon-number parity,
and thus, so do the corresponding states of the physical
cavity a (obtained by tracing over cavity b). Therefore, by
uniqueness of the extremal states, these states must be
precisely ρ̂e=o,

ρ̂e ¼ trb½jΦeihΦej�;
ρ̂o ¼ trb½jΦoihΦoj�: ð97Þ

To compute these steady states, we note that by substituting
Eq. (90) into Eq. (97) we can expand, e.g.,

ρ̂e=o ¼
N

N � 1
ðρ̂þa;SS � ρ̂−a;SSÞ; ð98Þ

where N is just the normalization constant N for the dark
state jψiþ, which has the exact expression

N ¼ 1F2½1=2; 1=2 −D=2; ð1=2 −D=2Þ�; jλ2=2j2�: ð99Þ

Inverting the above linear relation, we get
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ρ̂þa;SS ¼
1

2

�
N þ 1

N
ρ̂e þ

N − 1

N
ρ̂o

�
: ð100Þ

This equation immediately leads to exact expressions
for ρ̂e=o, which are given in Appendix H. Furthermore,
by comparison with Eq. (91), ρ̂þa;SS also happens to be the
steady state in the presence of an infinitesimal amount
of bistability-breaking single-photon loss. Therefore, in
Eqs. (99) and (100), CQA is able to smoothly describe the
transition from a Kerr oscillator having two quantum steady
states to having only one. In the weak-driving limit λ2 → 0,
the hypergeometric series defining N collapses to just the
first term [cf. Eq. (99)], and we get N → 1, so

ρ̂þa;SS ∼
λ2→0

ρ̂e:

In contrast, in the strong-driving limit N diverges, and thus,

ρ̂þa;SS ∼
λ2→∞

ρ̂e þ ρ̂o
2

: ð101Þ

A final piece of physical intuition: Since N is a function
only of the modulus jλ2j, the relative bias (toward either
ρ̂o=e) is independent of the phase ϕ of the drive λ2 ≡ eiϕjλ2j.

VIII. CONCLUSIONS

In this work, we present a generalization of the coherent
quantum-absorber method developed by Stannigel et al. [1]
for solving the simplest driven-Kerr resonator problem. Our
generalization exploits the Segal-Bargmann representation,
and allows one to analytically solve for the steady state of
driven-dissipative Kerr-cavity models with nonlinear driv-
ing and nonlinear loss. We use these analytic solutions to
describe a host of new physical phenomena, including
generalized photon-blockade phenomena and new regimes
of near quantum bistability. These phenomena should be
experimentally accessible in a number of different plat-
forms, including superconducting circuit experiments.
Our work naturally suggests many new open questions

and directions for future study. For example, can the new
bistable parameter points we identify be utilized for
quantum-information applications? Are there other forms
of nonlinear dissipation and driving that could also be
included in our system that still leave it amenable to
solution via the CQA method? Can this approach be
extended to nonlinear-driven dissipative systems with more
than one cavity?
At a fundamental level, there is also the basic question of

why the CQA method is able to yield exact solutions to
systems that are on the surface highly nontrivial (because of
strong nonlinearities and driving). Is there some general
physical principle here, or perhaps a dissipative version of
integrability that underlies this method? These are all
questions we hope to explore in future works.
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APPENDIX A: CIRCUIT QED REALIZATION
OF THE MODEL

We now show that it is possible to realize the generalized
driven-Kerr oscillator using circuit QED devices that
already exist, in particular, a SNAIL device [20]. The
Hamiltonian for a SNAIL, as a function of applied
magnetic flux, can be written as (following the notation
of [20])

Ĥ ¼ ωâ†âþ g3ðΦÞðâþ â†Þ3 þ g4ðΦÞðâþ â†Þ4: ðA1Þ

We now introduce time dependence into the flux parameter
Φ in such a way that g3ðtÞ≡ g3½ΦðtÞ� is oscillating at the

cavity frequency with amplitude gð0Þ3 , whereas g4ðtÞ≡ gð0Þ4

is essentially constant (cf. Fig. 1 in Ref. [20]). In the
frame rotating at the cavity frequency, the time-dependent
Hamiltonian then has the form

Û Ĥ Û† ¼ 3gð0Þ3 fðâ†â†âþ â†â âÞ þ ðâ† þ âÞg
þ 3gð0Þ4 f2â†â†â âþ4â†âþ 1g
þ counter-rotating terms: ðA2Þ

Under the rotating-wave approximation, if the drives are
weak we can neglect all counter-rotating terms, which
yields the effective Kerr Hamiltonian

ĤRWA ¼ K
2
â†â†â â−Δâ†âþ ðΛ1â† þ Λ3â†â†âþ H:c:Þ;

ðA3Þ

where Λ1 ¼ Λ3 ¼ 3gð0Þ3 , and K ¼ 12gð0Þ4 ¼ −Δ. In con-
clusion, realization of the nonlinear coherent driving effect,
for weak driving strengths, is possible using a super-
conducting nonlinear asymmetric inductive element, by
modulating its flux parameter at the cavity frequency. We
can also see from this analysis how it would be even harder
to realize the three-photon additional or removal terms
ðâ†Þ3, â3 within this scheme, as this would require
modulating the external flux Φ 3 times more rapidly
(specifically, 18 GHz, for the device considered
in Ref. [20]).

APPENDIX B: EXACT REALIZATION OF NEW
QUANTUM-BISTABLE REGIMES USING A
TWO-CAVITY NONCASCADED SETUP

In Sec. V F, we discuss how the generalized driven-
dissipative Kerr problem could be tuned to be arbitrarily
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close to points in parameter space where we have true
quantum bistability. Exact tuning to a bistable point is not
possible due to the constraint that neither κ1 nor κ2 could be
made negative.
An exact realization of these quantum-bistable points is

nonetheless possible if one works with the two-cavity
system in Fig. 1. Making one of κ1 or κ2 negative now
has a simple physical interpretation: We simply reverse the
chirality of one of the waveguides in the absorber setup
(see Fig. 9). Reversing the chirality of the (e.g., linearly
coupled) waveguide leads to the dynamics of the master
equation Eq. (4) with the same dissipators but with the
Hamiltonian [cf. Eq. (5)] changed to

Ĥab → Ĥa − Ĥb þ
iκ1
2

ðâ†b̂ − H:c:Þ − iκ2
2

ðâ†â†b̂2 − H:c:Þ:
ðB1Þ

Again, using the absorber method, we can solve this
master equation in a manner identical to before, i.e., with
jψi ¼ jψþij0−i, except now we have κ1 → −κ1. So the
master equation specified by Eq. (B1) constitutes an
analytic extension of the steady state to negative values
of κ1;2 (and thus arbitrary values ofD), and thus can exhibit
quantum bistability. For a depiction of the setup, see Fig. 9.
In this case, Eq. (61) actually becomes a relation for

selecting a pure state in the bistable manifold:

jψþi ¼ δr2jψþ;1i þ δr1jψþ;2i: ðB2Þ
In this case, jψþ;ji are the photon-added coherent states of
the symmetric mode defined in Sec. III. The states are
perhaps best understood in the Fock basis. For Λ3 ¼ 0,

jψþ;1i ¼
Xn
m¼0

ð2ϵĉ†þÞm
m!

j − ϵi; ðB3Þ

jψþ;2i ¼
X∞

m¼nþ1

ð2ϵĉ†þÞm
m!

j − ϵi; ðB4Þ

where jzi as usual denotes a coherent state with amplitude
z. Note that their sum isGaussian, i.e., a coherent state, as is
expected from properties of Kummer’s hypergeometric
function. In the more general case of the “off-diagonal”
bistable points [i.e., the ðn;mÞ points with n ≠ m], one
stabilizes even more exotic states, whose sum may no
longer be Gaussian.

APPENDIX C: STEADY-STATE
WIGNER FUNCTION

We now rigorously prove the connection between the
Wigner function of the steady-state ρ̂a;SS of the driven-Kerr
cavity, and the modulus squared of the SB representation of
its purification jψþi. We also show how the calculation
generalizes to the case where there are multiple dark states.
The result here relies on a deep fact relating the operator-
ordering conventions for a quantum-mechanical mode, and
the heat semigroup on the corresponding classical phase
space. This was originally pointed out by Glauber and
Cahill in Ref. [49], and we review the salient results here.
Specifically, given a (possibly non-Hermitian operator) Â
of a quantum-mechanical mode, define its normally
ordered symbol σN to be

σNA ðzÞ ≔ ∶ Â∶jâ†;â↦z;z� ; ðC1Þ

where ∶Â∶ is the operator Â but reexpressed in normal
order, i.e., with all of the creation operators to the left of
the annihilation operators. Analogously, we can define the
symmetrically ordered symbol:

σAðzÞ ≔ ∶Â∶Sjâ†;â↦z;z� ; ðC2Þ

where ∶ Â∶S is the operator Â but reexpressed according
to the symmetric ordering convention (as defined in
Ref. [49]). The symmetrically ordered symbol is propor-
tional to the standard Wigner transform, which can be
formally computed via an integral:

σAðzÞ ∝
Z

d2ξTr½eξ�â−ξâ† Â�eξz�−ξ�z: ðC3Þ

For positive semidefinite operators, e.g., a density matrix
ρ̂≡ ρ̂†, the symmetrically ordered and normally ordered
symbols coincide with the Wigner and Q functions,
respectively,

QðzÞ ¼ 1

π
σNρ ðzÞ; WðzÞ ¼ 1

π
σρðzÞ: ðC4Þ

What Glauber and Cahill showed in Ref. [49] is that
operator symbols corresponding to different ordering con-
ventions are related by the heat semigroup. In particular, we
have the following theorem:

(a) (b)

FIG. 9. Realizing quantum bistability by breaking chirality.
(a) Typical cascaded network corresponding to CQA solution of
the Kerr resonator problem. In this cascaded scheme, the the
generalized bistable points of the Kerr resonator (cf. Fig. 3) are
only achievable in the limit of vanishing loss. These generalized
bistable points are exactly realizable by using a two cavity setup
(b) which is not cascaded, i.e., where the chirality of one of the
waveguides is reversed.
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Theorem 1. [49]: Let Â be a Hilbert-Schmidt operator
(i.e., Tr½Â†Â� < ∞). Then its normally ordered symbol
can be obtained by “cooling” (i.e., running the heat
equation on) the symmetrically ordered symbol for a time
t ¼ 1=8, i.e.,

σNA ðzÞ ¼
Z
C
d2z0Kðt; z; z0ÞσAðz0Þjt¼1=8; ðC5Þ

where Kðt; z; z0Þ is the heat kernel on C, which can be
exactly computed and comes out to

Kðt; z; z0Þ ¼ eð−jz−z0j2=4tÞ

4πt
: ðC6Þ

We can use the theorem above to directly trace out the
ancilla cavity used in the absorber method in the main
text. Following the notation of the main text, suppose we
have an orthonormal basis jψ1i;…; jψki of the space of
dark states, i.e.,

ĉ−jψ ji ¼ 0: ðC7Þ

Clearly, these states form a k-dimensional Bloch sphere
spanned by their outer products:

jψ iihψ jj: ðC8Þ

According to CQA, to obtain the corresponding stationary
modes M̂ij of the physical cavity-a Lindbladian, we must
trace out the ancilla mode:

M̂ij ¼ Trb½jψ iihψ jj�: ðC9Þ

We now compute the Wigner transform of the above
stationary modes. First, we take advantage of the fact that
a dark state factorizes across the two modes ĉ� as
jψ ji ¼ jψ j;þij0−i:

M̂ij ¼ Trb½ðjψ i;þihψ j;þjÞðj0−ih0−jÞ�: ðC10Þ

Letting σþ;ijðzÞ denote the symmetrically ordered symbol
(i.e., Wigner transform) of the outer product jψ i;þihψ j;þj,
and σ−ðzÞ denote the symmetrically ordered symbol of the
vacuum state j0−ih0−j, let

σijðzÞ ðC11Þ

denote the symmetrically ordered symbol (i.e., the Wigner
transform) of the stationary mode M̂ij. We can then rewrite
the expression for the partial trace completely in terms
of symmetrically ordered symbols: In this case, the
partial trace becomes an integral, and the symmetrized-
antisymmetrized nature of the input states means that the

integral convolves the operator symbols. The symbol σ−ðzÞ
then acts as a Gaussian filter for the symbol σþ;ijðzÞ:

σijðzÞ ¼
Z
C
d2z0σ−

�
z − z0ffiffiffi

2
p

�
σþ;ij

�
zþ z0ffiffiffi

2
p

�
ðC12Þ

¼
Z
C
d2zþ

2e−2jzþ−
ffiffi
2

p
zj2

π
σþ;ijðzþÞ; ðC13Þ

where we define symmetrized and antisymmetrized phase-
space variables z� ≡ ðz� z0Þ= ffiffiffi

2
p

. The above filtering
operation is the same operation which “reorders” a nor-
mally ordered symbol into a symmetrically ordered sym-
bol, up to a rescaling of the phase space z ↦

ffiffiffi
2

p
z. Indeed,

we can rewrite it in terms of the heat kernel

σijðzÞ ¼ 2

Z
C
d2uKðt;

ffiffiffi
2

p
z; uÞσþ;ijðuÞjt¼1=8 ðC14Þ

¼ 2σNþ;ijð
ffiffiffi
2

p
zÞ; ðC15Þ

where σNþ;ij is the normally ordered symbol of the mode
jψ i;þihψ j;þj. This form highly constrains the Wigner
function of the steady state of any single-mode system
with single-photon loss that is solvable via CQA.
In particular, now we can compute the symbol exactly in

terms of the Segal-Bargmann representation. It is easy to
show that the normally ordered symbol of an operator has
the simple form

σNA ðzÞ ¼ hzjÂjzi; ðC16Þ

where jzi denotes a coherent state with amplitude z. By
expanding Â in terms of outer products as

Â ¼
X
ij

αijjψ iihψ jj; ðC17Þ

and utilizing the property ψSBðzÞ ¼ hz�jψie−jzj2=2,
Bargmann in Ref. [16] was able to show that this implies

σNA ðzÞ ¼
X
ij

αijψ i;SBðz�Þψ j;SBðz�Þe−jzj2 : ðC18Þ

By substituting the exact expression for the normally
ordered symbol into Eq. (C15), we can finally state the
main result utilized in the main text:

σijðzÞ ¼ 2ψ i;SBð
ffiffiffi
2

p
z�Þψ j;SBð

ffiffiffi
2

p
z�Þe−2jzj2 : ðC19Þ

By taking linear combinations of the above stationary
modes, the Wigner function of any stationary density
matrix of the physical cavity a has the closed form
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Wa;SSðzÞ¼
2

π

X
ij

αijψ i;SBð
ffiffiffi
2

p
z�Þψ�

j;SBð
ffiffiffi
2

p
z�Þe−2jzj2 ; ðC20Þ

where αij ¼ α�ji is a positive semidefinite matrix with
unit trace.
We can also write the CQA ansatz in a manifestly

positive form. Letting fpjg denote the eigenvalues of the
positive semidefinite matrix fαijg, and letting fϕjðzÞg
denote the Segal-Bargmann representations of the corre-
sponding eigenvectors, the Wigner function can be equiv-
alently written as

Wa;SSðzÞ ¼
2

π

X
j

pjjϕjð
ffiffiffi
2

p
z�Þj2e−2jzj2 ≥ 0; ðC21Þ

where normalization forces
P

j pj ¼ 1.
As a simple example, when the dark-state subspace

is one dimensional, the Wigner function is the squared
modulus of the SB representation of the unique, normalized
dark state in that subspace:

Wa;SSðzÞ ¼
2

π
jϕð

ffiffiffi
2

p
z�Þj2e−2jzj2 : ðC22Þ

In summary, we derive an exact, closed-form expression
for the steady-state Wigner function of a cavity that is
solvable via CQA. What is most striking from this analysis
is the absence of any consideration of the Hamiltonian
of the cavity: The CQA method, if it works, will predict
that the Wigner function will be positive definite, simply
as a consequence of the presence of single-photon loss in
the system.

1. Other phase-space representations
of the steady state

One can also obtain the steady-state P function using the
results of the above analysis. Accordingly, we define the
generalized Weierstrass transform Wt ≡ e−tΔ as the fol-
lowing integral transform:

ðWtfÞðzÞ≡
Z
C
d2uKðt; z; uÞfðuÞ: ðC23Þ

Let ðSαfÞðzÞ≡ fðαzÞ also denote the linear operator which
rescales the function argument. We then have the following
commutation relation:

ðS ffiffi
s

p WtfÞðzÞ ¼
Z
C
d2u

e−ðju−
ffiffi
s

p
zj=4tÞ

4πt
fðuÞ

¼
Z
C
d2v

e−ðjv−zj2=4t=sÞ

4πt=s
fð ffiffiffi

s
p

zÞ

¼ ðWt=sS ffiffi
s

p fÞðzÞ: ðC24Þ

From Eq. (C24), it follows immediately that WtS ffiffi
s

p ¼
S ffiffi

s
p Wst. With this identity in mind, we can solve for the

steady-state P function. LettingQþ, Pþ denote the P andQ
functions of the single-mode pure-state jψþi, we have

Pa;SSðzÞ ¼ ðW−1=8S ffiffi
2

p QþÞðzÞ ¼ ðS ffiffi
2

p W−1=4QþÞðzÞ
¼ 2Pþð

ffiffiffi
2

p
zÞ: ðC25Þ

Therefore, theP function of the Kerr resonator is simply the
P function of the single-mode pure-state jψþi, up to a
rescaling of phase space z ↦

ffiffiffi
2

p
z.

APPENDIX D: “GAUGE INVARIANCE”
OF THE DARK STATE

Equation (34) in the main text makes it manifest that
there exist two distinct (nonunitary) gauge choices in which
the troublesome two-photon term vanishes in the dark-state
equation, Eq. (18). In the main text, we solve the dark-state
equations in the plus gauge. This leads to the question of
what will happen if we solve the dark-state conditions in the
minus gauge? If we solve for the dark state in the minus
gauge, we will end up with the solution

ψ̃þ;SBðzÞ≡ e−ϵ−z1F1

�
−
λ1 þ ϵ−D
ϵ− − ϵþ

;−D; ðϵ− − ϵþÞz
�
:

ðD1Þ

However, the results are gauge invariant, as we can write

ψ̃þ;SBðzÞ ¼ e−ϵ−zþðϵ−−ϵþÞz

1F1

�
−D −

λ1 þ ϵ−D
ϵþ − ϵ−

;−D; ðϵþ − ϵ−Þz
�

ðD2Þ

¼ e−ϵþz

1F1

�
−
ðϵþ − ϵ−ÞD
ϵþ − ϵ−

−
λ1 þ ϵ−D
ϵþ − ϵ−

;−D; ðϵþ − ϵ−Þz
�

¼ e−ϵþz1F1

�
−
λ1 þ ϵþD
ϵþ − ϵ−

;−D; ðϵþ − ϵ−Þz
�

¼ ψþ;SB;

ðD3Þ

where ψþ;SB is the dark-state Eq. (33) in the main text,
and in the first line [Eq. (D2)] we utilize Kummer’s
transformation (see, e.g., Ref. [39]), which is a funda-
mental symmetry of the confluent hypergeometric differ-
ential equation:

1F1ðr1; r2; zÞ ¼ ez1F1ðr2 − r1; r2;−zÞ: ðD4Þ
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APPENDIX E: BEYOND NONLINEAR
SINGLE-PHOTON DRIVING:

BREAKDOWN OF CQA

The most general Kerr Hamiltonian, that is,
containing all possible terms of lower order than the
Kerr nonlinearity, is

Ĥa ¼
K
2
â†â†â â−Δâ†â

þ
��

Λ1â† þ
Λ2

2
â†â† þ Λ3â†â†âþ Λ4â†â†â†

�

þ H:c:

�
: ðE1Þ

This observation begs the question of why everything of
degree 3 or lower is exactly solvable by CQA, except the
ðâ†Þ3 term. The explanation for this is rather simple: When
acting the cascaded Hamiltonian on the dark-state ansatz,
one gets the equation�

ĉ†−Ĥþ þ Λ4ffiffiffi
8

p ðĉ†−Þ3
�
jψþi ¼ 0; ðE2Þ

where

Ĥþ → Ĥþ þ 3Λ4ffiffiffi
8

p ðĉ†þÞ2: ðE3Þ

The shift in Ĥþ is innocuous. However, the term cubic in
ĉ†− is lethal: Both terms in Eq. (E2) have, respectively,
one and three photons in the minus mode, and are thus
generically orthogonal. Thus, the only solution to the
dark-state condition Eq. (E2) is jψþi ¼ 0.

APPENDIX F: STATIONARY DENSITY MATRIX
AND MOMENTS OF A DRIVEN-KERR CAVITY

We show here how to compute exact analytic expres-
sions from our steady-state solution for density matrix
elements in the Fock basis, as well as normal-ordered
cavity moments. Although the expressions obtained here
are considerably more complex or physically opaque, this
exercise allows us to make contact with older results
obtained via P-function methods [3,4]. Expanding the
purification of the density matrix jψi ¼ jψþi ⊗ j0−i,
and writing the symmetric component in the SB repre-
sentation yields

ψþ;SBðzÞ≡
X∞
l¼0

ψ l
zl

l!
; ðF1Þ

which implicitly defines coefficients ψ l ≡ ψ ðlÞ
þ;SBð0Þ which

are the derivatives of the Bargmann state evaluated at
the origin z ¼ 0 in phase space. In the special cases

λ1 ≡ λ3 ≡ 0, reproducing results in Ref. [3], or the more
generic regime λ2 ≡ 0, which represents new results, we
can actually evaluate the sums, resulting in compact,
closed-form expressions.

1. Steady-state density matrix

In terms of these Taylor coefficients, the steady-state
density matrix can be computed in the Fock basis:

hmjρ̂a;SSjni ðF2Þ

¼
X∞
l¼0

hm; lj
�X∞

j;k¼0

ψ jψ
�
k

j!k!
ðĉ†þÞjj0ih0jĉkþ

�
jn; li

¼ 1

ð2mþnn!m!Þ1=2X∞
l;j;k¼0

ψ jψ
�
k

j!k!
h0j ðĉþ − ĉ−Þlffiffiffiffiffiffiffi

2ll!
p ðĉþ þ ĉ−Þmðĉ†þÞjj0i

× h0jĉkþðĉ†þ þ ĉ†−Þn
ðĉ†þ − ĉ†−Þlffiffiffiffiffiffiffi

2ll!
p j0i

¼ 1

ð2mþnn!m!Þ1=2X∞
j;k;l¼0

ψ jψ
�
k

j!k!
1

2ll!
h0jĉmþl

þ ðĉ†þÞjj0ih0jĉkþðĉ†þÞnþlj0i: ðF3Þ

Using identities of the form h0jĉmþl
þ ðĉ†þÞjj0i ¼ δmþl;jj!,

etc., we get the remarkably simple result:

hmjρ̂a;SSjni ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnn!m!
p

X∞
l¼0

ψmþlψ
�
nþl

2ll!
: ðF4Þ

This expression matches similar expressions obtained using
complex-P solutions, as we see later in this section.

2. Cavity moments

We can also express the normally ordered moments
of a driven-Kerr cavity exactly in terms of the scaled
Fock-state amplitudes ψ l. The calculation is slightly more
straightforward:

Tr½ρ̂a;SSða†Þnam� ¼ hψ jða†Þnamjψi

¼ 1ffiffiffiffiffiffiffiffiffiffi
2mþn

p hψ jðĉ†þ þ ĉ†−Þnðĉþ þ ĉ−Þmjψi;

ðF5Þ

where jψi, as before, is the purification of the density
matrix obtained from the absorber method. Expanding the
dark state yields

DAVID ROBERTS and AASHISH A. CLERK PHYS. REV. X 10, 021022 (2020)

021022-22



Tr½ρ̂a;SSða†Þnam�

¼ 1ffiffiffiffiffiffiffiffiffiffi
2mþn

p
X∞
j;k¼0

ψ�
jψk

j!k!
h0jĉjþðĉ†þÞnĉmþðĉ†þÞkj0i

¼ 1ffiffiffiffiffiffiffiffiffiffi
2mþn

p
X∞
j;k¼0

ψ�
jψkffiffiffiffiffiffiffiffi
j!k!

p hjþjðĉ†þÞnĉmþjkþi: ðF6Þ

Defining a new variable l such that j≡ nþ l, we find
that k ¼ mþ l, and that furthermore, l ≥ 0. So our sum
simplifies to

Tr½ρ̂a;SSða†Þnam�
1ffiffiffiffiffiffiffiffiffiffi
2mþn

p
X∞
l¼0

ψ�
nþlψmþlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmþ lÞ!ðnþ lÞ!p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmþ lÞ!p
ffiffiffiffi
l!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ lÞ!p

ffiffiffiffi
l!

p :

ðF7Þ

We thus obtain the simple result

Tr½ρ̂a;SSða†Þnam� ¼
1ffiffiffiffiffiffiffiffiffiffi
2mþn

p
X∞
l¼0

ψmþlψ
�
nþl

l!
: ðF8Þ

This is the formula used to produce exact-solution plots
of average photon number in Fig. 4; a similar-looking
expression was derived independently in Ref. [3], using
P-function methods.

3. Normalization

Throughout this section, we assume that the normaliza-
tion of jψþi is known. Supposing that this is not the case,
and jψþi is written instead in the form

ψþ;SBðzÞ ¼
1ffiffiffiffi
N

p
X∞
l¼0

ψ̃ l
zl

l!
; ðF9Þ

we can write an exact expression for N:

N ¼
X∞
l¼0

ψ̃ lffiffiffiffi
l!

p ψ̃ l
�ffiffiffiffi
l!

p ¼
X∞
l¼0

jψ̃ lj2
l!

: ðF10Þ

4. Expression for ψ l in the general regime

The scaled Fock-state amplitudes ψ l can be computed in
closed form in terms of the Gauss hypergeometric function.
We can then utilize this closed form to show that our exact
expressions derived here agree with earlier solutions [3,4]
in the limit of Λ3 → 0:

ψ l ≡ ∂lψþ;SBð0Þ: ðF11Þ

The above quantity is particularly difficult to evaluate in the
general case, so we evaluate instead

ξl ≡ ∂lξþ;SBð0Þ; ðF12Þ

where jξi is the displaced dark state in the main text.
Equation (F12) then represents the Fock-state amplitudes
of the purification of the displaced steady-state ρ̂0≡
D̂αρ̂a;SSD̂

†
α, where α is defined in the main text and vanishes

when Λ3 → 0.
Expanding ξþ;SBðzÞ≡ ΘðzÞϕðzÞ, where ΘðzÞ≡

exp½−θðzÞ� is the nonunitary gauge transformation in the
main text. Expanding via the Leibniz rule, we get

ξl ¼
Xl

n¼0

�
l
n

�
∂l−nΘð0Þ∂nϕð0Þ: ðF13Þ

Plugging in ΘðzÞ≡ e−ϵþz and ϕðzÞ ¼ 1F1½−r1;−r2;
ðϵþ − ϵ−Þz�, we get

∂kΘð0Þ ¼ ð−ϵþÞk; ðF14Þ

∂kϕð0Þ ¼ ð−r1Þk
ð−r2Þk

ðϵþ − ϵ−Þk: ðF15Þ

So, in total, we get

ξl ¼
Xl

n¼0

�
l
n

� ð−r1Þn
ð−r2Þn

ð−ϵþÞl−nðϵþ − ϵ−Þn

¼ ð−ϵþÞl
Xl

n¼0

ð−1Þn
�
l
n

� ð−r1Þn
ð−r2Þn

�
1 −

ϵ−
ϵþ

�
n

¼ ð−ϵþÞl
Xl

n¼0

ð−lÞnð−r1Þn
ð−r2Þn

ð1 − ϵ−
ϵþ
Þn

n!

¼ ð−ϵþÞl
X∞
n¼0

ð−lÞnð−r1Þn
ð−r2Þn

ð1 − ϵ−
ϵþ
Þn

n!
: ðF16Þ

Therefore, we have a closed-form expression for the scaled
Fock-state amplitudes of the displaced dark state:

ξl ¼ ð−ϵþÞl2F1

�
−l;−r1;−r2; 1 −

ϵ−
ϵþ

�
: ðF17Þ

In the limit Λ3 → 0, ϵþ → −ϵ−, and so, as in the main text,
defining ϵ≡ ϵþ, we get

ψ l ∼
Λ3→0

ð−ϵÞl2F1ð−l;−r1;−r2; 2Þ; ðF18Þ

where we are implicitly utilizing the fact that ξl → ψ l in
this limit, as the displacement parameter α vanishes in the
limit Λ3 → 0. From Eq. (F18), it is straightforward to
recover the previous solutions [3,4] of the Kerr resonator in
the limit Λ3 ≡ 0.
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APPENDIX G: EXACT RESULTS WHEN THE
NONUNITARY GAUGE TRANSFORMATION

IS TRIVIAL

The series expressions derived in Appendix F have
simple closed forms when we have λ2 ≡ 0, which, for
Λ2 ≠ 0, represents previously unexplored physics. We
emphasize the generic nature of this regime, in that there
are eight real parameters to play with: Λ1, Λ3, and K, Δ, κ1,
κ2. In this limit, the displaced SB wave function Eq. (32) is
purely hypergeometric:

ξþ;SBðzÞ ¼
1

N1=2 1F1ð−r1;−r2;−λ3zÞ; ðG1Þ

where r1 ≡ −λ1=λ3, and r2 ≡D. In this case, the coef-
ficients ξl of the displaced steady state simplify to ratios of
Pochhammer symbols:

ξl ¼
1

N1=2

ð−r1Þl
ð−r2Þl

ð−λ3Þl; ðG2Þ

where the Pochhammer symbol is defined as ðzÞl ≡
Γðzþ lÞ=ΓðzÞ. Therefore, the normalization is computable
in closed form:

N ¼
X∞
l¼0

ð−r1Þlð−r�1Þl
ð−r2Þlð−r�2Þl

jλ3j2l
l!

¼ 2F2ð−r1;−r�1;−r2;−r�2; jλ3j2Þ: ðG3Þ

Here, pFqða1;…; ap; b1;…; bq; zÞ denotes the generalized
hypergeometric function (see, e.g., Ref. [39]). The nor-
malization of the steady-state Wigner function is thus
exactly computable:

Wa;SSðz − αÞ ¼ 2j1F1ð−r1;−r2;−
ffiffiffi
2

p
λ3z�Þj2e−2jzj2

π2F2ð−r1;−r�1;−r2;−r�2; jλ3j2Þ1=2
; ðG4Þ

where here α≡ αþ=
ffiffiffi
2

p
is the appropriately normalized

displacement factor given in Eq. (32) in the main text. We
now move on to compute the matrix elements of the density
matrix in the displaced frame (here, D̂α ≡ e−αâ

†−H:c: is the
standard displacement operator of the physical cavity),

hmjD̂αρ̂a;SSD̂
†
αjni ¼

ð−λ3Þmð−λ�3Þn
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþnn!m!

p

×
X∞
l¼0

ð−r1Þmþlð−r�1Þnþl

ð−r2Þmþlð−r�2Þnþl

ðjλ3j2=2Þl
l!

:

Utilizing the identity ðzÞmþl¼ðzÞmðzþmÞl, the sum closes,
and we get

hmjD̂αρ̂a;SSD̂
†
αjni

¼ ξmξ
�
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnn!m!
p × 2F2ðn−r1;m−r�1;m−r2;n−r�2;jλ3j2=2Þ:

ðG5Þ

As for the normally ordered cavity moments in the
displaced frame, in a similar fashion, we get an analogous
closed form in terms of a generalized hypergeometric
function:

Tr½D̂αρ̂a;SSD̂
†
αðâ†Þnâm�

¼ ξmξ
�
nffiffiffiffiffiffiffiffiffiffi

2mþn
p × 2F2ðm − r1; n − r�1;m − r2; n − r�2; jλ3j2Þ:

ðG6Þ

APPENDIX H: EXACT RESULTS IN THE
PARITY-CONSERVING REGIME

We now complete the process started in Sec. VII,
namely, that of tracing out the ancilla resonator for each
of the dark steady states obtained by the CQA method.
We begin with the formula in Appendix F on unique
steady states:

hmjρ̂a;SSjni ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnm!n!
p

X∞
l¼0

ψmþlψ
�
nþl

2ll!
: ðH1Þ

Note that, as a direct consequence of ψ2l−1 ≡ 0, we have

h2jþ 1jρ̂a;SSj2ki ¼ h2jjρ̂a;SSj2kþ 1i ¼ 0; ðH2Þ

as each term in the sum over l would identically vanish in
these cases. In summary,

Π̂eρ̂a;SSΠ̂o ¼ Π̂oρ̂a;SSΠ̂e ¼ 0; ðH3Þ

where Π̂e=o are the projections onto the subspaces of the
resonator Hilbert space spanned by even or odd photon-
number states.
Therefore, by taking matrix elements on both sides of

Eq. (100) in the main text, one obtains

hmjρ̂ejni ¼
2N

N þ 1
hmjρ̂a;SSjni; m; n even; ðH4Þ

hmjρ̂ojni ¼
2N

N − 1
hmjρ̂a;SSjni; m; n odd: ðH5Þ

Therefore, to compute the steady states ρ̂e=o, it suffices to
compute matrix elements of ρ̂a;SS. We note that this
calculation was done in Ref. [3] (as this represents the
unique steady-state regime κ1 ≠ 0), and so we are techni-
cally done, as we could simply cite the result here.
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For completeness, however, we show that the calculation
of the expressions on the rhs’s of Eqs. (H4) and (H5) can be
reproduced in a straightforward manner within the quan-
tum-absorber formalism. Assuming m≡ 2j, n≡ 2k are
both even, we have

X∞
l¼0

ψmþlψ
�
nþl

2ll!
¼

X∞
l¼0

ψ2ðjþlÞψ�
2ðkþlÞ

22lð2lÞ!

¼ ψ2jψ
�
2k

X∞
l¼0

ðjþ 1
2
Þlðkþ 1

2
Þl

ðj − r2Þlðk − r�2Þl
jλ2j2l

22lð2lÞ!

¼ ψ2jψ
�
2k

X∞
l¼0

ðjþ 1
2
Þlðkþ 1

2
Þl

ðj − r2Þlðk − r�2Þlð12Þl
jλ2=4j2l

l!
:

ðH6Þ

Therefore, in total we have

X∞
l¼0

ψmþlψ
�
nþl

2ll!
ðH7Þ

¼ ψ2jψ
�
2k2F3

�
jþ 1

2
kþ 1

2

j − r2 k − r�2
1
2

; jλ2=4j2
�
: ðH8Þ

Assuming m≡ 2jþ 1, n≡ 2kþ 1 are both odd, we have

X∞
l¼0

ψmþlψ
�
nþl

2ll!
¼
X∞
l¼0

ψ2ðjþlþ1Þψ�
2ðkþlþ1Þ

22lþ1ð2lþ1Þ!

¼4
X∞
l¼1

lψ2ðjþlÞψ�
2ðkþlÞ

22lð2lÞ!

¼4ψ2jψ
�
2k

X∞
l¼1

lð1
2
þjÞlð12þkÞl

ðj−r2Þlðk−r�2Þlð12Þl
jλ2=4j2l

l!

¼4ψ2jψ
�
2k

ðjþ 1
2
Þðkþ 1

2
Þjλ2=4j2

ðj−r2Þðk−r�2Þð12Þ

×
X∞
l¼1

ð3
2
þjÞlð32þkÞl

ðjþ1−r2Þlðkþ1−r�2Þlð32Þl
jλ2=4j2l

l!
:

ðH9Þ

Therefore, in total we have

X∞
l¼0

ψmþlψ
�
nþl

2ll!
¼ ψ2jψ

�
2k

2

ðjþ 1
2
Þðkþ 1

2
Þjλ2j2

ðj− r2Þðk− r�2Þ

× 2F3

�
jþ 3

2
kþ 3

2

jþ 1− r2 kþ 1− r�2
3
2

; jλ2=4j2
�
:

ðH10Þ

In summary, we have the following closed form for ρ̂a;SS in
the Fock basis:

hmjρ̂a;SSjni ¼
m;n∈2Z

ψmψ
�
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnm!n!
p

× 2F3

� mþ1
2

nþ1
2

m−Dþ1
2

n−D�þ1
2

1
2

; j λ2
4
j2
�
; ðH11Þ

hmjρ̂a;SSjni ¼
m;n∈1þ2Z

ψm−1ψ
�
n−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnm!n!
p

×
jλ2j2mn

2ðm −DÞðn −D�Þ

× 2F3

� mþ2
2

nþ2
2

m−Dþ2
2

n−D�þ2
2

3
2

;

���� λ24
����2
�
: ðH12Þ

FIG. 10. Limiting behavior of bistable states. Top: We plot the
fidelity of ρ̂e [cf. Eq. (H4)] with an even cat state with amplitude
α ¼ i

ffiffiffiffiffiffiffiffiffi
λ2=2

p
(solid line) and the vacuum state (dashed line).

Corresponding results from exact diagonalization are also given
(black dots) Bottom: We plot the fidelity of ρ̂o [cf. Eq. (H5)] with
an amplitude-α odd cat state (solid line) and a one-photon Fock
state (dashed line). Corresponding results from exact diagonal-
ization are also given (black dots). Parameter choices: In both
plots, Λ2 ¼ 5K, κ2 ¼ K, and Λ1, κ1 ≡ 0.
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Substituting Eqs. (H11) and (H12) into Eqs. (H4) and (H5),
we get that the bistable manifold of the Kerr cavity in this
regime is spanned by the following density matrices:

hmjρ̂ejni ¼
m;n∈2Z

2N
N þ 1

ψmψ
�
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnm!n!
p

× 2F3

� mþ1
2

nþ1
2

m−Dþ1
2

n−D�þ1
2

1
2

;

���� λ24
����2
�
; ðH13Þ

hmjρ̂ojni ¼
m;n∈1þ2Z

2N
N − 1

ψm−1ψ
�
n−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnm!n!
p

×
jλ2j2mn

2ðm −DÞðn −D�Þ

× 2F3

� mþ2
2

nþ2
2

m−Dþ2
2

n−D�þ2
2

3
2

;

���� λ24
����2
�
; ðH14Þ

and with all other matrix elements vanishing. Here, N has
the closed-form expression [also given in Eq. (99)]:

N ¼ 1F2½1=2; 1=2 −D=2; ð1=2 −D=2Þ�; jλ2=2j2�: ðH15Þ

For small detuning jDj ≪ 1, the CQA solutions above
approach even or odd cat states, both of which exhibit
Wigner function negativity. In the large detuning limit
jDj ≫ 1, ρ̂e=o also approach pure states: The vacuum state
and one-photon state, respectively, one of which exhibits
Wigner function negativity. The exact CQA solutions are
validated against master equation numerics in Fig. 10.
For completeness, we include here the calculation of N

in Eq. (H15) [this expression also shows up in the main
text, in Eq. (100), where it controls the average parity of the
unique steady state selected when parity symmetry is
spontaneously broken]. The derivatives of the dark state
evaluated at the origin in phase space are

ψ2l ¼
1

N1=2

ð2lÞ!
l!ð1

2
− D

2
Þl
ð−λ2=4Þl; ðH16Þ

whereas the odd derivatives vanish at the origin
(ψ2l−1 ¼ 0). However, note the following identity
½ð2lÞ!=l!� ¼ 22lð1

2
Þl. With this identity, the Fock-state ampli-

tudes take the simpler form

ψ2l ¼
1

N1=2

ð−r1Þl
ð−r2Þl

ð−λ2Þl ðH17Þ

with r1 ≡ −1=2, and r2 ≡ r1 þD=2. Having computed the
Taylor coefficients ψ l, Eq. (F10) gives us the normalization

N ¼
X∞
l¼0

ð1
2
Þlð12Þl

ð−r2Þlð−r�2Þl
jλ2j2l
ð2lÞ!

¼
X∞
l¼0

ð1
2
Þl

ð−r2Þlð−r�2Þl
jλ2=2j2l

l!

¼ 1F2

�
1

2
;−r2;−r�2; jλ2j2

�
: ðH18Þ

This concludes the calculation of the normalization con-
stants in the expressions Eqs. (H4) and (H5).

[1] K. Stannigel, P. Rabl, and P. Zoller, Driven-Dissipative
Preparation of Entangled States in Cascaded Quantum-
Optical Networks, New J. Phys. 14, 063014 (2012).

[2] P. D. Drummond and D. F. Walls, Quantum Theory of
Optical Bistability. I. Nonlinear Polarisability Model, J.
Phys. A 13, 725 (1980).

[3] N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Exact
Steady State of a Kerr Resonator with One- and Two-
Photon Driving and Dissipation: Controllable Wigner-
Function Multimodality and Dissipative Phase Transitions,
Phys. Rev. A 94, 033841 (2016).

[4] M. Elliott and E. Ginossar, Applications of the Fokker-
Planck Equation in Circuit Quantum Electrodynamics,
Phys. Rev. A 94, 043840 (2016).

[5] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E Nigg, H. Paik,
E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and
R. J. Schoelkopf, Observation of Quantum State Collapse
and Revival due to the Single-Photon Kerr Effect, Nature
(London) 495, 205 (2013).

[6] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge
et al., Confining the State of Light to a Quantum Manifold
by Engineered Two-Photon Loss, Science 347, 853 (2015).

[7] S. Touzard, A. Grimm, Z. Leghtas, S. O. Mundhada, P.
Reinhold, C. Axline, M. Reagor, K. Chou, J. Blumoff,
K. M. Sliwa et al., Coherent Oscillations inside a Quantum
Manifold Stabilized by Dissipation, Phys. Rev. X 8, 021005
(2018).

[8] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M.
Delbecq, B. Huard, T. Kontos, M. Mirrahimi, and Z.
Leghtas, Exponential Suppression of Bit-Flips in a Qubit
Encoded in an Oscillator, Nat. Phys., https://doi.org/
10.1038/s41567-020-0824-x (2020).

[9] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S.
Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and
M. H. Devoret, The Kerr-Cat Qubit: Stabilization, Readout
and Gates, arXiv:1907.1213v1.

[10] M. Mirrahimi, Z. Leghtas, V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically
Protected Cat-Qubits: A New Paradigm for Universal
Quantum Computation, New J. Phys. 16, 045014 (2014).

[11] H. Goto, Bifurcation-Based Adiabatic Quantum Computa-
tion with a Nonlinear Oscillator Network, Sci. Rep. 6,
21686 (2016).

DAVID ROBERTS and AASHISH A. CLERK PHYS. REV. X 10, 021022 (2020)

021022-26

https://doi.org/10.1088/1367-2630/14/6/063014
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1103/PhysRevA.94.033841
https://doi.org/10.1103/PhysRevA.94.043840
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/nature11902
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1103/PhysRevX.8.021005
https://doi.org/10.1103/PhysRevX.8.021005
https://doi.org/10.1038/s41567-020-0824-x
https://doi.org/10.1038/s41567-020-0824-x
https://arXiv.org/abs/1907.1213v1
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1038/srep21686
https://doi.org/10.1038/srep21686


[12] S. Puri, S. Boutin, and A. Blais, Engineering the Quantum
States of Light in a Kerr-Nonlinear Resonator by Two-
Photon Driving, npj Quantum Inf. 3, 18 (2017).

[13] V. Bargmann, On a Hilbert Space of Analytic Functions and
an Associated Integral Transform Part I, Commun. Pure
Appl. Math. 14, 187 (1961).

[14] I. E. Segal, Mathematical Characterization of the Physical
Vacuum for a Linear Bose-Einstein Field, Ill. J. Math. 6,
500 (1962).

[15] I. E. Segal, in Lectures in Applied Mathematics, edited by
M. Kac (American Mathematical Society, Providence,
1963), Vol. 2.

[16] V. Bargmann, On a Hilbert Space of Analytic Functions
and an Associated Integral Transform. Part II. A Family of
Related Function Spaces Application to Distribution
Theory, Commun. Pure Appl. Math. 20, 1 (1967).

[17] T. C. H. Liew and V. Savona, Single Photons from Coupled
Quantum Modes, Phys. Rev. Lett. 104, 183601 (2010).

[18] M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, Origin
of Strong Photon Antibunching in Weakly Nonlinear Pho-
tonic Molecules, Phys. Rev. A 83, 021802(R) (2011).

[19] M. A. Lemonde, N. Didier, and A. A. Clerk, Antibunching
and Unconventional Photon Blockade with Gaussian
Squeezed States, Phys. Rev. A 90, 063824 (2014).

[20] V. V. Sivak, N. E. Frattini, V. R. Joshi, A. Lingenfelter, S.
Shankar, and M. H. Devoret, Kerr-Free Three-Wave Mixing
in Superconducting Quantum Circuits, Phys. Rev. Applied
11, 054060 (2019).

[21] P. D. Drummond, K. J. McNeil, and D. F. Walls, Non-
Equilibrium Transitions in Sub/Second Harmonic Gener-
ation, Opt. Acta 28, 211 (1981).

[22] M. Marthaler and M. I. Dykman, Switching via Quantum
Activation: A Parametrically Modulated Oscillator, Phys.
Rev. A 73, 042108 (2006).

[23] M. Dykman, in Fluctuating Nonlinear Oscillators, edited
by M. Dykman (Oxford University, New York, 2012).

[24] L. Guo, M. Marthaler, and G. Schön, Phase Space Crystals:
A New Way to Create a Quasienergy Band Structure, Phys.
Rev. Lett. 111, 205303 (2013).

[25] I.-M. Svensson, A. Bengtsson, J. Bylander, V. Shumeiko,
and P. Delsing, Period Multiplication in a Parametrically
Driven Superconducting Resonator, Appl. Phys. Lett. 113,
022602 (2018).

[26] N. Lörch, Y. Zhang, C. Bruder, and M. I. Dykman,Quantum
State Preparation for Coupled Period Tripling Oscillators,
Phys. Rev. Research 1, 023023 (2019).

[27] L. Krippner, W. J. Munro, and M. D. Reid, Transient
Macroscopic Quantum Superposition States in Degenerate
Parametric Oscillation: Calculations in the Large-
Quantum-Noise Limit Using the Positive P Representation,
Phys. Rev. A 50, 4330 (1994).

[28] M. Wolinsky and H. J. Carmichael, Quantum Noise in the
Parametric Oscillator: From Squeezed States to Coherent-
State Superpositions, Phys. Rev. Lett. 60, 1836 (1988).

[29] E. E. Hach III and C. C. Gerry, Generation of Mixtures of
Schrodinger-Cat States from a Competitive Two-Photon
Process, Phys. Rev. A 49, 490 (1994).

[30] L. Gilles, B. M. Garraway, and P. L. Knight, Generation of
Nonclassical Light by Dissipative Two-Photon Processes,
Phys. Rev. A 49, 2785 (1994).

[31] W. F. Braasch, O. D. Friedman, A. J. Rimberg, and M. P.
Blencowe, Wigner Current for Open Quantum Systems,
Phys. Rev. A 100, 012124 (2019).

[32] H. J. Carmichael, Quantum Trajectory Theory for Cascaded
Open Systems, Phys. Rev. Lett. 70, 2273 (1993).

[33] C. W. Gardiner, Driving a Quantum System with the Output
Field from Another Driven Quantum System, Phys. Rev.
Lett. 70, 2269 (1993).

[34] C. W. Gardiner and P. Zoller, Quantum Noise (Springer,
Berlin, 2000).

[35] K. E. Cahill, Pure States and the p Representation, Phys.
Rev. 180, 1239 (1969).

[36] F. Minganti, N. Bartolo, J. Lolli, W. Casteels, and C. Ciuti,
Exact Results for Schrodinger Cats in Driven-Dissipative
Systems and Their Feedback Control, Sci. Rep. 6, 26987
(2016).

[37] M. Mamaev, Entangled Cavity State Generation through
Engineered Dissipation (McGill University Libraries,
Montreal, QC, 2018).

[38] K. V. Kheruntsyan, Wigner Function for a Driven Anhar-
monic Oscillator, J. Opt. B 1, 225 (1999).

[39] Y. A. Brychkov, Handbook of Special Functions: Deriva-
tives, Integrals, Series and Other Formulas (Chapman and
Hall, London, 2008).

[40] J. J. Sakurai and J. Napolitano, Modern Quantum Mechan-
ics, 2nd ed. (Cambridge University Press, Cambridge,
England, 2017).

[41] A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch,
Strongly Interacting Photons in a Nonlinear Cavity, Phys.
Rev. Lett. 79, 1467 (1997).

[42] M. I. Dykman, Critical Exponents in Metastable Decay
via Quantum Activation, Phys. Rev. E 75, 011101
(2007).

[43] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Spectral
Theory of Liouvillians for Dissipative Phase Transitions,
Phys. Rev. A 98, 042118 (2018).

[44] K. Macieszczak, M. Guţă, I. Lesanovsky, and J. P. Garrahan,
Towards a Theory of Metastability in Open Quantum
Dynamics, Phys. Rev. Lett. 116, 240404 (2016).

[45] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin,
M. D. Lukin, and J. I. Cirac, Dissipative Phase Transition
in a Central Spin System, Phys. Rev. A 86, 012116
(2012).

[46] V. V. Albert and L. Jiang, Symmetries and Conserved
Quantities in Lindblad Master Equations, Phys. Rev. A
89, 022118 (2014).

[47] V. V. Albert, Lindbladians with Multiple Steady States:
Theory and Applications, Ph. D. thesis, Yale University,
2017 arXiv:1802.00010.

[48] E. L. Ince, Ordinary Differential Equations (Dover publi-
cations, Mineola, NY, 1956).

[49] K. E. Cahill and R. J. Glauber, Density Operators and
Quasiprobability Distributions, Phys. Rev. 177, 1882
(1969).

DRIVEN-DISSIPATIVE QUANTUM KERR RESONATORS: NEW … PHYS. REV. X 10, 021022 (2020)

021022-27

https://doi.org/10.1038/s41534-017-0019-1
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1215/ijm/1255632508
https://doi.org/10.1215/ijm/1255632508
https://doi.org/10.1002/cpa.3160200102
https://doi.org/10.1103/PhysRevLett.104.183601
https://doi.org/10.1103/PhysRevA.83.021802
https://doi.org/10.1103/PhysRevA.90.063824
https://doi.org/10.1103/PhysRevApplied.11.054060
https://doi.org/10.1103/PhysRevApplied.11.054060
https://doi.org/10.1080/713820531
https://doi.org/10.1103/PhysRevA.73.042108
https://doi.org/10.1103/PhysRevA.73.042108
https://doi.org/10.1103/PhysRevLett.111.205303
https://doi.org/10.1103/PhysRevLett.111.205303
https://doi.org/10.1063/1.5026974
https://doi.org/10.1063/1.5026974
https://doi.org/10.1103/PhysRevResearch.1.023023
https://doi.org/10.1103/PhysRevA.50.4330
https://doi.org/10.1103/PhysRevLett.60.1836
https://doi.org/10.1103/PhysRevA.49.490
https://doi.org/10.1103/PhysRevA.49.2785
https://doi.org/10.1103/PhysRevA.100.012124
https://doi.org/10.1103/PhysRevLett.70.2273
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRev.180.1239
https://doi.org/10.1103/PhysRev.180.1239
https://doi.org/10.1038/srep26987
https://doi.org/10.1038/srep26987
https://doi.org/10.1088/1464-4266/1/2/005
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevE.75.011101
https://doi.org/10.1103/PhysRevE.75.011101
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://arXiv.org/abs/1802.00010
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRev.177.1882

