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We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes
the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman
(GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2
tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is
formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the
effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate
the projected static structure factor up to the k6 order in the momentum expansion. To provide further
support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the
GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes
a very simple form, making the duality between FQH states and their PH conjugates manifest. We also
comment on the possible applications to fractional Chern insulators, where closely related structures arise.
It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric
formalism.
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I. INTRODUCTION

During the last two decades, topological quantum field
theory (TQFT) has firmly established itself as a useful low-
energy theory of fractional quantum Hall states [1,2] (and,
more generally, of topological phases in two spatial dimen-
sions). It describes the properties of local anyonic quasipar-
ticles and the ground-state degeneracy on higher-genus
surfaces; in addition, it allows one to calculate the universal
part of the linear response to external fields and implies
gapless edge excitations. TQFTwas introduced into quantum
Hall physics in the seminal papers [3,4] and has led to a
satisfactory picture of the fractionalized local excitations
originally introduced by Laughlin in the language of trial
wave functions [2]. The relationship between the two
approaches was first explained in Ref. [5]. The properties
described by the TQFT are expected to be insensitive to the
microscopic details of the material or the experimental setup
that probes the topological phase in question.
In recent years, it was realized that additional universal

features are revealed when a quantum Hall state (or any
topological phase in two dimensions) is placed on a curved
surface. Paradoxically, when the TQFT is coupled to the
geometry of the ambient space, it produces nontrivial linear
response functions that encode additional information about

a quantumHall state such as theWen-Zee shift [6–8], theHall
viscosity [9–12], and the central charge [13–19].
Another remarkable feature of fractional quantum Hall

states, not shared generically by other topological phases of
matter, is the presence of a gapped collective excitation first
proposed by Girvin, Macdonald, and Platzman (GMP)
[20]. This excitation is absent in the integer quantum Hall
phases but appears to be universally present in the frac-
tional states and has been experimentally observed [21–23].
One remarkable property of the GMP mode is that it carries
angular momentum L ¼ 2 at zero linear momentum. This
property of the GMP mode is one of the motivations that
led Haldane to propose that fractional quantum Hall states
have a hidden sector described by a gapped effective theory
of a geometric nature [12,24,25]. More recently, the authors
of Refs. [26,27] (see also Ref. [28]), motivated by recent
experiments [29], suggested that the GMP mode can be
understood as gapped fluctuations of a nematic order
parameter; hence, it becomes light near the nematic phase
transition. This interpretation justifies the inclusion of only
the spin-2 mode in the effective field theory. However, it
leaves one wondering about the role of general covariance
and geometry emphasized in Refs. [12,24,25]. Another
effective theory of the GMP mode was considered in
Ref. [30], where the Wess-Zumino-Witten action was used
to construct the kinetic term. Geometric degrees of freedom
(d.o.f.) and possible means of their observation were also
discussed in Refs. [31,32] in a different language. A
hydrodynamic theory of geometric degrees of freedom
was constructed in [33,34].
The goal of the present paper is to construct an effective

theory describing the spin-2 mode that is consistent with all
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constraints arising from the topological properties and the
structure of the single Landau level. Our approach combines
the ideas of Refs. [12,24–27]with the formalismdeveloped in
Ref. [35] and the bimetric approach to massive gravity
[36,37]. This effective theory is geometric in nature, covariant
with respect to spatial diffeomorphisms, and nonlinear by
construction. Similarly to Ref. [26], the theory consists of a
Chern-Simons TQFT interacting with a massive spin-2 field,
whose dynamics is governed by an action reminiscent of the
action for bimetric theory of massive gravity. We evaluate
the projected static structure factor (SSF), which is given by
the equal-time correlation function of the Ricci scalar within
bimetric theory, and we match it to the microscopic result of
Ref. [20]. This matching completely fixes all dimensionless
phenomenological parameters in the theory and provides a
matching of dimensionful parameters to quantities comput-
able from the microscopics. Then, we use the theory to
rederive the long-wavelength limit of the GMP algebra,
the dispersion relation of the GMP mode, and the Hall
viscosity, and we show that all linear response functions
are reproduced correctly. The proposed theory is valid as long
as the observable quantities are saturated by the single-mode
approximation (SMA). This is presumably true close to a
nematic phase transition. While there is a priori no reason to
expect the SMA to be reliable away from a nematic phase
transition, there is evidence that it is a good approximation
numerically [38–40].
There are two equivalent formulations of bimetric theory.

In the first formulation, the metric sets the background
geometry, and the dynamical d.o.f. is a 2 × 2 symmetric
matrix of unit determinant, reminiscent of a Goldstone field,
that transforms under the internal symmetries of the tangent
space. This matrix is not a metric and, in general, cannot be
used to measure distances. This formulation is very close in
spirit to the one in Ref. [26]. In the second formulation, the
quantum d.o.f. is a dynamical metric ĝij. The two formula-
tions are related to each other by a linear change of variables.
We refer to these formulations as first and second order,
correspondingly. We emphasize that the presented theory
does not refer to the notion (or any properties of) holomor-
phicwave functions and should be applicable for anyLandau
level, aswell as fractional Chern insulators (with the possible
incorporation of lattice symmetries).
The plan of the paper is as follows. In Sec. II, we review

the bimetric geometry of Ref. [35]. In Sec. III, we introduce
the bimetric effective theory, fix the phenomenological
coefficients by matching the SSF computation, and repro-
duce the long-wave limit of the GMP algebra. In Sec. IV,
we further develop the theory and discuss the role of the
gravitational Chern-Simons term. In Sec. V, we present our
conclusions and discuss open questions.

II. BIMETRIC GEOMETRY

In this section, we review the geometric formalism
recently developed in Ref. [35] to analyze anisotropic

FQH states. This formalism will play the central role in
formulating the effective theory.

A. “Nonrelativistic” geometry

We start with a brief review of the geometry used to probe
FQH states [13,41–46]. In what follows, we do not assume
any nongeneric symmetry such as rotational, Galilean, or
Lorentz invariance, which will be reflected in the geometry
we discuss. We describe the geometry using vielbein fields
eAμ ¼ ðeA0 ; eAi Þ and Eμ

A ¼ ðE0
A; E

i
AÞ, where the indices

i; j;… ¼ 1; 2 label the spatial coordinates on the manifold,
while A;B;… ¼ 1; 2 are the internal indices. Here,Ei

A is the
inverse matrix of eAi . Objects carrying the index i transform
under spatial coordinate transformations, and those carrying
the index A transform under internal SOð2Þ rotations. Greek
letters μ; ν;… ¼ 0, 1, 2 are used for spacetime indices;
however, we only allow time-independent spatial coordinate
transformations, thus separating time from space. The spatial
metric is then given by

gij ¼ δABeAi e
B
j ; gij ¼ δABEi

AE
j
B: ð1Þ

Weallow themetric to depend onboth time t and spacex. The
spatialmetric is used tomeasure spatial distances according to
ds2 ¼ gijðt;xÞdxidxj; thus, we allow the distance between
any two points to change in time. TheSOð2Þ “symmetry” that
acts on the vielbein field merely reflects the inherent
ambiguity of splitting the metric into a product of two
matrices. Any physical observable must not depend on
how this ambiguity is resolved, which will translate into
the invariance of the effective action and the generating
functional with respect to local SOð2Þ transformations.
We introduce a covariant derivative ∇μ and impose

metric compatibility conditions:

∇μeAν ¼ 0; ∇μgij ¼ 0: ð2Þ
Defining the action of the covariant derivative to be

∇μeAν ¼ ∂μeAν − Γλ
ν;μeAλ þ ωA

B;μeBν ¼ 0; ð3Þ
we find that the spin connection is given in terms of the
vielbeins and the Christoffel symbols,

ω0 ¼
1

2
ϵA

BEi
B∂0eAi ; ð4Þ

ωj ¼
1

2
ϵA

BðEi
B∂jeAi − Γk

i;jeAkE
i
BÞ; ð5Þ

where the Christoffel symbols are determined from the
second condition in Eq. (2),

Γi
k;j ¼

1

2
gilð∂jgkl þ ∂kgjl − ∂lgjkÞ; ð6Þ

Γi
j;0 ¼

1

2
gik∂0gjk: ð7Þ

Certain components of the Christoffel connection remain
undetermined by Eq. (2) and, therefore, have to be
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determined solely by a torsion. We set the “reduced
torsion” of Ref. [43] to 0. It is easy to verify that under
a rotation of vielbeins, the spin connection ωμ transforms
like an Abelian gauge field. The Ricci curvature of a time
slice is given by

R ¼ 2ffiffiffi
g

p ð∂1ω2 − ∂2ω1Þ: ð8Þ

The Ricci curvature can depend on time; however, we
assume that the Euler characteristic

χ ¼ 1

4π

Z ffiffiffi
g

p
R ð9Þ

is time independent. Finally, we often use the form notation
dω, which means

ðdωÞμν ¼ ∂μων − ∂νωμ: ð10Þ
This completes our review of the spatial geometry. In the
remainder of the paper, this geometry will describe the
shape and the curvature of the sample where the topological
electron fluid “lives.”

B. Intrinsic geometry

Next, we recall the formalism developed in Ref. [35] in
the context of anisotropic FQH states. In the present
context, there is no anisotropy in the sense of Ref. [35];
however, we postulate the existence of a rank-2 symmetric
tensor, hABðx; tÞ that describes the spin-2 massive collec-
tive excitation. Note that, by definition, hABðx; tÞ is a
spacetime scalar that transforms only under the internal
SOð2Þ. With this tensor at hand, we can reconstruct the
formalism of Ref. [35].
Following Ref. [35], we introduce an analogue of the

vielbeins according to

hAB ¼ λαAλ
β
Bδαβ; ð11Þ

where the indices α; β;… ¼ 1, 2 correspond to a new
ambiguity in splitting hAB into a product of two matrices.

We denote this ambiguity as cSOð2Þ. We use a convention in
which all internal indices A;B;… and α; β;… are raised
and lowered with δAB and δαβ, respectively. We also
introduce the inverse of hAB, which is denoted HAB and
is, in general, not equal to hAB. Correspondingly, we
introduce the inverse vielbeins:

HAB ¼ ΛA
αΛB

β δ
αβ: ð12Þ

Then,

hABHBC ¼ δBC; ΛA
αλ

β
A ¼ δβα: ð13Þ

Given these data, we can introduce an intrinsic vielbein
field êαμ and an intrinsic metric ĝij according to

êαμ ¼ eAμ λαA; ĝij ¼ êαi ê
β
jδαβ ¼ hABeAi e

B
j : ð14Þ

Next, we introduce the inverse intrinsic metric

Ĝij ¼ HABEi
AE

j
B ¼ Êi

αÊ
j
βδ

αβ; ð15Þ
where we have also introduced the inverse second vielbein
Êμ
α ¼ Eμ

Aλ
A
α . We use a convention where the spatial indices

i; j;… are raised and lowered with the spatial metric gij.
With êαμ at hand, we again define a covariant derivative

∇̂μ and impose the compatibility with the vielbein

∇̂μêAν ¼ ∂μêAν − Γ̂λ
ν;μêAλ þ ω̂A

B;μêBν ¼ 0; ð16Þ
which will again define the spin connection ω̂μ,

ω̂0 ¼
1

2
ϵα

βÊi
β∂0êαi ; ð17Þ

ω̂j ¼
1

2
ϵα

βðÊi
β∂jêαi − Γ̂k

i;jêαkÊ
i
βÞ; ð18Þ

where the second Christoffel connection is defined by the
condition ∇̂μĝij ¼ 0 and is given by

Γ̂i
k;j ¼

1

2
Ĝilð∂jĝkl þ ∂kĝjl − ∂lĝjkÞ; ð19Þ

Γ̂i
j;0 ¼

1

2
Ĝik∂0ĝjk: ð20Þ

Clearly, the spin connection ω̂μ transforms as an Abelian

gauge field under the cSOð2Þ transformations. Next, we define
the Ricci scalar according to R̂¼ð2= ffiffiffi

g
p Þð∂1ω̂2−∂2ω̂1Þ and

the second Euler characteristic χ̂,

χ̂ ¼ 1

4π

Z ffiffiffî
g

p
R̂: ð21Þ

It is not hard to see that

χ̂ ¼ χ þ X ; ð22Þ
where χ is the Euler character of the physical space and
X is the number of singularities in λαA. The latter can be
evaluated as

X ¼ 1

4π

Z ffiffiffi
h

p
R̂jgij¼δij

; ð23Þ

where we have introduced h ¼ λ2 ¼ det hAB ¼ ðdet λαAÞ2.
With two independent metrics and connections, we can

introduce extra data absent in the traditional Riemannian
geometry. Consider the one-form

Ci
j;μ ¼ Γi

j;μ − Γ̂i
j;μ: ð24Þ

As a difference of two connections, Ci
j;k transforms like a

rank-3 tensor. There are no more independent objects of
interest. One can construct two independent one-forms
from Ci

j;k: the trace Ci
i;k ∼ ∂ ln h and the antisymmetric

part Cμ ¼ ϵi
jCi

j;μ. The latter does not vanish in our setup
and will be used in the effective action. Note that Cμ has
good transformation properties only when the same
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diffeomorphism is applied simultaneously to Γ and Γ̂.
Thus, any action that involves Cμ will break the two copies
of diffeomorphisms (acting on g and ĝ, correspondingly)
down to a diagonal subgroup.
While the general geometric structure allows for arbi-

trary nondegenerate, positive-definite hAB, we also impose
a constraint

det hAB ¼ 1; ð25Þ

which prohibits “dilaton” excitations of ĝij through the
constraint

det ĝij ¼ det gij: ð26Þ

The intrinsic metric will be viewed as a dynamical property
of the physical system. We can use either the internal field
λαB or the vielbein êαi ¼ eBi λ

α
B to describe the physical d.o.f.

These two choices correspond to the first- and second-order
formalisms alluded to in the Introduction and are related by
a linear, nondegenerate change of variables. Bimetric
theory will be constructed in the second-order formalism
since the symmetries are more transparent this way. In the
second-order formulation, we impose the constraint (26)
without any reference to hAB. Finally, we note that a pair of
metrics is precisely the starting point for building bimetric
theory of massive gravity [36,47], with the difference that
the theory there is Lorentz invariant and all of the
components of both metrics are allowed to fluctuate.
Before moving on, we make a comment about the

relation to the work of Haldane [12,24,25]. The geometric
description discussed in Refs. [12,24,25] is represented by
a unimodular (i.e., unit-determinant) metric, which, in our
notation, is ĝij. To avoid confusion and to impose the
constraints coming from self-consistency in weakly curved
space, the effective theory will be constructed when both
the ambient and the “dynamic” spaces are curved from the
very beginning.

III. BIMETRIC EFFECTIVE THEORY

In this section, we construct a covariant bimetric effec-
tive action for an Abelian FQH state that will include the
massive dynamics of the GMP mode. Using this theory, we
calculate the Hall viscosity and the projected static structure
factor, and derive the long-wave limit of the GMP algebra.
We start with the more familiar topological part of the

effective action, which includes the coupling of an internal
gauge field a to the bimetric geometry through a Wen-Zee
term [48]

Stop ¼
k
4π

Z
ada −

1

2π

Z
adA −

s
2π

Z
adω −

ς

2π

Z
adω̂;

ð27Þ

where k determines the filling factor ν ¼ ð1=kÞ, whereas s
and ς describe the coupling to the ambient and dynamic
geometries, respectively. The topological effective action
describes local anyonic quasiparticles and their fractional
electric charge, spin, and statistics. Integrating out the gauge
field a with a proper gauge-fixing condition [17] leads to a
generating functional W½A;ω; ω̂�, which describes the kin-
ematics of the metric ĝ and the linear response functions—
Hall conductance, Hall viscosity, and the shift.
The electron density is given by

ρ ¼ ν

2π
Bþ νs

4π
Rþ νς

4π
R̂; ð28Þ

and the total number of states is given by

N ¼ νNϕ þ νsχ þ νςχ; ð29Þ

where we have introduced the number of flux quanta Nϕ ¼
½1=ð2πÞ� R B and assumed that, as long as the fluctuations
of ĝij are small, the two Euler characteristics are equal.
To interpret the meaning of Eq. (29), we recall the

topological quantum number known as the shift [6–8],
defined as an offset between the number of electrons and
the number of flux quanta on a compact Riemann surface
with the Euler characteristic χ according to

N ¼ νNϕ þ νS
χ

2
: ð30Þ

As a topological quantum number, the shift cannot change
continuously when a small, translationally invariant per-
turbation is introduced. The shift is well defined and
quantized even when the global rotational invariance is
absent, as long as translational invariance is preserved [35].
The shift is used to distinguish topologically different FQH
states that occur at the same filling factor. It is readily
available in numerics and is often measured on a sphere.
Comparing Eq. (29) with the definition (30), we find that

the shift is given by

S ¼ 2ðsþ ςÞ: ð31Þ

The electric current is given by

ji ¼ ν

2π
ϵikEk þ

νs
2π

ϵikEk þ
νς

2π
ϵikÊk; ð32Þ

where Ei ¼ −∂iω0 þ ∂0ωi is the geometric analogue of the
electric field. The conservation of the electric charge (in the
absence of external fields) holds identically,

∂0ρþ ∂iji ¼ ∂0R̂þ ϵik∂iÊk ≡ 0: ð33Þ

Finally, we note that the topological part of the effective
action, Stop, has an enlarged symmetry group. It can be
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directly verified that, in the absence of the electric field, Stop
is invariant under a time-independent SLð2;RÞ transfor-
mation êαi → Uα

βêαi . This explains the appearance of the
slð2;RÞ Lie algebra, as we discuss later.
Next, we construct the dynamical part of the effective

action. In fact, the parity-breaking terms will be generated
after integrating out the gauge field a, and the parity-even
terms will be added by hand. First, we need a kinetic term
for hAB. The obvious choice would be the Einstein-Hilbert
action

SEH ¼
Z

d3x
ffiffiffî
g

p
R̂; ð34Þ

however, this action is equal to the Euler characteristic
(integrated over time) and does not generate any dynamics.
It turns out that it is possible to construct another kinetic

term, using Ck ¼ ϵjiCi
j;k, defined in Eq. (24). Indeed,

consider the term

Skin½ĝ; g� ¼ −
α

4

Z
d3x

ffiffiffi
g

p
gklCkCl ∼ −

α

4

Z
d3x

ffiffiffi
g

p jΓ − Γ̂j2:

ð35Þ

This term is the same order in derivatives as the Einstein-
Hilbert action and is diffeomorphism invariant. In the first-
order language, as we will see shortly, Skin½ĝ; g� is a
covariant version of the ordinary kinetic term ∂λ∂Λ.
In the absence of higher-derivative terms, the coefficient

α has to be strictly positive in order for the theory to be
stable. It is illuminating to view Skin½ĝ; g� as a functional of
the Christoffel connection Γ̂. From the perspective of the
connection, Skin is a potential term (since it is a polynomial
in Γ̂) that favors the configurations where the two con-
nections are equal to each other: Γ ¼ Γ̂. This can be
achieved if the two metrics are equal: gij ¼ ĝij. We
emphasize here that were we not careful about diffeo-
morphism invariance, we could have written a kinetic term
jΓ − κΓ̂j2, which would allow for solutions ĝij ¼ ð1=κÞgij
(reminiscent of a ¼ ð1=kÞA in Chern-Simons theory).
However, these solutions, within our construction, are
inconsistent with diffeomorphism invariance.
The solution we have just described is not the only one.

An arbitrary solution is of the from ĝij ¼ gij þ hij, where
hij is a constant rank-2 tensor. Such a solution is acceptable
since the Christoffel symbol behaves as Γ̂k ∼ ϵij∂iĝjk. The
condition det g ¼ det ĝ must be preserved. These solutions
will parametrize the space of ground states. One way to fix
hij would be to choose a particular boundary condition for
the metric ĝij at spatial infinity. Alternatively, we could
choose a potential term that energetically favors a particular
choice of hij ≠ 0. Such a potential will induce a sponta-
neous breaking of the rotational symmetry (in flat space)
since a symmetric matrix ĝij ¼ δij þ hij ≠ δij is not an

SOð2Þ invariant tensor [49]. Massless fluctuations of ĝij
around hij will describe the Goldstone mode in the nematic
(i.e., symmetry-broken) phase. We will elaborate on this
phase in a separate publication. Thus, we have established
that Skin forces the dynamical metric ĝij to follow the fixed
spatial metric gij, and, consequently, it forces (in the
isotropic phase) hAB ¼ δAB.
If α < 0, the theory would favor the metric that deviates

arbitrarily far from the fixed spatial metric, which leads to
an instability. This instability will be seen in the dispersion
relation of the GMP mode that goes to arbitrarily small
negative energies at higher momentum, unless stabilized by
higher-order terms in the kinetic-energy part of the effective
action. In the second-order language, the interpretation of
the instability is also clear—large values of Γ̂ will be
energetically favorable, but since the Christoffel connection
Γ̂ ∼ ∂ĝ, the only way to maximize it is to make a
configuration of ĝ with very rapid spatial variations. The
dynamical curvature R̂ generated in such a way will be
singular everywhere. To describe the GMP mode, we have
to enter this unstable regime; however, we argue that this
instability can be cured by higher-order terms in Skin.
Indeed, it is possible to add higher-derivative corrections to
Skin with a Lagrangian of the form

δSðnÞkin½ĝ; g� ¼
αn
4

Z
d3x

ffiffiffi
g

p
gklCkðgijDiDjÞnCl; ð36Þ

where Di is the covariant derivative. The coefficients αðnÞ
can a priori be either positive or negative. As we show,
choosing a positive αð2Þ ≈ jαj will induce a roton minimum
that will fix the instability. There are other terms that can
contribute to the ðklÞ4 power in the dispersion relation.
Notably, the gravitational analogue of the “Maxwell-type”
term is L ∼ c1jÊj2 þ c2R̂

2. These terms describe the local
current-current and density-density interactions, corre-
spondingly. We do not consider higher-gradient terms in
much detail but only point out that there is a variety of
terms that can be added to the effective action to stabilize
the GMP mode.
Next, we need to introduce a potential term that will force

our spin-2 d.o.f. to be gapped. The choice of the potential is
the defining feature of the standard bimetric gravity [36],
where the potential is carefully crafted to ensure the absence
of ghosts. We discuss these potentials and their implications
for our theory in Appendix B. Here, we only mention that,
unlike the potential discussed below, the bimetric gravity
potentials do not support a nematic phase transition.
We choose a potential equivalent to the potential in

Ref. [26]. The potential term is given by

Spot½ĝ; g� ¼ −
~m
2

Z
d3x

ffiffiffi
g

p �
1

2
ĝijgij − γ

�
2

; ð37Þ
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where we assumed ~m > 0. Such a term is possible because
of the bimetric nature of the theory.
To understand the phase diagram, we note that

ĝijgij ¼ Trh. Since h is a symmetric unimodular matrix
with positive eigenvalues, its trace satisfies Trh ≥ 2. Thus,
this potential supports two phases connected by a phase
transition occurring at γ ¼ 1. When γ > 1, the system is in
the symmetry-broken phase with Trh ¼ 2γ > 2 (and
hij ≠ 0), and when γ < 1, the system is in the isotropic
phase with Trh ¼ 2, hAB ¼ δAB, and ĝij ¼ gij. Note that, by
construction, in either phase the configuration of ĝij that
minimizes Spot½ĝ; g� also extremizes Skin½ĝ; g�. Finally, we
note that potential and kinetic terms depend on the ambient
metric gij, while the topological terms do not.
An object similar to ĝij has appeared in the study of

fractional Chern insulators (FCI) [50,51], where it was
referred to as the “quantum metric.” The “metric” gαμν of
Ref. [51] is related to ours via ĝij ¼ ð2=BαÞgαij, where we
have changed the type of indices to fit our notations, and
Bα is the Berry curvature. Interestingly, Ref. [51] inves-
tigated the dependence of the spectral gap on the
Brillouin-zone-averaged difference hTi ¼ hTrhi − 2. In
our theory, the gapped phase occurs at hTi ¼ 0, and
the gapless phase appears at hTi > 0. Thus, hTi is an
order parameter for the nematic transition. In Ref. [51], the
gap is observed at positive hTi, and the gap decreases as
hTi increases. This happens because the FCI is inherently
formulated on a lattice and the Goldstone mode acquires a
mass because of the presence of explicit breaking of
rotational symmetry by the lattice. When hTi is positive,
but small in absolute value, the mean-field potential is
very shallow and quantum fluctuations effectively restore
the symmetry, shifting the critical value of T to a positive
number and leading to a larger gap. As the value of hTi
increases, the mean-field potential becomes deeper, the
fluctuations become less important, and, ultimately, the
gap is set entirely by the lattice effects. It is likely that
Ref. [51] has numerically observed the nematic phase in
FCIs, softened by the lattice effects and the fluctuations
around the mean field.
This completes the formulation of the bimetric effective

theory. The full action is given by

Seff ½a; ĝ; g� ¼ Stop½a; ĝ� þ Skin½ĝ; g� þ Spot½ĝ; g�: ð38Þ

Note that, by construction, the effective action Seff ½a; ĝ; g� is
gauge, diffeomorphism, SOð2Þ, and cSOð2Þ invariant. The
structure of the action is rigidly fixed by the symmetries
and does not allow further freedom in the lowest order in
gradients. Table I summarizes the fields that appear in this
paper and their transformation laws.

A. Hall viscosity

We start with an attempt to fix the coefficient ς by
calculating the Hall viscosity [9,11] from Eq. (38). Hall
viscosity describes the response of the stress tensor to time-
dependent strain, defined by the generating functional as

Tμ
ν ¼

δW½Aμ; gij�
δeAμ

eAν ¼ λμν
λ
AeAλ þ ημν

λ
A∂0eAλ : ð39Þ

The Hall viscosity

ðηHÞμνλρ ¼
1

2
ðημνλA − ηλA

μ
νÞeAρ ð40Þ

is the nondissipative, parity-odd part of the viscosity tensor.
When rotational symmetry is preserved, it has one inde-
pendent component ηH ¼ Sρ̄=4, proportional to the shift
on the sphere [11,52], and the average density ρ̄. In the
nematic phase, the Hall viscosity will no longer have only
one independent component.
To compute the Hall viscosity, we integrate out the gauge

field a and find

Seff ½ĝ; g� ¼
ν

4π

Z
AdAþ νs

2π

Z
Adω

þ νς

2π

Z
Adω̂þ Skin½ĝ; g� þ Spot½ĝ; g�; ð41Þ

where we have dropped the gravitational Chern-Simons
terms generated by integration over a [17]. The first term in
the second line of Eq. (41) was referred to as the “Berry
phase term” in Refs. [26,27].
As discussed previously, at low frequency, the term

Spot½ĝ; g� forces the dynamical metric ĝij to follow gij, and
the constant part hij is fixed to be 0 to minimize the
potential. Plugging the isotropic solution of the equations
of motion ĝij ¼ gij, which implies ω̂i ¼ ωi [53], back into
the action, we find

Seff ½g� ¼
ν

4π

Z
AdAþ νðsþ ςÞ

2π

Z
Adω: ð42Þ

Then, Hall viscosity is given by

ηH ¼ 2sþ 2ς

4
ρ̄ ¼ S

4
ρ̄; ð43Þ

TABLE I. The full list of fields that appear in various for-
mulations of bimetric theory. The “þ” entries indicate that the
field transforms under the symmetry group, while the “−” entries
indicate that it does not.

eAi gij ωμ êαi ĝij ω̂μ λαA hAB Cμ

SOð2Þ þ − þ − − − þ þ −cSOð2Þ − − − þ − þ þ − −
Diff þ þ þ þ þ þ − − þ
SLð2;RÞ − − − þ þ þ þ þ þ
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where we have introduced ρ̄ ¼ ½ν=ð2πÞ�B. Thus, we were
able to match sþ ς to the shift, which was already done in
Eq. (31). We find that the matching of the Hall viscosity is
reproduced correctly; however, it cannot be used to fix ς.
This is in contrast to Ref. [26], where ς was identified with
S=2 by matching the Hall viscosity. It is clear from bimetric
theory that the authors of Ref. [26] implicitly assumed
s ¼ 0. In what follows, we show that in the isotropic phase,
ς can indeed be uniquely fixed by matching the projected
static structure factor.
Note that if the background metric is perturbed at a

frequency much larger than the gap and much smaller than
the cyclotron frequency ~m ≪ Ω ≪ ωc, the dynamic metric
ĝij can no longer follow gij, and instead we find ĝij ¼ δij.
Thus, we conclude that at higher frequencies, the interact-
ing quantum Hall state responds to the metric perturbations
as if it has shift S ¼ 2s.
Next, we linearize the theory around a flat background

and establish the relation with the previous works [26,27].

B. Linearization of bimetric theory

To gain further insight into the effective theory (38), we
expand the action to quadratic order in flat space, gij ¼ δij.
We assume that the theory is in the isotropic phase γ < 1.
We choose the following parametrization of ĝij,

ĝij ¼ exp

�
Q2 Q1

Q1 −Q2

�
≈
�
1þQ2 Q1

Q1 1 −Q2

�
; ð44Þ

and furthermore,

Q ¼ Q1 þ iQ2; Q̄ ¼ Q1 − iQ2: ð45Þ
It is not hard to see that êαi ¼ êαi ðQÞ depends nonlinearly on
Q and Q̄; thus, to simplify the analysis, we linearize the
theory around the isotropic vacuum, Qi ¼ 0.
It is convenient to first integrate out a in Eq. (38) to find

Seff ½Q� ¼ νς

2π

Z
Adω̂þ Skin½Q� þ Spot½Q�; ð46Þ

where we have removed all of the terms made only from the
external fields and neglected the gravitational Chern-
Simons term ω̂dω̂ since it is higher order in derivatives.
This term will be discussed in some detail in the next
section. We integrate the first term in Eq. (46) by parts and
expand everything up to the second order in Q to find

Stop ≈
iςρ̄
4

Z
Q̄ _Q; ð47Þ

Skin ≈ −α
Z

j∂Qj2; ð48Þ

Spot ≈ −
m
2

Z
jQj2; m ¼ ~mð1 − γÞ; ð49Þ

giving us the low-energy, linearized Lagrangian

Leff ≈
iςρ̄
4

Q̄ _Q−αj∂Qj2 −m
2
jQj2: ð50Þ

The equations of motion for Q,

i _Q ¼ −
16α

ςρ̄
ΔQþ 2m

ςρ̄
Q; ð51Þ

imply that as long as Q tends to 0 at infinity, the only
solution is Q ¼ 0, which corresponds to ĝij ¼ gij ¼ δij.
The action of the type shown in Eq. (50) was studied in
Ref. [26] and derived in Ref. [27] using flux attachment.
The Lagrangians studied in Refs. [26,27] had different
values for the coefficient ς. We will resolve the disagree-
ment shortly.
The propagator for the field Q is given by

hQ̄Qi ¼ 4

ςρ̄

i
Ω − α

ςρ̄ ðklÞ2 − 2m
ςρ̄ þ i0

; ð52Þ

where l ¼ ffiffiffiffiffiffiffiffi
1=B

p
is the magnetic length.

C. Projected static structure factor

In this section, we show how to fix the coefficient ς. To
do so, we evaluate the projected static structure factor,
defined as the connected equal-time correlation function of
the (projected) density operators,

s̄ðkÞ ¼ 1

ρ̄

Z
dΩ
2π

hρðΩ; kÞρð−Ω;−kÞic: ð53Þ

We define s4 and s6 as the coefficients in the low-k
expansion of s̄ðkÞ,

s̄ðkÞ ¼ s4ðklÞ4 þ s6ðklÞ6 þ o(ðklÞ6): ð54Þ
To evaluate the SSF, we recall Eq. (28),

ρ ¼ ρ̄þ νς

4π
R̂: ð55Þ

Thus, the SSF is given by the correlation function of Ricci
scalars (which are operators in bimetric theory),

s̄ðkÞ ¼
�
νς

4π

�
2 1

ρ̄

Z
dΩ
2π

hR̂ðΩ; kÞR̂ð−Ω;−kÞic: ð56Þ

To evaluate the correlation function, we express the Ricci
curvature R̂ in terms of Q,

R̂ ¼ 2ið∂̄2Q − ∂2Q̄Þ: ð57Þ

Using the propagator at zero spatial momentum,

hQ̄Qi ¼ 4

ρ̄ς

i
Ω − 2Ω0 þ i0

; Ω0 ¼
m
ςρ̄

; ð58Þ

we find, in momentum space,
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hR̂ðΩ; kÞR̂ð−Ω;−kÞic ¼
k4

ρ̄ς

4iΩ0

Ω2 − ð2Ω0Þ2 þ i0
; ð59Þ

which leads to

s̄ðkÞ ¼ 2ς

8
ðklÞ4; ð60Þ

where we find that 2ς ¼ 8s4. This is one of the central
results of the present paper.
We can match this to a general relation, valid for chiral

states in the absence of Landau level mixing [12,54] (see
also Ref. [55]),

s̄ðkÞ ¼ S − 1

8
ðklÞ4 þ � � � ; ð61Þ

from where we fix

2ς ¼ S − 1 ð62Þ
and 2s ¼ 1.
The decomposition S ¼ 2ςþ 2s, in the present case,

corresponds to the separation of the shift into contributions
from the orbital part s and the guiding center part ς. This is
in contrast to Ref. [26], where the coefficient ς was fixed to
be equal to S=2. The realization of this decomposition in
the effective theory (38) is one of the main results of the
present paper. The GMP mode is absent in the IQH case
(since the coefficient of the Adω̂ term vanishes), which is a
crucial property of any effective theory of the GMP mode.
In the language of Ref. [27], the composite fermions (in

the isotropic phase) should couple to both the fluctuations
of the GMP mode and background geometry through the
covariant derivative

Di ¼ ∂i þ iAi þ iai þ i
1

2
ωi þ i

k − 2

2
ω̂i: ð63Þ

Thus, the composite fermions perceive the ambient geom-
etry in the same way as particles with a geometric spin
s ¼ 1

2
—the same value as for noninteracting electrons

filling the lowest Landau level. At the same time, the
composite fermions perceive the fluctuations of the GMP
mode (viewed in the second-order, or metric, formalism)
as particles with a geometric spin ς ¼ ½ðk − 2Þ=2� þ 1

2
¼

½ðk − 1Þ=2�, equal to the geometric spin of the guiding
centers [24].
To lowest order in derivatives, such as presented in

Eq. (50), there are no more dimensionless adjustable param-
eters. The phenomenological coefficient C discussed in
Ref. [26] is fixed to the value − 1

2
by the requirement that

the effective theory (38) is self-consistent in a weakly curved
space. For any other value of C, the theory is not invariant
under the internal local SOð2Þ “symmetry” and would
require additional noninvariant counterterms to restore the
invariance. These extra terms will enforce C ¼ − 1

2
.

We emphasize that, at this point, we have not proven that
ρ should be treated as a projected density operator, although
the vanishing of the ðklÞ2 contribution to the SSF is strong
evidence. In the next section, we provide further evidence
of the implicit LLL projection present in Eq. (38).

D. GMP algebra

In this section, we prove that the density operators (55)
satisfy the long-wave limit of the GMP=W∞ algebra
[56,57]. It was shown in Ref. [20] that projected density
operators ρðkÞ satisfy the following commutation relations:

½ρðkÞ; ρðqÞ� ¼ 2ie
1
2
ðk·qÞl2 sin

�ðk × qÞl2

2

�
ρðkþ qÞ

≈ iðk × qÞl2ρðqþ kÞ: ð64Þ
To reproduce the GMP algebra from bimetric theory, we
start with the expression (55); however, this time we
express the linearized spin connection ω̂i and the Ricci
scalar R̂ in terms of the field ĝij:

ω̂i ¼ −
1

2
ϵjk∂jĝki; R̂ ¼ −∂i∂jĝij: ð65Þ

The electron density is given by

ρ ¼ ρ̄þ νς

2π
ϵij∂iω̂j: ð66Þ

To evaluate the commutator, we need to know the
commutation relations for ĝij. These commutation relations
follow from the commutation relations for êαi that can be
read out from the topological term of Eq. (38). We find

½Êi
αðxÞ; êβj ðx0Þ� ¼ −

2i
ρ̄ς

δijϵα
βδðx − x0Þ: ð67Þ

Upon linearization in êαi ≈ δαi þ δêαi , we find

½δêαi ðxÞ; δêβj ðx0Þ� ≈ −
2i
ρ̄ς

δijϵ
αβδðx − x0Þ; ð68Þ

which is identical to the commutation relations obtained in
Ref. [26]. We find that components of the metric satisfy the
slð2;RÞ algebra [24,26],

½ĝijðxÞ; ĝklðx0Þ� ¼ −
2i
ρ̄ς

ðϵilĝjk þ ϵjkĝil

þ ϵjlĝik þ ϵikĝjlÞδðx − x0Þ: ð69Þ
It is useful to evaluate the commutator of spin con-

nections ω̂i as an intermediate step. Curiously, the algebra
of ω̂i closes (to lowest order in k). We find

½ω̂iðkÞ; ω̂jðqÞ� ¼
1

ρ̄ς
ðkjω̂iðkþ qÞ − qiω̂jðkþ qÞÞ

−
iϵij
2ρ̄ς

R̂ðkþ qÞ; ð70Þ
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which implies

½R̂ðkÞ; R̂ðqÞ� ¼ 4π

νς
iðk × qÞl2R̂ðkþ qÞ: ð71Þ

Together with ρ ¼ ρ̄þ ½ðνςÞ=ð4πÞ�R̂, Eq. (71) implies the
GMP algebra (64). Thus, we are justified in treating the
operators ρ, at low energies, as the projected density
operators. Since the commutators in Eqs. (70) and (71)
take a covariant form, we expect that they will remain valid
beyond the linear order in ĝij. We were not able to find the
“spin connection algebra” (70) in the literature. Finally, we
note here that the GMP algebra has also appeared in
fractional Chern insulators [58], further supporting our
claim that bimetric theory can be used to describe the FCIs.

IV. FURTHER PROPERTIES
OF BIMETRIC THEORY

In this section, we use bimetric theory to calculate the s6
coefficient of the projected SSF and derive the small-
momentum behavior of the GMP mode.

A. Gravitational Chern-Simons term

So far, we have neglected the gravitational Chern-Simons
term, which will necessarily be generated from integrating
out the gauge field. This term has a quantized, dimensionless
coefficient and therefore will most likely describe some
universal physics. In this section, we fix this coefficient and
expose the physical consequences of this term.
Bimetric theory, modified by the Chern-Simons term,

takes the form

Seff ½ĝ; g� ¼
νς

2π

Z
Adω̂þ SgCS½ĝ� þ Skin½ĝ; g� þ Spot½ĝ; g�;

ð72Þ
where

SgCS½ĝ� ¼ −
ĉ
4π

Z
ω̂dω̂: ð73Þ

Here, we have introduced a phenomenological parameter ĉ
and, for now, will remain agnostic about its value and
origin. So far, the only constraint is that ĉ should vanish for
the IQH states.
Note that the gravitational Chern-Simons term is third

order in derivatives and, therefore, will not modify either
the dispersion relation, the projected SSF, or the GMP
algebra at leading order. Thus, the role of the term is quite
subtle, and to expose it, we go to higher orders in the
momentum expansion.
Writing the gravitational Chern-Simons term in compo-

nents, we find

Z
ω̂dω̂ ¼

Z
ω̂0R̂ − ϵijω̂i

_̂ωj; ð74Þ

which we linearize around a flat background metric. The
first term is inherently nonlinear and goes as Q3; thus, it
will be disregarded. The second term, however, contributes
to the quadratic effective action

SgCS½Q� ¼ −
ĉ
4π

Z
ω̂dω̂ ≈ −

iĉ
16π

Z
Q̄Δ _Q: ð75Þ

The gravitational Chern-Simons term SgCS has several
subtle consequences. First, it modifies the canonical com-
mutation relations for ĝij by a higher-gradient term [59],

½ĝijðkÞ; ĝklðqÞ� ¼ −
2i
ρ̄ς

�
1 −

ĉ
2νς

l2ðk · qÞ
�

× ðϵilĝjk þ ϵjkĝil þ ϵjlĝik þ ϵikĝjlÞ; ð76Þ
where every ĝij on the rhs is taken at the momentum kþ q.
We now verify that the additional term in Eq. (76) does not
spoil the GMP algebra to the subleading, ðklÞ4, order in the
momentum expansion. To do so in a self-consistent manner,
we add all the terms to bimetric theory that contribute in this
order. Fortunately, there is only one such term:

Sξ½ĝ� ¼
ξl2

8π

Z
d3x

ffiffiffi
g

p
ĝijEi∂jR̂; ð77Þ

where ξ is a phenomenological parameter to be fixed
momentarily and Ei is the electric field. This term describes
the interaction of the dynamic curvature R̂with a gradient of
the electric field, favoring an alignment of the gradient of the
dynamical curvature with the electric field.
The role of this term is to modify the relation between the

electron density and Ricci curvature R̂:

ρ ¼ ρ̄þ νς

4π
R̂þ ξ

8π
l2ΔR̂: ð78Þ

The commutation relation of the density operators is
now

½ρðkÞ; ρðqÞ� ¼ iðk × qÞρ − i
8π

ðĉþ ξÞðk × qÞðk · qÞR̂;
ð79Þ

where ρ is given by Eq. (78). To ensure that the GMP
algebra holds to order ðklÞ4, we enforce

ξ ¼ −ĉ − νς

2
: ð80Þ

We do not attempt to reproduce the ðklÞ6 term in the GMP
algebra since it is likely that, in order to properlymatch such a
term to the exactGMPexpression, the higher-spin fields have
to be introduced.A recent attempt to find a topological theory
for higher-spin fields was made in Ref. [60].
Next, we fix the coefficient ĉ in terms of microscopic

properties of the FQH states. To accomplish this task, we
evaluate the ðklÞ6 correction to the projected static
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structure factor, Eq. (54), and compare it to the results
known in the literature. Under certain conditions on the
microscopic physics, discussed in Refs. [16,24,54,61–63],
s6 is universal and is determined by topological quantum
numbers (i.e., the filling factor, shift, chiral central charge,
etc.) only. Generally speaking, we do not expect s6 to be
universal because its “universality” arises from subtle (and
not yet entirely understood) properties of the quantum Hall
phase [16,63]. The necessary (but not sufficient) conditions
are (i) the absence of Landau level mixing and that (ii) the
state has to be either fully chiral, in the sense of Ref. [54], or
a particle-hole conjugate of a chiral state [63].
When evaluated in bimetric theory, the coefficient s6

receives two different contributions. One comes from the
gravitational Chern-Simons term, through the modification
of the propagator

hQ̄Qi¼ 4

ςρ̄

i
ð1þ ĉ

2νςðklÞ2ÞΩ− α
2πνςðklÞ2− 2m

ςρ̄ þ i0
; ð81Þ

and another one comes from Sξ½ĝ� [64]. Computation
reveals

s̄ðkÞ ¼ 2ς

8
ðklÞ4 − ĉþ 2ξ

8ν
ðklÞ6 ¼ 2ς

8
ðklÞ4 þ ĉ − νς

8ν
ðklÞ6:
ð82Þ

Thus, we establish a general relation ĉ ¼ 8νs6. Assuming
the absence of Landau level mixing and chirality of the
state, we can match ĉ to Refs. [16,61,63] and find

ĉ ¼ 8νs6 þ 4νs4 ¼
ν − c
12

þ νς2 þ νvarðsÞ; ð83Þ

where ν varðsÞ is the orbital spin variance [17,18], which
plays a major role when the theory is applied to the Jain
series. Note that ĉ vanishes for IQH states. At this point, it is
good to note that the value of the coefficient ĉ is not the naive
one that would have come from integrating out only the
gauge field a. The extra contributions should come from
integrating out the higher-spin modes. Since the higher-spin
modes were not introduced explicitly, we use the consis-
tency of bimetric theory with the GMP algebra and s6 to fix
the value of ĉ. It is an interesting open problem to perform
the computation with the higher-spin fields directly.
The present calculation of s6 can be turned around to

argue its universality in the SMA. Indeed, the coefficient ĉ
of the gravitational Chern-Simons term cannot take an
arbitrary value and has to be quantized as a rational number.
At the same time, Eq. (83) tells us that s6 ¼ ½ĉ=ð8νÞ�−
ðς=8Þ; thus, if ĉ cannot change continuously under small
perturbations (provided that these perturbations do not
introduce the LL mixing), then neither can s6.
A comment is in order. It is well known that any two-

body Hamiltonian, projected to the lowest Landau level, is
invariant under the particle-hole (PH) transformation. This

invariance implies a duality [63] between FQH states and
their particle-hole conjugates (in the sense of Girvin [65]).
We now comment on the property of our theory with

respect to PH symmetry [65], which is an exact symmetry
of any two-body Hamiltonian, projected to the lowest
Landau level. PH transformation relates the properties of
a QH state with its particle-hole conjugate. If we wish to
claim that Seff ½ĝ; g� describes the intrinsic dynamics,
projected to a single Landau level, then particle-hole
duality must be manifest. Upon closer inspection, we find
that this is indeed the case. Note that the coefficients νς and
ĉ are of the form νs4 and νs6, respectively. It was shown in
Refs. [63,66] that the combination νs̄ðkÞ is invariant under
PH transformation. Since the coefficients in the effective
action have the form νsi [si being the coefficient in front of
ðklÞi in the long-wave expansion of the projected SSF], we
conclude that particle-hole duality is manifest in the
bimetric effective action Seff ½ĝ; g�. The actions proposed
in Refs. [26,27] do not satisfy this property. For complete-
ness, we note that under PH transformation, the first three
terms in Eq. (72) flip the sign, while the rest of the action is
invariant. This transformation property is similar to the one
encountered in Dirac composite fermion theory of Jain
states, where PH transformation only flips certain signs.
Next, we use Eq. (81) to find the dispersion relation of

the GMP mode:

ΩðkÞ
Ωð0Þ ¼ 1þ

�
α

2m
−

ĉ
2νς

�
ðklÞ2: ð84Þ

The presence of a universal correction in the ðklÞ2 order of
the dispersion relation should not come as a surprise. To see
that such a possibility exists, we can use the results of
Ref. [20], which state that the dispersion relation of the
GMP mode, in the single-mode approximation, is given by

ΩðkÞ ¼ fðkÞ
s̄ðkÞ ; ð85Þ

where fðkÞ is a nonuniversal function that depends on the
interaction potential [20]. Assuming that fðkÞ takes the
form fðkÞ ¼ f4ðklÞ4 þ f6ðklÞ6 þ � � �, we find

ΩðkÞ
Ωð0Þ ¼ 1þ

�
f6
f4

−
s6
s4

�
ðklÞ2 þ…: ð86Þ

Comparing this to Eqs. (83) and (84), we unambiguously
match the phenomenological parameters

m ¼ 2ρ̄f4; α ¼ 4ρ̄f6 − 2ρ̄f4: ð87Þ
Equation (87) provides the explicit expressions of the
phenomenological parameters m and α in terms of the
Fourier modes of the projected interaction potential, as long
as the SMA remains valid.
The first identification in Eq. (87) is also consistent with

Ref. [20], where the function fðkÞ is identified with the
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expectation value of the double commutator ½ρðkÞ;
½ρð−kÞ; H��. In our theory, ρ is given by the second derivative
of the metric ĝij, while the Hamiltonian is, to leading order,
given by Eq. (37). Computing the double commutator, we
find the first term in the low-k expansion of fðkÞ, f4ðklÞ4.
This term is sometimes referred to as the “shear modulus”
[25,30,67].

B. Global properties

In this section, we briefly discuss some global features of
bimetric theory. We start by noting that the coefficient ĉ has
two distinct contributions:

ĉ ¼ ν − c
12

þ ν½ς2 þ varðsÞ�: ð88Þ

It is now understood [17] that upon integrating out the
gauge field a (and, presumably, the higher-spin fields) in
addition to the gravitational Chern-Simons terms, one
generates a winding number term ∼ðÊdêÞ3. This winding
number term is completely invisible as far as any local
properties are concerned. It can, however, be observed if
one is interested in global properties such as global
gravitational anomalies (i.e., noninvariance under Dehn
twists). We conjecture that the winding term is indeed
generated in bimetric theory and has the form

Swinding½ê� ¼
1

3

c − ν

96π

Z
TrðÊdêÞ3: ð89Þ

To support the conjecture, we note that the combination
ðc − νÞ=24 has previously appeared in the numerical
computation by Park and Haldane [68], where it appeared
as a subleading correction to what they called “momentum
polarization”. We are not aware of how to make a precise
connection; however, we note that when the theory is
placed on a (spatial) torus, only the winding number term
transforms under the Dehn twist of the cylinder and,
therefore, contributes to the phase accumulated by the
wave function after the twist, which is the quantity that
should be computed in the momentum polarization tech-
nique. We note, however, that the Dehn twist must only
affect the ĝij and not the spatial metric gij. This is,
presumably, accomplished in Ref. [68] via an “orbital cut.”
We also emphasize that Eq. (89) does not imply that the

gravitational anomaly of the edge theory is given by c − ν.
Another winding number term, made from the ambient
vielbein e, is generated from the framing anomaly and
ensures the correct gravitational anomaly of the edge.
Finally, we note that taking the limit m → ∞ leads to the

elimination of all local d.o.f. and pushes the gap of the
GMPmode to infinity. In this limit, however, Seff reduces to
a topological theory given by Stop. Singularities of ω̂ in such
a theory correspond to world lines of geometric singular-
ities such as conical points [69–71], punctures [72], or

branching points [73] of the dynamical metric ĝ. The
singularities of ω̂, with the curvature given by

R̂ ¼ 4π
p
2ς

δðz − z0ðtÞÞ; ð90Þ

accommodate the proper Wilson lines of the Uð1Þk Chern-
Simons theory and, consequently, may correspond to
quasiholes.

V. CONCLUSIONS

We have formulated a bimetric theory for the gapped
collective excitations in fractional quantum Hall states. The
theory consists of topological Chern-Simons theory
coupled to a nonrelativistic, parity-violating version of a
bimetric massive gravity. The theory is naturally formulated
in curved ambient space with gauge, diffeomorphism, and
internal SOð2Þ “symmetries” built into the construction.
The symmetries rigidly restrict the form of the effective
action, leaving only two dimensionless parameters, ς and ĉ.
There is, in principle, an infinite number of dimensionful
parameters, only two of which play a role in the low-energy
physics. For the sake of completeness, we write the entire
Lagrangian (after the gauge field is “integrated out”)

Leff ¼
νς

2π
Adω̂ −

ĉ
4π

ω̂dω̂ −
ĉl2

8π
ĝijEi∂jR̂

−
~m
2

�
1

2
ĝijgij − γ

�
2

−
α

4
jΓ − Γ̂j2

þ 1

3

c − ν

96π
TrðÊdêÞ3; ð91Þ

where ς ¼ 4s4 and ĉ ¼ 8νs6 þ 4νs4.
The full bimetric theory is nonlinear. To perform the

computations, we linearized the theory around the flat
background and found an action similar to the one studied
previously [26]; however, we used fewer phenomenological
parameters because some of these parameters were fixed by
the symmetry and by the consistency of the theory in weakly
curved space. Thevaluesof theparameters are self-consistent
and do not agree with Refs. [26,27]; however, they do agree
with Refs. [30,74] whenever comparison is possible.
We have related the value of ς to the s4 coefficient in the

long-wave expansion of the projected static structure factor
ς ¼ 4s4. In the limit when Landau level mixing can be
neglected, and the state is chiral (or a particle-hole con-
jugate of a chiral state), this sets 2jςj ¼ jS − 1j, where S is
the shift. This value of ς implies the absence of the GMP
mode in the integer case (as it should be).
The dimensionless coefficient ĉ appears in front of the

gravitational Chern-Simons term and determines the s6
coefficient in the long-wave expansion of the projected static
structure factor according to ĉ ¼ 8νs6 þ 4νs4; it contributes
to the ðklÞ2 behavior of the GMP dispersion relation at low
wavelength.
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The projected static structure factor is interpreted
in bimetric theory as a two-point function of Ricci scalars.
The GMP algebra follows from the fact that compon-
ents of the spin connection ω̂i form a closed algebra
themselves. In principle, any FQH calculation performed
in bimetric theory receives a curious geometric
interpretation.
The present theory is only a first step in the effective

field theory description of the bulk gapped collective
excitations in quantum Hall states, and many open
questions remain. For example, the theory (38) is non-
linear, and it would be interesting to understand the role of
the nonlinear effects. Recently, it was understood that
many modes of higher angular momentum are expected to
appear in addition to the GMP mode. These modes should
be described by the higher-spin cousins of the field ĝij.
Presumably, when all of the higher-spin fields are
included, the exact GMP algebra should be reproduced.
Multilayer states can provide a natural FQH interpretation
of multigravity (where many metrics are involved). Our
construction was only spatially covariant, and a fully
covariant formulation should be done in the language of
the Newton-Cartan geometry. The Galilean or Milne boost
symmetry (in the limit of zero bare electron mass mel → 0)
is most likely present in bimetric theory, but it is not clear
how it is realized. A precise relation to the theory of
fractional Chern insulators still needs to be established.
Are there higher-spin fields relevant for the FCIs? What is
the precise relation to the nonlinear collective field theory
of Ref. [75]? We leave all of these and many other
questions to future work.
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APPENDIX A: VALUES OF THE COEFFICIENTS
FOR SPECIFIC STATES

In this appendix, we collect the values of the topological
quantum numbers for some prominent states. We have
found that the phenomenological coefficients are given by
the coefficients of small momentum expansion of the
projected static structure factor s̄ðqÞ ¼ s4q4 þ s4q6 þ � � �
according to ς ¼ 4s4 and ĉ ¼ 8νs6 þ 4νs4, which implies

ς ¼ S − 1

2
; ðA1Þ

ĉ ¼ ν − c
12

− νςþ νς2 þ νvarðsÞ: ðA2Þ

The values of the coefficients for various states are
summarized in the table below.

ν S c ν varðsÞ ς ĉ − νς

Laughlin [2] 1=k k 1 0 ðk − 1Þ=2 f½ðk − 1Þð3k − 10Þ�=12kg
Moore-Read [5] 1

2
3 3

2
0 1 − 1

12

Read-Rezayi [76] k=ðMkþ 2Þ M þ 2 ½3k=ðkþ 2Þ� 0 ðM þ 1Þ=2 f½kð3ðkþ 2ÞM2 − 3kM − 2ðkþ 5ÞÞ�=
½12ðkþ 2ÞðkM þ 2Þ�g

Jain [77] N=ð2N þ 1Þ N þ 2 N ½NðN2 − 1Þ�=12 ðN þ 1Þ=2 ½NðN3 þ 2N2 − 2N − 2Þ�=6ð2N þ 1Þ
Jain, p fluxes N=ð2Npþ 1Þ N þ 2p N ½NðN2 − 1Þ�=12 ðN þ 2p − 1Þ=2 ½NðN3pþ 2N2 þ Nð4p − 6Þ

þ6pðp − 2Þ þ 4Þ�=6ð2Npþ 1Þ

The topological quantum numbers for the particle-hole
dual states can be found in Ref. [63]. The coefficients ς and
ĉ do not change under particle-hole transformation. Note
that the coefficient s6 < 0 only for the Read-Rezayi series
at M ¼ 1 and, in particular, for the Laughlin ν ¼ 1

3
and

ν ¼ 2
3
states and for the Pfaffian and anti-Pfaffian ν ¼ 1

2

states. The value of ĉ for the Pfaffian state leads to a
gravitational Chern-Simons term with a properly quantized
coefficient ½1=ð48πÞ�ω̂dω̂.

APPENDIX B: POTENTIAL TERM IN
BIMETRIC GRAVITY

The most prominent feature of bimetric gravity is the
fine-tuned potential that ensures the absence of ghosts.
Here, we construct this potential in the language of bimetric
theory. For simplicity, we assume (as is usually done in
bimetric gravity) that there is no difference between SOð2Þ
and cSOð2Þ indices. To construct the potential, we follow
Ref. [36] and introduce
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γij½g; ĝ� ¼ gikĝkj ¼ eAj hA
BEi

B;

Ki
j½g; ĝ� ¼ δij − ð ffiffiffi

γ
p Þij: ðB1Þ

It then follows that

Ki
j½g; ĝ� ¼ Ei

AðδAB − λABÞeBj : ðB2Þ

Given these definitions, there is a unique stable potential
[36]

Spot ¼ m
Z

d3x
ffiffiffi
g

p ð½K�2 − ½K2�Þ

¼ 2m
Z

d3x
ffiffiffi
g

p ð1þ λ − ½λ�Þ; ðB3Þ

where we have introduced ½K� ¼ TrK, λ ¼ det λ, andm is a
phenomenological parameter that will determine the gap of
the GMP mode. This potential supports only one phase. As
long as m > 0, there is a unique vacuum state with
unbroken rotational symmetry. Indeed, in the parametriza-
tion Q1 ¼ ρ cosϕ, Q2 ¼ ρ sinϕ. We find

Spot ¼ −8m
Z

d3xðsinh ρÞ2; ðB4Þ

which means that, as long as ρ is real, the minimum occurs
at ρ ¼ 0, which implies hij ¼ 0 and λAB ¼ δAB for all
positive m. So, there is no possibility of a phase transition.

APPENDIX C: LINEARIZED
GEOMETRIC QUANTITIES

In this appendix, we collect several useful formulas for
linearized geometric objects. We parametrize the hAB as

hAB ≈
�
1þQ2 Q1

Q1 1 −Q2

�
: ðC1Þ

We use the following notations:

Q ¼ Q1 þ iQ2; Q̄ ¼ Q1 − iQ2; ðC2Þ

and

∂ ¼ 1

2
ð∂x − i∂yÞ; ∂̄ ¼ 1

2
ð∂x þ i∂yÞ; ðC3Þ

so that ∂z ¼ ∂̄ z̄ ¼ 1 and ∂̄z ¼ ∂z̄ ¼ 0. Under internal
SOð2Þ rotation by angle φ, the fields transform according
to Q → e−2iφQ and Q̄ → e2iφQ̄. The angle is twice the
angle of rotation of an arbitrary vector vz because Q has a
quadrupolar nature.

The spin connection is given by

ω̂i ¼ −
1

2
ϵjk∂jĝki: ðC4Þ

We define the complex spin connection as

ω̂z ¼ ω1 þ iω2; ω̂z̄ ¼ ω1 − iω2: ðC5Þ

Then,

ω̂z ¼ ∂Q̄; ω̂z̄ ¼ ∂̄Q: ðC6Þ

Next, we compute Ck ¼ ϵijΓ̂j
i;k ¼ 2ω̂k.

Thus, it is clear that

Lkin ¼ −
α

4
CiCi ¼ −

α

4
CzCz̄ ¼ −αj∂Qj2: ðC7Þ

We find the Ricci curvature

R̂ ¼ −∂i∂jĝij ¼ 2ið∂̄2Q − ∂2Q̄Þ: ðC8Þ

We also find the “gravi-electric” field

Êz ¼ ∂0ω̂z; Ê z̄ ¼ ∂0ω̂z̄: ðC9Þ

The temporal component of the spin connection is always
quadratic in fields,

ω̂0 ¼
1

2
ϵijÊ

j∂0êki ≈
i
8
ðQ _̄Q − Q̄ _QÞ: ðC10Þ

The temporal component of C0 is also quadratic in
fields; however, it is written entirely in terms of Ĝij

and ĝij:

C0 ¼
1

2
ϵi

jĜik∂0ĝjk: ðC11Þ

While, upon linearization, this term is indistinguishable
from ω̂0, we remark that as far as the canonical commu-
tation relations are concerned, this term modifies the
commutator of ½ĝij; ĝkl� by a term that is zeroth order in
ĝij. Then, ĝij do not form an slð2;RÞ algebra. For this
reason, we forbid the coupling of the Chern-Simons theory
to Cμ and do not include the term ρ̄C0 in the effective
action Seff .
The gravitational Chern-Simons integrand is given by

ω̂dω̂ ≈ −ϵijω̂i∂0ω̂j ≈
i
2
ð∂̄Q∂ _̄Q − ∂Q̄ ∂̄ _QÞ: ðC12Þ

We recall that ∂∂̄ ¼ 1
4
Δ, where Δ is the Laplace operator.

The Chern-Simons term, as emphasized in the main text,
modifies the canonical commutation relations.
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